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Abstract

We investigate the notion of coherence for (non-)additive uncertainty measures from
a logico-geometric point of view. Our main result is to the effect that distinct criteria
for coherence are not always matched by axiomatically distinct measures of uncertainty.
In addition we introduce a metalogic within which this kind of result can be captured
formally.
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1 Introduction and motivation

The investigation reported in this paper has its origins is [24, 21, 9] and identifies the common root of
logic and probability in the notion of coherence. Our key research question is whether distinct criteria
for coherence are always matched by axiomatically distinct measures of uncertainty. Moreover we ask
whether this distinction, when available, can be expressed within a suitable metalogic.

In particular, we study the notion of coherence for several uncertainty measures by geometric means.
By leveraging on this geometric representation we show that coherence is not sufficient to distinguish
books on nontrivial sets of events that are extendible to lower probabilities and belief functions. The
same geometric representation will be then used for a purely logical analysis of coherence that will be
done by Riesz infinite-valued logic.

Since coherence features a (perhaps unique) combination of logico-mathematical, foundational and
practical interest, we begin by helping the reader to appraise the wide landscape which the present
work helps systematising. This will also serve the purposes of introducing some of the terminology
and notation that will be used throughout the paper.
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For the founders of mathematical logic, Boole and De Morgan, logic and probability belonged on equal
terms to the mathematical analysis of sound inference. In the intervening two centuries though, the
fields have grown largely independententely, as is apparent from textbook presentations. And yet there
is much to be understood about the foundations and applications of reasoning under uncertainty by
looking very closely at how logic and probability concur in forming a constellation of methods, models
and axiomatisations [33, 37, 28].

Logic plays a twofold role in the foundations and applications of uncertain reasoning. Syntactically, it
provides an unambiguous definition of the objects of an agent’s reasoning, i.e. the algebra of events.
Semantically, it provides the mechanism necessary for the agent to quantify the uncertainty which is
not resolved by the information they possess. In the most familiar case of probability, two Boolean
algebras are at work (see Subsection 2.1 below for basic terminology): A, which formalises events, and
2, which formalises the values that indicator functions take. Homomorphisms v from A to 2 correspond
to classical evaluations of formulas, i.e. in agreement with Tarskian semantics. Events which do not
get a binary truth-value are the objects of the distribution of a probability mass function, which is
done according to criteria exceeding the semantics of classical logic.

Against this background the classical problem of coherence can be put as follows:

Given

1. An idealised agent who is required to quantify their uncertainty concerning a (finite) subset
of A,

Ψ “ ta1, a2, . . . , anu.

2. Uncertainty is resolved by Tarskian semantics using evaluations as specified above.

Want the conditions under which the assignment

β : Ψ Q ai ÞÑ βi P r0, 1s

can be said to be coherent.

In this context, the term “coherence” has been popularised by Bruno de Finetti [11, 12], who argued
persuasively that the desired conditions should be represented by normalisation and finite additivity
(see below), but as we shall recall, de Finetti’s word was far from being the last one on the subject.
Note that coherence bears the following desiderata. We require β to

1. represent the information (if any) available to the agent;

2. pin down the appropriate quantification of the uncertainty which is not resolved by information.

For present purposes, information resolves uncertainty to the extent that the (classical, propositional)
sentences which represent it decide other sentences of interest. So for instance, the information rep-
resented by φ resolves (classically) any uncertainty about φ _ ψ. Note that the converse does not
hold.

Thus the problem of coherence boils down to identifying the conditions under which β quantifies
uncertainty “appropriately”. This is an extra-logical requirement, which typically depends on the
purpose for which we are considering a model of uncertainty quantification in the first place. Following
a tradition which has played a crucial role in the development of the theory of probability, we restrict
our attention to situations in which the agent’s decision-making is spelt-out in terms of (highly abstract
and idealised) betting behaviour. Depending on the nature of the betting problem, certain desiderata
become particularly compelling, as discussed in Section 2, and summarised in Table 1.

Armed with this little terminology and notation, we can proceed to locate more precisely the present
contribution relative to the wider area of probability logic. The problem of coherence as we recalled
it, was initially motivated by foundational concerns which were absent from the coeval investigations
on the mathematical problem of identifying the conditions for a Boolean algebra to carry a finitely
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Key axiom Betting Uncertainty resolution

Additivity 2-sided Classical
8-monotonicity 2-sided Partial
Super-additivity 1-sided Classical

Table 1: A summary of the relation between the key axiomatic properties versus the charac-
teristics of the decision problems and the corresponding uncertainty resolutions. The relevant
definitions are provided in Section 2.

additive measure. This line of investigation is rooted in von Neumann’s early work on σ´algebras
dating back to the late 1930’s, and goes through a conjecture of Horn’s and Tarski’s, its refutation due
to Gaifman, and culminates with the 1959 representation of Kelley’s – see [35] for a terse account.

In addition the measure theoretic questions, which does not constitute the focus of our work, the early
1980’s witnessed an explosion of interest in probabilistic extensions of logical inference owing to the
promises of expert systems (see [39] for a comprehensive historical overview). This brought the problem
of combining logic and probability to the attention of the AI community see, e.g. [42, 20, 26, 28]. With a
peculiar “applications-foundations feedback”, a number of criticisms to the probabilistic representation
of uncertainty became commonplace within AI. Among them to the inability of (finitely) additive
measures of uncertainty to represent two important aspects of information processing systems, namely
vagueness and partial ignorance.

The former concern arises because not all events of interest to an (idealised, artificially intelligent)
agent have a binary realisation. To the contrary, many properties are best thought of as graded,
from a person’s age, to the business of a road junction. With this motivation, [58, 59] put forward
an extension of classical logic, where truth-values in r0, 1s are interpreted as “degrees of truth” of
fuzzy sentences. Since fuzziness is a semantic (i.e. logical) property of the uncertainty resolution is
distinct from a measure quantifying uncertainty. Hence it is mathematically meaningful and practically
useful to understand how say, probability should be assigned to non-binary events. This lead to a
renewed interest in the early 20th century approaches to many-valued logics, [29] and in particular
the  Lukasiewicz real-valued logic [41]. By the beginning of this century it became clear that the
vast literature extending classical logics could be used in probabilistic uncertainty resolution. For
our present purposes, a particularly important contribution in this respect is [44]. In it Paris shows
that one of the key methods for justifying the quantification of uncertainty by means of probability –
the Dutch Book method to be discussed at length below – does not necessitate Tarskian uncertainty
resolution. The Riesz consequence relation which plays a central role in Section 4 below, sums up much
of the unexpected interaction between many-valued logics and probability which has been motivated
by Paris’s note.

As to partial ignorance, the concern arises because probability may force agents to go unwarrant-
edly beyond the uncertainty resolved by Tarskian semantics. We illustrate with a classic problem
popularised by Ellsberg [18].

Example 1.1. Consider an urn with red, blue and green balls. Suppose ψ1 stands for “the ball is
red”, ψ2 stands for “the ball is blue and ψ3 stands for “the ball is green”, Suppose further that the
agent knows that the proportion of the red balls in the urn is 1/3. Representing this information
probabilistically, leads to the straightforward quantification of the agent’s uncertainty in the relevant
event, i.e P pψ1q “ 1{3. Observe now that the information available does not resolve “enough” uncer-
tainty to allow the agent to come up with equally straightforward quantifications for P pψ2) and P pψ3q.
Any value in r0, 2{3s will be consistent with the information available. In the absence of any further
information, the probabilistic setting would lead to setting both P pψ2q and P pψ3q to 1{3. The problem
with that is that 1{3 fails to represent the information to the effect that the information available does
not support 1{3 any more than any value in r0, 2{3s.

A popular reaction to this kind of problem has been to weaken the additivity of probability functions.
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Among the many proposals in this direction, two have proved to be particularly fruitful. Following
earlier statistical work of Dempster, Shafer [49] sought to capture the uncertainty resolution provided
by classical logic as determining the evidential support of a super-additive measure, which has become
known as Dempster-Shafer belief function (to be defined below). The second non-additive approach
to measuring the ignorance arising from partial uncertainty resolution, consists in taking (convex) sets
of probability functions – the ones which are consistent with the information available. This results in
so-called credal sets [38] which lead naturally to defining lower (and upper) probabilities for the events
of interest. This approach, which is rooted in the investigation of Inner and Outer measures [30], has
been championed by Walley [54]. Like belief functions, lower probabilities (to be defined below) are
also super-additive.

In light of this rough and incomplete sketch of the landscape, it is not particularly surprising that a
great variety of approaches to logic-based uncertain reasoning have been put forward over the past few
decades, each following its own peculiar blend of mathematical, foundational and practical motivation.
As a result it may not be always obvious which framework or measure of uncertainty is best suited to
which kind of problem. The main aim of the present paper is to put forward logico-geometric tools
that can contribute significantly to obtaining a unified picture. Far from being only a problem for
applications, tying the properties of uncertainty measures with the kind of situations in which they
are practically useful has a distinct foundational importance.

The remainder of paper is organised as follows. Section 2 reviews the measures of uncertainty of present
interest (Subsection 2.2) and their associated notions of coherence (Subsections 2.3–2.5). Whilst the
results of this Section are not novel, the way we present them can be of independent interest, in addition
to anticipating, through numerical examples, some key geometric insights that will be used in our main
results. Section 3 forms the core of our paper. In Subsection 3.1 we focus on the axiomatic comparison
of lower probabilities and belief function. Using the geometric framework introduced in Subsection
3.2, Subsection 3.3 presents the main result of this paper, Theorem 3.10. In it we identify rather mild
conditions under which belief functions and lower probability are coherence-wise indistinguishable
despite being axiomatically distinct. Section 4 showcases a metatheoric role for many-valued logics in
reasoning about coherent measures of uncertainty. In it we define the Riesz consequence relation and
show in Theorem 4.10 how it can represent formally the geometric coherence-wise comparisons put
forward in Subsection 3.3. As we shall observe in the concluding Section 5, this metalogical setting
may prove useful in the abstract investigation of coherence-based uncertainty measures.

2 Preliminaries

This Section begins by recalling the basic definitions and results on Boolean algebras (Subsection 2.1)
and of three key measures of uncertainty and their associated dual measures (Subsection 2.2). In it,
we shall highlight the properties which will be of particular interest for our results. Then we review
the original setup due to de Finetti (Section 2.3) and its extension to partly resolving uncertainty
by Jaffray in Section 2.4 and to imprecise probabilities in Section 2.5. Note that this Section recalls
material selected with the goal of making the paper essentially self-contained and does not attempt to
do justice to the incredibly rich relevant literature, for which excellent surveys are available, including
[43, 33, 37, 28, 52]. Again in the interest of brevity, some basic logico-algebraic notions are taken for
granted. We refer, with apologies, readers who need to fill out the gaps to [7, 27, 47].

2.1 Finite Boolean algebras and their atoms

Finite Boolean algebras are the algebraic framework of this paper; hence its logical setting is that of
classical propositional logic, CPL. Here, we will briefly recap on some needed notions and basic results
about Boolean algebras and CPL, for a more exhaustive introduction about this subject we invite the
reader to consult [47], and [6, 32, 31].

4



Given a countable (finite or infinite) set V of propositional variables, the CPL language LpV q (or simply
L when V will be clear by the context) is the smallest set containing V and closed under the usual
connectives ^,_, ,K, and J of type p2, 2, 1, 0, 0q. Along this paper we will use the notation ϕ,ψ, etc
(with possible subscript) for formulas. Further, we shall adopt the following abbreviations:

ϕÑ ψ “  ϕ_ ψ, ϕØ ψ “ pϕÑ ψq ^ pψ Ñ ϕq.

We shall denote by $CPL the provability relation of CPL, in particular we will write $CPL ϕ to denote
that ϕ is a theorem.

A logical valuation (or simply a valuation) of L is a map v from V to the domain t0, 1u of the Boolean
algebra 2, which uniquely extends to a function, that we denote by the same symbol v, from L to t0, 1u
in accordance with the usual Boolean truth functions, i.e. vpϕ ^ ψq “ mintvpϕq, vpψqu, vpKq “ 0,
vp ϕq “ 1´ vpϕq, etc. We shall denote by Ω the set of all valuations of L. For a given formula ϕ and
a given valuation v P Ω, we will write v |ù ϕ whenever vpϕq “ 1.

We will broadly adopt, analogously to the above recalled logical frame, the signature p^,_, ,K,Jq
of type p2, 2, 1, 0, 0q for the algebraic language upon which Boolean algebras are defined. Thus, the
same conventions and abbreviations of L can be adopted also in the algebraic setting. Further, in every
Boolean algebra A “ pA,^,_, ,K,Jq we shall write a ď b, whenever a Ñ b “ J. The relation ď is
indeed the lattice-order in A. Thus, a ď b iff a^ b “ a iff a_ b “ b.

Along this paper, in order to distinguish an algebra from its universe, we will denote the former by A,
B etc, and the latter by A, B etc, respectively.

Recall that a map h : A Ñ B between Boolean algebras is a homomorphism if h commutes with the
operations of their language, that is, hpJAq “ JB, hp Aaq “  Bhpaq, hpa ^A bq “ hpaq ^B hpbq etc
(notice that we adopt subscripts to distinguish the operations of A from those of B). Bijective (or
1-1) homomorphisms are called isomorphisms and if there is a isomorphism between A and B, they
are said to be isomorphic (and we write A – B).

Definition 2.1. An element α of a Boolean algebra A is said to be an atom of A if α ą K and for
any other element b P A such that α ě b ě K, either α “ b or b “ K.

Every finite algebra has atoms that will be denoted by α, β, γ etc.

2.2 Uncertainty measures

As we already stated before, in this paper we only consider finite, and hence atomic, Boolean algebras.
Those are the domains of the uncertainty measures we deal with.

Definition 2.2 (Probability functions). A probability function on an algebra A is a r0, 1s-valued map
P satisfying:

(P1) P pJq “ 1, P pKq “ 0 ; (Normalisation)

(P2) P pa_ bq “ P paq ` P pbq, if a^ b “ K. (Finite additivity)

The set of all probability functions on A is denoted by PA. We omit the superscript when the algebra
is clear from the context.

Remark 2.3. It is customary in measure-theoretic approaches to cast Definition 2.2 within a proba-
bility space, i.e. a countable set of elementary outcomes Ω with an algebra A on it, typically a field
of sets. Then one defines a measure µ on A imposing normalisation on Ω and countable additivity,
which generalises (P2) above to countable unions of (countably many incompatible) events. For our
purposes it is sufficient to limit ourselves to finite additivity, noting that standard results, which start
with de Finetti’s own, show that there is no loss of generality in doing this, see [3] for a comprehensive
overview. In addition, finite additivity provides the natural setting for probability logic, see Chapter
3 of [45].
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Definition 2.4 (Belief functions [49]). A belief function on an algebra A is a r0, 1s-valued map Bel
satisfying:

(B1) BelpJq “ 1, BelpKq “ 0;

(B2) Bel

˜

n
ł

i“1

ai

¸

ě

n
ÿ

i“1

ÿ

tJĎt1,...,nu:|J|“iu

p´1qi`1Bel

˜

ľ

jPJ

aj

¸

, for n P N.

Remark 2.5. Note that (B2) does not take the form of a straightforward generalisation of (P2):

Belpθ _ φq ě Belpθq `Belpφq, if θ ^ φ “ K. (Finite super-additivity)

Belief functions are indeed those super-additive set functions which are completely additive, or mono-
tone, as it is sometimes said.

In the finite setting, belief functions on Boolean algebras can be characterized in terms of the associated
mass functions as follows. Let A be any finite Boolean algebra with atoms α1, . . . , αt. A mass function
is a map m that assigns to each subset X of atoms (called focal elements) a real number such that
mpHq “ 0 and

ř

X mpXq “ 1. Given a mass function m, the map

Belpaq “
ÿ

XĎtαi|αiďau

mpXq (1)

is a belief function and every belief function on A arises from (1).

Example 2.6. Consider the finite Boolean algebra A with two atoms α1 and α2 and the following
mass assignment:

mptα1uq “ 0.2

mptα2uq “ 0.4

mptα1, α2uq “ 0.4

mpHq “ 0.

Since mpHq “ 0 and
ř

XĎAmpXq “ mptα1, α2uq ` mptα1uq ` mptα2uq ` mpHq “ 1, it is the case
that m is a mass function. Moreover, since

ř

yĎtα1u
mpyq “ 0.2 and

ř

yĎtα2u
mpyq “ 0.4, the map

β : α1 ÞÑ 0.2, α2 ÞÑ 0.4 is a belief function.

An element ϕ of a Boolean algebra A is said to be covered m times by a multiset tta1, . . . , anuu of
elements of A if every homomorphism of A to t0, 1u that maps ϕ to 1, also maps to 1 at least m
propositions from a1, . . . , an as well. An pm, kq-cover of pϕ,Jq is a multiset tta1, . . . , anuu that covers
J k times and covers ϕ n` k times.

Definition 2.7 (Lower probability functions [51]). A lower probability on an algebra A is a monotone
r0, 1s-valued map P satisfying:

(L1) P pJq “ 1, P pKq “ 0;

(L2) For all natural numbers n,m, k and all a1, . . . , an, if tta1, . . . , anuu is an pm, kq-cover of pϕ,Jq,

then k `mP pϕq ě
n
ÿ

i“1

P paiq.

Although this definition does not make the name lower probabilities particularly obvious, [1, Theorem
1] puts forward the following enlightening characterisation, anticipated by [51]. Let P : A Ñ r0, 1s be
a lower probability and denote withMpP q the set of probability functions which bound P from above,
i.e. MpP q “ tP P P | P paq ď P paq, @a P Au. Then, for all a P A,

P paq “ min
PPMpP q

P paq. (2)
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Example 2.8. Let us consider the finite Boolean algebra A with two atoms α1 and α2 and the
assignment β : K ÞÑ 0, α1 ÞÑ 0.2, α2 ÞÑ 0.4,J ÞÑ 1. β is a lower probability. To see this note that
Mpβq “ tP P P | 0.2 ď P pα1q, 0.4 ď P pα1qu. In particular, the probability functions P1 and P2

that belong to Mpβq and that generate β are P1 : α1 ÞÑ 0.2, α2 ÞÑ 0.8 and P2 : α1 ÞÑ 0.6, α2 ÞÑ 0.4,
respectively.

Remark 2.9. Belief functions and lower probabilities constitute the best-known axiomatic generali-
sations of probability functions. As it is apparent from the definitions above, probability functions are
the additive special case of both belief functions and lower probabilities. Moreover, belief functions and
lower probabilities can be related through probability functions. However, the question of interpreting
this relation in terms of coherence, turns out to be remarkably difficult, as the main results of our
paper illustrate in Section 3.

We end this subsection by recalling the definition of two ordinal measures of uncertainty which stand
in duality relation to one another, and which will play an important role in what follows.

Definition 2.10 (Normalized necessity measures). A normalized necessity measure on an algebra A
is a r0, 1s-valued map N satisfying:

(N1) NpJq “ 1, NpKq “ 0;

(N2) Npa1 ^ a2q “ mintNpa1q, Npa2qu.

To each necessity measure on a Boolean algebra A is associated a dual possibility measure, usually
denoted by Π and defined on A by letting

Πpaq “ 1´Np aq, (3)

for all a P A – see [17, 33] for details.

Each possibility measure Π on a finite Boolean algebra A gives a normalized possibility distribution π
once restricted to the atoms α1, . . . , αt of A. In this context, normalization means that πpαiq “ 1, for
at least one αi. Conversely, each normalized possibility distribution π on the αi’s uniquely determines
a possibility Π and a necessity measure N by the following stipulations:

Πpaq “
t
ł

j“1

πpαjq ^ apαjq and Npaq “
t
ľ

j“1

p1´ πpαtqq _ apαjq, (4)

where apαjq stands for 1 if αj ď a and 0 otherwise.

Remark 2.11 (Dual uncertainty measures). In the same way as possibility measures can be defined by
duality in the sense of equation (3), dual companions (also known as conjugate measures) can be defined
also for the other uncertainty measures we considered so far. More precisely, while probability functions
and self-dual in the sense that every probability P on a Boolean algebra A satisfies P paq “ 1´P p aq
for all a P A, the following cases arise for non-additive measures:

• For every belief function Bel on A, the map Pl : A Ñ r0, 1s such that for all a P A, Plpaq “
1´Belp aq is called plausibility function.

• The dual companion of a lower probability P : A Ñ r0, 1s, defined as P paq “ 1 ´ P p aq is
known in the literature as an upper probability function.

Needless to say that, in general, Bel and Pl, and P and P differ on a Boolean algebra. Indeed, if
on a Boolean algebra A, one has that for all a P A, Belpaq “ Plpaq (or P paq “ P paq), then Bel (P
respectively) is a probability function. More details can be found in [33].

The diagram depicted in Figure 1 sums up the mutual relations between the uncertainty measures and
their duals described in this Subsection.
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Figure 1: The uncertainty measures considered so far arranged by generality (solid arrows)
and their dual companions (dashed arrows).

2.3 Two-sided betting with fully resolvable uncertainty

As anticipated in Section 1, the main focus of this paper is on coherence. As this notion has been the
trademark of the foundational point of view championed by Bruno de Finetti, we begin by recalling
the framework he laid down in his seminal [11].

Suppose that a1, . . . , an are elements of a finite Boolean algebra A, which are interpreted as the events
of interest to a bookmaker B. Suppose that this interest materialises with the publication of a book
β : a1 ÞÑ β1, . . . , an ÞÑ βn where βi P r0, 1s for i “ 1, . . . , n. This assignment is made by B under a
number of constraints. The most important of which forces B to let a gambler G choose real-valued
stakes σ1, . . . , σn for each ai in the book. Hence, for i “ 1, . . . , n, G pays σiβi to B in return for
σivpaiq. Thus, G’s payoff is

řn
i“1 σipvpaiq ´ βiq whereas B’s payoff is

řn
i“1 σipβi ´ vpaiqq.

Remark 2.12. Throughout v is a (Boolean algebra) homomorphism from A to t0, 1u which agrees,
that is, with the classical propositional semantics. Hence uncertainty is resolved classically – and
we use the notation as a reminder that Boolean algebra homomorphisms play the role of classical
propositional valuations (recall Subsection 2.1). We referred to this situation as the “classical problem
of coherence” in Section 1.

This set-up is sufficient for de Finetti to put forward a definition which has had a profound impact on
the foundations of probability since the second half of the nineteenth century.

Definition 2.13 (Coherence). β is coherent if there is no a1, . . . , an P A and σ1, . . . , σn in R such that
for every v,

n
ÿ

i“1

σipβi ´ vpaiqq ă 0. (5)

Equivalently, β is coherent if for every a1, . . . , an P A and σ1, . . . , σn P R, there is a v such that,

n
ÿ

i“1

σipβi ´ vpaiqq ě 0. (6)

In other words, the book published by B is coherent if there is no choice of events and of (possibly
negative) stakes which G can make, exposing B to a sure loss.

As shown in [11, 12], coherence is necessary and sufficient for the existence of a finitely additive measure
P that extends the book β over A, i.e. a probability function P such that for i “ 1, . . . , n, P paiq “ βi.
De Finetti sought to use this result to justify the representation of “rational degrees of belief” by means
of probabilities, a line of reasoning which has become known as the Dutch Book argument. There are
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many more details to this argument, which are immaterial for our present purposes (we refer interested
readers to [23] for a logical presentation consonant to the present setting). One key point though, is
that de Finetti concocted his argument in such a way that B avoids sure loss exactly by publishing a
fair price book, i.e. one carrying null expectation of either gain or loss.

Fair prices are among the very first devices which have been used to give meaning to probability.
They reflect an idealised and abstract situation in which every aspect of the book is perfectly known
to B, except of course, which events will eventually obtain. As recalled in Section 1 several authors,
starting with the early contributions by Frank Knight and John M. Keynes, have taken issue with the
unattainable demands of such idealisations. Over the past century, a rich landscape of generalisations
of probability measures has arisen in response to such foundational as well as practical concerns, with
a particularly interesting line of research taking place within AI. As recalled above, the motivations, as
well as the mathematical approaches pursued, diverge significantly and yet the relaxation of additivity
is one important feature that wide array of formalisms have in common. Since our main focus in
Section 3 will be on the relation between lower probabilities and belief functions – two prominent
non-additive measures – we now review how those arise naturally by suitably relaxing some conditions
in de Finetti’s argument.

2.4 Two-sided betting with partly resolvable uncertainty

The first generalisation we consider is due to J-Y Jaffray who in [34], characterised coherent degrees
of belief under partly resolved uncertainty. This led to a representation for belief functions which he
linked to the then-emerging field of decision theory under ambiguity (see [53] for a thorough contex-
tualisation).

In Jaffray’s setting, coherence is defined essentially as in Definition 2.13 above, except that the under-
lying uncertainty resolution mechanism is no longer provided by classical logic. Instead of homomor-
phisms v, uncertainty is resolved by functions Capaiq defined as follows:

Capaiq “

#

1 if |ùcl aÑ ai

0 otherwise.
(7)

So, for events Ψ “ ta1, . . . , anu the book β : a1 ÞÑ β1, . . . , an ÞÑ βn is published as above by bookmaker
B. For the gambler G to place real-valued stakes σ1, . . . , σn on a1, . . . , an at the betting odds written
in β, means that G pays B for each ai the amount σiβi and B gains from G the amount σiCapaiq.
Hence, the total balance for B is now

n
ÿ

i“1

σipβi ´ Capaiqq.

Definition 2.14 (Bf-coherence). The book β is bf-coherent if it is not the case that, for every fixed
non-contradictory event a,

řn
i“1 σipβi´Capaiqq ă 0, i.e. there is a fixed non-contradictory event a s.t.

řn
i“1 σipβi ´ Capaiqq ě 0.

Note that, in full analogy with Definition 2.13 this leads to a verbalisation of coherent degrees of
belief in terms of avoiding sure loss. Hence the “intended semantics” of coherence is unchanged.
What does change is the uncertainty resolution which underlies this formulation of the problem of
coherence. Generalising classical valuations to (7), avoiding sure loss characterises Dempster-Shafer
belief functions.

Theorem 2.15 ([34]). An assignment β on events φ1, . . . , φk P A is bf-coherent if and only if it can
be extended to a belief function on the Boolean algebra A.

The following example, in addition to illustrating numerically coherent belief functions, provides a
useful anticipation for our own framework.
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a Capa1q Capa2q Capa3q

α1 1 0 1

α2 1 1 0

α3 0 1 1

α1 _ α2 1 0 0

α2 _ α3 0 1 0

α1 _ α3 0 0 1

α1 _ α2 _ α3 0 0 0

Table 2: Values of Capaiq over A and the set of events Ψ

Example 2.16. Let us consider an algebra A with atoms α1, . . . , αt (t ě 3) and probability distribu-
tions p1pα1q “ q, p1pα2q “ 1´ q, p1pαiq “ 0 for all i ‰ 1, 2; p2pα2q “ q, p2pα3q “ 1´ q, p2pαiq “ 0 for
all i ‰ 2, 3; p3pα1q “ 1´ q, p3pα3q “ q, p3pαiq “ 0 for all i ‰ 1, 3 where q is any value 1{3 ă q ď 1{2.
Suppose that A has three atoms α1, α2, α3. Let us consider the set of events Ψ “ ta1, a2, a3u defined
as in the proof of Theorem 3.10: a1 “ α1 _ α2, a2 “ α2 _ α3, and a3 “ α1 _ α3. To show that the
book β : ai ÞÑ q for every i “ 1, 2, 3 is bf-coherent, we need to show that for every stakes σ1, σ2, σ3 P R
chosen by G there is at least one non-contradictory event a s.t.

řn
i“1 σipq ´ Capaiqq ě 0. The values

the function Capaiq are summarised in Table 2.16.

For every non-contradictory event a P A we ask under which constraints on σ1, σ2 and σ3, do we have
řn
i“1 σipq´Capaiqq ě 0. We denote with Sa the points in R3 (representing the values of the σis ) that

makes the payoff for B positive. We then show that the union of all these Sa with a P A is R3.

If a “ α1, then the payoff of B is σ1pq ´ 1q ` σ2pqq ` σ3pq ´ 1q and it is positive if pσ1, σ2, σ3q P

Sα1
“ tpx, y, zq P R3| z ď ´qx´qy`x

q´1 u.

If a “ α2, then the payoff of B is σ1pq ´ 1q ` σ2pq ´ 1q ` σ3pqq and it is greater than 0 if
pσ1, σ2, σ3q P Sα2 “ tpx, y, zq P R3| z ě ´qx´qy`x`y

q u.

If a “ α3, then the payoff of B is σ1pqq ` σ2pq ´ 1q ` σ3pq ´ 1q and it is positive if pσ1, σ2, σ3q P

Sα3
“ tpx, y, zq P R3| z ď ´qx´qy`y

q´1 u.

If a “ α1_α2, then the payoff of B is σ1pq´ 1q`σ2pqq`σ3pqq and it is positive if pσ1, σ2, σ3q P

Sα1_α2 “ tpx, y, zq P R3| z ě ´qx´qy`x
q u.

If a “ α2_α3, then the payoff of B is σ1pqq`σ2pq´ 1q`σ3pqq and it is positive if pσ1, σ2, σ3q P

Sα2_α3
“ tpx, y, zq P R3| z ě ´qx´qy`y

q u.

If a “ α1_α3, then the payoff of B is σ1pqq`σ2pqq`σ3pq´ 1q and it is positive if pσ1, σ2, σ3q P

Sα1_α3 “ tpx, y, zq P R3| z ď ´qx´qy
q´1 u.

If a “ α1_α2_α3, then the payoff of B is σ1pqq`σ2pqq`σ3pqq and it is positive if pσ1, σ2, σ3q P

Sα1_α2_α3
“ tpx, y, zq P R3| z ě ´x´ yu.

To show that
Ť

aPA Sa “ R3 we only need to verify that
Ş

aPA S
c
a “ H, i.e. that the system of

inequalities, as in this case,
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

z ą ´qx´qy`x
q´1

z ă ´qx´qy`x`y
q

z ą ´qx´qy`y
q´1

z ă ´qx´qy`x
q

z ă ´qx´qy`y
q

z ą ´qx´qy
q´1

z ă ´x´ y,
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has no real solution.

2.5 One-sided betting with fully resolvable uncertainty

In his seminal [55], Walley termed “Bayesian dogma of precision” the conceptual underpinning of the
conditions which force B to map each element of a book to a real number. Coherence-wise, we have
recalled in Section 2.3 that this amounts to forcing B to publish fair prices for the book β. For if the
book had a non-zero expectation, G will use this to lead B to sure loss. Thus fairness amounts two-sided
betting: coherent degrees of belief correspond to those which make the bookmaker indifferent between
either selling or buying any bets at the chosen prices. Showing that a mathematically sophisticated
theory of uncertainty could dispense with this assumption, is one of the key achievements of [55].

Since then, considerable attention has been devoted to showing that the ensuing generalisations of (6)
can be used to provide a foundation to a much broader class of imprecise probability measures (see
e.g.[56, 40, 52]). Although the Imprecise probability community does not regard Walley’s work as a
generalisation of de Finetti’s, as pointed out e.g. in Section 5 of [40], there is substantial foundational
continuity between the two, as we are about to recall.

Note first that is customary in this field to frame coherence in terms of individual, rather than the
interactive kind of decision problems recalled in Subsections 2.3 and 2.4 above. Hence coherence is
spelt-out in terms of desirable gambles, which are thought of as the individual’s expectation of a non-
negative real-valued quantity Xi. In this context, a lower prevision P on a linear subspace L is said
to be coherent if, for every non-negative integers m,n and for every X0, X1, . . . , Xn P L do we have

sup

#

n
ÿ

j“1

pXj ´ P pXjqq ´mpX0 ´ P pX0qq

+

ě 0. (8)

Walley proves that a lower prevision is coherent if and only if for all X,Y P L and λ ą 0, the following
hold.

P pXq ě inf X

P pλXq “λP pXq

P pX ` Y q ěP pXq ` P pY q.

This characterisation, of which several equivalent formulations exist makes the theory of lower previ-
sions one of the most general approaches to imprecise probabilities, as testified by [52]. However, we
shall not need to exploit this generality here, starting from the fact that instead of gambles we shall
consider their indicators a. Hence we shall consider lower probabilities, as anticipated with Definition
2.7. As an immediate consequence of this, and in contrast with the setup of Subsection 2.4, we are
now back to a case in which uncertainty is resolved classically.

So what distinguishes the notion of coherence to be defined for lower probabilities compared to their
additive counterpart, is a key feature of the decision problem which gives coherence its operational
meaning. With an insight which goes back to Smith [51], this is achieved by interpreting P paiq as
an agent’s supremum buying price for ai, and P paiq as (the possibly distinct) agent’s infimum selling
price for it. If one takes the two agents to coincide, then the interval rP paiq, P paiqs becomes a natural
candidate for the quantification of the agent’s partial ignorance about ai. If those two bounds arise
from distinct agents, then the above difference can be used to measure their disagreement about their
individual assessment on ai. In both cases, this interval allows us to quantify what the “Bayesian dogma
of precision” neglects: some form of uncertainty about ai exceeding its variability. From a foundational
point of view, this answers some of the key methodological issues raised against probability which have
been outlined in Section 1 above. In particular, it offers a very natural solution to the problem raised
in Example 1.1 by putting, say P pa2q “ 0 and P pa2q “ 2{3.

The formulation of coherence with arises by distinguishing buying from selling prices, makes it possible
to adapt de Finetti’s Dutch Book argument to imprecise probabilities. All we need to do is relaxing
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the assumption to the effect that the interaction between B and G amounts to a zero-sum game. This
can be achieved by restricting G’s choice of stakes only to positive σi.

Under such asymmetric conditions, the interactive decision problem which leads to the intended inter-
pretation of coherence of lower probabilities can be put schematically as follows.

B publishes a book β : a1 ÞÑ rβ
1
, β1s, . . . , an ÞÑ rβ

n
, βns over the events a1, . . . , an with 0 ď β

i
ď βi ď 1

for i “ 1, . . . , n.

Then G works out the greatest price at which they will be willing to buy ai, i.e. P paiq, and decides
whether to bet on or against each event:

• If G bets on the event ai, then she will pay σiβi with σi ě 0 and receive from B σivpaiq.

• If G decides to bet against ai, then she will receive σiβi with σi ě 0 from B and pay her back
σivpaiq.

Let IO denote the set of indexes relative to the events that G bets on, and denote by IA the set of
indexes relative to the events G bets against. Then, the balance for G is given by

ÿ

iPIO

σipvpaiq ´ βiq `
ÿ

iPIA

σipβi ´ vpaiqq. (9)

Breaking the symmetry between buying and selling prices is not sufficient to extend the setup based
on Definition 2.13 to the imprecise case. In this setting, agents may exceed in caution in the sense
that the interval r0, 1s clearly prevents sure loss under all circumstances. However, representing one’s
uncertainty on an event of interest with the whole real unit interval amounts to expressing one’s total
rather than partial ignorance about it. This suggests that avoiding sure loss is a necessary, yet no longer
sufficient condition for the imprecise probability extension of Dutch Book. Indeed, in Section 1.6 of
[55] Walley distinguishes between avoiding sure loss and coherence. Expressed in terms of preferences
among gambles (rather than events, see above) – the key difference between the two notions is that
the former amounts to acyclicity and the latter to transitivity. Owing to the duality between lower
and upper probabilities, it will be sufficient to our purposes to focus on the former. Moreover, to
avoid terminological confusion, in what follows we will refer the corresponding notion of coherence as
to l-coherence.

Definition 2.17 (l-coherence). Let β : a1 ÞÑ β1, . . . , an ÞÑ βn be a book defined over the set of events
Ψ “ ta1, . . . , anu. Then β is l-incoherent for G if there exists an event ai˚ P Ψ, σ1, . . . , σn ě 0 and
m ě 0 such that

řn
i“1 σipβi ´ vpaiqq ´ mpβi˚ ´ vpai˚qq ă 0 for every valuation v. The book β is

l-coherent if it is not l-incoherent.

From the above definition, it follows that whenever m “ 0, Definition 2.17 is equivalent to Definition
2.13. Hence, l-coherence is a stronger criterion compared to avoiding sure loss, for it additionally
requires that the prices cannot be raised by any positive linear combination of alternative bets on the
book, see e.g. Section 2.2.1 of [2].

Theorem 2.18 ([55]). A book β on events φ1, . . . , φn P A is l-coherent if and only if it can be extended
to a lower probability on the Boolean algebra A.

It is of particular interest for our present purposes that, in the special case of lower probabilities,
l-coherence is to Definition 2.13 as additivity is to super-additivity. Section 3.1 below develops this
in full detail. In preparation for it, it is useful to illustrate some key properties of l-coherence, with
which we close the preparatory material to our main results.

Example 2.19. Take again the setting of Example 2.16. For every j “ 1, . . . , 3, denote by Pj the
probability given by the distribution pj and let P the lower probability defined by letting

P paq “ mintPjpaq | j “ 1, 2, 3u, (10)
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for all a P A.

To show that β can be extended to a lower probability we have to show that for every ai P Ψ, for
every possible subset of Ψztaiu and for every positive stake on these events, there is a homomorphism
v that makes the payoff for G relative to the subset of Ψztaiu greater or equal to the payoff relative
to ai. To do this we first show that a1 is not l-coherent for G, and similarly for a2 and a2. Therefore,
we need to verify that for every σ1, σ2, σ3 in Rě, there exist valuations v1, v2, v3 such that

1. σ2pv1pa2q ´ qq ` σ3pv1pa3q ´ qq ě σ1pv1pa1q ´ qq,

2. σ2pv2pa2q ´ qq ě σ1pv2pa1q ´ qq, and

3. σ3pv3pa3q ´ qq ě σ1pv3pa1q ´ qq.

We reason by cases as follows.

1. If we consider the homomorphism v1 : αi ÞÑ 0, then σ2pv1pa2q´qq`σ3pv1pa3q´qq ě σ1pv1pa1q´qq
holds, i.e. σ2p´qq ` σ3p´qq ě σ1p´qq, only if σ2 ` σ3 ď σ1. If we consider the homomorphism
v2 : α1 ÞÑ 1, α2 ÞÑ 1, α3 ÞÑ 0, then σ2p1 ´ qq ` σ3p1 ´ qq ě σ1p1 ´ qq holds only if σ2 ` σ3 ě σ1

(since q P p1{3, 1{2s, then 1´ q P r1{2, 2{3q). Therefore, for every value of σ1, σ2, σ3 we can find
a homomorphism v such that (1) holds.

2. If we consider the homomorphism v1 : αi ÞÑ 0, then σ2pv1pa2q ´ qq ě σ1pv1pa1q ´ qq holds, i.e.
σ2p´qq ě σ1p´qq, only if σ2 ď σ1. If we consider the homomorphism v2 : α1 ÞÑ 0, α2 ÞÑ 1, α3 ÞÑ

0, then σ2p1´ qq ě σ1p1´ qq only if σ2 ě σ1. Therefore, for every value of σ1, σ2, σ3 we can find
a homomorphism v such that (2) holds.

3. If we consider the homomorphism v1 : αi ÞÑ 0, then σ3pv1pa3q ´ qq ě σ1pv1pa1q ´ qq holds, i.e.
σ3p´qq ě σ1p´qq, only if σ3 ď σ1. If we consider the homomorphism v2 : α1 ÞÑ 1, α2 ÞÑ 0, α3 ÞÑ

0, then σ3p1 ´ qq ě σ1p1 ´ qq holds only if σ3 ě σ1. Therefore, for every value of σ1, σ2, σ3 we
can find a homomorphism v such that (3) holds.

Analogous arguments hold for a2 and a3, hence β can be extended to a lower probability.

In conclusion, it is useful to point out explicitly that the duality which arises from the definitions of
uncertainty measures discussed in Remark 2.11 has a natural counterpart in coherence.

Remark 2.20 (Dual coherence). It is indeed clear that β : a1 ÞÑ β1, . . . , an ÞÑ βn is coherent (bf-
coherent, l-coherent, respectively), then the dual book β1 :  a1 ÞÑ 1´β1, . . . , an ÞÑ 1´βn extends to
a probability function (plausibility function, upper probability, respectively). This simple observation
allows to immediately define notions of pl-coherence (for extensions to plausibility functions) and u-
coherence (as regards to extensions to upper probabilities).

3 Axiomatic-wise and coherence-wise comparisons

We are now ready to address the key question of this paper, namely the comparison of the two key non-
additive measures of uncertainty, namely belief functions and lower probabilities. In Subsection 3.1
we put forward an axiomatic comparison whereas in Subsection 3.2 we set up a geometric framework
in which all the various notions of coherence of interest are comparable. This allows us to get, in
Subsection 3.3, the main result of this paper, which identifies rather mild conditions under which
belief functions and lower probability are coherence-wise indistinguishable despite being axiomatically
distinct.
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3.1 An axiomatic-wise comparison

As anticipated in Remark 2.9 above, belief functions and lower probabilities are related through prob-
ability functions. Say that P P P is compatible with a belief function Bel if

Belpaq ď P paq ď Plpaq, (11)

where Pl is a plausibility function defined for a P A by Plpaq “ 1 ´ Belp aq. Relation (11) lends
itself to giving Belief functions a natural “imprecise improbability” interpretation. Just note that the
length of the interval rBelpaq, P lpaqs is maximal when Belpaq “ 0 and Plpaq “ 1, and minimal when
Belpaq “ Plpaq. Note also that if this holds for all a, then Bel is a probability function.

Now, the set of probability functions which bound a belief function

PpBelq “ tP P P | P is compatible with Belu,

is called the credal set of Bel, and for any a, Belpaq is the lower envelope of PpBelq:

Belpaq “ min
PPPpBelq

P paq. (12)

As pointed out in [50, Section 6], this interpretation is justified only for a single belief function, i.e.
one defined by a specific mass function m. This warns against considering in general belief functions
as the lower bounds of some unknown true probability function. Nonetheless (2) and (12) highlight
the close connection between the two. Indeed by constructing a suitable compatible belief function it
can be seen that every belief function is a lower probability. But, as Williams [57] noted, the converse
does not hold (see also [50, 36]). The conditions under which a lower probability function is a Belief
function can be pinned down precisely as follows.

Remark 3.1. A lower probability P on an algebra A is a belief function if and only if P satisfies
(B2), namely

P

˜

n
ł

i“1

ai

¸

ě

n
ÿ

i“1

ÿ

tJĎt1,...,nu:|J|“iu

p´1qi`1P

˜

ľ

jPJ

aj

¸

(13)

for all n “ 1, 2, . . ..

As an immediate consequence we get the following Corollary, which gives a minimal algebraic require-
ment to distinguish belief functions and lower probabilities. It will be useful to justify our main result
and its consequences in Section 3.

Corollary 3.2. Let A be a Boolean algebra. Then, every lower probability on A is a belief function if
and only if A has two atoms.

Proof. (ð) Assume α1, α2 be the unique atoms of A and let P be a lower probability on A. Discarding
trivial cases, let us focus on the non-trivial events of A: α1 and α2. Then, P pα1 _ α2q “ P pJq “ 1
and P pα1q ` P pα2q ´ P pα1 ^ α2q “ P pα1q ` P pα2q ´ P pKq “ P pα1q ` P pα2q. Moreover, α1 and α2

are disjoint, so P pα1q ` P pα2q ď 1, whence (13) is satisfied.

(ñ) Assume that A has more than two atoms. Then the claim follows from Example 3.12 below
where we show that in every algebra with three atoms one can define a lower probability that is not a
belief function and obviously the same argument applies to any structure whose atoms are more than
three.

The axiomatic relation between the uncertainty measures of interest in this work is depicted in Figure
3.1.
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Figure 2: Graphical Representation of the axiomatic comparison between probability, neces-
sity measures, belief functions and lower probabilities. Our main result shows that this is not
matched in coherence.

3.2 A geometric framework for coherence

The framework for our results is rooted, in addition to de Finetti’s seminal contributions, in the logico-
geometric perspective put forward by Paris in [44]. In retrospect, this paper played an important role
in the coming of age of the Dutch Book method, as the title says. In this Subsection, we lay down the
geometric tools, and relevant notation/terminology, which will be used in the rest of the paper. We
cast in this framework the well-known extension results yielded by geometrically coherent assignments,
collected in Theorem 3.4.

Let Ψ “ ta1, . . . , anu be a finite set of events (i.e., elements of a finite Boolean algebra A). Let us
denote by V “ tv1, . . . , vtu the finite set of all possible homomorphisms of A to the boolean chain on
the two-element set t0, 1u. For every j “ 1, . . . , t, call ej the binary vector

ej “ pvjpa1q, . . . , vjpanqq P t0, 1u
n. (14)

Given this basic construction, and using an approach similar to Paris’s we can characterize in geometric
terms the extendability problem for books on Ψ to finitely additive probability measures, normalized
necessity measures and belief functions. The additional notions we need are the Euclidean closed
convex hull copXq of a subset X Ď Rt (which reduces to copXq in case X is finite) and the less
common tropical convex hull co^,`pXq of X (see [13]).

Definition 3.3. Let x1, . . . ,xt P r0, 1s
n. The tropical hull of the xj ’s is the subset co^,`px1, . . . ,xtq

of all points y of r0, 1sn for which there exist parameters λ1, . . . , λt P r0, 1s such that
Źt
j“1 λj “ 0 and

y “
t
ľ

j“1

λj ` xj .

The symbol ^ stands for the minimum and ` for the ordinary addition in the tropical semiring
pR,^,`q. Given λ P r0, 1s and x P r0, 1sn, λ` x “ pλ` x1, . . . , λ` xnq and the

Ź

operator is defined
component-wise.

For e1, . . . , et being defined as above from the formulas ai’s in Ψ, let us consider the following sets:

1. PΨ “ cope1, . . . , etq;

2. NΨ “ co^,`pe1, . . . , etq;
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3. BΨ “ copNΨq, where, in this case, being NΨ usually uncountable, co denotes the topological
closure of the Euclidean convex hull co.

Theorem 3.4 (Geometric extension results [12, 22, 25]). Let Ψ “ ta1, . . . , anu be a finite set of events.
Then a book β : Ψ Ñ r0, 1s extends to a

$

&

%

Probability measure
Necessity measure

Belief function

,

.

-

if and only if pβpa1q, . . . , βpanqq P

$

&

%

PΨ

NΨ

BΨ

,

.

-

.

In general, PΨ and NΨ are both strictly included in BΨ (i.e., PΨ Ă BΨ and NΨ Ă BΨ) and this
is expected because belief functions are strictly more general than both probabilities and normalized
necessity measures. In the present work, we investigate, via coherence, whether it is possible to
distinguish uncertainty theories when we consider the more general setting of lower probabilities. In
particular, we study if coherence is sufficiently robust to distinguish lower probabilities from belief
functions.

Let us notice that, for every subset of events Ψ as above, the sets PΨ, NΨ and BΨ are polyhedra of
r0, 1sn. More precisely, PΨ and BΨ are polytopes, i.e. convex polyhedra in the usual Euclidean sense,
while NΨ is convex in the tropical sense specified in Definition 3.3 above, but it is not convex in the
standard Euclidean model of tropical geometry. Thus, in that standard model, NΨ is represented by
a polyhedron.

As for lower probabilities, the situation is similar but not fully understood. Denote by LΨ the set of
all books on Ψ Ď A that extend to a lower probability on the Boolean algebra A. Although LΨ is
known to be a polytope [46], a characterization of its extremal points is not fully understood. In [10]
(see in particular §9 of the same paper) the authors make this point particularly clear. However, for
the sake of the present paper, and in particular for the results of this Section and of Section 4, such a
full description is not needed.

The next proposition makes clear a first relation between LΨ and PΨ.

Proposition 3.5. Let A be a finite Boolean algebra and Ψ “ ta1, . . . , anu Ď A. A book β on Ψ belongs
to LΨ if and only if there are β1, . . . , βn P PΨ such that, for all ai P Ψ, βpaiq “ mintβjpaiq | j “
1, . . . , nu.

Proof. The right-to-left direction is trivial. Let us hence assume that β extends to a lower probability
P . Let MpP q “ tP | P paq ě P paq,@a P Au as in Section 2.2 and then, for all ai P Ψ,

P paiq “ mintP paiq | P PMpP qu.

For all P P M pP q, call βP the (necessarily coherent) book on Ψ obtained from P by restriction. Then,
obviously,

βpaiq “ mintβP paiq | P P M pP qu.

Finally, since Ψ is finite, for every ai P Ψ fix a book βP piq among the βP ’s such that

βP piqpaiq “ βpaiq “ mintβP paiq | P PMpP qu.

For every i, βP piq exists. Then the claim follows since βpaiq “ mintβP paiq | P “ P piqu. In other words
β “ mintβP p1q, . . . , βP pnqu.

The relation between belief functions and lower probabilities described in Section 3.1 is faithfully
captured within our geometric framework.

Proposition 3.6. Let A be a finite Boolean algebra and Ψ “ ta1, . . . , anu Ď A, then

BΨ Ď LΨ.
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Proof. To prove our claim, it is sufficient to show that all the vertices of BΨ belong to LΨ. The vertices
of BΨ are either e1, . . . , et or vectors recovered by taking the component-wise minimum between any
subset of e1, . . . , et. Therefore, by Proposition 3.5, all the vertices of BΨ are in LΨ, and the claim
holds.

Finally, let us notice that in case Ψ “ A, i.e., the set of events we are considering coincides with the
domain of the finite Boolean algebra we dealing with, then PA, NA, BA and LA are all polyhedra
that respectively correspond to the sets of probabilities, necessity measure, belief functions and lower
probabilities on A.

3.3 A coherence-wise comparison

We now compare the various definitions of coherence arising from the Dutch Book method recalled in
Section 2. More precisely we will carry out a comparison of the corresponding extendability theorems.
A first result in this direction, where books are considered only on the whole algebra 4 of two atoms,
is Corollary 3.2. This establishes that on 4 every lower probability is a belief function.

Note that this does not apply in general to other uncertainty measures. It is indeed easy to see that
on 4, probabilities, necessity measures and belief functions can be distinguished. In other words, and
adopting the notation introduced in Subsection 3.2, P4 XN4 ‰ P4, P4 XN4 ‰ N4 (meaning that
on 4 there are probabilities that are not necessity measures and vice-versa) and P4,N4 Ă B4 (i.e.,
there are belief functions on 4 that neither are probabilities, nor necessity measures). By a cardinality
argument, the same relations hold among PA, NA and BA for all Boolean algebra A with more than
4 elements. For later use, let us hence state the following result that complements Corollary 3.2.

Proposition 3.7. For every Boolean algebra A with cardinality |A| ą 4, PAXNA ‰ PA, PAXNA ‰

NA and PA,NA Ă BA Ă LA.

If, instead of full measures on an algebra, we consider books on sets of events, a first trivial, yet
suggestive, observation is the following: if A is any Boolean algebra and Ψ “ tau, then PΨ “ NΨ “

BΨ “ LΨ. The same result applies trivially to sets of events of the form Ψ “ tK, a,Ju or Ψ “ tK, au
since all uncertainty measures considered so far are normalized, whence they all assign 0 to K and 1
to J. For this reason it will be important to define when a set of events is adequate for the analysis
we propose. Those sets will be formally defined below.

In light of the above easy remark, we now aim at investigating the robustness of extension theorems
for uncertainty measures and, by doing so, at understanding up to which extent the above Proposition
3.7 generalizes to adequate sets of events.

The next example has inspired the result described by our main result, namely Theorem 3.10.

Example 3.8. Let A be the Boolean algebra of 8 elements and 3 atoms tα1, α2, α3u and consider the
non-trivial set of events Ψ “ ta1, a2, a3u Ă A where a1 “ α1 _ α2, a2 “ α2 _ α3 and a3 “ α1 _ α3.
The algebra A has 3 homomorphisms to t0, 1u. Computing the points e1, e2, e3 as in (14), we get

e1 “ p1, 0, 1q; e2 “ p1, 1, 0q; e3 “ p0, 1, 1q.

The polyhedra PΨ, NΨ, BΨ and LΨ are hence as in Figure 3.
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Figure 3: (left-most) The polytope PΨ; (center) The tropical polytope NΨ; (right-most) The poly-

topes BΨ and LΨ.

Notice that, although Ψ does not coincide with the whole algebra A, it allows to distinguish those
books that are either extendible to a probability or a normalized necessity, from those extendible to
belief functions or lower probabilities. Indeed both PΨ and NΨ are strict subsets of BΨ and LΨ.
Interestingly, in this specific example, BΨ and LΨ coincide.

We now define the notion of “adequate” set of events Ψ which allows us to discard those cases that
we already know do not allow us to distinguish BΨ from LΨ.

Definition 3.9. Let A be a Boolean algebra. A non-empty subset Ψ of A is adequate if Ψ is a strict
subset of AztK,Ju and the subalgebra AΨ of A generated by Ψ has at least three atoms.

Our main result shows that partial assignments on events exist for which it is impossible to tell whether
they are coherent in the sense of lower probability theory but fail coherence according to belief func-
tions. In logical terms, this suggests that there are non-negligible limits to the expressive power of
coherence. In other words, we can show that for every algebra A with at least three atoms there exists
Ψ Ă A s.t. the convex hull characterising the assignments β on Ψ extendible to probability measures
over A is not included in the convex hull characterising the assignments extendible to necessity mea-
sures over A and vice versa. I.e., there are β1, β2 : Ψ Ñ r0, 1s s.t. β1 P PΨ but β1 R NΨ, and β2 P NΨ

but β2 R PΨ. In the same setting, we could expect a similar behaviour also for the more general
uncertainty measures of belief functions and lower probabilities. However, as Theorem 3.10 shows,
this is not the case. In fact, we will show that the convex hull characterising the assignments on Ψ
that are bf-coherent (BΨ) coincides with the convex hull characterising the assignments on Ψ that are
l-coherent (LΨ). However, if β P BΨ “ LΨ, then the corresponding extensions β1 P BA and β2 P LA

might not be the same.

Theorem 3.10 (When BΨ “ LΨ). For every algebra A with at least three atoms there exists an
adequate subset Ψ of A such that PΨ XNΨ ‰ PΨ and PΨ XNΨ ‰ NΨ, but BΨ “ LΨ.

Proof. Let us assume without loss of generality that α1, . . . , αn (n ě 3) are the atoms of A and let us
fix the subset Ψ of A made of the following elements: a1 “ α1 _ α2, a2 “ α1 _ α3 and a3 “ α2 _ α3.
Clearly Ψ is adequate in the sense of Definition 3.9.

First, let us show that PΨ XNΨ ‰ PΨ and PΨ XNΨ ‰ NΨ.

By Proposition 3.6, BΨ Ď LΨ. Thus, let β be a book in LΨ. We want to prove that β P BΨ. Let P
be a lower probability on A such that, for all i “ 1, . . . , 3, P paiq “ βpaiq. Let us also assume that P is
not a probability, that is to say, that β does not belong to PΨ, otherwise, the claim would be trivial.

Now we prove the following.

Fact 3.11. β P M “ copminte1, e2u,minte2, e3u,minte1, e3u,
minte1, e2, e3uq.
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Proof. (of Fact 3.11). Assume, by way of contradiction, that β R M . Thus, β P r0, 1s3zM , that is
to say, β P cope1, e2, e3,maxte1, e2, e3uq. In other words, there exist λ1, λ2, λ3, λ4 (with λ4 ą 0) such
that

ř

i λi “ 1 and
β “ λ1e1 ` λ2e2 ` λ3e3 ` λ4 maxte1, e2, e3u.

The expression above equals λ1e1 ` λ2e2 ` λ3e3 ` maxtλ4e1, λ4e2, λ4e3u and since a ` maxtb, cu “
maxta` b, a` cu, one has

β “ maxtβ1, β2, β3u

where β1 “ pλ1`λ4qe1`λ2e2`λ3e3, β2 “ λ1e1`pλ2`λ4qe2`λ3e3, β3 “ λ1e1`λ2e2`pλ3`λ4qe3.
Thus, β1, β2, β3 P PΨ. Letting Pi, for i “ 1, 2, 3 such that Pi extends βi, we conclude that β extends to
an upper probability. Therefore, by assumption β extends to a lower probability. In addition, β extends
to an upper probability, thus β extends to a probability that is absurd by a previous hypothesis.

Now, we go back to the proof of the main claim and we prove that minte1, e2u, minte2, e3u, minte1, e3u,
minte1, e2, e3u P NΨ. The claim is indeed easy to show by direct computation. For instance, check
that minte1, e2, e3u “ p0, 0, 0q is pNpa1q, Npa2q, Npa3qq where N is the necessity measure computed
as in (4) and given by the normalized possibility distribution π : αt “ 1 for all t “ 1, . . . , n.

Therefore β is a convex combination of points belonging to NΨ. Hence it extends to a belief function,
concluding the proof of Theorem 3.10.

Notice that the above result does not say that if β extends to a lower probability P , then P is a belief
function. All it shows is that if β on events a1, a2, a3 extends to lower probability P , then there exists a
belief function Bel that agrees with P on the ai’s but need not agree elsewhere. The following example
clarifies this.

Example 3.12. Take again the setup of Example 2.16, now with the set of events Ψ “ ta1, a2, a3u

defined as in the proof of Theorem 3.10: a1 “ α1_α2, a2 “ α2_α3, and a3 “ α1_α3. Let us consider
also the book β : ai ÞÑ q for every i “ 1, 2, 3.

Since q ď 1{2, q ď 1´ q and hence P pa1q “ P pa2q “ P pa3q “ q. Thus, the lower probability P defined
as in (10) extends β.

Furthermore, P is not a belief function. Indeed, P pa1q ` P pa2q ` P pa3q ´ P pa1 ^ a2q ´ P pa2 ^ a3q ´

P pa1^a3q`P pa1^a2^a3q. Now, a1^a2^a3 “ K, whence P pa1^a2^a3q “ 0 and, by definition of
ai, P pa1 ^ a2q “ P pa2 ^ a3q “ P pa1 ^ a3q “ 0. Therefore, since q ą 1{3, the above expression reduces
to P pa1q ` P pa2q ` P pa3q “ 3q ą 1 “ P pa1 _ a2 _ a3q showing that P does not satisfy (13).

However, the belief function Bel whose mass assignments is mptα1uq “ mptα2uq “ mptα3uq “ q{2,
mptα1, . . . , αtuq “ 1 ´ 3

2q and mpXq “ 0 otherwise, extends the same book β to the Boolean algebra
A.

Let us consider the set of events Ψ1 “ ta1, a2, a3, a4, a5, a6u where a1 “ α1, a2 “ α2, a3 “ α3 and a4,
a5, and a6 are defined as in the proof of Theorem 3.10: a4 “ α1_α2, a5 “ α2_α3, and a6 “ α1_α3.
The vectors e1, e2, and e3 relative to Ψ1 are defined as follows:

e1 “ p1, 0, 0, 1, 0, 1q; e2 “ p0, 1, 0, 1, 1, 0q; e3 “ p0, 0, 1, 0, 1, 1q.

Thus, the vertices of BΨ1 are e1, e2, e3 and minte1, e2u “ p0, 0, 0, 1, 0, 0q, minte2, e3u “ p0, 0, 0, 0, 1, 0q,
minte1, e3u “ p0, 0, 0, 0, 0, 1q and minte1, e2, e3u “ p0, 0, 0, 0, 0, 0q. We can then verify that the point
p0, 0, 0, q, q, qq R BΨ1 while it belongs to LΨ1 .

Remark 3.13. As we pointed out in Section 3.2, an exhaustive description of the polytope LΨ is not
known yet. More precisely, although LΨ is generated by its extremal points by Krein-Milman Theorem
[19, Theorem 1.2], those latter, that are extremal lower probabilities coherent on Ψ, are not known in
general. However, if Ψ is a set of events for which BΨ “ LΨ, the extremal lower probabilities that
are coherent on Ψ coincides with the extremal belief functions that are coherent on the same events.
In other words, under that hypothesis and from the results recalled in Section 3.2, extremal lower
probabilities that are coherent on Ψ are coherent necessity measures on Ψ, i.e., extpLΨq Ď NΨ.
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4 A metalogical representation

In this final section, we will put forward a framework to represent in logical terms the notions of
coherence and, more in general, the uncertainty theories we considered so far. More in details we
will see how the geometric approaches developed in the previous sections allow to bridge coherence
and uncertainty theories on one side, and propositional logic and deductive reasoning on the other. A
major role, in this sense, will be played by propositional Riesz logic [16] that we will briefly recall in
the next Subsection 4.1, while in Subsection 4.2 we will present the connection between such formalism
and coherence.

4.1 Riesz consequence relation (R

A Riesz space is a vector space further endowed with a lattice order ď that is compatible with the vector
spaces operations, i.e., a vector lattice. Riesz propositional logic R that we will briefly present in this
section, has been firstly introduced in [16] as the extension of  Lukasiewicz logic [41] by a uncountable
family of unary connectives ∇r (for r P r0, 1s) axiomatized in such a way that, from the algebraic
viewpoint, they are necessarily interpreted as the scalar product in a(n interval of a) vector lattice.

Giving an exhaustive description for the logic R is out of the scope of the present paper, and we invite
the interested reader to consult the literature on this subject (cf. [16]). However, what is of key
importance for our logical analysis of coherence, is to recall in what R is able to speak and reason
about polyhedral geometry (see [15] and [14, §3.3]). On this latter aspect, we will focus the rest of this
subsection. In order to improve readability, we will assume the reader to be familiar with the basic of
 Lukasiewicz logic and MV-algebras. For a more exhaustive introduction about this subject we invite
the reader to consult [5].

Consider the real unit interval r0, 1s and the algebraic language p‘, , 0q of type p2, 1, 0q and where, for
all x, y P r0, 1s, x‘ y “ mint1, x` yu and  x “ 1´x. Furthermore, for every r P r0, 1s let pr : r0, 1s Ñ
r0, 1s be the unary operation x ÞÑ prpxq “ rx. The algebra r0, 1sRMV “ pr0, 1s,‘, , tprurPr0,1s, 0q is
the prototypical example of a Riesz MV-algebra and it is called the standard Reisz MV-algebra.

Definition 4.1. A system A on a non-empty domainA and in the algebraic language p‘, , tprurPr0,1s, 0q
is a Riesz MV-algebra if A belongs to Vpr0, 1sRMV q “ RMV, the algebraic variety generated by
r0, 1sRMV .

For the logical translation of coherence that we will present in this final section, a major role will
be played by special RMV-algebras: the finitely generated free algebras. These structures are, up to
isomorphism, the Lindenbaum-Tarski algebra of Riesz logic that we will briefly present below, and
they can be further characterized as follows.

Example 4.2 ([15, Theorem 1.3]). Let k be finite. A function f : r0, 1sk Ñ r0, 1s is said to be a Riesz
function if f is continuous, piecewise linear and each piece has coefficients from R. Then, for every
finite k P N, let Rpkq the set of all Reisz functions on r0, 1sk. The k-generated free Riesz MV-algebra
is, up to isomorphism, the algebra Rpkq “ pRpkq,‘, , tprurPr0,1s, 0q where operations are defined by
the point-wise application of those of the standard algebra r0, 1sRMV .

Riesz logic $R is the algebraizable logic, in the sense of Blok and Pigozzi [4], whose equivalent algebraic
semantics is RMV. The algebraizability of R w.r.t. RMV gives us that formulas of the former can
be equivalently regarded as terms of the latter. In what follows we will hence say that ϕ̂ (possibly
ϕ̂px1, . . . , xkq if we want to point out the propositional variables occurring in it)1 is a formula of R,
meaning that ϕ̂ is a term in the algebraic language of Riesz-algebra (on variables x1, . . . , xk). As we

1In this last section we will use the notation ϕ̂, ψ̂ etc., to distinguish formulas of R from the elements of an
arbitrary Boolean algebras that, as in the previous sections, we will denote by lowercase Greek letters ϕ, ψ,
etc.
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recalled above, the Lindenbaum-Tarski algebra of R on k propositional variable Lpkq coincides, up to
isomorphism, with the k-generated free Riesz MV-algebra Rpkq of Example 4.2.

The isomorphism between Lpkq and Rpkq, tells us that if ϕ̂px1, . . . , xkq is a formula of Riesz logic,
its equivalence class (modulo equi-provability in R) in Lpkq can be regarded as a Riesz function fϕ̂ :
r0, 1sk Ñ r0, 1s and, vice versa, for every Riesz function f P Rpkq, there exists a (possibly not unique)
formula ϕ̂f px1, . . . , xkq whose equivalence class in Lpkq can be isomorphically associated to f .

Definition 4.3. For every finite k and every formula ϕ̂px1, . . . , xkq, we will write
Modpϕ̂q “ tpa1, . . . , akq P r0, 1s

k | fϕ̂pa1, . . . , akq “ 1u. This set will be called the set of models of ϕ̂
or, equivalently, the one-set of fϕ̂.

The semantic consequence relation of R will be denoted by(R. Hence, if ϕ̂px1, . . . , xkq and ψ̂px1, . . . , xkq

are formulas, ϕ̂ (R ψ̂ means thatModpϕ̂q ĎModpψ̂q. In other words, fψ̂pa1, . . . , akq “ 1 in r0, 1sRMV

for all those pa1, . . . , akq P r0, 1s
k such that fϕ̂pa1, . . . , akq “ 1 in r0, 1sRMV ; ϕ̂ )(R ψ̂ stands for

ϕ̂ (R ψ̂ and ψ̂ (R ϕ̂ and it hence indicates that Modpϕ̂q “Modpψ̂q.

The next result summarises known and useful facts about Riesz logic and its close connection with
polyhedral geometry.

Proposition 4.4 ([15, Theorem 3.3]). (1) For every formula ϕ̂px1, . . . , xkq, Modpϕ̂q is a polyhedron
of r0, 1sk;

(2) For every polyhedron P of r0, 1sk there exists a formula ρ̂Ppx1, . . . , xkq such that P “Modpρ̂Pq.

Recall that the formula ρ̂P of the above Proposition 4.4 is not necessarily unique. However, in what
follows, we will speak about the formula ρ̂P such that P “Modpρ̂Pq intending that we have chosen
one among all those formulas that satisfy the above claim.

The last useful definition that is necessary to recall is that of R-function between polyhedra.

Definition 4.5. Let P Ď r0, 1sk and Q Ď r0, 1sn be polyhedra. We say that a map η : P Ñ Q is a
R-map if there exists Riesz functions f1, . . . , fn P Rpkq such that, for all x P P,

ηpxq “ pf1pxq, . . . , fnpxqq P Q.

For what we will show in the next subsection is important to notice that the projection maps of any
polyhedron P Ď r0, 1sk to a lower dimension r0, 1sn (for n ď k) are elementary examples of R-maps.

4.2 Coherence through (R

The results presented in Subsection 3.2, and Theorem 3.4 in particular, show that for every finite set of
events Ψ “ tψ1, . . . , ψku, the sets PΨ, NΨ, BΨ and LΨ of books that extends to probability functions,
necessity measures, belief functions and lower probabilities respectively, are polyhedra of r0, 1sk. The
following result provides preliminary results on the logical description of coherence via Riesz logic R.
Its proof is an immediate consequence of Proposition 4.4 and the definition of (R. In what follows we
will adopt the notation used in Proposition 4.4 (2).

Corollary 4.6. For every finite set of events Ψ “ ta1, . . . , aku and for every book β : Ψ Ñ r0, 1s, the
following conditions hold:

1. pβpa1q, . . . , βpakqq P CΨ iff ρ̂tβu (R ρ̂CΨ and for every C P tP,N ,B,L u;

2. ρ̂PΨ (R ρ̂BΨ ; ρ̂NΨ (R ρ̂BΨ ; ρ̂BΨ (R ρ̂LΨ .

Notice that, while claim (1) in the corollary above follows from the fact that points are special examples
of polyhedra, claim (2) is a consequence of what we observed in Section 3. Precisely that coherence
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for lower probabilities is a more general notion than coherence for belief functions and this latter, in
turn, is more general than coherence for necessity measures and probability functions.

Also the main result of Section 3 on the existence of adequate sets of events for which one cannot
distinguish between books that are extendible to belief functions or lower probabilities, Theorem 3.10,
can be rephrased in the following terms.

Proposition 4.7. For every Boolean algebra A with at least three atoms there exists an adequate
subset Ψ of A such that:

1. ρ̂PΨ
* ρ̂PΨXNψ

and ρ̂NΨ
* ρ̂PΨXNψ

;

2. ρ̂BΨ
)(R ρ̂LΨ

.

So far, we have seen how the geometric description of coherence can be straightforwardly described by
metalogical properties of Reisz logic. Now, we end this section by showing a less trivial interpretation
that allows to regard polyhedra of coherent books as projections of full measures defined on finite
algebras.

In what follows, let us use the symbol C to be any among tP,N ,B,L u and, once we have fixed a
C P tP,N ,B,L u we will say that a map d from a Boolean algebra A to r0, 1s is a C -measure as a
general nomenclature for: d is a finitely additive probability measure (in case C “ P), d is a necessity
measure (if C “ N ), d is a belief function (for C “ B), and d is a lower probability (if C “ L ).

From the next result, whose proof is a direct consequence of the extension Theorem 3.4 and the
definition of LΨ, we will start denoting by πΨ the projection map of r0, 1sA to r0, 1sΨ.

Proposition 4.8. For every finite Boolean algebra A and every subset Ψ of A,

CΨ “ πΨpCAq

Therefore, each polytope CΨ is the projection of CA on the axes indexed by a1, . . . , ak.

From what we observed at the end of Subsection 4.1 projections of polyhedra to lower dimensional cubes
are R-maps. Therefore, by Definition 4.5, for every Ψ Ď A and for every CΨ Ď r0, 1s

k, there exist Riesz
functions f1, . . . , fk : r0, 1sA Ñ r0, 1s such that the projection map πΨ : CA Ď r0, 1s2

n

Ñ CΨ Ď r0, 1s
k

acts as follows: for every pa1, . . . , a2nq P CA,

πΨpa1, . . . , a2nq “ pf1pa1, . . . , a2nq, . . . , fkpa1, . . . , a2nqq.

Thus, pf1pa1, . . . , a2nq, . . . , fkpa1, . . . , a2nqq P CΨ. More details on what such projections look like from
the logico-algebraic perspective will be given in the proof of the next result that provides a more precise
logical reading of the previous Proposition 4.8.

Proposition 4.9. Let A be the finite Boolean algebra of cardinality 2n and let Ψ “ ta1, . . . , aku Ď A.
Then, there are Riesz functions f1, . . . , fk : r0, 1sA Ñ r0, 1s such that pb1, . . . , bkq P CΨ if and only if
there exists pa1, . . . , a2nq P CA such that

pb1, . . . , bkq “ pf1pa1, . . . , a2nq, . . . , fkpa1, . . . , a2nqq.

Proof. Let us fix, without loss of generality, the enumeration a1, . . . , a2n for the elements of A in such
a way that the first k element, in the natural order, determine the event set Ψ (clearly k ď 2n since
Ψ Ď A). For every i “ 1, . . . , k, let fi be the map from r0, 1sA to r0, 1s defined as follows: for all
g : AÑ r0, 1s, fipgq “ gpaiq. In other words, once identified the functions from A to r0, 1s as stings of
length 2n of elements of r0, 1s as pa1, . . . , a2nq, fipa1, . . . , a2nq “ ai. Thus, fi is a Riesz homomorphism
of r0, 1sA to r0, 1s.
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Now, if pb1, . . . , bkq P CΨ, by definition there exists a C -measure d : AÑ r0, 1s that extends it. That is
to say, pb1, . . . , bkq P CΨ if and only if the vector pdpa1q, dpa2q, . . . , dpa2nqq P CA and for all i “ 1, . . . , k,
bi “ dpaiq. Therefore, for all i “ 1, . . . , k, by definition of fi, one has

bi “ dpaiq “ fipdpa1q, . . . , dpakqq.

Conversely, if pb1, . . . , b2nq P CA, then there exists a C -measure d : A Ñ r0, 1s such that, for all
j “ 1, . . . , 2n, bj “ dpajq. By definition of fi, and by our previous assumption on the ai’a for
i “ 1, . . . , k,

pf1pa1, . . . , a2nq, . . . , fkpa1, . . . , a2nqq “ pb1, . . . , bkq “ pdpa1q, . . . , dpakqq.

The latter is coherent being the restriction to Ψ of a C -measure d. Thus we finally get
pf1pa1, . . . , a2nq, . . . , fkpa1, . . . , a2nqq P CΨ and the claim is settled.

Our next result provides a uniform logical representation of the extension theorems for probabilities,
necessity measures, belief functions and lower probabilities. More precisely, the next contains two
results: the first one describes, in logical terms, the claim of the above Propositions 4.8 and 4.9
by interpreting geometric projections as logical substitutions2; the second one bridges the claim of
Theorem 3.4 that characterizes extension results via the geometry of coherence and that of Corollary
4.6 that links the geometry of coherence and deductions in Riesz logic. Moreover, it is worth noticing
that the characterization we present in the next theorem extends [21, Theorem 5.5] in the scope of
uncertainty theories that allow for such logical description.

Theorem 4.10. Let A be a finite Boolean algebra and Ψ Ď A. Then there exists a substitution σΨ

such that

(1) σΨpρ̂CΨ
q )(R ρ̂CA .

Furthermore, for all β : Ψ Ñ r0, 1s the following conditions are equivalent:

(2) β extends to a C -measure;

(3) ρ̂tβu (R ρ̂CΨ
;

Proof. Let us notice that the equivalence between (2) and (3) immediately follows from Theorem 3.4
and Corollary 4.6 (1).

As to prove (1), by Proposition 4.9, there are Riesz functions f1, . . . , fk (where k “ |Ψ|) such that,

CΨ “ tpf1pa1, . . . , a2nq, . . . , fkpa1, . . . , anqq | pa1, . . . , a2nq P CAu,

where 2n “ |A|.

Therefore, if x1, . . . , xk are the variable occurring in ρ̂CΨ , define σΨ to be the substitution that maps
each variable xi to the term ϕ̂fipy1, . . . , y2nq, the Riesz formula that corresponds to fi. More precisely,
σΨ maps ρ̂CΨ

px1, . . . , xkq to

σΨpρ̂CΨ
qpy1, . . . , y2nq “ ρ̂CΨ

pϕ̂f1
py1, . . . , y2nq, . . . , ϕ̂fkpy1, . . . , y2nqq

Then the claim follows. Indeed, by Proposition 4.9 and Proposition 4.4(2), one has:

pa1, . . . , a2nq PModpρ̂CAq iff pa1, . . . , a2nq P CA
iff pf1pa1, . . . , a2nq, . . . , fkpa1, . . . , anqq P CΨ

iff pf1pa1, . . . , a2nq, . . . , fkpa1, . . . , anqq PModpρ̂CΨ
q

iff pa1, . . . , a2nq PModpρ̂CΨ
pϕ̂f1

, . . . , ϕ̂fkq
iff pa1, . . . , a2nq PModpσΨpρ̂CΨq.

2Recall that in the framework of algebraic logic, given a language L, a logical substitution (or simply a
substitution) is a map σ that assigns to every propositional variable x of L, a formula ϕ̂ of the same language
L. Equivalently, substitutions are endomorphisms of the Lindenbaum-Tarski algebra of L, once restricted to
the variables of L.
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Therefore, pa1, . . . , a2nq PModpρ̂CAq iff pa1, . . . , a2nq PModpσΨpρ̂CΨ
qq. In other words, Modpρ̂CAq “

ModpσΨpρ̂CΨ
qq and hence, by definition of )(R, it follows that σΨpρ̂CΨ

q )(R ρ̂CA .

5 Conclusions and Future Work

We have put forward a logico-geometric framework which allows us to investigate the notion of coher-
ence at a considerable level of generality and detail. Within this framework we have put forward i)
a comparison between the geometric representations of coherence for finitely-additive measures with
their non-additive counterparts, and ii) a comparison between non-additive measures themselves. Our
key finding is that non-additive measures which can be distinguished axiomatically may not be distin-
guishable coherence-wise. The outcomes of our geometrical comparisons are also recovered within a
logical representation of coherence provided by means of suitably defined Riesz consequence relations.

Two questions which we think are worthy of further investigation arise in the framework put forward
in this paper.

In Chapter 3 of [12], Bruno de Finetti establishes the equivalence between the Dutch Book method
discussed above and the method of (proper) scoring rules. This latter defines coherence as the minimi-
sation of expected loss under a well-defined penalty function known as the Brier Score. As de Finetti
points out, the equivalence between the two seemingly different criteria has a geometric explanation, as
they both boil down to pinning the convex hull of the n-dimensional linear space S which arises from
assigning values in r0, 1s to a set of n events Ψ. A natural question then is to extend the coherence-wise
comparison of non-additive uncertainty measures carried out in this paper to the scoring rules method.
Our preliminary investigations on this show that the answer is not straightforward. In [8], we put for-
ward a scoring rule for belief functions and show that a characterisation of coherence as minimisation
of expected loss under that rule in the context of tropical geometry. To carry out the analogue of the
present comparison a suitable scoring rule for lower probabilities must be put forward. Some earlier
results of Seidenfeld Schervish and Kadane [48] point out several difficulties in doing this. In addition,
with the exception of what we have noted in Remark 3.13, a full description of the extreme points of
LΨ is not presently known. Hence more research in this direction is needed to put forward an analysis
similar to the present one in terms of scoring rules.

The metalogical framework of Section 4 allows us to pursue an analogy which has been used casually
in this paper. The idea is to take the properties of the betting game as fixing the “intended semantics”
of an uncertainty representation. To unfold the analogy, recall that in classical logic, model inclusion is
the intended semantics of the classical consequence relation “(”. Similarly, provability is the intended
semantics of its intuitionistic counterpart, and so on. The role of intended semantics is chiefly to provide
guidelines for the material adequacy of the formal definition, to borrow Tarkis’s own expression. So
in the case of de Finetti’s Dutch Book argument, this justifies “incurring sure loss” as a blatantly
undesirable outcome for a bookmaker. Hence coherence is defined in such a way to avoid that. This
suggests the following question: are there basic properties that can be identified as crucial in moving
from one uncertainty measure to another, pretty much the way in which the family of normal modal
logics arise from adding suitable conditions to the distribution axiom K? In other words, can we use
the logical framework introduced above to put forward a modular approach enabling us to match,
whenever possible, distinct notions of coherence with distinct properties of the underlying decision
problem? We know from our main result that this is not going to match fully, and generally, the
axiomatic-wise distinct measures of uncertainty, but nothing in principle prevents the remaining cases
to be described metalogically along the lines of Theorem 4.10.
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[14] A. Di Nola, S. Lapenta, and I. Leuştean. An analysis of the logic of riesz spaces with strong unit.
Annals of Pure and Applied Logic, 169(3):216–234, 2018.

[15] A. Di Nola, G. Lenzi, and G. Vitale. Riesz–mcnaughton functions and riesz mv-algebras of
nonlinear functions. Fuzzy Sets and Systems, 311(1–14), 2017.
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