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A B S T R A C T

In this paper we study the Hamiltonian 𝑝-median problem, in which we are given an edge-weighted graph and
we are asked to determine 𝑝 vertex-disjoint cycles spanning all vertices of the graph and having minimum total
weight. We introduce two new families of valid inequalities for a formulation of the problem in the space of
edge variables. Each one of the families forbids solutions to the 2-factor relaxation of the problem that have less
than 𝑝 cycles. The inequalities in one of the families are associated with large cycles of the underlying graph
and generalize known inequalities associated with Hamiltonian cycles. The other family involves inequalities
for the case with 𝑝 = ⌊𝑛∕3⌋, associated with edge cuts and multi-cuts whose shores have specific cardinalities.
We identify inequalities from both families that define facets of the polytope associated with the problem. We
design branch-and-cut algorithms based on these families of inequalities and on inequalities associated with
2-opt moves removing sub-optimal solutions. Computational experiments on benchmark instances show that
the proposed algorithms exhibit a comparable performance with respect to existing exact methods from the
literature. Moreover the algorithms solve to optimality new instances with up to 400 vertices.
1. Introduction

Given a positive integer 𝑝 and an edge-weighted complete graph
𝐺 over 𝑛 vertices, the Hamiltonian 𝑝-median problem (abbreviated to
H𝑝MP) is to find a minimum-weight set of 𝑝 vertex-disjoint cycles (in
this paper a cycle is a 2-regular connected subgraph of 𝐺) whose vertex-
sets partition the vertices of 𝐺. The H𝑝MP has been first introduced by
Branco and Coelho in the context of location-routing problems with
real-world applications covering, among others, ‘‘school location, milk
stations and depot location for different industrial and commercial
purposes’’ (Branco & Coelho, 1990). A generic application is illustrated
by the assignment of 𝑝 guards to 𝑛 objects where it is assumed that
each guard cycles among the assigned protection objects. Similarly, the
assignment of 𝑝 maintenance/inspection vehicles to maintain/inspect
𝑛 machines can also be modelled as the H𝑝MP. Besides its applica-
tions to the above location-routing problems, other applications of
the H𝑝MP and its variations have subsequently been found in cutting
problems (Glaab, 2002) and laser multi-scanners (Glaab & Pott, 2000).

The H𝑝MP is related to several other combinatorial problems,
among which we mention those relevant for our discussion. Firstly, as
already noted in all previous studies on the problem, the H𝑝MP for 𝑝 = 1
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corresponds to the well-known Symmetric Travelling Salesman Problem
(abbreviated to STSP), showing that the H𝑝MP is NP-hard if 𝑝 is part of
the input. Similarly, when 𝑛 = 3𝑝 the H𝑝MP corresponds to the triangle
packing problem which is also known to be NP-Hard (Garey & Johnson,
1979). Instead, if 𝑝 is not fixed the H𝑝MP reduces to the 2-factor problem
(i.e., the problem of determining a minimum weight 2-regular subgraph
of a graph 𝐺) which is solvable in polynomial time (Cornuéjols &
Pulleyblank, 1980).

We point out that the H𝑝MP has appeared in two variants in the
literature. In one variant, usually studied in works with formulations
using binary edge variables, 2-cycles are not allowed. This may lead to
sub-optimal solutions with respect to the other variant, allowing 2-cycle
solutions and considered in Branco and Coelho (1990) where the H𝑝MP
was initially introduced. The variant in which 2-cycles are allowed is
usually modelled with directed models, see e.g., Bektaş, Gouveia, and
Santos (2018), although models using undirected edge variables with
values in {0, 1, 2} might also be derived, following an approach similar
to the one described in Benavent and Martínez (2013) for a multi-depot
routing problem.
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In this paper we focus on the variant without 2-cycles. We conclude
the introduction by illustrating the motivations and contributions of
this work and by providing the outline of the paper.

Motivations and contributions of the paper. For several routing and
location-routing problems, the fastest resolution methods are those
developed from formulations using a minimal set of variables, as, for
instance, in the case of the STSP, see, e.g., Gutin and Punnen (2006).

learly, the performance of such methods strongly depends on the
trength of the underlying formulations which, in many cases, involve
ets of constraints having exponential size and thus require specialized
ethods to make them useful from a practical point of view.

Besides the degree constraints for each vertex, the formulations for
he H𝑝MP can be viewed as containing two sets of inequalities, one
et preventing more than 𝑝 cycles and the other preventing less than 𝑝
ycles. Only a few works have focused on the study of formulations de-
ined in the space of the binary edge variables and on methods devised
or such formulations (see, e.g., Gollowitzer, Gouveia, Laporte, Pereira,

Wojciechowski, 2014 and Hupp & Liers, 2013). Moreover, previous
tudies have reported that the constraints forbidding more than 𝑝 cycles

have a positive impact on the performance of algorithms for the H𝑝MP,
also when other sets of variables are used, see, e.g., Bektaş et al. (2018).
Conversely, inequalities forbidding less than 𝑝 cycles and having strong
theoretical properties or substantial computational impact have been
less investigated. In practice, this phenomenon reflects computation-
ally: in literature it is observed that the H𝑝MP instances with large
values of 𝑝 are harder to solve than those with small values 𝑝. Motivated
by these observations, this study will focus on inequalities preventing
less than 𝑝 cycles, in the edge-variable space.

More precisely, we first introduce and discuss the new family of
‘‘quasi-Hamiltonian’’ cycle inequalities which generalize inequalities
known from Gollowitzer et al. (2014) and Hupp and Liers (2013) and
that are associated with ‘‘Hamiltonian’’ cycles. Next, we provide addi-
tional families of inequalities, designed for the cases with large values
of 𝑝 (which correspond to several unsolved instances from the litera-
ture) and that are related with the cut constraints used in integer-linear
programming (ILP) models for the STSP. We will provide conditions
under which some of these families induce facets of the H𝑝MP polytope,
whose extreme points correspond to the H𝑝MP solutions. The new sets
of inequalities are used to design effective branch-and-cut algorithms
based on ILP formulations involving only edge variables.

Outline. In Section 2 we review the literature on the H𝑝MP. In Sec-
tion 3 we provide an ILP formulation for the H𝑝MP and report re-
lated results from the literature. In Section 4 we introduce the quasi-
Hamiltonian cycle inequalities and also provide sufficient conditions for
a subset of the new inequalities to induce facets of the H𝑝MP polytope.
In Section 5 we discuss the special cases with 𝑝 = ⌊𝑛∕3⌋. For these cases,
we present new valid inequalities associated with cuts and multi-cuts
whose shores have specific cardinalities, identify inequalities that are
facet-inducing for the H𝑝MP polytope and provide new formulations for
the H𝑝MP in which 𝑝 = ⌊𝑛∕3⌋. In Section 6 we describe algorithms to
separate all these strengthening inequalities. In Section 7 we describe
branch-and-cut algorithms based on the previous results, we compare
them to state-of-the-art exact methods for the H𝑝MP and test them on
new larger H𝑝MP instances; finally we assess the effectiveness of the
proposed inequalities.

2. Literature review

In order to put in context our contributions, and since in this paper
we will consider an exact approach for the H𝑝MP, in this section we
review recent existing studies on the H𝑝MP referring the reader to the
references in the reviewed papers for older contributions. In particular,
we do not detail works on heuristic or approximate algorithms for the
H𝑝MP. Also, and unless otherwise stated, the works reviewed below are
474

for the variant forbidding 2-cycles.
Formulations and algorithms based on edge variables. Hupp and Liers
(2013) focus on an edge-variable formulation for the H𝑝MP and high-
light which of its inequalities cannot induce facets for the underlying
integer hull. The authors also propose a new family of valid inequalities
enforcing at least 𝑝 cycles in each solution. These inequalities, asso-
ciated with cycles, are generalized to inequalities associated to cycle
covers in Gollowitzer et al. (2014). Additionally, in this latter paper,
constraints based on vertex partitions and enforcing at most 𝑝 cycles in
a solution are presented. Finally, the resulting formulation, solely based
on edge variables, is tested in a branch-and-cut framework. The above
mentioned inequalities based on cycles and partitions will be recalled
in Section 3 of our paper.

Formulations and algorithms based on node–depot assignments. Location-
routing formulations involving variables associating one depot to each
cycle besides the usual edge variables are proposed in Gollowitzer et al.
(2014) and one branch-and-cut method based on such a formulation is
proposed; Erdoğan, Laporte, and Chía (2016) propose a branch-and-
cut algorithm that is based on a formulation enhancing the inequalities
given in the previous paper. The underlying formulation produces
lower bounds of very good quality, and the resulting branch-and-
cut algorithm outperforms the branch-and-cut algorithms presented
in Gollowitzer et al. (2014).

Set-partitioning formulations. A set-partitioning formulation was first
introduced in Branco and Coelho (1990) for the directed version of
the problem. This formulation has been subsequently adapted by Gol-
lowitzer, Pereira, and Wojciechowski (2011) for the variant in which
2-cycles are not allowed. The authors theoretically show that this
latter formulation always provides a stronger lower bound than those
produced by the formulations based on edge variables and node–depot
assignment variables; however the formulation is not computationally
tested. Marzouk, Moreno-Centeno, and Üster (2016) test a branch-
and-price algorithm based on the set-partitioning formulation given
in the earlier work of Gollowitzer et al. (2014). The branch-and-price
algorithm considers as a valid column of the model any simple cycle of
the graph, relaxing the requirement of its cost minimality (originally
present in the set-partitioning formulations of Branco & Coelho, 1990;
Gollowitzer et al., 2014). The resulting algorithm solves instances with
up to 318 vertices and outperforms the edge-variable formulation given
in Gollowitzer et al. (2014) on H𝑝MP instances with values of 𝑝 larger
than 𝑝⋆, the number of cycles in the 2-factor relaxation of the problem.
However it is outperformed by the edge-variable formulation when
𝑝 < 𝑝⋆.

A directed formulation. Bektaş et al. (2018) present a branch-and-cut
algorithm based on a directed model and study the two variants of
the problem, allowing and not allowing 2-cycles. The main idea of the
model presented in this work is that it splits the arc variables 𝑥𝑖𝑗 into
three sets depending on whether node 𝑖 is the depot of a cycle, node 𝑗 is
the depot of a cycle, or none is. This ‘‘split’’ model allows the use of a set
of multi-cut inequalities used in Bektaş, Gouveia, and Santos (2017) for
a multi-depot routing problem. The branch-and-cut algorithm based on
that model solves benchmark instances with up to 171 vertices when 2-
cycles are allowed and up to 100 vertices when 2-cycles are forbidden.
In the latter case, the algorithm proves the optimality of solutions to
benchmark instances previously unsolved and compares well with those
proposed in Erdoğan et al. (2016) and Marzouk et al. (2016).

3. Starting formulation and related known results

In this section we review an ILP formulation for the H𝑝MP intro-
duced in Hupp and Liers (2013). Most of notation and terminology used
in this paper is standard in combinatorial optimization, hence here we
just introduce definitions that are more relevant for the description of
the ILP formulation. Let 𝐺 = (𝑉 ,𝐸) be a simple undirected complete

graph with edge weights 𝑐 ∶𝐸 → R+. For every subgraph 𝑆 of 𝐺 we
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denote by 𝑉 (𝑆) and 𝐸(𝑆) the vertex- and edge-set of 𝑆 and we define
the cost of 𝑆 as 𝑐(𝑆) ∶=

∑

𝑒∈𝐸(𝑆) 𝑐𝑒; the same notation is extended to
subsets of edges and to vectors other than 𝑐 indexed by the edges of 𝐺.
A cycle of 𝐺 is a connected 2-regular subgraph of 𝐺. The cardinality or
length of a cycle 𝐶 can be equivalently defined as its vertex- or edge-
cardinality, hence we write |𝐶| to refer to either of these quantities.
A cycle of length 𝑘 is also called 𝑘-cycle. A subgraph of 𝐺 = (𝑉 ,𝐸)
is spanning if its vertex set coincides with 𝑉 . A 2-regular spanning
subgraph of 𝐺 is composed of vertex-disjoint cycles and it is called
a 2-factor of 𝐺. A spanning cycle of 𝐺 is also called a Hamiltonian
cycle. Given a partition 𝑆1, 𝑆2,… , 𝑆𝑚 of 𝑉 , we define the multi-cut
𝛿(𝑆1, 𝑆2,… , 𝑆𝑚) = {{𝑖, 𝑗} ∈ 𝐸 ∶ 𝑖 ∈ 𝑆𝑘, 𝑗 ∈ 𝑆𝓁 with 𝑘 ≠ 𝓁}. A multi-
cut involving only two sets is simply called a cut. For the sake of
conciseness we also define 𝛿(𝑖) ∶= 𝛿({𝑖}, 𝑉 ⧵ {𝑖}).

The incidence vector of a subgraph 𝑆 of 𝐺 is a point 𝐱 ∈ {0, 1}|𝐸|

such that 𝐱𝑒 = 1 if and only if 𝑒 belongs to 𝑆. From now on, given
a positive integer 𝑝, a solution to the H𝑝MP will indicate both a set
𝐶1, 𝐶2,… , 𝐶𝑝 of 𝑝 vertex-disjoint cycles of 𝐺 spanning all vertices
in 𝑉 and the corresponding incidence vector. We denote by 𝑛

𝑝 the
H𝑝MP polytope, that is, the convex hull of all solutions to the H𝑝MP.
Following Gollowitzer et al. (2014) and Hupp and Liers (2013), we
model the H𝑝MP as the following ILP involving only edge variables
defined by constraints (4):

min
∑

𝑒∈𝐸
𝑐𝑒𝑥𝑒

𝑥(𝛿(𝑣)) = 2∀𝑣 ∈ 𝑉 (1)
𝑥(𝛿(𝑆1, 𝑆2 … , 𝑆𝑝+𝑢)) ≥ 𝑢 + 1

∀𝑆1,… , 𝑆𝑝+𝑢 partition of 𝑉 , 𝑢 ∈
{

1,… ,
⌊

𝑛 − 3𝑝
3

⌋}

(2)

𝑥(𝐻) ≤ 𝑛 − 𝑝 ∀𝐻 Hamiltonian cycle of 𝐺 (3)

𝑒 ∈ {0, 1} ∀𝑒 ∈ 𝐸. (4)

The solutions to (1)–(4) are precisely the solutions to the H𝑝MP.
ndeed, it is well-known that a point 𝐱 ∈ {0, 1}|𝐸| satisfies the degree
onstraints (1) if and only if it is the incidence vector of a 2-factor.
oreover, the two families of inequalities (2) and (3) constrain the

umber of cycles in such 2-factor to be 𝑝. More precisely, the partition
nequalities (2) generalize the well-known cut constraints for the STSP
corresponding to the case 𝑝 = 𝑢 = 1) and forbid 2-factors with more
han 𝑝 cycles; instead, the Hamiltonian cycle inequalities (3) forbid those
aving less than 𝑝 cycles by imposing that at least 𝑝 edges must be
emoved from any Hamiltonian cycle.

The strength of inequalities of an ILP formulation is related to
he dimension of the corresponding faces in the integer hull of the
ormulation. In particular, the facets, that is, the proper faces of highest
imension, are typically in correspondence with strong, and computa-
ionally effective, inequalities. According to Hupp and Liers (2013), a
esult known from Glaab (2000) states that the inequalities (2) for 𝑢 = 1
re facet-defining for 𝑛

𝑝 when 𝑝 ≥ 1 and 𝑛 ≥ 3𝑝. In contrast, for generic
airs of 𝑛 and 𝑝 it is unknown whether family (3) contains inequalities
nducing facets of 𝑛

𝑝 , and it can be shown that no Hamiltonian cycle
nequality is facet-defining when 𝑛 = 3𝑝 (a similar result is given
n Hupp and Liers (2013), where it is shown that the Hamiltonian cycle
nequalities cannot induce facet when 𝑝 = 2).

A first approach to overcome this limitation of the Hamiltonian
ycle inequalities is proposed in Gollowitzer et al. (2014) and consists
n generalizing the idea underlying the Hamiltonian cycle inequalities
y considering support graphs made of 2-factors with less than 𝑝
ycles (and not only 1 cycle). This leads to the cycle cover inequalities
ssociated to any set of vertex-disjoint cycles 𝐶1, 𝐶2,… , 𝐶𝑝−𝑘 with 𝑘 ≥ 1
overing 𝑉 :

(𝐶1) + 𝑥(𝐶2) +⋯ + 𝑥(𝐶𝑝−𝑘) ≤ 𝑛 − 𝑘 − 1. (5)

Inequalities (5) have been utilized in the branch-and-cut algorithm
475

f Gollowitzer et al. (2014) using a heuristic separation (in the same f
aper it is shown that the separation problem for (5) with 𝑘 = 1 is
P-hard). In this paper we follow a different approach, namely we
onsider inequalities associated to single cycles not necessarily covering
ll vertices of 𝐺. This is the subject of next Section 4.

. Quasi-Hamiltonian cycle inequalities

In this section we introduce and study the family of quasi-Hamiltonian
ycle (QHC) inequalities, defined by:

(𝐶) ≤ |𝐶| − 𝑝 +
⌊

𝑛 − |𝐶|
3

⌋

∀𝐶 cycle of 𝐺 such that 𝑛 − 3𝑝 + 4 ≤ |𝐶| ≤ 𝑛 (6)

The family of Hamiltonian cycle inequalities (3) coincides with the sub-
family of (6) in which 𝐶 is Hamiltonian because, in that case, |𝐶| = 𝑛
hence

⌊

𝑛−|𝐶|
3

⌋

= 0. However, (6) also includes inequalities associated
with non-spanning cycles of 𝐺. Given such a cycle 𝐶, the condition
|𝐶| ≥ 𝑛− 3𝑝+ 4 imposed in (6) guarantees that at most 𝑝− 2 cycles can
be formed using the vertices not in 𝐶. This latter aspect is exploited in
he proof of the following proposition:

roposition 1. Inequalities (6) are valid for 𝑛
𝑝 for all 𝑝 ≥ 2.

roof. Let 𝐱 be a vertex of 𝑛
𝑝 and let us assume, by contradiction,

hat 𝐱 violates an inequality (6) associated with a cycle 𝐶. Then, since
is a binary vector and the coefficients in the left-hand side of (6) are

dentically 1, we have 𝐱(𝐶) ≥ |𝐶|−𝑝+
⌊

𝑛−|𝐶|
3

⌋

+1. Let 𝐾 be the subgraph
of 𝐺 induced by the edges 𝑒 ∈ 𝐸(𝐶) such that 𝐱𝑒 = 1, so that 𝐱(𝐶) =
𝐸(𝐾)|. Then by our hypothesis, we have |𝐸(𝐾)| ≥ |𝐶|−𝑝+

⌊

𝑛−|𝐶|
3

⌋

+1,

hence we get that |𝐶 ⧵𝐾| = |𝐶| − |𝐸(𝐾)| ≤ 𝑝 −
⌊

𝑛−|𝐶|
3

⌋

− 1. The
revious inequality implies that 𝐾 is obtained from 𝐶 by removing at
ost 𝑝 −

⌊

𝑛−|𝐶|
3

⌋

− 1 edges, therefore, since 𝐶 is a cycle, 𝐾 contains at

most 𝑝−
⌊

𝑛−|𝐶|
3

⌋

−1 connected components. Hence at most 𝑝−
⌊

𝑛−|𝐶|
3

⌋

−1
cycles containing 𝑉 (𝐶) can be obtained by using the edges 𝑒 ∈ 𝐸 such
that 𝐱𝑒 = 1. Let 𝑉 ′ be the set of vertices not contained in any of those
cycles. Since |𝑉 ′

| ≤ 𝑛−|𝐶|, the vertices in 𝑉 ′ can be covered by at most
⌊

𝑛−|𝐶|
3

⌋

cycles of 𝐺. Finally, the total number of cycles in the subgraph
𝐾 ′ having 𝐱 as incidence vector is the sum of the number of cycles
covering 𝑉 (𝐾) and the number of cycles covering 𝑉 ′. The number of
cycles covering 𝑉 (𝐾) is at most 𝑝 −

⌊

𝑛−|𝐶|
3

⌋

− 1; the number of cycles

covering 𝑉 ′ is at most
⌊

𝑛−|𝐶|
3

⌋

. However 𝐾 ′ must have 𝑝 cycles and this
is a contradiction. □

We now illustrate several properties of the family of QHC inequal-
ities. First, in the following proposition we provide a link between the
QHC and the cycle cover inequalities (the proof is omitted for the sake
of brevity):

Proposition 2. For every 𝑝 ≥ 3 and 𝑛 ≥ 3𝑝 the QHC inequality (6) defined
by a cycle 𝐶 such that 𝑛 − 3𝑝 + 4 ≤ |𝐶| ≤ 𝑛 − 3 implies all inequalities (5)
efined by the vertex-disjoint cycles 𝐶,𝐶1, 𝐶2,… , 𝐶ℎ covering 𝑉 , where
=
⌊

𝑛−|𝐶|
3

⌋

.

Observe that the cycle cover inequalities implied by the QHC in-
equalities, as stated in Proposition 2, are a strict subset of family (5).
Moreover, for given 𝐶 and ℎ =

⌊

𝑛−|𝐶|
3

⌋

as in Proposition 2 the QHC
inequality defined by 𝐶 only implies a weaker form of the cycle cover
inequality associated with less than ℎ + 1 cycles. For example, if 𝑝 = 4
and 𝑛−8 ≤ |𝐶| ≤ 𝑛−6 summing the QHC inequality 𝑥(𝐶) ≤ |𝐶|−𝑝+2 with
𝑥(𝐶 ′) ≤ |𝐶 ′

| (with 𝐶 ′ covering all vertices not in 𝐶) yields 𝑥(𝐶)+𝑥(𝐶 ′) ≤
− 𝑝 + 2 which is weaker than (5) associated with cycles 𝐶 and 𝐶 ′.

Another property of the QHC inequalities is that they strictly tighten
he linear programming relaxation of formulation (1)–(4). This result is

ormally stated and proved in Proposition 10 of Appendix A. In brief,
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the proof exhibits fractional points belonging to the linear relaxation
of (1)–(4) which violate QHC inequalities associated with cycles of
length 𝑛 − 3𝑝 + 4. This analysis made us to investigate the strength of
the QHC inequalities associated to cycles of such size, leading to the
following proposition, proved in Appendix B:

Proposition 3. Let 𝑝 ≥ 3 and 𝑛 ≥ 3𝑝 + 3. If 𝐶 is a cycle of odd length
|𝐶| = 𝑛− 3𝑝+ 4, then inequality (6) associated with 𝐶 is facet-defining for
𝑛
𝑝 .

We point out that the result of Proposition 3 only provides sufficient
conditions for a subfamily of QHC inequalities to be facet-defining for
𝑛
𝑝 and by no means it excludes that other QHC inequalities can have

the same property, at least for some specific values of 𝑛 and 𝑝.

5. The H𝒑MP for large values of 𝒑

We now focus on the H𝑝MP for large values of 𝑝, namely those such
that 𝑝 = ⌊𝑛∕3⌋. Several works on the H𝑝MP have reported that these are
challenging cases from a computational point of view, see, e.g., Bektaş
et al. (2018) and Erdoğan et al. (2016). In this section we provide new
sets of inequalities valid for these cases. They are based on the specific
structure of the feasible solutions to the H𝑝MP with 𝑝 = ⌊𝑛∕3⌋ and
ead to substantially better computational results than those reported
n the literature. Moreover, exploiting such inequalities and using them
ogether with particular cases of the QHC inequalities (6) we provide
lternative formulations for the instances of the H𝑝MP with 𝑝 = ⌊𝑛∕3⌋.

5.1. Restricted cut and multi-cut constraints

We begin by considering the family of restricted cut constraints
(RCCs) defined by:

𝑥(𝛿(𝑆)) ≥ 2 𝑆 ⊆ 𝑉 such that |𝑆| = 3𝑘 + 2 for some 1 ≤ 𝑘 ≤ 𝑛∕3. (7)

Their name derives from the observation that, except for the cardinality
restriction imposed on 𝑆, the inequalities in (7) coincides with the cut
constraints well-known from STSP formulations.

Proposition 4. Inequalities (7) are valid for 3𝑝
𝑝 and 3𝑝+1

𝑝 for every
≥ 2.

roof. Let 𝑆 ⊆ 𝑉 be a vertex subset verifying the cardinality condition
n (7). If 𝑛 = 3𝑝, every solution is composed uniquely of cycles
ontaining exactly 3 edges. Hence since |𝑆| is not a multiple of 3,
he restriction of any solution to the graph induced by 𝑆 cannot be
-regular. Then, by the degree constraints (1), at least two edges of the
olution belong to the cut 𝛿(𝑆), that is, 𝑥(𝛿(𝑆)) ≥ 2 is valid for 3𝑝

𝑝 . If
𝑛 = 3𝑝 + 1, a similar reasoning applies, by observing that all solutions
in this case contain exactly one cycle with 4 edges and the remaining
cycles with 3. □

The RCCs (7) prevent less than 𝑝 cycles, and, when 𝑝 ≥ 3, it is not
difficult to give examples of integer points not in 3𝑝

𝑝 or 3𝑝+1
𝑝 and

which violate one of these constraints.
We now observe that there is no advantage in relaxing the cardinal-

ity requirement on |𝑆| in (7). That is, the resulting constraints would
be either implied or invalid for 3𝑝

𝑝 and 3𝑝+1
𝑝 . To see this, consider the

following three cases. If |𝑆| ≤ 2 then 𝑥(𝛿(𝑆)) ≥ 2 is trivially implied by
the degree constraints (1). If |𝑆| = 3𝑘+ 1 for some 𝑘 ≥ 1 and 𝑛 = 3𝑝+ 1
then there exists a H𝑝MP solution 𝐱 such that 𝐱(𝑆) = 0, while if 𝑛 = 3𝑝,
then 𝑆′, the complement of 𝑆, is such that |𝑆′

| = 3𝑘′ + 2 for some
0 ≤ 𝑘′ ≤ 𝑛∕3 and 𝑥(𝛿(𝑆)) ≥ 2 is equivalent to 𝑥(𝛿(𝑆′)) ≥ 2. If |𝑆| = 3𝑘
then there exists a solution 𝐱 to the H𝑝MP with 𝑛 = 3𝑝 (resp. 𝑛 = 3𝑝+1)
uch that 𝐱(𝑆) = 0.

It is well-known that the cut constraints are facet-defining for the
TSP polytope. We were able to adapt a proof of this latter result
rovided in Conforti, Cornuéjols, and Zambelli (2014, p. 300–301) to
he RCCs (7) in the case 𝑛 = 3𝑝+1, thus obtaining the following result,
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hose proof is given in Appendix C.
roposition 5. The RCCs (7) are facet-defining for 3𝑝+1
𝑝 if |𝑆| ≥ 5 and

𝑝 ≥ 3.

A similar result for the case 𝑛 = 3𝑝 is still open, since the proof
of Proposition 5 is not easily adapted to that case (see Appendix C for
more details).

We point out that the assumption |𝑆| ≥ 5 in Proposition 5 is not
restrictive: indeed, when 𝑛 = 3𝑝 + 1, the RCCs associated to subsets
𝑆 = {𝑢, 𝑣,𝑤, 𝑡} of cardinality 4 are implied by the QHC inequalities
associated with the three cycles 𝐶1 = (𝑢, 𝑣,𝑤, 𝑡, 𝑢), 𝐶2 = (𝑢,𝑤, 𝑣, 𝑡, 𝑢)
and 𝐶3 = (𝑢, 𝑣, 𝑡, 𝑤, 𝑢) because summing those inequalities member-wise
yields 2𝑥(𝑆) ≤ 6 which is easily seen to be equivalent to 𝑥(𝛿(𝑆)) ≥ 2
through the degree constraints (1).

We conclude by observing that when 𝑛 = 3𝑝+ 2 we cannot re-adapt
the RCCs defined before since each feasible solution admits an empty
cut for every possible cardinality of the shores. For reasons of space we
omit elaborating on this statement. However, an extension of the results
in this section to the case 𝑛 = 3𝑝+2 can be done by using more general

ulti-cut inequalities, as we explain next. To state the general form of
hese inequalities we first observe that the cuts defining the RCCs (7)
an be viewed as multi-cuts involving only two subsets, namely 𝑆 (with
𝑆1| ≡ 2 (mod 3)) and its complement. The inequalities for 𝑛 = 3𝑝 + 2
eneralize the RCCs to multi-cuts between three subsets, two of which
ave a restricted cardinality.

That is, we focus on the following family of restricted 3-cut constraints
R3CCs), whose validity is proved in Appendix D:

(𝛿(𝑆1, 𝑆2, 𝑆3)) ≥ 2

∀ partition 𝑆1, 𝑆2, 𝑆3 of 𝑉 s.t. |𝑆1| ≡ 2 and |𝑆2| ≡ 2 (mod 3). (8)

Proposition 6. The R3CCs (8) are valid for 3𝑝+2
𝑝 for every 𝑝 ≥ 2.

In the experiments performed in Section 7 there is no instance with
𝑛 = 3𝑝 + 2 and thus, we have not developed separation algorithms for
the inequalities (8).

5.2. Alternative formulations for the cases 𝑝 = ⌊𝑛∕3⌋

One might ask whether the RCCs (7) (when 𝑛 = 3𝑝, 3𝑝 + 1) or the
R3CCs (8) (when 𝑛 = 3𝑝 + 2) together with the degree constraints (1)
and the integrality constraints (4) suffice to give a valid ILP model for
the H𝑝MP with 𝑝 = ⌊𝑛∕3⌋. Unfortunately the answer is negative.

We first exhibit a counter-example in the case 𝑛 = 3𝑝. Consider
an instance with 𝑝 = 3 and 𝑛 = 9, and a 2-factor of 𝐺, composed
of one 3-cycle 𝐶3 and one 6-cycle 𝐶6. Its incidence vector satisfies all
constraints (7), although it is not feasible for the considered instance
because, when 𝑛 = 3𝑝, each feasible solution is composed uniquely
of 3-cycles. The latter property also shows that the smallest cycles
yielding valid QHC inequalities have 4 edges, hence the corresponding
inequalities (6) are 𝑥(𝐶) ≤ 2 for every 4-cycle 𝐶 of 𝐺. Observe that any
integer solution satisfying the degree inequalities (1) with less than 𝑝
cycles would have at least one cycle, 𝐶 ′, with more than 3 edges. But
such a solution would violate 4-cycle inequalities (6) associated to any
4-cycle 𝐷 containing 3 consecutive edges from 𝐶 ′. This argument leads
to

Proposition 7. A valid ILP formulation for the H𝑝MP with 𝑛 = 3𝑝 is given
by the degree constraints (1), the QHC inequalities (6) for 4-cycles and the
integrality constraints (4).

We consider, now, the case 𝑛 = 3𝑝 + 1. The following counter-
example shows that the RCCs (7) are not sufficient to describe the
H𝑝MP solutions: consider an instance with 𝑝 = 3 and 𝑛 = 10; then, the
incidence vector of a 2-factor of 𝐺 made of a 4-cycle 𝐶4 and a 6-cycle
𝐶6, satisfies constraints (7), although it is not feasible for the considered
instance. As noted in Section 5.1, when 𝑛 = 3𝑝+1, each feasible solution

is composed of cycles with 3 edges and a single cycle with 4 edges.
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Moreover, the smallest cycles associated with QHC inequalities (6) have
5 edges, hence the corresponding inequalities are 𝑥(𝐶) ≤ 3 for every
5-cycle 𝐶 of 𝐺. Consider an instance with 𝑛 = 16 and 𝑝 = 5 and

2-factor composed of 4 vertex-disjoint cycles, each with 4 vertices.
ts incidence vector clearly satisfies the degree constraints (1) and the
HC inequalities associated with the smallest cycles, but it is infeasible

or the H𝑝MP since it contains less than 5 cycles (and more than one
ycle with 4 vertices). Thus, the analogue of Proposition 7 for the case
f 𝑛 = 3𝑝 + 1 is not valid. However, as the next proposition shows,
e obtain a valid formulation if we add the RCCs (7) of the previous
ection 5.1.

roposition 8. A valid ILP formulation for the H𝑝MP with 𝑛 = 3𝑝+ 1 is
iven by the degree constraints (1), the QHC inequalities (6) associated to
-cycles, the RCCs (7) and the integrality constraints (4).

roof. We only need to show that if 𝐱 is integer and satisfies (1), (6)
nd (7) then it is the incidence vector of a solution to the H𝑝MP when
= 3𝑝 + 1. From (1), (6) and the integrality constraints, 𝐱 is the

ncidence vector of a 2-factor of 𝐺 composed of 3- and 4-cycles. Since
= 3𝑝+1 such subgraph cannot be composed only of 3-cycles and thus,

t must contain at least one 4-cycle. Point 𝐱 is the incidence vector of a
olution to the problem with 𝑛 = 3𝑝+1 if and only if there is exactly one
-cycle in such subgraph. Assume that there are two distinct 4-cycles 𝐶1

nd 𝐶2. Then, by defining 𝑆 = 𝑉 (𝐶1) ∪ 𝑉 (𝐶2), the RCC (7) 𝑥(𝛿(𝑆)) ≥ 2
s valid for 3𝑝+1

𝑝 (because |𝑆| ≠ 3𝑘, 3𝑘+ 1 for all 1 ≤ 𝑘 ≤ 𝑝) and would
e violated by 𝐱, leading to a contradiction. □

Finally, for the case 𝑛 = 3𝑝 + 2 we give a counter-example showing
hat the R3CCs are not sufficient for a valid formulation of the problem:
onsider an instance with 𝑝 = 4 and 𝑛 = 14; then the infeasible 2-factor
f 𝐺 given by two 4-cycles and one 6-cycle satisfies all inequalities (8).
ombining the R3CCs (8) with the QHC inequalities (6) associated
o 6-cycles, we get the following result for 𝑛 = 3𝑝 + 2, analogous to
roposition 8. Its proof is given in Appendix D.

roposition 9. A valid ILP formulation for the H𝑝MP with 𝑛 = 3𝑝+ 2 is
iven by the degree constraints (1), the QHC inequalities (6) associated to
-cycles, the R3CCs (8) and the integrality constraints (4).

. Separation algorithms

The families of QHC inequalities (6) and RCCs (7) presented in
he previous sections have exponential size, hence their inclusion in
LP formulations for the H𝑝MP requires separation. In the following
e describe the separation algorithms for the inequalities used in the

omputational experiments of Section 7. They always receive in input
(generally non-integer) point 𝑥⋆ ∈ [0, 1]|𝐸| satisfying the degree

onstraints (1). Associated with 𝑥⋆ is its support graph 𝐺𝑥⋆ = (𝑉 ,𝐸𝑥⋆ )
here 𝐸𝑥⋆ = {𝑒 ∈ 𝐸 ∶ 𝑥⋆𝑒 > 0}. Unless differently stated, paths in

his section have no repeated vertices, that is, we assume a path to be
btained from a cycle by removing a single edge; the length of paths is
efined as the number of their edges.

eparation of the partition inequalities (2). The generic separation prob-
em for inequalities (2) is NP-hard, as shown in Gollowitzer et al.
2014) through a reduction from the minimum 𝑘-cut problem. Hence
or the separation of inequalities (2) we resort to the same algorithm
evised in Gollowitzer et al. (2014). Given 𝑥⋆ ∈ [0, 1]|𝐸|, the algorithm
onstructs the support graph 𝐺𝑥⋆ . Next it computes the connected
omponents 𝑆1, 𝑆2,… , 𝑆𝓁 of 𝐺𝑥⋆ . If 𝓁 ≥ 𝑝 + 1 then the sets 𝑆1,
2,… , 𝑆𝓁 define a violated inequality (2). The construction of graph
𝑥⋆ takes 𝑂(|𝑉 |

2)-time, while computing the connected components
akes 𝑂(|𝑉 | + |𝐸𝑥⋆ |)-time by depth-first search. We point out that for
eneric fractional points 𝑥⋆ ∈ [0, 1]|𝐸| the above algorithm is heuristic,

⋆ |𝐸|
477

lthough it is exact when 𝑥 ∈ {0, 1} .
eparation of the QHC inequalities (6). We are not aware of the complex-
ty of separating generic QHC inequalities (6), although we conjecture it
s NP-hard. We describe a separation algorithm for the inequalities (6),
hat is, inequalities of the form 𝑥(𝐶) ≤ |𝐶| − 𝑝 +

⌊

𝑛−|𝐶|
3

⌋

where 𝐶 is
a cycle of length at least 𝑛 − 3𝑝 + 4. We consider separately the cases
𝑥⋆ ∈ {0, 1}|𝐸| and 𝑥⋆ ∉ {0, 1}|𝐸|.

Separation for 𝑥⋆ ∈ {0, 1}|𝐸|. In this case, the integrality of 𝑥⋆

implies that it is the incidence vector of a 2-factor of 𝐺 composed
by 𝓁 cycles 𝐶1, 𝐶2,… , 𝐶𝓁 . If 𝓁 ≥ 𝑝 the algorithm terminates since
no QHC inequality is violated in this case (it is easy to prove that a
QHC inequality is always satisfied by a 2-factor with at least 𝑝 cycles).
Otherwise, we have 𝓁 < 𝑝, and we first check if each of these 𝓁
cycles alone leads to a violated QHC inequality. If that is the case,
the corresponding violated QHC inequalities are added to the pool of
violated cuts and the separation stops; otherwise we merge subsets of
the 𝓁 cycles into a single cycle until a violated QHC inequality is found.
The existence of such an inequality can be shown theoretically from
the hypothesis 𝓁 < 𝑝. Therefore this separation algorithm is exact.
Furthermore, recall that the family of QHC inequalities (6) contains
the Hamiltonian cycle inequalities (3). Hence, the correctness of the
above procedure, together with the correctness of the separation of the
partition inequalities (2) on integer points, guarantees that branch-and-
cut algorithms separating (2) and (6) always yield an optimal solution
to the H𝑝MP. The details on cycle merging are given in Appendix E.1.

Separation for 𝑥⋆ ∉ {0, 1}|𝐸|. We start by determining the con-
nected components 𝐾1, 𝐾2,… , 𝐾𝓁 of the support graph 𝐺𝑥⋆ . If 𝓁 ≥ 𝑝,
the procedure stops, reporting no violated cut. Otherwise, we look for
a minimal subset of components whose total vertex number is at least
𝑛 − 3𝑝 + 4. Subsequently, a STSP is heuristically solved on the edge-

eighted subgraph of 𝐺 induced by those vertices and having weight
1 − 𝑥⋆𝑒 on edge 𝑒 ∈ 𝐸. Next, we check whether the resulting cycle 𝐶
defines a violated QHC inequality. Additionally, if |𝐶| > 𝑛 − 3𝑝 + 4,
we search for other violated inequalities by modifying the cycle 𝐶
according to 2 rules: (1) we sequentially remove vertices guaranteeing
that the resulting cycles still define a valid QHC inequality which, if
violated, is added to the pool of violated inequalities; (2) as soon as a
violated QHC inequality cannot be produced by the process in step (1)
we construct cycles of length 𝑛 − 3𝑝 + 4 from 𝐶 by considering all its
sub-paths of consecutive 𝑛−3𝑝+4 vertices and linking their endpoints.

he rationale behind rule (2) is that, by Proposition 3, the cycles of
ength 𝑛−3𝑝+4 are likely to induce strong QHC inequalities. Finally, the
bove procedure is repeated for larger subsets of vertices obtained by
erging additional connected components from the set 𝐾1, 𝐾2,… , 𝐾𝓁 .
ll details are given in Appendix E.2.

eparation of RCCs (7). We separate the RCCs (7) for H𝑝MP instances
ith 𝑛 = 3𝑝, 3𝑝+1 as follows. When 𝑥⋆ ∈ {0, 1}|𝐸| we use the following
xact separation algorithm which runs in 𝑂(𝑛2) time. First we retrieve

the cycles 𝐶1, 𝐶2,… , 𝐶𝓁 composing the graph 𝐺𝑥⋆ . We collect all cycles
𝐶 such that |𝐶| ≡ 1 (mod 3) in a set 𝐾1 and those such that |𝐶| ≡ 2
(mod 3) in a set 𝐾2. In the case 𝑛 = 3𝑝, if |𝐾1| = |𝐾2| = 0 no RCC is
violated by 𝑥⋆. Otherwise all RCCs 𝑥(𝛿(𝑉 (𝐶))) ≥ 2 for 𝐶 ∈ 𝐾1 ∪𝐾2 and
all RCCs 𝑥(𝛿(𝑉 (𝐶1 ∪ 𝐶2))) ≥ 2 for 𝐶1, 𝐶2 ∈ 𝐾1 are added to the pool of
iolated cuts. In the case 𝑛 = 3𝑝+1, no RCC is violated by 𝑥⋆ if |𝐾2| = 0
nd |𝐾1| = 1. Otherwise, all RCCs 𝛿(𝑉 (𝐶)) ≥ 2 for 𝐶 ∈ 𝐾2 and all RCCs
(𝑉 (𝐶1 ∪𝐶2)) ≥ 2 for 𝐶1, 𝐶2 ∈ 𝐾1 are added to the pool of violated cuts.

When 𝑥⋆ ∉ {0, 1}|𝐸|, we assign the weight 𝑥⋆𝑒 to edge 𝑒 of the
upport graph 𝐺𝑥⋆ . Then a minimum-weight cut 𝛿(𝑆) in the resulting
dge-weighted graph with 𝑆 satisfying the cardinality condition of
roposition 4 can be found in polynomial-time, using techniques from
ubmodular minimization under congruency constraints, see Nägele,
udakov, and Zenklusen (2019) and the discussion in Nägele (2021,
ect. 3.1.2). However, in our implementation we resort to the following
impler heuristic algorithm that works well in practice: we run the
xact separation algorithm for the STSP cut constraints implemented
n CONCORDE (Applegate et al., 2024) and only add those satisfying
he cardinality condition of Proposition 4.
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Separation of QHC inequalities (6) for the cases 𝑛 = 3𝑝 and 𝑛 = 3𝑝 + 1.
e describe the approaches used in our branch-and-cut algorithms to

eparate the QHC inequalities (6) for 4-cycles and 5-cycles, respectively
alid for the cases 𝑛 = 3𝑝 and 𝑛 = 3𝑝+1. We first explain the separation
lgorithms for 𝑛 = 3𝑝. Given 𝑥⋆ ∈ {0, 1}|𝐸|, that is, when 𝑥⋆ is integer,
e determine all cycles composing 𝐺𝑥⋆ . Let 𝐶 = (𝑣0, 𝑣1,… , 𝑣𝑘, 𝑣0) be
ne such cycle having length at least 4 and for every 𝑖 = 0, 1,… , 𝑘 con-
ider the cycles 𝐶𝑖 = (𝑣𝑖, 𝑣𝑖+1, 𝑣𝑖+2, 𝑣𝑖+3, 𝑣𝑖), with indices taken modulo
+ 1: each cycle 𝐶𝑖 yields a violated QHC inequality (6) associated to
4-cycle. All these inequalities are added to the pool of violated cuts.
hen 𝑥⋆ ∉ {0, 1}|𝐸|, that is, when 𝑥⋆ is non-integer, we observe that a

-cycle 𝐶4 yielding a violated QHC inequality necessarily contains two
onsecutive edges 𝑒 and 𝑓 of 𝐺𝑥⋆ such that 𝑥⋆𝑒 + 𝑥⋆𝑓 > 1 (as otherwise,
umming twice all edges of 𝐶4 gives 2𝑥⋆(𝐶4) ≤ 4 which is the QHC

associated to 𝐶4 and hence the latter cannot be violated). Therefore
for every vertex 𝑣 ∈ 𝑉 we first search for the two distinct vertices
𝑢,𝑤 ∈ 𝑉 ⧵ {𝑣} maximizing 𝑥⋆{𝑢,𝑣} + 𝑥⋆{𝑣,𝑤}. If the latter value is greater
than 1, vertex 𝑣 potentially belongs to a 4-cycle yielding a violated QHC
inequality. In this case, for every vertex 𝑡 ∈ 𝑉 ⧵ {𝑢, 𝑣,𝑤} we define the
two 3-paths 𝑃 1

𝑣,𝑡 = (𝑡, 𝑢, 𝑣, 𝑤) and 𝑃 2
𝑣,𝑡 = (𝑢, 𝑣,𝑤, 𝑡). If

𝑥⋆(𝑃 1
𝑣,𝑡) > 2 or 𝑥⋆(𝑃 2

𝑣,𝑡) > 2 (9)

we add to the pool of violated cuts the QHC inequality 𝑥(𝐶𝑣,𝑡) ≤ 2 where
𝐶𝑣,𝑡 = (𝑡, 𝑢, 𝑣, 𝑤, 𝑡).

The case 𝑛 = 3𝑝+1 is treated by considering 5-cycles and 4-paths in
place of the 4-cycles and 3-paths of the above procedure, and by setting
to 3 the right-hand side of condition (9). We point out that, while the
separation algorithm described above is exact for 𝑥⋆ ∈ {0, 1}|𝐸|, it is
heuristic for 𝑥⋆ ∉ {0, 1}|𝐸|. Indeed, when 𝑛 = 3𝑝 (resp. 𝑛 = 3𝑝+1) there
could be violated QHC inequalities associated with 4-cycles (resp. 5-
cycles) even if condition (9) is not satisfied (e.g., taking 𝑥⋆ of value
0.6 identically on all edges of such cycles). Although this procedure
is heuristic, the computational results presented later on indicate that
it works well in practice. Furthermore, in preliminary tests, we have
considered the inclusion of all violated 4- and 5-cycle inequalities,
but that strategy slightly worsened the computational times, hence we
maintained the approach described above.

7. Experimental study

The formulations and the inequalities presented in the previous
sections are tested in a branch-and-cut framework. We consider three
branch-and-cut algorithms:

• algorithm  based on formulation (1)–(4), the QHC inequali-
ties (6) and the RCCs (7) (when 𝑛 = 3𝑝, 3𝑝 + 1);

• algorithm 3𝑝 based on the formulation given in Proposition 7
and valid for the H𝑝MP instances with 𝑛 = 3𝑝. It includes the
degree constraints (1), the integrality constraints (4) and the QHC
inequalities (6) for 4-cycles;

• algorithm 3𝑝+1 based on the formulation given in Proposition 8
and valid for the H𝑝MP instances with 𝑛 = 3𝑝 + 1. It includes
the degree constraints (1), the integrality constraints (4) the QHC
inequalities (6) for 5-cycles and the RCCs (7).

Except for the degree constraints (1), all inequalities are added dynam-
ically through the separation routines described in Section 6 (when
𝑛 = 3𝑝, 3𝑝+1 the QHC inequalities for 4- and 5-cycles are separated with
the specialized routine). Moreover, the algorithms are further enhanced
by a set of so-called ‘‘restricted 2-opt inequalities’’ described later.

Each branch-and-cut algorithm above is first compared with those
of Bektaş et al. (2018) and Erdoğan et al. (2016) using the benchmark
instances used in the literature and subsequently tested on new harder
instances introduced in this paper. Finally, we analyse the impact of
the proposed inequalities on the performance of the algorithms.

Before presenting the results, we describe the instances used in
tests, the restricted 2-opt inequalities (together with the strategy for
their separation), a primal heuristic used in the algorithms and some
478

additional implementation details.
Instances. We test the algorithms on a total of 230 H𝑝MP instances
whose cost matrices are taken from benchmark STSP instances. For
every STSP instance on 𝑛 vertices, we consider 5 H𝑝MP instances with
𝑝 =

⌊

𝑛
10

⌋

,
⌊

𝑛
7

⌋

,
⌊

𝑛
5

⌋

,
⌊

𝑛
4

⌋

,
⌊

𝑛
3

⌋

. We consider three sets of instances (the
number of vertices in an instance corresponds to the numerical value
at the end of the instance name):

• literature H𝑝MP instances: these are obtained from 22 TSPLIB
instances (Reinelt, 1991, 1995) with 21 ≤ 𝑛 ≤ 100. They are used
in Bektaş et al. (2018) and Erdoğan et al. (2016) to evaluate the
corresponding algorithms, with which the algorithms proposed in
this paper are compared;

• new TSPLIB-based instances: these are obtained from 9 TSPLIB
instances having 42 ≤ 𝑛 ≤ 400, namely dantzig42, pr124,
u159, brg180, rat195, d198, pr226, gil262 and rd400;

• tetrahedral H𝑝MP instances: these are obtained from 15 ‘‘tetrahe-
dron’’ instances with 67 ≤ 𝑛 ≤ 199, namely Tnm58, Tnm67,
Tnm79, Tnm88, Tnm97, Tnm109, Tnm118, Tnm127, Tnm139,
Tnm148, Tnm157, Tnm169, Tnm178, Tnm187 and Tnm199.
The tetrahedron instances are known to be very difficult Eu-
clidean TSP instances recently introduced in Hougardy and Zhong
(2021).

estricted 2-opt inequalities. In order to speed up the execution of the
roposed branch-and-cut algorithms we use a specialized version of the
o-called local search inequalities, first presented in Lancia, Rinaldi, and
erafini (2015) in the context of the STSP. For the sake of brevity we
ocus on the version used in this paper, and we refer the reader to Lan-
ia et al. (2015) for the general definition of local search inequalities.
ore precisely, we consider the following restricted 2-opt inequalities:

𝑖𝑗+𝑥𝑗𝑘+𝑥𝑘𝓁 ≤ 2 ∀𝑖, 𝑗, 𝑘,𝓁 ∈ 𝑉 s.t. 𝑐𝑖𝑗+𝑐𝑗𝑘+𝑐𝑘𝓁 > 𝑐𝑖𝑘+𝑐𝑗𝑘+𝑐𝑗𝓁 (10)

H𝑝MP solution violating an inequality of type (10) is necessarily sub-
ptimal, because it contains a cycle where vertices 𝑖, 𝑗, 𝑘 and 𝓁 appear
onsecutively in this order. Due to the condition on the edge-costs,
uch a solution can be strictly improved by applying a 2-opt exchange
n those vertices. Therefore, although inequalities (10) cut off H𝑝MP
olutions, they can be safely employed in algorithms solving the H𝑝MP
o optimality. Since the number of inequalities (10) is of the order of
(𝑛4), we resort to separation to include them during the execution of

he algorithms. Preliminary experiments highlighted that enumerating
ll vertices 𝑖, 𝑗, 𝑘,𝓁 indexing (10) is excessively time consuming. There-
ore we use the following heuristic procedure. Consider a threshold
∈ ]0, 1[, a solution 𝑥⋆ and all connected components 𝐾1, 𝐾2,… , 𝐾𝑚 of

he graph 𝐺𝑥⋆ (𝜏) obtained from 𝐺𝑥⋆ by removing all edges 𝑒 such that
⋆
𝑒 < 𝜏. Next, iteratively for ℎ = 1, 2,… , 𝑚, we run the enumerative
lgorithm only on the vertices of 𝐾ℎ. For each possible configuration
f four vertices 𝑖, 𝑗, 𝑘,𝓁 ∈ 𝐾ℎ the corresponding inequality (10) is
hecked for violation and, in the affirmative case, it is subsequently
dded to the model. In the computational results presented below we
hoose 𝜏 = 0.7 and we separate (10) only on non-integer points. The
hosen value for 𝜏 reduces the density of the graph where paths of
vertices are detected. Moreover it guarantees that every path of 4

ertices of 𝐺𝑥⋆ (0.7) verifying the edge-cost condition in (10) violates
he corresponding inequality, because its right-hand side is equal to 2.

rimal heuristic. We adapt a primal heuristic presented in Gollowitzer
t al. (2014). Namely, given a fractional solution 𝑥⋆ we assign to each
dge 𝑒 of graph 𝐺𝑥⋆ the weight 𝑥⋆𝑒 . Then we first compute a minimum-
eight spanning tree, next we remove the 𝑝−1 edges of largest weight

hus obtaining 𝑝 connected components; finally a STSP heuristic is run
n each component to determine 𝑝 cycles. These latter are refined
y executing the 2-opt exchanges on the sequences of 4 consecutive
ertices, as described in the previous paragraph. The whole process
erminates in polynomial time. A detailed description of the heuristic
s provided in Appendix E.3.
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Other implementation details. The parts of the branch-and-cut algo-
rithms that do not directly include CONCORDE are implemented in
C++. The algorithms on graphs have been implemented using the COIN-
OR library LEMON (Dezső, Jüttner, & Kovács, 2011). We compiled the
code with g++ 7.4.0 on a Ubuntu 18.04 machine, equipped with a
Intel(R) Core(TM) i7-6700K CPU (4.00 GHz) and 32 gigabyte of RAM.
The search trees generated by the branch-and-cut algorithms are man-
aged via IBM CPLEX 12.6.3 (IBM, 2016). The primal heuristic described
above is run at every node of the enumeration tree. The restricted 2-
opt inequalities (10) are added globally, that is, once separated they
are present in the LPs of all branch-and-cut nodes; all other families of
inequalities are added locally, that is, they are present only in sub-trees
rooted at the branch-and-cut node where they have been separated.

We also use the standard setting of CPLEX for heuristic procedures
and for the addition of general-purpose cuts. In all tests we use the
‘‘strong branching’’ strategy of CPLEX (CPLEX parameter VarSel set
to 3) and the ‘‘best bound’’ tradeoff of CPLEX for the MIP emphasis
(CPLEX parameter MIPEmphasis set to 3). When not differently
specified, all other CPLEX parameters are set to their default values.
In particular, due to the presence of CPLEX callbacks for the imple-
mentation of cut separation, the branch-and-cut algorithms used in the
experiments are run in sequential mode on a single thread. Moreover,
when not differently stated, CPLEX is allowed to use its generic-purpose
cuts, in their default setting. The same holds for the branch-and-cut
algorithms of Bektaş et al. (2018) and Erdoğan et al. (2016) (personal
communication). In CPLEX it is not possible to obtain the complete
set of generic-purpose cuts that have been separated in an experiment,
hence we provide the full list of available cuts in CPLEX in Appendix F.

We point out that we did not run the literature algorithms we
compare with, hence their performance is taken from the tables of
results given in the respective papers. In particular, the algorithm
of Bektaş et al. (2018) was run with a CPU time limit of 3 h (while the
algorithms introduced in this paper and the algorithm of Erdoğan et al.
(2016) have a CPU time limit of 1 h). More importantly, the results
of Bektaş et al. (2018) and Erdoğan et al. (2016) were obtained on
machines slower than the one used in our experiments, namely on a
machine equipped with an Intel Core i7-4790 3.6 GHz processor and 8
gigabyte of RAM in the former case, and on a Lenovo T440p laptop with
an i7 2.50 GHz CPU and 8 gigabyte RAM in the latter case. We used the
website https://www.cpubenchmark.net/ to evaluate the three CPUs.
The comparison reported that the single thread rating of the CPU of
the machine used to run algorithms  , 3𝑝 and 3𝑝+1 is 11% higher
than that of Bektaş et al. (2018) and 25% higher than that of Erdoğan
et al. (2016).1

Online repository. In this paper we present only the main experimental
results and, in several cases, we focus on qualitative analyses. The
tables with all detailed results are provided for reproducibility purposes
at the online repository (Barbato & Gouveia, 2023).

7.1. Results of algorithm  : Comparison with the literature

We compare algorithm  with the two best branch-and-cut algo-
rithms in the literature, namely those of Bektaş et al. (2018) and Er-
doğan et al. (2016). We do not consider in this comparison the branch-
and-price algorithm of Marzouk et al. (2016) whose performance is
comparable to the branch-and-cut algorithm of Bektaş et al. (2018)
(see the discussion therein). When comparing  with the literature
algorithms, we consider both the quality of lower bounds obtained
from  and the performance of  in reaching integer optimality.

1 The detailed comparison is available at the URL: https://www.cpubench
ark.net/compare/2226vs2565vs2219/Intel-i7-4790-vs-Intel-i7-6700K-vs-Inte

-i7-4710MQ.
479

c

Quality of lower bounds. We consider two lower-bounding approaches
related to algorithm  : its LP bound, denoted ( ), which is the linear
relaxation value of formulation (1)–(4), and its root node bound, denoted
( ), which additionally benefits from CPLEX generic cuts and other
features related with the integrality of variables (( ) is obtained
by stopping CPLEX at the root node, that is, setting its parameter
NodeLim to 1). In both approaches the inequalities are separated using
the routines described in Section 6. Since most of such separation
routines are heuristic, the results only approximate the real value of the
LP bound and root node bound associated with the formulation and the
valid inequalities underlying  .

The instance-wise results used in the lower-bound analysis are
provided at the online repository (Barbato & Gouveia, 2023) while here
we perform a qualitative analysis. The scatter plots of Fig. 1 compare
( ) and ( ) with the lower bounds obtained from the formulations
of Bektaş et al. (2018) and Erdoğan et al. (2016). The comparison
metric is the relative optimality gap (in percentage) computed as
100(𝑈𝐵⋆ − 𝐿𝐵)∕𝑈𝐵⋆, where 𝑈𝐵⋆ is the best upper bound known
for that instance. In each scatter plot the plus signs and the diamond
markers correspond to the 20 literature H𝑝MP instances with 58 ≤
𝑛 ≤ 76 while the circle markers correspond to the 35 literature H𝑝MP
nstances with 𝑛 = 99,100. The 𝑥-axis of the scatter plots on the left
olumn (resp. right column) reports the relative optimality gap of the
ower bounds obtained in Bektaş et al. (2018) (resp. Erdoğan et al.,
016); the 𝑦-axis of the scatter plots on the upper row (resp. lower
ow) reports the relative optimality gap of ( ) (resp. ( )). The points
elow the dotted blue diagonal (coinciding with the orthant bisector)
orrespond to instances for which  produces better lower bounds than
he literature methods.

From Fig. 1 we immediately see that ( ) is dominated by the
ower bounds obtained in Bektaş et al. (2018) and Erdoğan et al.
2016). Conversely, ( ) yields better lower bounds than the algorithm
f Bektaş et al. (2018) for most of instances and is comparable with the
ower-bounding approach of Erdoğan et al. (2016) (although this latter
lightly dominates ( )). Also, we note that larger relative optimality
aps of all four lower-bounding procedures mostly coincide with the
arger instances, although this outcome is more evident for ( ) and

the lower bounds of Bektaş et al. (2018). The main conclusion of the
above qualitative comparison is the following:

Experimental Observation 1. The generic cuts generated by CPLEX are
crucial to obtain strong lower bounds from formulation  . In particular,
( ) yields lower bounds comparable with those of Erdoğan et al. (2016)
(which are the best ones overall) and less sensitive to the instance size than
those of Bektaş et al. (2018).

We have also made experiments using single families of CPLEX
cuts alone in order to see their effect on the lower bounds. The
detailed results are reported in Appendix F. In general, there are only
two families of CPLEX cuts yielding better lower bounds than ( ),
namely the ‘‘cover’’ cuts and the ‘‘mixed-integer rounding’’ (MIR) cuts
of CPLEX. Using the cover cuts alone produces better lower bounds
than using the MIR cuts alone. In almost all cases, however, both these
families produce worse lower bounds than those of ( ). Therefore we
conclude that the good results of ( ) are obtained from non-trivial
combinations of generic cuts of CPLEX.

Branch-and-cut performance. We now compare algorithm  and the
algorithms of Bektaş et al. (2018) and Erdoğan et al. (2016) in terms
of exact resolution of H𝑝MP instances. For the comparison we use the
set of 55 literature H𝑝MP instances already considered in Bektaş et al.
(2018) and Erdoğan et al. (2016), having 58 ≤ 𝑛 ≤ 100.

The results are reported in Table 1. The first three columns of the
able contain the name of the underlying TSPLIB instances, the number
⋆ of cycles composing their 2-factor relaxation and the number 𝑝 of
ycles required in the corresponding H𝑝MP instances. In the subsequent

olumns, for each algorithm we report the optimal value and the time
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Fig. 1. Scatter plots comparing ( ) and ( ) with the lower bounds of the H𝑝MP formulations given in Bektaş et al. (2018) and Erdoğan et al. (2016). In each scatter plot, the
points represent instances whose 𝑥- and 𝑦-values correspond to the relative optimality gaps of the lower bounds specified by the axes labels. Points below the diagonal (dotted
blue line) indicate instances where  produces better lower bounds. The three different markers indicate instance size ranges (plus signs for 𝑛 = 58, diamonds for 𝑛 = 70, 76 and
circles for 𝑛 = 99,100).
needed to reach optimality (in CPU seconds) or, if the instance is
unsolved within the time limit, the pair [𝑈𝐵,𝐿𝐵] of best upper and
lower bound along with the relative optimality gap upon termination.
We recall that the relative optimality gap is expressed in percentage
and computed as 100(𝑈𝐵−𝐿𝐵)∕𝑈𝐵. Since the considered formulations
fail to solve to optimality several instances, the last line of Table 1
additionally reports the number of instances solved by each algorithm.

We begin with an outcome which is common to all three considered
algorithms:

Experimental Observation 2. The literature H𝑝MP instances are more
difficult for all considered algorithms when 𝑝 > 𝑝⋆ and especially if 𝑝 =
⌊𝑛∕3⌋.

We point out that results similar to those of the Experimental Ob-
ervation 2 were observed already in Bektaş et al. (2018) and Erdoğan
t al. (2016).

Next, we analyse the relative performance of the algorithms. To
ccount for the difference between the machine used in this paper and
hose used in Bektaş et al. (2018) and Erdoğan et al. (2016), for each
nstance we highlight in boldface the CPU time of algorithm  if it is
t least 35% smaller than the CPU times of both algorithms of Bektaş
t al. (2018) and Erdoğan et al. (2016) (time limits are treated as
nfinite); similarly, we highlight in boldface the CPU time obtained by
he algorithms of Bektaş et al. (2018) and Erdoğan et al. (2016) on a
iven instance if, reducing it by 35%, yields a value smaller than the
PU time of  on the same instance. Then the results of Table 1 lead
o the following:

xperimental Observation 3. On the literature H𝑝MP instances, algo-
ithm  performs generally better than the algorithms of Bektaş et al. (2018)
nd Erdoğan et al. (2016). In particular,  is faster on the 30 largest

instances in this set, having 𝑛 = 100. For every 58 ≤ 𝑛 ≤ 100,  is especially
effective on the literature H𝑝MP instances with 𝑝 ∈ {⌊𝑛∕10⌋ , ⌊𝑛∕7⌋ , ⌊𝑛∕3⌋}.

We explain the last outcome of the Experimental Observation 3 as
follows: when 𝑝 ∈ {⌊𝑛∕10⌋ , ⌊𝑛∕7⌋} the partition inequalities forbidding
more than 𝑝 cycles are more relevant and we have an effective separa-
480

tion routine for such inequalities thus, obtaining a good performance
overall; when 𝑝 = ⌊𝑛∕3⌋, algorithm  benefits from the combination of
RCCs and QHC associated with 4- or 5-cycles, which are separated by
a specialized routine.

To intuitively illustrate the advantage of  over the algorithms
of Bektaş et al. (2018) and Erdoğan et al. (2016), in Figs. 2(a) and
2(b) we provide qualitative analyses of their performances, based on
the results of Table 1.

Fig. 2(a) plots the performance profiles of the three algorithms,
indicating how many instances have been solved to optimality (values
on the 𝑦-axis) within a given CPU time (values on the 𝑥-axis, in
logarithmic scale). Only instances solved within 3600 CPU seconds (our
time limit) are considered. The performance profiles of Fig. 2(a) lead
to the following:

Experimental Observation 4. Algorithm  solves to optimality the
largest amount of H𝑝MP instances within very short time thresholds (around
20 s); the algorithm of Bektaş et al. (2018) and  solve comparable
amounts of instances within time thresholds of at least 100 s and they are
always more effective than the algorithm of Erdoğan et al. (2016).

Fig. 2(b) shows two boxplots, obtained by considering the 42
instances solved to optimality by all algorithms. The left boxplot
(resp. the right boxplot) describes the distribution of the ratios of the
CPU times of  over the CPU times of the algorithm of Bektaş et al.
(2018) (resp. Erdoğan et al., 2016). The points in the figure are the ratio
values on single instances. A point with 𝑦-value lower than 1 indicates
that, on the corresponding instance,  was faster than the competing
algorithm. Except for a few outliers, all quartiles of the two boxplots
are below 0.4 and the median is below 0.1 in both cases. That is, we
have:

Experimental Observation 5. In most of the instances the CPU time of
 was less than 1/10 of the CPU times of the algorithms of Bektaş et al.
(2018) and Erdoğan et al. (2016). The advantage of  is more evident
when compared to the algorithm of Erdoğan et al. (2016).

Another remark concerns the impact of CPLEX cuts on the perfor-
mance of algorithm  . We have tested a variation of algorithm  not

using any of the general-purpose cuts of CPLEX. The detailed results are
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Table 1
Comparison of branch-and-cut algorithm  with those of Bektaş et al. (2018) and Erdoğan et al. (2016) on the literature H𝑝MP instances with 58 ≤ 𝑛 ≤ 100. For each algorithm

e report the optimal value and the time (in CPU seconds) to solve the instances, or the final pair of UB and LB along with the relative optimality gap (in percentage) upon
ermination.
Instance 𝑝⋆ 𝑝  Bektaş et al. (2018) Erdoğan et al. (2016)

Final Bound Time (s) and
Gap(%)

Final Bound Time (s) and
Gap(%)

Final Bound Time (s) and
Gap(%)

brazil58 12 5 21 744.00 0.73 21 744.00 12.00 21 744.00 78.90
8 21 289.00 0.14 21 289.00 6.00 21 289.00 36.95

11 21 080.00 0.01 21 080.00 5.00 21 080.00 5.14
14 21 221.00 0.99 21 221.00 2.00 21 221.00 4.72
19 22 635.00 0.76 22 635.00 71.00 22 635.00 31.13

st70 12 7 638.22 0.41 638.22 5.00 638.22 18.11
10 632.54 0.14 632.54 4.00 632.54 12.56
14 630.90 0.08 630.90 3.00 630.90 8.66
17 636.19 0.71 636.19 9.00 636.19 11.16
23 694.49 192.41 694.49 3739.00 694.49 1137.77

eil76 4 7 542.95 0.30 542.95 10.00 542.95 20.97
10 545.02 2.14 545.02 38.00 545.02 18.60
15 552.15 89.30 552.15 58.00 552.15 207.04
19 [571.05, 560.36] 1.87% 563,96 133.00 563.95 371.35
25 [613.72, 594.59] 3.12% [612.85, 590.40] 3.66% 601.71 1025.73

pr76 8 7 101 401.33 0.14 101 401.00 5.00 101 401.33 25.29
10 101 779.42 8.85 101 779.00 8.00 101 779.42 224.40
15 103 663.31 224.94 103 663.00 34.00 [103822.35, 103097.47] 0.70%
19 104 481.75 287.79 104 482.00 7.00 104 481.75 45.62
25 110 073.94 38.56 110 074.00 12.00 110 073.94 867.49

rat99 8 9 1209.09 0.72 1209.09 12.00 1209.14 90.16
14 1224.10 387.77 1224.10 23.00 [1249.35, 1217.48] 2.55%
19 [1263.26, 1239.29] 1.90% 1245,16 43.00 [1264.52, 1236.82] 2.19%
24 [1348.19, 1250.53] 7.24% 1273,23 44.00 [1276.13, 1261.17] 1.17%
33 1373.37 16.11 1373.37 3003.00 [1373.37, 1334.28] 2.85%

kroA100 13 10 19 900.87 3.29 19 900.90 151.00 19 900.87 2993.41
14 19 637.52 0.74 19 637.50 95.00 19 637.52 40.47
20 19 868.64 5.46 19 868.60 30.00 19 868.64 57.24
25 20 279.51 435.69 20 279.50 51.00 20 279.51 77.87
33 22 303.23 2504.77 [23591.00, 21498.00] 8.87% [22303.23, 21761.87] 2.43%

kroB100 20 10 20 823.12 2.84 20 823.10 145.00 20 823.12 1575.86
14 20 762.88 1.67 20 762.90 143.00 20 762.88 1292.72
20 20 660.05 0.39 20 660.00 75.00 20 660.05 114.70
25 20 786.92 3.12 20 786.90 16.00 20 786.92 34.89
33 [23679.36, 22624.32] 4.46% [24968.40, 22204.60] 11.07% [22923.42, 22412.71] 2.2%

kroC100 13 10 19 923.30 2.35 19 923.30 98.00 19 923.30 93.61
14 19 938.84 6.58 19 938.84 67.00 19 938.84 77.78
20 20 135.00 23.12 20 135.00 55.00 20 135.00 229.62
25 20 427.96 543.10 20 428.00 436.00 20 427.96 197.60
33 22 465.73 2942.86 [23759.00, 21536.60] 9.35% [22465.73, 21559.53] 4.03%

kroD100 14 10 20 270.57 0.14 20 270.60 48.00 20 270.57 50.50
14 20 267.23 0.08 20 267.20 42.00 20 267.23 46.87
20 20 457.00 14.88 20 457.00 197.00 20 457.00 254.33
25 20 671.19 155.73 20 671.20 160.00 20 671.19 154.50
33 [22402.88, 22039.19] 1.62% [22439.70, 21720.30] 3.21% [22238.56, 22011.87] 1.02%

kroE100 12 10 20 766.43 0.09 20 766.40 25.00 20 766.43 28.92
14 20 777.69 0.42 20 777.70 37.00 20 777.69 28.45
20 20 937.39 4.11 20 937.40 65.00 20 937.39 51.43
25 21 174.94 38.75 21 174.90 92.00 21 174.94 62.60
33 22 782.98 1429.21 [22843.60, 22470.10] 1.64% 22 782.98 3054.13

rd100 14 10 7524.08 2.66 7524.08 147.00 7524.08 177.19
14 7500.44 0.15 7500.44 57.00 7500.44 42.96
20 7537.98 13.76 7537.98 101.00 7537.98 149.61
25 7555.83 8.43 7555.83 42.00 7555.83 51.30
33 [8149.65, 8125.84] 0.29% [8211.20, 7919.09] 3.56% [8131.25, 7996.03] 1.66%

Tests solved 48/55 48/55 45/55
i
h

w

E
k

provided in Appendix F, while here we report the main conclusions.
On the largest instances considered in this section (having 𝑛 ≥ 100)
lgorithm  is substantially faster than its variation without CPLEX
uts. On the contrary, the CPU times reported by the two algorithm
ariations is similar on the small- or medium-size instances. Overall,
he variation without CPLEX cuts solves 3 instances less than  , all
aving 𝑛 = 100. Interestingly, the unsolved instances always have
= 3𝑝 + 1. We point out that the branch-and-cut algorithms tested
481

t

n Bektaş et al. (2018) and Erdoğan et al. (2016) also use CPLEX cuts,
ence the comparison made above is fair.

Finally we point out that, as a consequence of the effectiveness of  ,
e have provided new optimal solutions to literature H𝑝MP instances:

xperimental Observation 6. Algorithm  solves to optimality instances
roA100 and kroC100 with 𝑝 = 33, previously unsolved in the litera-

ure. Overall  solves to optimality 48 out of 55 literature H𝑝MP instances
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Fig. 2. Qualitative comparison of algorithm  with the branch-and-cut algorithms of Bektaş et al. (2018) and Erdoğan et al. (2016).
7
ith 𝑛 ≥ 58, that is, 3 more than the algorithm of Erdoğan et al. (2016)
nd the same amount of the algorithm of Bektaş et al. (2018).

.2. Results of algorithm  : New instances

In this subsection we report on the performance of algorithm  in
olving the new benchmark instances to integer optimality. First, we
resent the results obtained on the new TSPLIB-based instances. The
esults are presented in Table 2, formatted as Table 1. In this case,
e highlight in boldface the CPU times of instances solved to integer
ptimality.

Overall, algorithm  solves 22 out of the 45 considered H𝑝MP
instances. For every 𝑛 ≥ 195, it finds the optimum of at least one
H𝑝MP instance. Most of the solved instances have 𝑝 ∈ {⌊𝑛∕10⌋ , ⌊𝑛∕7⌋}
(6 occurrences each) followed by those with 𝑝 ∈ {⌊𝑛∕5⌋ , ⌊𝑛∕3⌋} (4
occurrences each). The most difficult instances in this set are those
based on the TSPLIB instance brg180: on all of them,  reaches the
time limit with a relative optimality gap greater than the 80%.

Next, we perform a similar analysis on the tetrahedral H𝑝MP in-
stances. The results of the experiments are reported in Table 3, follow-
ing the same format as Table 2. Algorithm  solves to optimality 28
out of 75 tetrahedral instances. In particular, it solves to optimality
all instances having 𝑝 = ⌊𝑛∕3⌋ while the resolution of the instances
with 𝑝 = ⌊𝑛∕4⌋ , ⌊𝑛∕5⌋ always reaches the time limit of one hour with
a nonzero relative optimality gap. Instances with 𝑝 = ⌊𝑛∕10⌋ , ⌊𝑛∕7⌋ are
always solved to optimality when 58 ≤ 𝑛 ≤ 97.

From the results of Tables 2 and 3 we draw the following conclu-
sions:

Experimental Observation 7. The new H𝑝MP instances are generally
more difficult to solve than the benchmark instances used in Bektaş et al.
(2018) and Erdoğan et al. (2016). On the set of new TSPLIB-based
instances, algorithm  is effective when 𝑝 is low (𝑝 ∈ {⌊𝑛∕10⌋ , ⌊𝑛∕7⌋}) for
ll values of 𝑛. Algorithm  is also effective when 𝑝 = ⌊𝑛∕3⌋ and 𝑛 ≤ 200
n both sets of new TSPLIB-based and tetrahedral H𝑝MP instances.

Our explanation of the effectiveness of  on the new instances with
= ⌊𝑛∕3⌋ is that the RCCs (7) have a strong impact. In particular,

his is evident on the tetrahedral H𝑝MP instances which are more
ifficult than the TSPLIB-based instances: the tetrahedral instances with
> 𝑝⋆ are mostly unsolved, except when the RCCs are involved in the

ormulation.
482
.3. Results of algorithms 3𝑝 and 3𝑝+1

We now analyse algorithms 3𝑝 and 3𝑝+1 which are valid for the
cases 𝑛 = 3𝑝 and 𝑛 = 3𝑝+1, respectively. We split the discussion into two
parts: results on the literature instances and results on the new H𝑝MP
instances.

Tables 4 and 5 report on the former: Table 4 refers to the 8 literature
H𝑝MP instances with 𝑛 = 3𝑝, while Table 5 refers to the 10 literature
H𝑝MP instances 𝑛 = 3𝑝+1. For each considered algorithm, the values in
the corresponding column are either the CPU time to reach optimality
or the final relative optimality gap (in case of unsolved instances).
Hyphens indicate unavailable results while boldface values indicate the
best performance.

The results are summarized in the following:

Experimental Observation 8. Algorithms 3𝑝 and 3𝑝+1 outperform
the algorithms of Bektaş et al. (2018) and Erdoğan et al. (2016) on the
literature H𝑝MP instances with 𝑛 = 3𝑝, 3𝑝 + 1: with a few exceptions
(instances eil76 and pr76 ) they both reduce by at least one order of
magnitude the CPU times reported in Bektaş et al. (2018) and Erdoğan et al.
(2016). Remarkably, 3𝑝+1 solves instance rd100, previously unsolved by
algorithm  and those of Bektaş et al. (2018) and Erdoğan et al. (2016).

Next, we consider the results on the new H𝑝MP instances, reported
in Table 6 (for 𝑛 = 3𝑝) and Table 7 (for 𝑛 = 3𝑝 + 1). In this case we
compare 3𝑝 and 3𝑝+1 with algorithm  . Note that the upper part of
Table 7 refers to the new TSPLIB-based instances having 𝑛 = 3𝑝 + 1,
while its lower part refers to the tetrahedral H𝑝MP instances (which all
have 𝑛 = 3𝑝 + 1).

For both cases 𝑛 = 3𝑝 and 𝑛 = 3𝑝 + 1 the algorithms based on
the alternative formulations solve the same instances as algorithm  .
We note that, while there are 5 unsolved new TSPLIB-based instances,
all tetrahedral instances are solved to optimality by the considered
algorithms. We explain this outcome by the large size of the new
TSPLIB-based instances. Overall we have:

Experimental Observation 9. On instances with 𝑛 = 3𝑝, algorithms 
and 3𝑝 perform similarly. On the other hand, on instances with 𝑛 = 3𝑝+1
algorithm 3𝑝+1 is consistently better than  .

7.4. Impact of valid inequalities

In this section we discuss how the inequalities introduced in this
paper affect the performance of the branch-and-cut algorithms. We
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Table 2
Performance of the branch-and-cut algorithm  on the set of new TSPLIB-based instances. The values reported in the last
column are times in CPU seconds employed by  to solve the instances, or the final relative optimality gaps for unsolved
instances.
Instance 𝑝⋆ 𝑝 

Final Bound Time (s) and
Gap(%)

dantzig42 8 4 648.00 0.01
6 647.00 0.01
8 646.00 0.00

10 654.00 0.55
14 796.00 0.62

pr124 23 12 52 479.47 32.64
17 52 210.02 255.94
24 51 487.56 2.22
31 51 830.28 5.26
41 57 672.38 221.92

u159 20 15 41 238.46 2.77
22 41 208.78 16.54
31 [41849.59, 41789.29] 0.14%
39 [43377.72, 42189.09] 2.74%
53 47 320.58 129.42

brg180 15 18 [10910.00, 1852.78] 83.02%
25 [99410.00, 1923.09] 98.07%
36 [190040.00, 2049.61] 98.92%
45 [312280.00, 2090.00] 99.33%
60 [88790.00, 2739.33] 96.91%

rat195 7 19 [2326.51, 2326.51] 2978.33
27 [2493.26, 2337.32] 6.25%
39 [3034.78, 2360.93] 22.20%
48 [3524.14, 2388.50] 32.22%
65 2678.97 1595.81

d198 32 19 [12100.43, 11997.56] 0.85%
28 11 910.72 1.45
39 11 927.47 103.62
49 [12332.59, 12005.21] 2.65%
66 [17046.55, 16615.30] 2.53%

pr226 43 22 [60693.96, 58030.75] 4.39%
32 [58033.26, 57433.26] 1.03%
45 57 177.55 0.95
56 [108704.74, 57177.55] 47.40%
75 [240399.60, 72872.36] 69.69%

gil262 30 26 2260.32 26.86
37 2263.31 167.72
52 [2283.96, 2277.61] 0.28%
65 [2996.28, 2284.06] 23.77%
87 [3597.48, 2426.12] 32.56%

rd400 51 40 14 675.53 39.96
57 14 684.15 496.84
80 [17587.95, 14717.43] 16.32%

100 [24026.88, 14765.26] 38.55%
133 [31933.62, 15576.99] 51.22%

Tests solved 22/45
W
𝑛
4
t

t
b

begin by measuring the impact of the restricted 2-opt inequalities (10)
and of the QHC inequalities (6), and we do so by comparing  with its
ollowing variants: (𝑖) algorithm − obtained from  by excluding the
estricted 2-opt inequalities (10); (𝑖𝑖) algorithm  obtained from  by
mposing that only Hamiltonian inequalities (3) are added during the
ranch-and-cut process. Such inequalities are separated by modifying
he routine for the general QHC inequalities as follows: if the current
olution 𝑥⋆ is integer, we merge all cycles composing the graph 𝐺𝑥⋆

ssociated to 𝑥⋆; if 𝑥⋆ is not integer, we heuristically solve a STSP
n the weighted complete graph on vertex set 𝑉 (that is, here, unlike
he separation of general QHC inequalities, edges 𝑒 ∈ 𝐸 with 𝑥⋆𝑒 = 0

are also considered), and the resulting Hamiltonian cycle inequality
associated to the STSP solution is checked for violation.

We test  , − and  on all 230 H𝑝MP instances described in
Section 7. The instance-wise results of each algorithm are provided at
the online repository (Barbato & Gouveia, 2023). Out of 230 H𝑝MP in-

−
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tances, algorithm  solves 153 instances, algorithm  149 instances
and  124 instances. Algorithm − reaches optimality on instances
Tnm127 with 𝑝 = 12 and Tnm139 with 𝑝 = 13, unsolved by  and ;
algorithm  solves instance u159 with 𝑝 = 31 unsolved by  and −.

ith just one exception, the instances solved by  and not by  have
= 3𝑝, 3𝑝 + 1, indicating that the QHC inequalities (6) associated with
- or 5-cycles make algorithm  effective on those instances (recall that
he RCCs are used in both  and ).

In Fig. 3(a), we also provide a qualitative comparison of the CPU
imes of the three algorithms. The left-hand boxplot (resp. right-hand
oxplot) shows the quartiles of the ratios of the CPU times of −

(resp. ) over the CPU times of  on the set of instances solved by all
three algorithms (we additionally remove instances on which all three
algorithms reported a resolution time of ∼ 0 CPU seconds).

We see that, in the left-hand boxplot, the median (orange line) is
precisely 1, meaning that − is at least as fast as  on about the
50% of instances (outliers excluded); instead, in the right-hand boxplot

the median is higher than 1 and the lower quartile is precisely on 1,
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Fig. 3. Qualitative comparison of algorithms  , −,  and .
Table 3
Performance of the branch-and-cut algorithm  on the set of new tetrahedral H𝑝MP instances. The values reported in the
last column are times in CPU seconds employed by  to solve the instances or the final relative optimality gaps for unsolved
instances.

Instance 𝑝⋆ 𝑝 

Final Bound Time (s) and
Gap(%)

Tnm58 6 5 622 837.00 2.95
8 613 845.00 0.23

11 644 854.00 1203.26
14 [677644.00, 660649.51] 2.51%
19 720 292.00 108.64

Tnm67 7 6 773 270.00 0.66
9 776 200.00 7.26

13 [807704.00, 804905.40] 0.35%
16 [866845.00, 816886.47] 5.76%
22 903 164.00 264.37

Tnm79 8 7 927 604.00 1.87
11 935 895.00 24.31
15 [1038050.00, 962722.76] 7.26%
19 [1230303.00, 980223.41] 20.33%
26 1099608.00 1529.92

Tnm88 9 8 1076347.00 6.43
12 1088995.00 124.28
17 [1331268.00, 1115562.96] 16.20%
22 [1481114.00, 1154703.29] 22.04%
29 1279322.00 620.48

Tnm97 10 9 1228291.00 15.47
13 1237110.00 980.26
19 [1428613.00, 1280680.04] 10.35%
24 [1782537.00, 1317702.15] 26.07%
32 1456219.00 532.54

Tnm109 11 10 1387882.00 194.37
15 [1447302.00, 1392115.66] 3.81%
21 [1852239.00, 1437167.45] 22.40%
27 [2131628.00, 1483382.85] 30.41%
36 1641179.00 179.84

Tnm118 12 11 1537256.00 42.84
16 [1561573.00, 1545577.49] 1.02%
23 [2110338.00, 1596207.58] 24.36%
29 [2991620.00, 1643500.31] 45.06%
39 1819253.00 45.22

Tnm127 13 12 [1693543.00, 1680070.07] 0.79%
18 [1848827.00, 1698162.53] 8.14%
25 [2447140.00, 1755479.78] 28.26%
31 [3344000.00, 1802990.12] 46.08%
42 1998017.00 35.85

(continued on next page)
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Table 3 (continued).
Instance 𝑝⋆ 𝑝 

Final Bound Time (s) and
Gap(%)

Tnm139 14 13 [1874050.00, 1841952.83] 1.71%
19 [1993687.00, 1855215.64] 6.94%
27 [3644041.00, 1915452.43] 47.43%
34 [3933351.00, 1972414.72] 49.85%
46 2190466.00 153.30

Tnm148 15 14 [2051988.00, 1974848.15] 3.75%
21 [2381756.00, 2011729.14] 15.53%
29 [3886308.00, 2076360.43] 46.57%
37 [4260302.00, 2146405.10] 49.61%
49 2369686.00 197.10

Tnm157 16 15 [2181003.00, 2121773.35] 2.71%
22 [2916679.00, 2162573.69] 25.85%
31 [4198962.00, 2237908.65] 46.70%
39 [4248684.00, 2307293.69] 45.69%
52 2552529.00 284.80

Tnm169 17 16 [2349577.00, 2275189.58] 3.16%
24 [2829992.00, 2330369.28] 17.65%
33 [5128941.00, 2404038.24] 53.12%
42 [6438722.00, 2482983.37] 61.43%
56 2747867.00 310.38

Tnm178 18 17 [2593570.00, 2418482.30] 6.75%
25 [3056457.00, 2481839.83] 18.80%
35 [5131854.00, 2565729.59] 50.00%
44 [5719971.00, 2646260.39] 53.73%
59 2929777.00 278.56

Tnm187 19 18 [2644569.00, 2567982.49] 2.89%
26 [3605184.00, 2634282.91] 26.93%
37 [6596939.00, 2724064.37] 58.70%
46 [7043438.00, 2803553.27] 60.19%
62 3113091.00 185.50

Tnm199 20 19 [3611309.00, 2720407.23] 24.66%
28 [5322946.00, 2792067.99] 47.54%
39 [6780480.00, 2883225.78] 57.47%
49 [8252541.00, 2969311.00] 64.01%
66 3298277.00 115.23

Tests solved 28/75
p
r
s

Table 4
Performance of algorithm 3𝑝 on literature H𝑝MP instances with 𝑛 = 3𝑝. Comparison
with the algorithms of Bektaş et al. (2018) and Erdoğan et al. (2016). The values
reported in the columns corresponding to the algorithms are times in CPU seconds, or
relative optimality gaps for unsolved instances. Hyphens indicate unavailable results.

Instance (𝑛 = 3𝑝) Time (s) and Gap(%)

3𝑝 Bektaş et al. (2018) Erdoğan et al. (2016)

gr21 0.00 – 0.45
gr24 0.01 – 0.24
swiss42 0.02 1.00 1.12
att48 6.52 5.83% 285.90
gr48 0.84 208.00 24.25
hk48 0.12 118.00 10.04
eil51 1.23 1701.00 50.96
rat99 25.75 3003.00 2.85%

Tests solved 8/8 5/6 7/8

meaning that  is slower than  on about the 75% of instances (outliers
excluded). The points drawn in Fig. 3(a) represent the ratios computed
on single instances. In the right-hand boxplot, only two points are
below 0.5, while there are 15 such points in the left-hand boxplot,
meaning that − is substantially more effective than  in at least
halving the CPU time of  . Overall we get the following:

Experimental Observation 10. The QHC inequalities have a strong
impact on the H𝑝MP formulation of Section 3; this is especially true when
considering the difficult H𝑝MP instances having 𝑛 = 3𝑝, 3𝑝 + 1, for which
485

we separate the QHC inequalities associated with 4- and 5-cycles by using a i
Table 5
Performance of algorithm 3𝑝+1 on literature H𝑝MP instances with 𝑛 = 3𝑝 + 1.
Comparison with the algorithms of Bektaş et al. (2018) and Erdoğan et al. (2016).
The values reported in the columns corresponding to the algorithms are times in CPU
seconds, or relative optimality gaps for unsolved instances.

Instance (𝑛 = 3𝑝 + 1) Time (s) and Gap(%)

3𝑝+1 Bektaş et al. (2018) Erdoğan et al. (2016)

brazil58 0.94 71.00 31.13
st70 247.32 3739.00 1137.77
eil76 2.61% 3.66% 1025.73
pr76 17.62 12.00 867.49
kroA100 2112.57 8.87% 2.43%
kroB100 0.88% 11.07% 2.23%
kroC100 3.50% 9.35% 4.03%
kroD100 0.90% 3.21% 1.02%
kroE100 880.03 1.64% 3054.13
rd100 2164.67 3.56% 1.66%

Tests solved 6/10 3/10 5/10

dedicated separation routine; the restricted 2-opt inequalities are also useful,
although their impact does not seem to be as decisive.

We finally study the impact of the RCCs. We test algorithm ,
obtained from  by excluding the RCCs, on all instances having 𝑛 =
3𝑝, 3𝑝 + 1 and we compare  and  . The instance-wise results are
rovided at the online repository (Barbato & Gouveia, 2023). Here we
eport that on the 13 instances with 𝑛 = 3𝑝, algorithms  and  exhibit
imilar performances in terms of CPU times and number of solved
nstances (10 solved by  and 11 solved by ). Instead,  performs
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Table 6
Performance of algorithm 3𝑝 on new instances with 𝑛 = 3𝑝. Comparison
with algorithm  . The values reported in the columns corresponding to
the algorithms are CPU times in seconds, or relative optimality gaps for
unsolved instances.
Instance (𝑛 = 3𝑝) Time (s) and Gap(%)

3𝑝 

dantzig42 0.75 0.62
u159 489.10 129.42
brg180 97.77% 96.91%
rat195 1314.25 1595.81
d198 39.46% 2.53%

Tests solved 3/5 3/5

Table 7
Performance of algorithm 3𝑝+1 on new instances with 𝑛 = 3𝑝 + 1.
Comparison with algorithm  . The first part of the table refers to the
new TSPLIB-based instances, the second part to the instances constructed
from those of Hougardy and Zhong (2021). The values reported in the
columns corresponding to the algorithms are CPU times in seconds, or
relative optimality gaps for unsolved instances.
Instance (𝑛 = 3𝑝 + 1) Time (s) and Gap(%)

3𝑝+1 

pr124 66.79 221.92
pr226 52.63% 69.69%
gil262 25.51% 32.56%
rd400 54.57% 51.22%

Tnm58 165.46 108.64
Tnm67 202.07 264.37
Tnm79 1118.19 1529.92
Tnm88 754.37 620.48
Tnm97 333.12 532.54
Tnm109 89.76 179.84
Tnm118 34.37 45.22
Tnm127 52.75 35.85
Tnm139 131.13 153.30
Tnm148 105.31 197.10
Tnm157 136.76 284.80
Tnm169 108.93 310.38
Tnm178 108.6 278.56
Tnm187 150.62 185.50
Tnm199 65.63 115.23

Tests solved 16/19 16/19

substantially better than  on the 29 instances with 𝑛 = 3𝑝+ 1, since it
solves to optimality 23 instances while  solves 18 instances.

Considering only the subset of 27 instances with 𝑛 = 3𝑝, 3𝑝+1 solved
to optimality by both algorithms, we show the distribution of the ratios
of the CPU times of algorithm  over the CPU times of algorithm  in
the boxplot of Fig. 3(b), similar to those of Fig. 3(a). The median of the
ratios is above 1 and the upper quartile is above 2, meaning that  is
slower than  on most of the tested instances (mostly having 𝑛 = 3𝑝+1).
At the same time the position of the lower quartile below 1 indicates
that  can be faster than  on a non-negligible amount of instances.
This is due to the good performance of  on the instances with 𝑛 = 3𝑝.
As a conclusion we have:

Experimental Observation 11. The RCCs (7) have a strong impact on
the performance of  on the instances with 𝑛 = 3𝑝 + 1.

8. Conclusion and future research

In this paper we have studied the Hamiltonian 𝑝-median problem, a
location-routing problem in which we need to determine a minimum-
weight set of 𝑝 cycles spanning all vertices of an edge-weighted graph.
For this problem we have proposed an integer linear programming
formulation based on edge variables and two families of strengthening
486

a

inequalities: a family of quasi-Hamiltonian cycle inequalities, valid for
the general problem, and a family of restricted (multi-)cut constraints,
valid for instances with 𝑝 = ⌊𝑛∕3⌋. We have shown that both families
contain inequalities inducing facets of the integer hull of the edge-
variable formulation; moreover, we have shown that branch-and-cut
algorithms based on the edge-variable formulation and the proposed
inequalities are effective in tackling problem instances: on 110 in-
stances the branch-and-cut algorithms exhibit comparable or better
performance than that of state-of-the-art algorithms for the Hamilto-
nian 𝑝-median problem and have been able to solve three benchmark
instances previously unsolved; finally the algorithms have been tested
on 120 new problem instances (most of which of larger sizes than
literature instances) solving 50 of them. The largest instances solved
to optimality have 400 vertices.

Open topics of research. Our study has also led to some interesting
research directions that we would like to investigate as a future work.
The first one is to give sufficient and necessary conditions for the quasi-
Hamiltonian cycle inequalities and the restricted cut and multi-cut
constraints to be facet-inducing. The second research direction con-
cerns the generalization of the principle behind the quasi-Hamiltonian
cycle inequalities to their cycle covering counterpart, with an em-
phasis on their polyhedral properties and on their effective inclusion
in branch-and-cut algorithms. A third research direction concerns the
effectiveness of the covers cuts and mixed-integer rounding cuts of
CPLEX in improving the linear relaxation of the edge-variable formu-
lation, as observed in Section 7.1: a natural question is whether these
two general-purpose families can be specialized to take into account
the specific structure of the solutions of the Hamiltonian 𝑝-median
problem. Finally, we would like to focus on the restricted (multi-)cut
inequalities from two standpoints: first, designing effective separation
algorithms for the restricted 3-cut constraints (valid for the instances
of the Hamiltonian 𝑝-median problem with 𝑛 = 3𝑝 + 2); second,
generalizing the restricted (3-)cut constraints to generic values of 𝑝 so
o use them in alternative formulations for the general Hamiltonian
-median problem.
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