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An approach is proposed to link the charge symmetry breaking (CSB) nuclear interaction and the
low-energy constants in quantum chromodynamics (QCD) by matching the CSB effect in nuclear
matter. The resulting CSB interaction is applied to study the Okamoto-Nolen-Schiffer anomaly,
still lacking a satisfactory microscopic understanding, on the energy differences of mirror nuclei by
taking 17F-17O, 15O-15N, 41Sc-41Ca, and 39Ca-39K as typical examples. The magnitude and sign of
the QCD-based CSB interactions are found to resolve the anomaly successfully within theoretical
uncertainties.

An anomaly in the energy differences of mirror nu-
clei and isobaric analog states, not yet well understood
from a microscopic point of view, was found more than
50 years ago and is called the Okamoto-Nolen-Schiffer
(ONS) anomaly [1, 2]. It was first reported by Okamoto
for the 3He-3H system, and Nolen and Schiffer made a
systematic study from light to heavy nuclei within the
framework of the independent-particle model to find that
the theoretical values of the energy difference underesti-
mate the experimental values by 3–9%. Extra correc-
tions such as the finite proton size, the center-of-mass
effect, the Thomas-Ehrman effect, the isospin impurity,
the electromagnetic spin-orbit interaction, the proton-
neutron mass difference in the kinetic energy, the core
polarization effect, and the vacuum polarization, alto-
gether explain only about 1% of the discrepancy [3].

A possible remaining source to fill the gap is the charge
symmetry breaking (CSB) nuclear interaction [1, 4–
7]. Recently, phenomenological CSB interactions (often
taken to be a Skyrme-type contact interaction) have been
introduced to systematically calculate the isospin sym-
metry breaking effect on top of the Coulomb interaction;
they provide successful results for describing the isobaric
analog states, the mass differences of iso-doublet and iso-
triplet nuclei, and also the double-β decays [8–14]. How-
ever, both the magnitude and the sign of the parameters
in phenomenological CSB interactions have not been well
determined. Meanwhile, microscopic calculations of ob-
servables sensitive to isospin symmetry breaking terms in
the nuclear Hamiltonian have also become available [15]
although CSB effects have not been isolated in detail.

The aim of this Letter is to provide a quantum chromo-
dynamics (QCD)-based understanding of CSB by making

a quantitative link between the Skyrme-type CSB inter-
actions [10, 16] and the CSB effect due to the u-d quark
mass difference in QCD [17–19]. First, we perform a
matching of the phenomenological and QCD-based calcu-
lations on the binding-energy difference between the neu-
tron and the proton in an infinite nuclear matter to con-
strain the sign and magnitude of the phenomenological
CSB interactions. Then, the results are utilized to study
the mass difference of mirror nuclei ∆E of (N ± 1, Z) and
(N,Z ± 1) with the closed-shell core (A = N + Z = 16
and 40) based on the Hartree-Fock (HF) wave functions,
aiming to see whether the ONS anomaly can be resolved
microscopically. These examples are chosen to suitably
isolate CSB effects with respect to those originating from
charge independence breaking (CIB) and, thus, robustly
test our approach.

Let us start with the binding-energy difference between
the neutron and the proton ∆np (ρ) in infinite nuclear
matter (N = Z) with the baryon density ρ, as defined
by a difference of the momentum independent part of the
Lorentz-scalar self-energies. In the leading order of the
u-d quark mass difference and the quantum electrody-
namics (QED) effect, an approximate formula has been
obtained from the QCD sum rules (QSR) [18]:

∆np (ρ) ≃ C1G (ρ)− C2, (1a)

G (ρ) =

( ⟨q̄q⟩
⟨q̄q⟩0

)1/3

. (1b)

Here, ⟨q̄q⟩ and ⟨q̄q⟩0 are, respectively, the isospin aver-
aged in-medium and in-vacuum chiral condensate. The
coefficient C1 is proportional to the u-d quark mass
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difference δm, 1 through the isospin-breaking constant
γ ≡

〈
d̄d

〉
0
/⟨ūu⟩0 − 1 as C1 = −aγ with a positive

numerical constant a determined by the Borel QSR
method [18]. On the other hand, C2 is a constant orig-
inating both from δm and the QED effect, and is writ-
ten as C2 = C1 −∆np (0), where experimental neutron-
proton mass difference in the vacuum is denoted by
∆np (0) = mn−mp ≃ 1.29MeV. Equation (1) is valid at
low density ρ < ρ0 = 0.17 fm−3 where the dimension-3
chiral condensate gives a dominant contribution in the
operator product expansion in QSR. In the following, we
take C1 = 5.24+2.48

−1.21 MeV, where the central value is ob-
tained from γ = −7.8 × 10−3 [18] and the uncertainty
is estimated from γ = − (6–11.5) × 10−3 [21]. Since the
C2-term is density independent, it is canceled out in the
following analysis.

Equation (1) implies that ∆np (ρ) tends to decrease in
the nuclear medium associated with the partial restora-
tion of chiral symmetry G (ρ) < 1. The in-medium chiral
condensate in the leading order with the Fermi-motion
correction has a universal form [22, 23]

⟨q̄q⟩
⟨q̄q⟩0

≃ 1 + k1
ρ

ρ0
+ k2

(
ρ

ρ0

)5/3

, (2a)

k1 = −σπNρ0
f2πm

2
π

< 0, k2 = −k1
3k2F0
10m2

N

> 0, (2b)

where σπN is the π-N sigma term, mπ (mN ) is the pion
(nucleon) mass, and fπ is the pion decay constant. The
Fermi-momentum of the symmetric nuclear matter at
saturation is denoted by kF0 =

(
3π2ρ0/2

)1/3
= 268MeV.

Systematic calculations using the in-medium chiral per-
turbation theory shows that the full chiral corrections up
to next-to-next-to leading order over Eq. (2) is numeri-
cally small for ρ < ρ0 [24] (see Fig. S.1 in Supplemen-
tal Material [25]). Alternative evaluation of the higher-
order chiral corrections with the ∆-excitation [26] does
not change this conclusion (see Fig. S.2 in Supplemental
Material [25]). We note however that the values of σπN
have large uncertainty: On the basis of the present val-
ues of σπN from the scattering data and the lattice QCD
data (Nf = 2 and 2 + 1) summarized in Fig. 47 of the
FLAG Review 2021 [20], we employ a conservative esti-
mation, σπN = 45 ± 15MeV. This value and the error
happen to be similar to the old estimation in Ref. [27].
Corresponding values of k1, 2 are summarized in Table I.
We note that the recent data from the pionic atoms [28]
indicate that ⟨q̄q⟩ / ⟨q̄q⟩0 (ρ = 0.58ρ0) = 0.77±0.02 which
is consistent with the value obtained from Eqs. (2a) and
(2b).

We decompose the mass difference between mirror nu-
clei ∆E = E (Z + 1, N)−E (Z,N + 1) into the Coulomb

1 The renormalization group invariant mass difference reads δm ≡
md −mu ≃ 3.6MeV [20].

TABLE I. The parameters k1 and k2 in Eq. (2) corre-
sponding to the adopted σπN value with mπ = 135MeV,
mN = 938MeV, and fπ = 92.4MeV.

σπN (MeV) k1 k2
45± 15 −0.38± 0.13 0.0093± 0.0031
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FIG. 1. The CSB effect from the partial restoration of
chiral symmetry. Blue dashed curve (LO*): the leading-order
formula with Fermi-motion correction [Eq. (2)]. Red curve:
the NNLO result from in-medium chiral perturbation [24].
The central values of C1 and σπN are taken for these curves.

HF contribution ∆EC and the ONS anomaly δONS as

∆E = ∆EC + δONS. (3)

On the basis of Eq. (1), the CSB effect to δONS from
the partial restoration of chiral symmetry in the uniform
and symmetric (N = Z) nuclear matter δchiral can be
estimated as [18]

δchiral ≡ ∆np (0)−∆np (ρ) = C1 [1−G (ρ)] . (4)

Shown in Fig. 1 is δchiral as a function of the baryon den-
sity by taking the central values of C1 and σπN mentioned
above. Two curves correspond to the LO result with
the Fermi-motion correction (LO*) in Eq. (2) and the
next-to-next-to-leading order (NNLO) result from the in-
medium chiral perturbation [24]. The figure shows that
Eq. (2) is quite accurate at least up to ρ/ρ0 ≲ 1. It should
be noted here that δchiral is around a few hundreds keV
for ρ < ρ0, which is the right sign and magnitude to
explain the ONS anomaly in finite nuclei.

Let us make an alternative evaluation of δONS in
Eq. (3) on the basis of the CSB interaction of an en-
ergy density functional (EDF). First of all, the general
form of E (Z,N) for uniform nuclear matter up to the
second order of β = (N − Z) /A reads [14]

E

A
≃ ε0 (ρ) + ε1 (ρ)β + ε2 (ρ)β

2. (5)
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In particular, for N = Z, we find the ∆E|N=Z =
−2ε1 (ρ) where the effect of ε0 and ε2 disappears. Note
that ε1 is a genuinely CSB-type term coming only from
the CSB EDF. In this Letter, we take the Skyrme-type
CSB interaction [10] to evaluate its contribution to ε1 (ρ):

VCSB (r) =
[
s0 (1 + y0Pσ) δ (r)

+
s1
2
(1 + y1Pσ)

(
k†2δ (r) + δ (r)k2

)

+ s2 (1 + y2Pσ)k
† · δ (r)k

] τ1z + τ2z
4

, (6)

where τiz = +1 (−1) for neutrons (protons) is the z direc-
tion of isospin operator of nucleon i, k = (∇1 −∇2) /2i,
r = r1 − r2, and Pσ = (1 + σ1 · σ2) /2 is the spin-
exchange operator. In Eq. (6), s0 and y0 are the strength
parameters of the contact CSB and its spin exchange in-
teractions, while s1 (s2) and y1 (y2) are the parameters
of the momentum dependent s-wave (p-wave) CSB and
its spin exchange interactions, respectively. Equation (6)
gives contributions to ε1 (ρ) and hence δONS as [14]

δSkyrme = − s̃0
4
ρ− 1

10

(
3π2

2

)2/3

(s̃1 + 3s̃2) ρ
5/3, (7)

where we have defined the effective coupling strengths,

s̃0 ≡ s0 (1− y0) , s̃1 ≡ s1 (1− y1) , s̃2 ≡ s2 (1 + y2) .
(8)

Note that the Thomas-Fermi approximation is adopted
to evaluate the kinetic energy terms in Eq. (5).

There have been attempts to extract s̃0, 1, 2 by using
various experimental data such as the energy of isobaric
analog states (IAS) [8] and the mass differences of mirror
and isotriplet nuclei [11]. The value of s̃0 estimated from
IAS in 208Pb is s̃0 = −52.6 ± 1.4MeV fm3, while the
mass differences of mirror nuclei lead to two estimates;
(s̃0, s̃1, 2) =

(
−29.2± 1.2MeV fm3, 0

)
and (s̃0, s̃1, s̃2) =(

44± 8MeV fm3,−56± 16MeV fm5,−31.2± 3.2MeV fm5
)
.

The parameters in Ref. [11] are related to ours as
tIII0, 1, 2 = s̃0, 1, 2/4. Since the contributions of s̃0 and
s̃1, 2 tend to cancel each other in physical observables, it
is rather difficult to determine the magnitude and the
sign of each term only from the present experimental
data.

On the other hand, our approach is to constrain s̃0, 1, 2
from the low-energy constants in QCD, γ and σπN , by
matching δSkyrme (ρ) in Eq. (7) and δchiral (ρ) expanded
up to O

(
ρ5/3

)
at low densities. Then, we obtain

s̃0 = −4

3

C1σπN
f2πm

2
π

, s̃1 + 3s̃2 =
1

m2
N

C1σπN
f2πm

2
π

. (9)

The magnitudes and signs of s̃0 and s̃1 + 3s̃2 are sum-
marized in Table II, where the linear uncertainty estima-
tion is used. To evaluate the CSB effect in finite nuclei,

where s̃1 and s̃2 contribute independently, two charac-
teristic parameter sets (Cases I and II) are introduced.

To carry out precise calculation of the mass differ-
ences of mirror nuclei, we consider two types of the
Skyrme EDFs for the isospin symmetric part, SGII [32]
and SAMi [33]; they reproduce well, within 0.3%, the ex-
perimental radii of the N = Z closed shell nuclei, 16O
and 40Ca, as shown in Table III. It is important for any
adopted EDF to reproduce the charge radii since the
Coulomb energy part ∆EC is essentially determined by
the charge distribution: The change of 1% in the charge
radius of 40Ca gives rise to 20–30 keV difference in ∆EC
of mirror nuclei.

The contributions of the CSB interactions to the
mass difference between mirror nuclei of (N ± 1, Z) and
(N,Z ± 1) with the closed-shell core A = N + Z = 16
and 40 are calculated by using HF wave functions for
SGII and SAMi. As we can see from the Table IV, s̃0
provides a dominant contribution (210–320 keV), more
than one order of magnitude larger than the s̃1, 2 contri-
butions. The net results are slightly different from the
sum of s̃0 and s̃1 (2) contributions due to the nonlinear
effect in the calculation using EDFs. The final results of
Case I and those of Case II are essentially identical due
to the s̃0 dominance, so that we focus on Case I below.

Let us now turn to the comparison of the theoretical
values with our CSB interaction with the experimental
mass difference of the mirror nuclei by including ∆EC
and other extra contributions [6, 8, 34, 35] (see Supple-
mental Material [25]). The results are summarized in
Table V for SGII and Table VI for SAMi assuming Case
I. First, we note that the core density and the wave func-
tion of valence orbital are calculated with the closed shell
core configuration without the core polarization effect of
the valence nucleon. The direct and exchange contribu-
tions of the Coulomb interaction (∆ED and ∆EE with
∆EC = ∆ED +∆EE) are obtained with the exact treat-
ment of the exchange term. The sum of extra contribu-
tions including the finite-size effect of nucleon, the center-
of-mass effect on nuclear density, the Thomas-Ehrman
effect δ1NN , the isospin impurity δ2NN , the electromag-

TABLE II. Parameters of the Skyrme-type CSB interactions
constrained from the low-energy constants in QCD. To evalu-
ate the CSB effect in finite nuclei, where s̃1 and s̃2 contribute
independently, two characteristic parameter sets (Cases I and
II) are introduced.

s̃0 (MeV fm3) −15.5+8.8
−12.5

s̃1 + 3s̃2 (MeV fm5) 0.52+0.42
−0.29

Case I Case II
s̃0 (MeV fm3) −15.5+8.8

−12.5 −15.5+8.8
−12.5

s̃1 (MeV fm5) 0.52+0.42
−0.29 0.00

s̃2 (MeV fm5) 0.00 0.18+0.14
−0.10
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TABLE III. The neutron radiii, the proton ones, and the
charge ones of 16O and 40Ca. Two types of Skyrme EDFs SGII
and SAMi, are adopted for the HF calculation. Experimental
data are taken from Refs. [29–31].

16O rn rp rc
SGII 2.601 2.626 2.744
SAMi 2.625 2.648 2.765
Expt. [29] — — 2.737

40Ca rn rp rc
SGII 3.325 3.374 3.467
SAMi 3.342 3.390 3.482
Expt. [30] 3.375 3.385 3.480
Expt. [31] — — 3.478

TABLE IV. Contributions from the Skyrme CSB interactions
to δONS in Cases I and II with theoretical uncertainties. The
values are given in unit of keV. The core density and the wave
function of valence orbit are calculated by HF model with
Skyrme EDFs, SGII and SAMi. All the values are obtained
self-consistently.

Nuclei 17F-17O 15O-15N 41Sc-41Ca 39Ca-39K
Orbital 1d5/2

(
1p1/2

)−1
1f7/2

(
1d3/2

)−1

SGII

s̃0 229+192
−125 269+221

−148 292+245
−160 322+264

−176

s̃1 (s̃2 = 0) −5.0+2.8
−4.0 −5.6+3.1

−4.5 −6.6+3.7
−5.3 −6.0+3.4

−4.9

s̃2 (s̃1 = 0) −6.4+3.5
−5.2 −3.3+1.8

−2.7 −5.3+2.9
−4.3 −5.0+2.8

−4.1

Case I 224+192
−125 264+221

−148 287+245
−160 315+264

−176

Case II 225+192
−125 266+221

−148 289+245
−160 316+264

−176

SAMi

s̃0 211+174
−115 274+225

−152 278+230
−151 324+269

−180

s̃1 (s̃2 = 0) −5.2+2.9
−4.2 −5.4+3.0

−4.4 −7.3+4.0
−5.9 −8.4+4.6

−6.6

s̃2 (s̃1 = 0) −4.1+2.3
−3.3 −3.2+1.8

−2.6 −5.7+3.1
−4.6 −5.2+2.9

−4.2

Case I 206+174
−115 269+225

−152 271+230
−151 321+269

−180

Case II 207+174
−115 271+225

−152 272+230
−151 322+269

−180

netic spin-orbit interaction, the core polarization effect
of the last nucleon, the proton and neutron mass differ-
ence in the kinetic energy, and the vacuum polarization,
are listed as “Extra” in the Tables V and VI: Each con-
tribution varies from −150 keV to 150 keV, while the net
result is at most 100 keV due to a strong cancellation.
See Supplemental Material [25] for the details.

The sum of ∆ED, ∆EE and Extra denoted by “Sum
(without CSBI)” in the tables is systematically smaller
than the experimental value by 3–6%. Our CSBI contri-
butions constrained by the low-energy constants in QCD
fill the gap as it can be seen by comparing the sum ne-
glecting CSBI effects, the sum containing CSBI effects
“Sum (with CSBI)” and the experimental (“Expt.”) rows
in Tables V and VI. Shown in Fig. 2 is δONS = ∆E−∆EC
where it is evident the agreement between experiment
and the present theoretical estimates. The theoretical er-
ror bars given in Table IV are shown in the figure, while
the experimental error bars are around only 5 keV and
would not be visible in the scale of the figure.

Finally, as mentioned, there has been a recent effort in
quantifying the effects of CSB in some selected nuclear

TABLE V. The breakdown of the mass differences of mirror
nuclei ∆E into each contribution Coulomb, Extra and CSB
interaction (CSBI) for Case I with the Skyrme EDF SGII.
Numbers are given in units of MeV.

Nuclei 17F-17O 15O-15N 41Sc-41Ca 39Ca-39K
Orbital 1d5/2

(
1p1/2

)−1
1f7/2

(
1d3/2

)−1

∆ED (Coulomb) 3.596 3.272 7.133 6.717
∆EE (Coulomb) −0.203 0.026 −0.267 0.260
Extra 0.040 0.028 0.102 0.011
CSBI (Case I) 0.224 0.264 0.287 0.315
Sum (without CSBI) 3.432 3.326 6.965 6.985
Sum (with CSBI) 3.656 3.590 7.252 7.300
Expt. [36] 3.543 3.537 7.278 7.307

TABLE VI. The same as Table V, but with the Skyrme EDF
SAMi.

Nuclei 17F-17O 15O-15N 41Sc-41Ca 39Ca-39K
Orbital 1d5/2

(
1p1/2

)−1
1f7/2

(
1d3/2

)−1

∆ED (Coulomb) 3.506 3.242 7.025 6.697
∆EE (Coulomb) −0.193 0.022 −0.259 0.281
Extra 0.043 0.075 0.104 0.092
CSBI (Case I) 0.206 0.269 0.271 0.321
Sum (without CSBI) 3.356 3.339 6.870 7.070
Sum (with CSBI) 3.562 3.608 7.141 7.391
Expt. [36] 3.543 3.537 7.278 7.307

observables [8, 9, 11, 15, 37]. However, depending on the
theoretical method employed, the estimated central val-
ues of the leading order term CSB parameter (s̃0) can
differ by one order of magnitude among the different ap-
proaches and could even be of different sign (cf. Ref. [38]
and Supplemental Material [25]).

In summary, we evaluated the EDF parameters of
Skyrme-type CSB interactions, not only the contact term
(s̃0) but also the momentum-dependent terms (s̃1 (2)),
by utilizing the low-energy constants in QCD and the
density dependence of chiral condensation of q̄q pair in
the nuclear medium for the first time. The resulting
QCD-based CSB interaction is applied to resolve the
ONS anomaly: The numerical results for the mirror nu-
clei (A = 16 ± 1 and A = 40 ± 1 with the isosymmet-
ric core N = Z = A/2) with two Skyrme EDFs (SGII
and SAMi) show good agreement with experimental data
both in sign and magnitude within the theoretical error
bars. Major theoretical uncertainty of the final results
originates from the values of γ and σπN : Increasing the
accuracy of these constants from the experimental data
or from the lattice QCD simulations will be instrumental.

The QCD-based CSB interaction discussed in this Let-
ter would have strong impact on isospin symmetry break-
ing phenomena such as IAS, the super-allowed β decay
in the context of Cabibbo-Kobayashi-Maskawa unitary
matrix, and the mass predictions of mirror and isotriplet
nuclei near the proton drip line. We plan to make sys-
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FIG. 2. Comparisons of the experimental ONS anomaly
∆EExpt. − ∆EC (grey hatched bars) and the corresponding
theoretical estimates in two EDFs (SGII and SAMi). The
contribution from the QCD-based CSB interaction (CSBI) in
Case I and the extra contributions are indicated by the red
bars with error bars and the blue bars, respectively.

tematic studies of these quantities.
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In this supplemental material, the fitting procedure of the chiral-condensate as well as the nu-
merical details of various contributions to the mass differences of mirror nuclei in the Hartree-Fock
calculation [1, 2] are presented.

IN-MEDIUM CHIRAL CONDENSATE

Figure S.1 shows the next-to-next-to-leading-order (NNLO) chiral condensate in nuclear matter obtained by the
in-medium chiral perturbation theory [3];
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Here, we adopt the pion mass mπ = 135MeV, the nucleon mass mN = 938MeV, the nuclear saturation density
ρ0 = 0.17 fm−3, the pion decay constant fπ = 92.4MeV, and the axial-vector coupling constant gA = 1.26. As seen
in Fig. S.1, the F - and G-terms originating from the two-loop order are numerically small compared to the whole
⟨q̄q⟩ / ⟨q̄q⟩0 at the normal density ρ = ρ0. Hence, we neglect these contributions and consider only the leading-order
term with the Fermi motion correction (called in LO* in the main text):
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In order to check the model dependence on higher-order terms beyond LO*, we consider an alternative calculation
of the in-medium chiral condensate, as detailed in Ref. [4]. Shown in Fig. S.2 is a comparison of the LO*, analytic
NNLO result in Eq. (S.1) [3] and the numerical result of Ref. [4] with the ∆-excitation. The comparison indicates
good agreement among all three cases, especially below ρ0. This finding supports the validity of our LO* analysis in
the main text.

COULOMB CONTRIBUTIONS TO ∆E IN THE HARTREE-FOCK CALCULATION

The direct term of the Coulomb interaction ED is calculated by using the valence-proton wave function ψp
j (r) of a

j-orbital as
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FIG. S.1. The in-medium chiral condensate ⟨q̄q⟩ / ⟨q̄q⟩0 obtained by Ref. [3]. The red solid line corresponds to the full NNLO
result in Eq. (S.1), while blue long-dashed line corresponds to the result of LO* in Eq. (S.4). The purple dot-dashed line and
the yellow dot-dot-dashed line correspond to the F -term and the G-term, respectively.
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FIG. S.2. The red solid line corresponds to the full NNLO result in Eq. (S.1), while green-dashed line corresponds to the result
of Ref. [4] with the ∆-excitation. The blue long-dashed line is the result of LO* in Eq. (S.4). In all three cases, σπN = 45MeV
is taken.
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where Rj (r) is the radial part of the proton wave function and r> is the larger of either r or r′. The exact exchange
term EE is given by

EE (j) = −
∑

j′∈core

∑

k

(2j′ + 1)
−1

〈
j
1

2
k0

∣∣∣∣j′
1

2

〉∫ ∞

0

r2 dr

∫ ∞

0

r′2 dr′Rj (r)Rj′ (r
′)Rj (r

′)Rj′ (r)
rk<
rk+1
>

, (S.6)

where
〈
j 12k0

∣∣j′ 12
〉

is the Clebsch-Gordan coefficient, r< is the smaller of either r or r′, and the selection rule,
|lj + k + lj′ | = even, should be hold. Equation (S.6) is exact in the case j ̸= j′, i.e., for the particle state. We
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take into account the effect of anti-symmetrization properly for the case j = j′, which occurs in the calculations of
hole states, i.e., we should take care of a factor 1/

√
1 + δj,j′ for the two-body wave functions, and the direct and

exchange contributions are identical for k = even, and cancel for k = odd.
It is important to note that the Coulomb energy depends very much on the radial size of the wave function and,

the latter might be different depending on the approach used to obtain it. This is the reason why we compare the
r.m.s. radii of our HF calculations with experimental values in Table I of the main manuscript and obtain reasonable
agreement (agreement within 0.3%).

EXTRA CONTRIBUTIONS TO ∆E IN THE HARTREE-FOCK (HF) CALCULATION

Finite proton size

The charge distribution of the proton is parametrized by the form factor f (r) = exp
(
−r2/a2p

)
/ (ap

√
π)

3. Thus,
the charge density is evaluated as

ρc (r) =

∫
dr′ρp (r

′) f (r − r′) . (S.7)

Here, we choose ap = 0.65 fm which corresponds to the r.m.s. radius of the proton 0.8 fm, a sufficient accuracy for our
purposes.

Center-of-mass effect

The center-of-mass correction is estimated by the harmonic-oscillator model; the HF density is folded by the
Gaussian function g (r) = exp

(
r2/B2

)
/ (B

√
π)

3 where B ≡ b/
√
A =

√
ℏ/mωA. The harmonic-oscillator frequency

is given by ℏω = 45/A1/3 − 25/A2/3 MeV. The calculated charge radii obtained from the HF wave functions of the
core orbitals reproduce well the empirical ones of 16O and 40Ca in the both parameter sets SGII and SAMi. The
calculated charge radii have good agreement with the experimental values within 1% accuracy (see Table III of the
main text). This is an important constrain for realistic calculations of Coulomb energy, whose value depends on the
charge radii very much.

Thomas-Ehrman effect and isospin impurity

In the mean-field calculations, the proton wave function is different from the neutron one in the same j-orbital
because of the Coulomb interaction, i.e., the wave functions of valence protons are calculated by adding the Coulomb
interaction to the nuclear interaction adopted for the neutrons in the HF model. This procedure is treated self-
consistently in the HF calculations. The self-consistent treatment gives rise to differences between the nuclear po-
tentials for protons and neutrons, i.e., the isospin impurity in the nuclear potential. These effects give rise to the
following corrections to the binding energy,
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where ψτ
j and V τ

NN are the wave function of the j-orbital and the mean-field potential for the nucleon τ (τ = p, n).
The term δ1NN (j) is due to the difference between the neutron and the proton wave functions of the valence orbital,
and is called the Thomas-Ehrman effect. The term δ2NN (j) comes from the isospin impurity in the nuclear potential.
The correction δ1NN (j) appears in all mean-field calculations due to the Coulomb interaction for the protons, while
the δ2NN (j) term has a contribution only in the self-consistent Hartree or HF calculations.
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Electromagnetic spin-orbit interaction

The electromagnetic (EM) spin-orbit interaction is taken into account in the following form:

V EM
SO (r) =

ℏ2

4m2c2

[
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(
1

2
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)
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(
1

2
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)]
× (l · σ) 1

r

dVC (r)

dr
, (S.9)

where gp = 5.58 and gn = −3.82.

Proton-neutron mass difference in the kinetic energy

In the HF calculations, the kinetic energy is evaluated with the average mass of proton and neutron m̄ =
(mp +mn) /2. The neutron and proton mass difference, ∆m = (mn −mp), in the proton and neutron kinetic energies
in the last orbital is taken into account by the following formula with K̄HF =

(
KHF

p +KHF
n

)
/2 as

Kp −Kn ≃ KHF
p

m̄

mp
−KHF

n

m̄

mn
≃ K̄HF∆m

m̄
. (S.10)

Core polarization

The core polarization energy caused by the valence nucleon is calculated by performing constrained HF calculations
for nuclei with mass (Acore + 1). Namely, the total binding energy EHF (Acore + 1) is compared with the sum of the
binding energy EHF (Acore) and the single-particle energy of the last nucleon ε (j) calculated in the core potential;

∆Epol = EHF (Acore + 1)− [EHF (Acore) + ε (j)] . (S.11)

The correction on the energy difference between mirror nuclei is given by

δpol (j) = ∆Ep
pol −∆En

pol. (S.12)

The constrained HF calculations include a spurious self-energy contribution of the last nucleon which should be
subtracted. That is, the diagonal two-body matrix element for the last nucleon Espur (i) ≡ 1

2

〈
ii
∣∣V̄

∣∣ii
〉

for i = A + 1
is included in the EDF automatically [V̄ (r1, r2) ≡ V (r1, r2) (1− P12) is the antisymmetrized interaction with P12

the exchange operator between nucleons 1 and 2]. This is a spurious matrix element so that it is subtracted from the
polarization energy as Epol = EHF (A+ 1)− [EHF (A) + ε (A+ 1)]− Espur (i).

Vacuum polarization

The vacuum polarization effect due to the virtual emission and absorption of electron-positron pairs gives an
additional repulsive potential between protons as a lowest order correction in the fine structure constant α ≡ e2/ℏc [5].
The corresponding potential induced by the vacuum polarization can be written as [6]

VVP (r) =
2

3

αe2

π

∫
dr′

ρc (r
′)

|r − r′|K1

(
2

λe
|r − r′|

)
(S.13)

where α is the fine-structure constant, λe is the reduced Compton electron wavelength, and

K1 (x) =

∫ ∞

1

dt e−xt

(
1

t2
+

1

2t4

)√
t2 − 1. (S.14)

The vacuum polarization is estimated to result in a 0.6% increase of the Coulomb energies of both A = 17 and 41
systems.
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TABLE S.I. Extra contributions to the mass difference of mirror nuclei of (N ± 1, Z) and (N,Z ± 1) of A = N + Z = 16
and 40 closed shell core. The values are given in units of MeV. The core density and the wave function of valence orbital are
calculated by HF model with the SGII Skyrme EDF.

Nuclei 17F-17O 15O-15N 41Sc-41Ca 39Ca-39K
Orbital 1d5/2

(
1p1/2

)−1 1f7/2
(
1d3/2

)−1

Proton size effect −0.053 −0.070 −0.066 −0.082
Center-of-mass effect 0.023 0.030 0.014 0.018
Thomas-Ehrman effect 0.014 0.006 0.034 0.021
Isospin impurity 0.050 −0.136 0.134 −0.176
EM Spin-orbit interaction −0.065 0.080 −0.126 0.142
pn mass difference in kinetic energy 0.034 0.024 0.040 0.031
Core polarization 0.018 0.073 0.036 0.020
Vacuum polarization 0.019 0.021 0.036 0.037
Sum 0.040 0.028 0.102 0.011

TABLE S.II. The same as Table S.I, but for the SAMi Skyrme EDF.

Nuclei 17F-17O 15O-15N 41Sc-41Ca 39Ca-39K
Orbital 1d5/2

(
1p1/2

)−1 1f7/2
(
1d3/2

)−1

Proton size effect −0.050 −0.068 −0.063 −0.080
Center-of-mass effect 0.021 0.029 0.014 0.018
Thomas-Ehrman effect 0.014 0.007 0.031 0.021
Isospin impurity 0.047 −0.090 0.131 −0.098
EM Spin-orbit interaction −0.061 0.078 −0.121 0.140
pn mass difference in kinetic energy 0.035 0.026 0.041 0.034
Core polarization 0.018 0.073 0.036 0.020
Vacuum polarization 0.019 0.020 0.035 0.037
Sum 0.043 0.075 0.104 0.092

Comparison between different approaches

In Table S.III, we compare the strengths of a Skyrme-like CSB interaction as estimated from different phenomeno-
logical “Pheno” [5, 7–9] and microscopic “Micro” [10, 11] approaches. Within the latter, we also show the estimates
presented in the main text of the manuscript for an easy comparison. In the phenomenological approaches, a similar
Skyrme-like interaction was used; hence, we collect here the published values (accordingly rescaled) while we have
used the approach detailed in Ref. [12] to extract, in an approximate way, the equivalent Skyrme-like CSBI parameters
of the microscopic calculations of Refs. [10, 11]. As it can be clearly seen from the table, depending on the theoretical
method employed, the central values of the leading order term CSB parameter (s̃0) can differ by an order of magnitude
and could even be of different sign.

TABLE S.III. Strengths of the various Skyrme-like CSB interactions. “Pheno.” and “Micro.”, respectively, refer to results based
on phenomenological fits and on microscopic evaluation taken from Ref. [13]. See Ref. [13] and text for further details.

Class Method or Name s̃0 (MeV fm3) s̃1 (MeV fm5) s̃2 (MeV fm5) Ref.
Pheno SAMi-ISB −52.6± 1.4 — — [5]
Pheno SLy4-ISB (leading order) −22.4± 4.4 — — [7]
Pheno SkM*-ISB (leading order) −22.4± 5.6 — — [7]
Pheno SVT-ISB (leading order) −29.6± 7.6 — — [8]
Pheno SVT-ISB (next-leading order) +44± 8 −56± 16 −31.2± 3.2 [8]
Pheno Estimation by isovector density −17.6± 32.0 — — [9]
Micro ∆Etot (N2LOGO (394) & CC) −4.2± 6.5 — — [10]
Micro ∆Etot (N2LOGO (450) & CC) −5.1± 28.5 — — [10]
Micro ∆Etot (AV18-UX & GFMC) −6.413± 0.173 — — [11]
Micro QCD sum rule (Case I) −15.5+8.8

−12.5 +0.52+0.42
−0.29 — Present

Micro QCD sum rule (Case II) −15.5+8.8
−12.5 — +0.18+0.14

−0.10 Present
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