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Abstract
Introduction  Current drug–drug interaction (DDI) detection methods often miss the aspect of temporal plausibility, leading 
to false-positive disproportionality signals in spontaneous reporting system (SRS) databases.
Objective  This study aims to develop a method for detecting and prioritizing temporally plausible disproportionality signals 
of DDIs in SRS databases by incorporating co-exposure time in disproportionality analysis.
Methods  The method was tested in the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). 
The CRESCENDDI dataset of positive controls served as the primary source of true-positive DDIs. Disproportionality 
analysis was performed considering the time of co-exposure. Temporal plausibility was assessed using the flex point of 
cumulative reporting of disproportionality signals. Potential confounders were identified using a machine learning method 
(i.e. Lasso regression).
Results  Disproportionality analysis was conducted on 122 triplets with more than three cases, resulting in the prioritization 
of 61 disproportionality signals (50.0%) involving 13 adverse events, with 61.5% of these included in the European Medi-
cine Agency’s (EMA’s) Important Medical Event (IME) list. A total of 27 signals (44.3%) had at least ten cases reporting 
the triplet of interest, and most of them (n = 19; 70.4%) were temporally plausible. The retrieved confounders were mainly 
other concomitant drugs.
Conclusions  Our method was able to prioritize disproportionality signals with temporal plausibility. This finding suggests 
a potential for our method in pinpointing signals that are more likely to be furtherly validated.

1  Introduction

Drug–drug interactions (DDIs) pose a significant concern in 
healthcare, as the concomitant use of multiple medications 
can lead to adverse events (AEs) and compromised therapeu-
tic outcomes [1]. To identify and assess DDIs, spontaneous 

reporting system (SRS) databases have become valuable 
resources [1]. Various approaches have been developed to 
uncover potential DDIs within these databases, with dis-
proportionality analysis being a commonly used method 
[2]. Disproportionality analysis relies on statistical meas-
ures such as the reporting odds ratio (ROR), information 
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component (IC), Bayesian confidence propagation neural 
network, or the gamma Poisson shrinker. Among these, the 
shrinkage method (Omega, Ω) proposed by Norén et al. [3] 
has emerged as the gold-standard method for detecting DDIs 
due to its ability to minimize false-positive disproportional-
ity signals (see Fig. 1) [4]. However, despite their effective-
ness, these methods lack consideration for key pharmacolog-
ical principles such as biological and temporal plausibility 
[5] and further implementation decisions are needed once a 
potential alert is retrieved [6].

The omission of co-exposure time in current DDI detec-
tion methods can lead to the identification of disproportion-
ality signals that are not substantiated by temporal relation-
ships. Consequently, this may result in an increased number 
of false-positive signals and burden during signal validation 
[7].

Recognizing the significance of these principles, 
researchers found that the temporal interval of co-exposure 
is a crucial factor for validating signals of both pharmacoki-
netic and pharmacodynamic DDIs [1]. The assessment of 
temporal plausibility is essential for distinguishing tempo-
rally plausible DDI signals from spurious associations and 
prioritizing [8].

While some efforts have been made to incorporate tempo-
ral plausibility into signal detection methods by considering 
the time to onset of specific AEs or using overlapping treat-
ment periods as a filter in the algorithm [5], to the best of 
our knowledge, none have comprehensively addressed the 
simultaneous inclusion of temporal plausibility factors in 
signal detection and prioritization of DDI detection. There-
fore, there is a clear need to develop a novel approach that 
combines these crucial elements to enhance the accuracy 
and reliability of DDI signal detection and prioritization in 
SRS databases.

The objective of this study is to develop a novel method 
for signal detection and prioritization of DDIs in SRS data-
bases by integrating temporal plausibility. By considering 
the temporal relationship between drug exposures and the 
onset of AEs, as well as leveraging known pharmacological 
mechanisms, we evaluated whether it is possible to identify 
disproportionality signals of DDIs that are already supported 
by temporal plausibility.

2 � Methods

2.1 � Data Source

The Food and Drug Administration (FDA) Adverse Event 
Reporting System (FAERS) was used as the data source. 
FAERS contains drug-related AEs that have been volun-
tarily reported by healthcare providers (e.g. physicians, 
pharmacists) and consumers (e.g. patients, family mem-
bers, and lawyers) and recorded as individual case safety 
reports (ICSRs). FAERS collects the type of AEs that have 
occurred, plus any other available information, such as the 
age and gender of the individual and the drugs (reported as 
suspect or concomitant) that have been used, together with 
their indication for use and time of exposure.

Fig. 1   The importance of 
considering time of co-expo-
sure at an early stage in the 
process once a potential alert 
is retrieved. DDI drug–drug 
interaction, ICSR individual 
case safety report

Key Points 

We have developed a novel method for detecting drug–
drug interactions that integrates temporal plausibility 
into disproportionality analysis.

This method was applied to 27 disproportionality sig-
nals, revealing that the majority (70.4%) were temporally 
plausible.

Further investigation is needed to assess whether our 
novel method outperforms standard approaches in identi-
fying and prioritizing safety signals.
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2.2 � Data Acquisition and Processing

American Standard Code for Information Interchange 
(ASCII) files of quarterly extraction of FAERS data were 
downloaded from the FDA website. We therefore retrieved 
our dataset from the third quarter (Q3) 2014 up to the fourth 
quarter (Q4) of 2022. Drugs reported as suspect, interact-
ing, and concomitant with the exact exposure time (start 
date–end date) were included in the analysis. Drugs should 
also be started before the AE date. Duplicates for primary ID 
were removed. A local database was set up in R (version 
4.1.2, R Development Core Team) by using as a linkage key 
the primary identifier of each ICSR, as described by Kass-
Hout and colleagues [9].

2.3 � True‑Positive DDIs

The CRESCENDDI dataset of positive controls provided 
by Kontsioti et al. [10] was used as the primary source of 
true-positive DDIs. We focused our attention on those DDIs 
that are not fully contraindicated, which are labelled as “take 
into consideration” in the dataset by Kontsioti, because we 
expected that DDIs for which a contraindication exists would 
be less frequently recorded in an SRS database, and there-
fore, we did not consider them in this study. Within all the 
10,286 available triplets drug A–drug B–AE, 2372 true posi-
tives were labelled as “take into consideration”. Of these, 
68% of the triplets were pharmacodynamic (n = 879) and 
synergic (n = 740) DDIs.

2.4 � Signal Detection of DDIs Considering Time 
of Co‑exposure

Considering two interacting drugs “drug A” and “drug B”, 
the ROR and the corresponding 95% confidence interval 
(CI) are calculated individually for each drug using 2 × 2 
contingency tables [11, 12]. Subsequently, we combined the 
information from the contingency tables of the individual 
drugs into a new contingency table to compute the ROR 
and the 95% CI for the DDI. Specifically, for the computa-
tion of the ROR for the DDI, we considered as the “event” 
for the two interacting drugs “drug A + drug B” the number 
of cases where the AE of interest is reported together with 
drug A and drug B, but only when there was at least 1 day 
of co-exposure between drug A and drug B; if no days of 
co-exposure were reported, we did not consider the AEs 
related to drug A and drug B together, and these cases were 
considered as the “non-event”. We also propose a way for 
choosing the best comparator in disproportionality analyses, 
namely “monotherapy” between “drug A” and “drug B”, as 
described in Fig. 2. Specifically, we defined the drug to be 
considered as a comparator as the one with the highest lower 
bound of the ROR’s 95% CI in monotherapy. The ROR was 
therefore computed for each drug–event pair of the triplets. 
Triplets for which it was not possible to compute the ROR 
were excluded from the analysis.

The triplets resulting in disproportionality signals (ROR 
lower limit of the 95% CI greater than 1) were further evalu-
ated to assess if the AE was included in the Important Medi-
cal Event (IME) list provided by European Medicine Agency 
(EMA) [13]. As labelled by Kontsioti et al. [10], the type 
of interactions (theoretical/established/probable) and the 
severity of the AEs (minor/major) according to Micromedex 

Fig. 2   Choice of comparator. CI confidence interval, ICSR individual case safety report, LB lower bound, ROR reporting odds ratio, UB upper 
bound
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were plotted using Venn diagrams. Each triplet was evalu-
ated for pharmacological plausibility considering the time of 
co-exposure. Specifically, UpToDate [14], Medscape [15], 
and Drugs.com [16] were used for considering the type of 
pharmacological plausibility of each signal interaction.

2.5 � Temporal Assessment Using the Time 
of Co‑exposure

The time of co-exposure assessment was automized by 
developing a function in R that was able to calculate the 
temporal overlap by looking at the start and end dates of co-
reported drugs (see “Code Availability” section).

In order to ensure a reasonable amount of data for data 
analysis, we decided to arbitrarily set a cut-off of ten cases 
involving the triplets (i.e. “event” in the contingency tables 
≥ 10 cases) that were generated with the analysis described 
in Sect. 2.3.

A two-step process was used to assess the time of co-
exposure in signal detections of DDIs:

Step A: The cumulative reporting of each disproportional-
ity signal was calculated and plotted considering time of co-
exposure. For each cumulative reporting plot, we assessed 
the derivative of the cumulative reporting function with the 
purpose of identifying its flex point. This flex point corre-
sponded to the exponential increase in cumulative reporting, 
meaning that most cases retrieved in FAERS fell before that 
specific timing. The flex point of the cumulative reporting 
function was then evaluated with the information retrieved 
from the literature to determine whether the co-exposure 
time has to be considered temporally plausible. Mathemati-
cally, the flex point of a cumulative function represents the 
time at which the cumulative reporting function flexes. The 
method employed in this study to identify flex points in a 
cumulative distribution function (CDF) of ICSRs uses the 
derivative of the smoothed CDF to locate these flex points, 
which are identified as local maxima in the derivative. More-
over, the time of co-exposure assessed at the flex point repre-
sent the most representative time point among those reported 
in the ICSRs under investigation. In case of multiple flex 
points, we considered the first flex point, which empirically 
was related to the highest variation in the distribution (as a 
theoretical example, see Fig. 3). As an example, if most of 
the ICSRs indicated 1 day of co-exposure and it was found 
as the flex point of the cumulative reporting function, all the 
ICSRs with at least 1 day of co-exposure would be consid-
ered plausible if in the literature there was evidence of the 
occurrence of the AE after only 1 day of co-exposure. To 
showcase this approach, simulated data were generated using 
a progressively increasing rate. The rate was determined by 
the log2 transformation of time divided by 1, resulting in a 

slower increase rate over time. A single significant increase, 
corresponding to the flex point, was introduced at time point 
5. Subsequently, for the remaining days, a smaller rate of 
increase was applied uniformly. The code of our simulations 
is provided in Electronic Supplementary Material 1 (ESM1).

If temporal plausibility was supported, under the assump-
tion that the information reported was correct, the triplet was 
furtherly analysed:

Step B: Confounders in terms of age, sex, concomitant 
drugs, and therapeutic indications were analysed using a 
machine learning method (i.e. Lasso regression). We inves-
tigated the covariates among those described in the ICSRs 
that correlated with the time of co-exposure of the two drugs 
under the assumption that the time of co-exposure is corre-
lated with the occurrence of the AE. Therefore, we assessed 
if the variables associated with the time of co-exposure 
could potentially be a source of reverse causation or risk 
factors for the AE. The variables, identified through Lasso 
regression, were further explored using a univariate analy-
sis of the percentage of ICSRs with the covariate between 
cases and non-cases. Chi-square test for categorical variables 
and t test or Wilcoxon rank-sum test based on parametric 
assumptions for continuous variables were used to test the 
significant difference between groups.

The whole process is summarized in ESM2, Supplemen-
tary Fig. S1.

2.6 � Statistical Software

All data processing and statistical analyses were performed 
using the R software (version 4.1.2) [17].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8

Cu
m

ul
a�

ve
 re

po
r�

ng

Co-exposure (days)

Fig. 3   Example of flex point in cumulative reporting. The x-axis rep-
resents the co-exposure time of drug A and drug B expressed in days, 
while the y-axis represents the cumulative incidence of reporting a 
certain co-exposure time for a specific adverse event in each individ-
ual case safety report
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3 � Results

The FAERS raw quarterly data contained 6,680,109 
ICSRs, and after the cleaning procedure removing dupli-
cates of the ICSRs, the final dataset consisted of 1,349,142 
reports (20.2%). The FAERS raw quarterly data contained 
17,441,164 drugs information, and after the cleaning pro-
cedure removing cases without active substance names and 
defined treatment duration, the final dataset consisted of 
2,943,894 complete records (16.9%).

3.1 � Signal Detection of DDIs Considering Time 
of Co‑exposure

After the choice of the comparator, 122 (5.1%) out of 2372 
triplets were eligible for the analysis and resulted in 61 dis-
proportionality signals (50%) (ROR lower limit of the 95% 
CI greater than 1) involving 13 AEs (see ESM2, Supplemen-
tary Fig. S2); of these, eight AEs (61.5%) were included in 
the EMA’s IME list.

A general overview of the detected disproportionality 
signals is described in Table 1. Most of the interactions 
detected were synergic effects of the two drugs and 100% 
had pharmacological plausibility. Within the AEs detected 
with our methodology the most reported were the Medical 
Dictionary for Regulatory Activities (MedDRA®) Preferred 
Terms (PTs) “haemorrhage” and “hypotension”. Haemor-
rhage was reported mainly in ICSRs with a combination 
of platelet inhibitors, anticoagulant or fibrinolytic agents, 
non-steroidal anti-inflammatory drugs (NSAIDs), and 
antidepressants. DDIs related to hypotension were mostly 
described in ICSRs where there was an association with two 
antihypertensive drugs, or one antihypertensive drug associ-
ated with tricyclic antidepressants.

Less frequently reported AEs were related to PTs “acute 
kidney injury”, “hyperkalaemia”, and “syncope” with angio-
tensin-converting enzyme (ACE) inhibitors and angiotensin 
II receptor blockers (ARBs). The PT “QT prolonged” was 
mainly reported with the concomitant use of antipsychotics 
and antidepressants.

3.2 � Severity of Signal Detection of DDIs Considering 
Time of Co‑exposure

Out of 2372 triplets provided by Kontsioti et al. [10], our 
method was able to detect 31 theoretical signals (1.3%), 
17 probable signals (0.7%), and 13 established signals 
(0.5%) (see Fig. 4). Considering the severity of the AEs, 
out of 2372 triplets screened, our method was able to 

detect 43 major AEs (1.8%) and 18 minor AEs (0.8%) 
(see Fig. 4).

3.3 � Temporal Assessment Using the Time 
of Co‑exposure

Twenty-seven (44.3%) out of 61 signals had at least ten 
cases reporting the triplet of interest and were assessed 
for temporal plausibility. After the assessment, 19 signals 
(70.4%) were temporally plausible after only 1 day of co-
exposure (see ESM2, Supplementary Fig. S2). Below we 
have described in detail the approach to assess temporal 
plausibility for three PTs: “haemorrhage”, “hypotension”, 
and “hyperkalaemia”. This provides a clear example of 
how the flex point of the time of co-exposure can be 
used to identify true-positive and false-positive signals 
for DDIs in view of pharmacological plausibility. The 
complete analysis of all other MedDRA® PTs is reported 
in ESM2 (Supplementary Table S1 and S2).

3.3.1 � Haemorrhage

Haemorrhage was mainly reported with the concomitant 
use of more than one platelet inhibitor or anticoagulant/
antithrombotic agent. According to the two steps described 
in Sect. 2.5, the flex point from the cumulative reporting 
was found to be 1 day of co-exposure time for each triplet, 
including for the DDIs enoxaparin/clopidogrel and warfarin/
clopidogrel (see Fig. 5).

Step A: From the scientific literature, we assessed if 
haemorrhage was a temporal plausible event with at least 1 
day of co-exposure of anticoagulant/antithrombotic agents. 
The short-term co-administration (even 1 day) is a common 
strategy in cardiology to ensure adequate anticoagulation 
in the transition period from one drug class to another, and 
it can be associated with the occurrence of bleeding [18]. 
Clinical guidelines and the Summary of Product Character-
istics (SmPC) of drugs recommends clinical monitoring of 
bleedings even after 1 day of treatment [19, 20].

Step B: Among disproportionality signals involving 
platelet inhibitor or anticoagulant/antithrombotic agents, 
we used the signal of enoxaparin/clopidogrel as an example 
to emphasize how the machine learning method (i.e. Lasso 
regression) was able to identify potential confounders in 
our analysis. Lasso regression retrieved age and lorazepam 
to be related to the co-exposure time in the case of enoxa-
parin/clopidogrel and the occurrence of haemorrhage (see 
Table 2). Age is a known risk factor since major bleeding 
was found to increase steeply with age (≥ 75 years hazard 
ratio 3.10, 95% CI 2.27–4.24; p < 0.0001), in particular 
for fatal outcomes [21]. On the contrary, while other drug 
classes like antidepressants are known to increase the risk 
of bleeding [22], benzodiazepines seem not to interfere in 
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Table 1   Disproportionality signals considering time of co-exposure

AE DDI Event/non-event ROR (95% CI) Pharmacological actions Type of interaction UpToDate 
reliability 
rate

Acute kidney injury Losartan ± ramipril 9/32 2.91 (1.37–6.15) ARB ± ACE inhibitor PD Excellent
Lisinopril ± valsartan 8/23 3.42 (1.52–7.68) ACE inhibitor ± ARB PD Excellent

Bradycardia Digoxin ± bisoprolol 76/152 3.73 (2.70–5.18) Cardiac glycoside ± 
β-blocker

PD Good

Confusional state Amitriptyline ± dulox-
etine

14/71 3.87 (2.12–7.07) TCA ± SNRI Synergic effect Good

QT prolonged Paroxetine ± escitalopram 9/26 32.27 (13.98–74.49) SSRI ± SSRI Synergic effect Good
Clomipramine ± que-

tiapine
20/71 4.51 (2.42–8.40) TCA ± antipsychotic Synergic effect Fair

Haloperidol ± fluoxetine 4/39 4.38 (1.52–12.66) Antipsychotic ± SSRI Synergic effect Fair
Clomipramine ± venla-

faxine
12/64 2.39 (1.18–4.81) TCA ± SNRI Synergic effect NA

GI haemorrhage Methylprednisolone ± 
dexketoprofen

3/15 15.10 (4.33–52.59) Corticosteroid ± NSAID Synergic effect Fair

Celecoxib ± dexametha-
sone

6/115 3.30 (1.38–7.91) NSAID ± corticosteroid Synergic effect Fair

Haemorrhage Ticagrelor ± escitalopram 6/0.5 54.47 (3.04–976.58) Platelet inhibitor ± SSRI PD Fair
Paroxetine ± clopidogrel 3/9 21.97 (5.75–83.92) SSRI ± platelet inhibitor PD Fair
Duloxetine ± clopidogrel 9/3 137.13 (36.40–516.58) SNRI ± platelet inhibitor PD Fair
Acenocoumarol ± par-

oxetine
4/1 11.05 (1.22–99.74) Anticoagulant ± SSRI PD/PK Fair

Tinzaparin ± clopidogrel 3/1 27.93 (2.87–271.52) Anticoagulant ± platelet 
inhibitor

Synergic effect Fair

Enoxaparin ± ticagrelor 34/50 5.51 (3.55–8.56) Anticoagulant ± platelet 
inhibitor

Synergic effect Fair

Ticagrelor ± heparin 45/69 3.11 (2.11–4.58) Platelet inhibitor ± anti-
coagulant

Synergic effect Fair

Enoxaparin ± clopidogrel 104/200 4.49 (3.51–5.75) Anticoagulant ± platelet 
inhibitor

Synergic effect Fair

Apixaban ± ticagrelor 13/3 12.10 (3.44–42.52) Anticoagulant ± platelet 
inhibitor

Synergic effect Fair

Apixaban ± prasugrel 11/5 6.14 (2.13–17.68) Anticoagulant ± platelet 
inhibitor

Synergic effect Fair

Fondaparinux ± ticagrelor 30/11 9.10 (4.46–18.57) Anticoagulant ± platelet 
inhibitor

Synergic effect Fair

Fondaparinux ± clopi-
dogrel

23/14 5.17 (2.60–10.28) Anticoagulant ± platelet 
inhibitor

Synergic effect Fair

Urokinase ± heparin 5/5 26.00 (2.48–272.83) Fibrinolytic agent ± 
anticoagulant

Synergic effect Fair

Alteplase ± heparin 19/23 2.09 (1.12–3.88) Fibrinolytic agent ± 
anticoagulant

Synergic effect Fair

Warfarin ± clopidogrel 106/114 1.85 (1.41–2.42) Anticoagulant ± platelet 
inhibitor

Synergic effect Good

Warfarin ± rivaroxaban 48/64 1.47 (1.01–2.15) Anticoagulant ± platelet 
inhibitor

Synergic effect Fair

Ticagrelor ± ibuprofen 6/5 5.43 (1.66–17.87) Platelet inhibitor ± 
NSAID

Synergic effect Fair

Ibuprofen ± clopidogrel 11/31 6.19 (3.10–12.37) NSAID ± platelet 
inhibitor

Synergic effect Fair

Diclofenac ± clopidogrel 5/27 2.79 (1.07–7.30) NSAID ± platelet 
inhibitor

Synergic effect Fair

Diclofenac ± paroxetine 4/15 3.99 (1.32–12.09) NSAID ± SSRI Synergic effect Good
Naproxen ± clopidogrel 5/17 4.06 (1.49–11.07) NSAID ± platelet 

inhibitor
Synergic effect Fair

Celecoxib ± venlafaxine 4/4 18.36 (4.55–74.13) NSAID ± SNRI PD NA
Celecoxib ± fluoxetine 3/11 4.96 (1.37–17.97) NSAID ± SSRI PD NA
Meloxicam ± venlafaxine 5/8 5.34 (1.72–16.61) NSAID ± SNRI Synergic effect Fair
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this specific event. When age was examined in the univari-
ate analysis between cases and non-cases, we found that 
individuals with the co-exposure were older (73.8 years vs. 
71.9 years) than those without co-exposure in the ICSRs of 
those experiencing the AE of interest. This suggests that this 
signal could be potentially correlated to age. At the same 
time, the concomitant use of lorazepam was significantly 
less reported the ICSRs of those experiencing the AE of 

interest compared with those experiencing every other AEs 
(see Table 2).

3.3.2 � Hypotension

Step A: DDIs related to hypotension were due to the associa-
tion of two antihypertensive drugs or one antihypertensive 
drug associated with tricyclic antidepressants or α1 antago-
nists. The synergic effect of two drugs with cardiovascular 

Table 1   (continued)

AE DDI Event/non-event ROR (95% CI) Pharmacological actions Type of interaction UpToDate 
reliability 
rate

Hyperkalaemia Ramipril ± irbesartan 3/8 8.69 (2.29–33.00) ACE inhibitor ± ARB PD Excellent

Enalapril ± valsartan 7/44 2.65 (1.17–6.01) ACE inhibitor ± ARB PD Excellent

Trimethoprim ± lisinopril 18/66 7.77 (4.56–13.21) Antibiotic ± ACE 
inhibitor

Synergic effect Good

Enalapril ± trimethoprim 11/49 3.86 (1.95–7.63) ACE inhibitor ± Anti-
biotic

Synergic effect Good

Hyponatraemia Desmopressin ± fluox-
etine

3/1 11.71 (1.20–114.51) synthetic analogue of 
ADH ± SSRI

Synergic effect Fair

Duloxetine ± escitalo-
pram

10/25 10.45 (4.92–22.22) SNRI ± SSRI Synergic effect NA

Hypotension Lercanidipine ± pro-
pranolol

16/0.5 240.24 (14.23–4056.14) CCB ± β-blocker Synergic effect NA

Irbesartan ± perindopril 10/1 75.48 (9.60–593.19) ARB ± ACE inhibitor PD Excellent
Irbesartan ± lisinopril 3/0.5 43.63 (2.18–874.51) ARB ± ACE inhibitor PD Excellent
Ramipril ± losartan 12/29 2.87 (1.46–5.65) ACE inhibitor ± ARB PD Excellent
Sildenafil ± furosemide 10/58 4.87 (2.38–10.00) PDE5 inhibitor ± diuretic Synergic effect Fair
Enalapril ± clomipramine 4/2 24.99 (4.54–137.54) ACE inhibitor ± TCA​ Synergic effect Fair
Clomipramine ± oxepine 3/10 4.21 (1.11–15.94) TCA ± antipsychotic Synergic effect NA
Amitriptyline ± pro-

pranolol
13/31 22.26 (10.93–45.36) TCA ± β-blocker Synergic effect Fair

Tamsulosin ± propranolol 9/5 17.65 (5.87–53.11) α1 antagonist ± β-blocker Synergic effect Fair
Nebivolol ± doxazosin 15/11 7.86 (3.51–17.62) β-blocker ± α1 antagonist Synergic effect Fair
Bisoprolol ± alfuzosin 13/19 5.67 (2.78–11.54) β-blocker ± α1 antagonist Synergic effect Fair
Bisoprolol ± doxazosin 33/61 4.61 (2.99–7.11) β-blocker ± α1 antagonist Synergic effect Fair
Carvedilol ± doxazosin 8/27 2.33 (1.04–5.20) β-blocker ± α1 antagonist Synergic effect Fair
Nifedipine ± doxazosin 4/40 3.11 (1.06–9.13) Ca2+ antagonist ± α1 

antagonist
Synergic effect Fair

Nebivolol ± tamsulosin 11/4 15.42 (4.82–49.37) β-blocker ± α1 antagonist Synergic effect Fair
Bisoprolol ± terazosin 8/2 32.96 (6.98–155.51) β-blocker ± α1 antagonist Synergic effect Good

Myopathy Dexamethasone ± atra-
curium

4/360 3.34 (1.23–9.08) Corticosteroid ± muscle 
relaxant

Synergic effect Excellent

Orthostatic hypotension Amitriptyline ± pro-
pranolol

3/41 29.61 (7.16–122.49) TCA ± β-blocker PK NA

Ototoxicity Vancomycin ± gentamicin 7/537 6.12 (2.46–15.23) Antibiotic ± antibiotic Synergic effect Fair
Syncope Valsartan ± enalapril 8/43 4.04 (1.88–8.67) ARB ± ACE inhibitor PD Excellent

Ramipril ± olmesartan 4/9 4.49 (1.38–14.64) ACE inhibitor ± ARB PD Excellent

Event is the n° of AEs with co-exposure; non-event is the n° of other AEs with co-exposure.
ACE angiotensin-converting enzyme; ADH anti-diuretic hormone; AE adverse event; ARB angiotensin II receptor blocker; CCB calcium-channel 
blocker; CI confidence interval; DDI drug–drug interaction; GI gastrointestinal; NA not available; NSAID non-steroidal anti-inflammatory drug; 
PD pharmacodynamic interaction; PDE5 phosphodiesterase-5; PK pharmacokinetic interaction; ROR reporting odds ratio; SNRI serotonin and 
norepinephrine reuptake inhibitor; SSRI selective serotonin reuptake inhibitor; TCA​ tricyclic antidepressant
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effects might cause alterations in blood pressure even after 
1 day of co-administration, which is why the flex time of 1 
week (e.g. sildenafil ± furosemide) was temporally plausible 
(see Fig. 5 and ESM2, Supplementary Table S1).

Step B: Lasso regression was able to identify possible 
confounders concerning the DDIs of bisoprolol ± alfuzosin 
and bisoprolol ± doxazosin (see Table 2). From this analy-
sis, it appeared that the disproportionality signal was con-
founded by age and co-reported drugs [23, 24].

3.3.3 � Hyperkalaemia

Step A: Hyperkalaemia was also reported with the concomi-
tant use of trimethoprim and ACE inhibitors. According to 
the scientific literature, a few days of co-exposure are not 
sufficient to induce hyperkalaemia [25]. Therefore, the flex 
point at 1 day was considered not temporally plausible (see 
Fig. 5).

As we did not find temporal plausibility in step A, no 
further analyses were performed for the signal and the signal 
was considered dismissed.

4 � Discussion

In this study, we aimed at developing a signal detection 
and prioritization method that incorporated co-exposure 
time when assessing disproportionality for the DDIs. Our 
results suggest the ability of our method of detecting and 

prioritizing disproportionality signals with temporal plau-
sibility for the DDIs. The inclusion of co-exposure time 
in disproportionality analysis of DDIs represents a signifi-
cant advancement considering that current signal detection 
methods used for DDIs rely on a simplistic criterion: the 
co-reporting of two drugs within the same ICSRs. This 
assumption lacks pharmacological substantiation based 
on the established principles of DDIs [26]. Co-reporting 
alone does not provide conclusive evidence of an actual 
interaction between the drugs [27]. Pharmacological prin-
ciples dictate that several factors need to be considered 
to establish the occurrence of a DDI. These include the 
pharmacokinetic properties of the drugs involved (such as 
metabolism and elimination pathways) and their potential 
interactions at the molecular level [28]. Furthermore, the 
dose, timing, and duration of drug co-exposure can signifi-
cantly influence the likelihood and severity of a DDI [26, 
28]. Neglecting these important factors and relying solely 
on the co-reporting of drugs within ICSRs can lead to 
misleading or inaccurate conclusions about the existence 
and clinical relevance of DDIs.

Another important result of the current study is that our 
method was able to prioritize 70.4% of disproportionality 
signals that were already temporally substantiated as they 
had a co-exposure time pharmacologically compatible with 
the observed AEs according to evidence from the scien-
tific literature. Development of prioritization methods that 
incorporate co-exposure time is crucial in quantitative signal 
detection of DDIs considering the amount of generated dis-
proportionality signals during routine signal detection activi-
ties and time-consuming and resource-intensive activities 

Fig. 4   Venn diagrams of type of triplets reported as frequencies 
(percentages) and retrieved considering those that were identified 
as a disproportionality signal for the temporal plausibility assess-
ment using our method. Definitions of evidence and severity levels 

are those reported by Kontsioti et al. [10] in their work: evidence—
evidence level associated with the drug–drug interaction as shown in 
Micromedex; severity—severity level associated with the drug–drug 
interaction as shown in Micromedex
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needed to dismiss these disproportionality signals based on 
a case-by-case assessment. The problem of inflation of dis-
proportionality signals in assessing DDIs poses significant 
challenges in pharmacovigilance [4]. Furthermore, the fea-
sibility and sustainability of current approaches for signal 
detection become increasingly problematic in the face of 
this signal inflation. The sheer volume of disproportional-
ity signals requires substantial resources and expertise to 

evaluate and prioritize, which can strain pharmacovigilance 
systems. Therefore, finding robust automatable methods to 
prioritize disproportionality signals is crucial for ensuring 
timely assessment [29].

Overall, by strictly requiring availability of dates of 
reported drugs in ICSRs, we were able to identify only 
50% of the disproportionality signals among true-positive 
DDIs. Ideally, a 100% detection rate for disproportionality 

Fig. 5   Cumulative reporting. Each graph represents the cumulative 
reporting of one triplet where drug A is analysed when reported (or 
not) in co-exposure with drug B. The x-axis represents the co-expo-
sure time of drug A and drug B expressed in days, while the y-axis 

represents the cumulative incidence of reporting a certain co-expo-
sure time for a specific adverse event in each individual case safety 
report
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signals was expected, considering the true-positive dataset 
as the starting point. It may appear tempting to assume that 
not prioritized disproportionality signals from our method 
lack evidence regarding temporality; however, it is crucial 
to recognize the inherent complexity of case series data. 
In scenarios where, for instance, 80% of cases lack crucial 
information such as dates, the remaining 20% may indeed 
comprise pivotal cases with robust temporal associations, 
warranting further scrutiny. However, a significant portion 
of data related to administration dates was missing. There-
fore, it is not surprising that the power to detect dispropor-
tionality signals is reduced. In a real-world scenario, when 
having a large list of signals, our method can minimize the 

inflation using the ROR and only retrieve those for which 
there is sufficient information about dates to assess temporal 
plausibility. In practice, signals with sufficient information 
for validation are prioritized. It is therefore important to 
remember that the quality of the reporting has an important 
influence on the signal detection and that reporters should 
always fill reports with all relevant available information. 
The analysis of routinely collected health data could play a 
central role in the imputation of missing information, such 
as concomitant medications. At the same time, improving 
the completeness and quality of ICSRs, including accurate 
referencing of administration times, remains essential and it 
is therefore necessary to rethink the mandatory fields in the 

Table 2   Potential confounders in cases of haemorrhage (a) and hypotension (b)

Chi-square test for categorical variables and t  test or Wilcoxon rank-sum test based on parametric assumptions for continuous variables were 
used to test significant difference between groups
AE adverse event

(a)

Haemorrhage

Enoxaparin ± clopidogrel

Variable AEs of interest Other AEs P value

Lorazepam No, n (%) 104 (100) 142 (85.0)
Yes, n (%) 0 (0) 25 (9.2) 0.001

Age Mean (SD) 73.8 (9.7) 71.9 (11.2) 0.161

(b)

Hypotension

Bisoprolol ± alfuzosin Bisoprolol ± doxazosin

Variable AEs of interest Other AEs P value Variable AEs of interest Other AEs P value

Apixaban No, n (%) 13 (100) 9 (47) Acetylsalicylic 
Acid

No, n (%) 33 (100) 51 (87)

Yes, n (%) 0 (0) 10 (53) 0.006 Yes, n (%) 0 (0) 8 (13) 0.068
Carbidopa/levo-

dopa
No, n (%) 9 (69) 19 (100) Cefalexin No, n (%) 33 (100) 52 (88)

Yes, n (%) 4 (31) 0 (0) 0.041 Yes, n (%) 0 (0) 7 (12) 0.099
Cefuroxime No, n (%) 13 (100) 9 (47) Naproxen No, n (%) 33 (100) 52 (88)

Yes, n (%) 0 (0) 10 (53) 0.005 Yes, n (%) 0 (0) 7 (12) 0.099
Dutasteride No, n (%) 9 (69) 19 (100) Warfarin No, n (%) 33 (100) 47 (80)

Yes, n (%) 4 (31) 0 (0) 0.041 Yes, n (%) 0 (0) 12 (20) 0.014
Ezetimibe No, n (%) 13 (100) 9 (47) Age Mean (SD) 54.7 (23.5) 66.5 (20.4) 0.011

Yes, n (%) 0 (0) 10 (53) 0.005
Furosemide No, n (%) 13 (100) 17 (89)

Yes, n (%) 0 (0) 2 (11) 0.642
Glyburide/Met-

formin
No, n (%) 13 (100) 17 (89)

Yes, n (%) 0 (0) 2 (11) 0.642
Hydrochlorothi-

azide /Olmesar-
tan

No, n (%) 13 (100) 17 (89)

Yes, n (%) 0 (0) 2 (11) 0.642
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safety report submitted to SRS databases, including FAERS, 
which involve DDIs. Despite these obstacles, pharmacovigi-
lance databases already enable the retrieval of information in 
the general population since they were created to collect AEs 
encompassing all age groups, types of treatments, and con-
ditions. The collection of ICSRs still represents a valuable 
source of real-world data about the safety profile of specific 
drugs, and it allows comparison of therapeutic options, thus 
contributing to the pharmacological management of disor-
ders and the prevention of AEs related to DDIs.

4.1 � Strengths and Limitations

This study has several strengths. Firstly, we developed a 
method to detect and prioritize disproportionality signals 
with a temporal plausibility by looking at co-exposure 
time. Secondly, our method also implemented the analysis 
of co-exposure time of drugs that were reported as con-
comitant treatments, which are normally excluded in sta-
tistical signal detection. In this regard, it is worth mention-
ing that this problem is emphasized even by the reporter’s 
judgement, which may affect the results of signal detection 
if the potential drug is reported as “concomitant” and not 
as “suspect” [30]. Another important strength of our study 
is that we were able to consider as baseline the drug that is 
more frequently associated with the AEs, avoiding “mask-
ing” [31]. However, our approach is flexible to accommo-
date other choices for prioritizing the comparator. Another 
strength of our study is our choice of considering at least 
“1 day of co-exposure” when assessing DDIs. Drugs 
are strategically designed with a half-life falling within 
the range of 12 to 48 h to mitigate challenges related to 
drug accumulation and other pharmacokinetic considera-
tions. Therefore, adopting a nominal value of 1 day as an 
“average” falls within the reasonable spectrum between 
the lower and upper bounds of the typical half-life range. 
This pragmatic approach aligns with established pharma-
ceutical design principles and serves as a practical means 
to address concerns related to exposure and the potential 
effects of treatments without direct overlap in co-exposure.

The study has also several limitations that are intrin-
sic to SRS databases: ICSRs are susceptible to the high 
variability of data quality, under-reporting, and incom-
plete reporting. This latter issue affected our analysis since 
many events were excluded because of a lack of specific 
information regarding the dates of reported drugs and their 
treatment duration. Indeed, it is essential to acknowledge 
the possibility that even though structured fields from 
FAERS lack certain details (i.e. dates), pertinent infor-
mation might be available in free-text fields in the report. 
However, we did not consider free-text fields in our 
method. Another general limitation of all methods assess-
ing DDI disproportionality signals, including ours, is that 

they are strongly influenced by the frequency of reporting, 
which directly or indirectly influences statistical power 
for detecting DDIs’ disproportionality signals. Finally, 
another limitation of our method is that we set a threshold 
that required a minimum count of “event” (the observed 
frequency) in the contingency tables to be greater than or 
equal to ten. This decision was made to provide a tangible 
demonstration of our method’s applicability, ensuring a 
sufficiently robust sample size for analysis. Future studies 
are needed to identify the optimal criteria for identify-
ing the optimal cut-offs, as setting of such thresholds is 
inherently complex and dependent on various contextual 
factors, including the specific characteristics of the data-
set, the nature of the research question, and statistical 
considerations.

Finally, in discussing the findings of this study, it is 
important to address other limitations. Firstly, the absence 
of comparison to a baseline method represents a notable 
limitation. While our proposed method has demonstrated 
promising results, the lack of comparative analysis may 
limit the ability to fully assess its effectiveness. Hence, it 
is imperative to acknowledge this limitation and consider 
it as a potential avenue for future research. Conducting 
comparisons with standard methods would provide val-
uable insights into the performance and efficacy of our 
approach. Secondly, another limitation arises from the 
exclusive analysis focused solely on the 27 triplets prior-
itized by our algorithm. Future studies may benefit from 
conducting comprehensive analyses that include all con-
sidered triplets, thereby enhancing the depth and breadth 
of insights gained from the methodology.

4.2 � Future Work

In the future, we aim to furtherly investigate “indirect co-
exposure” by exploring DDIs arising from the prolonged 
half-life of medications. Specifically, we aim to capture 
the cumulative impact of DDIs that may extend beyond 
the immediate co-administration period.

5 � Conclusion

Our method was able to detect and prioritize signals with 
temporal plausibility, demonstrating its potential to enhance 
signal detection and prioritization during the signal manage-
ment process. By efficiently retrieving signals that are more 
likely to be appropriately prioritized, it offers a valuable tool 
for optimizing resources and time, enabling pharmacovigi-
lance professionals to concentrate their efforts on the most 
relevant signals and ultimately enhancing patient care and 
drug safety.
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