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ABSTRACT

Objective: Soft-tissue sarcomas (STSs) of the extremities are a group of malignancies arising from the mesen-

chymal cells that may develop distant metastases or local recurrence. In this article, we propose a novel meth-

odology aimed to predict metastases and recurrence risk in patients with these malignancies by evaluating

magnetic resonance radiomic features that will be formally verified through formal logic models.

Materials and Methods: This is a retrospective study based on a public dataset evaluating MRI scans T2-

weighted fat-saturated or short tau inversion recovery and patients having “metastases/local recurrence”

(group B) or “no metastases/no local recurrence” (group A) as clinical outcomes. Once radiomic features are

extracted, they are included in formal models, on which is automatically verified the logic property written by a

radiologist and his computer scientists coworkers.

Results: Evaluating the Formal Methods efficacy in predicting distant metastases/local recurrence in STSs

(group A vs group B), our methodology showed a sensitivity and specificity of 0.81 and 0.67, respectively; this

suggests that radiomics and formal verification may be useful in predicting future metastases or local recur-

rence development in soft tissue sarcoma.

Discussion: Authors discussed about the literature to consider Formal Methods as a valid alternative to other

Artificial Intelligence techniques.

Conclusions: An innovative and noninvasive rigourous methodology can be significant in predicting local recur-

rence and metastases development in STSs. Future works can be the assessment on multicentric studies to

extract objective disease information, enriching the connection between the radiomic quantitative analysis and

the radiological clinical evidences.
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Lay Summary

Soft-tissue sarcomas of the extremities are a group of rare malignancies that may develop distant metastases

or local recurrence, mainly in the lungs. A 3-year survival rate for patients with metastases is often lower for

those who are not candidates for surgery; for these reasons, the earlier identification of patients with high risk

of developing distant metastasis could potentially allow implementing more effective therapies.

The Radiomic analysis will be performed used a public database of short tau inversion recovery and T2-weighted

fat-saturated images. In addition, instead of using Artificial Intelligence, this paper introduces the possibility of:

• exploiting mathematical methods together with Radiomics to generate a second-virtual opinion useful to

radiologists and their co-workers when facing rare diseases;
• localize the most important slices as a visual feedback for medical specialists;
• meet the limits of the Artificial Intelligence techniques in the medical field.

The mathematical methods are called Formal Methods: they allow to build a rigorous model of a patient

through the values of its radiomic features.

The results in this article are greater than 0.70%: this suggests that radiomics and formal verification may be

useful in predicting future metastases or local recurrence development in soft tissue sarcoma.

BACKGROUND AND SIGNIFICANCE

Soft-tissue sarcomas (STSs) are a group of malignancies which

include a wide number of subtypes, all arising from the mesenchy-

mal cells. More than 50 different categories are reported, as stated

by the World Health Organization.

STSs are rare tumors and represent about 1% of all cancers.1

Despite their low incidence, these malignancies are worrisome; in

fact, about 25% of STSs develop distant metastases, representing

the main factor leading to death, with a metastatic percentage that

can reach about 50% for high-grade STSs.2–4 The main site of meta-

statization is the lungs, which account for about 80% of lesions.5

Prognosis of patients who develop metastases is generally: 3-year

survival rate is lower than 50% for those undergoing surgical meta-

stasectomy and lower than 20% in those who are not candidate to

surgery. Thus, an imaging method, which potentially enables the

prediction of metastases occurrence in this set of patients might be

of high benefit. The median survival time after distant metastasis

diagnosis is approximately 11.6 months.2 Identifying patients who

are at a high risk of developing distant metastasis at an early stage

could potentially allow implementing more effective therapies.6,7

Analysis of tumor heterogeneity on pathological samples obtained

from biopsies may be challenging and the information may depend on

which part of the tumor is sampled.8 Attempts to solve this issue and

to obtain better information from STSs have been done with the so-

called “Radiomics”, a field of imaging research which implies the anal-

ysis and extraction of large amount of data from medical images, using

advanced quantitative characteristics and specific image-processing

algorithms.9,10 As a matter of fact, with radiomics will be possible to

avoid the biopsy and to identify the patients with greater risk of meta-

stases or local recidive. In addition, the help of radiomics during the

follow-up can support clinicians to predict the behavior of tumors.

Promising results have been recently reported in the use of radio-

mics in musculoskeletal oncology, being mainly aimed for investi-

gating conventional statistical methods/machine learning algorithm

for musculoskeletal sarcomas,11 for discriminating benign from

malignant spine tumors,12 for predicting patient’s prognosis and

treatment response.7,13–15 Nevertheless, a common problem of

radiomics studies is related to the considerable number of imaging

features that are evaluated by the software9 or to the poor under-

standability of the radiomic features in the clinical context. The first

problem can have negative consequences on the accuracy of predic-

tion models because some of these features may be redundant, use-

less, or highly correlated among each other.

Nowadays, various fields, including scientific research, data anal-

ysis, and medical diagnosis, utilize artificial intelligence (AI). Machine

learning (ML)16 represents the most commonly exploited AI techni-

que in the medical field as it enables the analysis of data, detection of

patterns, and derivation of conclusions also without explicit input.

However, this technique often encounters problems related to the

complexity of AI, which are frequently used as “black boxes” due to

the inability to comprehend the processing from input to output.17

For these reasons, the current study applies Formal Methods in

the radiomics pipeline: these are based on mathematical logic and

reasoning18,19 that allow to model the radiomic data of a patient

and to verify if this satisfies the properties belonging to a disease

state. Formal Methods are a group of logical and mathematical pro-

cedures used to confirm and demonstrate the accuracy and the cor-

rectness of a computer system or software application.

Compared to AI techniques, Formal Methods permit to:

• have a reduced dataset of patients and/or images for computing

the model;
• produce an explainable and understandable model;
• easily reply the process, because a small number of parameters is

required for the entire pipeline.

OBJECTIVE

The purpose of this study was to provide a Formal Method to predict

distant metastases and local recurrence in STSs of the extremities.

The proposed technique was noninvasive and without the need for

biopsy, indeed radiomic features were computed from nonenhanced

magnetic resonance images (MRI). To the best of our knowledge,

Formal Methods for STSs have never been analyzed in the literature.

MATERIALS AND METHODS

Dataset
An open-source deidentified database (http://doi.org/10.7937/K9/TCIA.

2015.7GO2GSKS) was used as the source of our data.7,20 This set
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includes 51 histologically proven STSs of the extremities: all patients had

pretreatment fluoro-D-glucose positron emission tomography (FDG-

PET) and MRI scans between November 2004 and November 2011.

MRI protocols were not uniform among the patients. From the

whole MRI dataset, we selected only MRI scans T2-weighted fat-

saturated (T2FS) or short tau inversion recovery (STIR); patients

were labelled “metastases/local recurrence” (group B) or “no meta-

stases/no local recurrence” (group A) as clinical outcomes; 4 patients

with upper limb soft tissue sarcoma were excluded. In terms of tex-

ture, T2FS and STIR images are considered to be similar, and there-

fore, they were grouped together under one category.7,21

Following these criteria, we included in our analysis a total of 47

patients from an overall number of 51 patients. Two different MRI

exams (from 2 different patients) were used for modelling the property

which will be automatically verified by a mathematical technique.

Segmentation and feature analysis
Segmentations for exams were obtained from the above mentioned

public database; for this study, segmentations included visible

edema. Every single segmentation was visually valued by a radiolog-

ist with 7 years’ experience and modified if necessary. The 3D slicer

software (4.13 version) was used for this step.22

All the radiomic features were computed using Pyradiomics

3.0.1 (https://pyradiomics.readthedocs.io), a library for radiomic

features extraction from medical imaging,23 and a Python script

developed by authors, which is compliant to the Image Biomarker

Standardisation Initiative standard24 (IBSI).

The extracted radiomics features were of 7 main groups: (1) First

Order (FOF) Features; (2) Gray Level Co-occurrence Matrix

(GLCM) Features; (3) Gray Level Run Length Matrix (GLRLM)

Features; (4) Gray Level Dependence Matrix (GLDM) Features; (5)

Gray Level Size Zone Matrix (GLSZM) Features; (6) Neighbouring

Gray Tone Difference Matrix (NGTDM) Features; (7) Shape Fea-

tures 2 dimensional (2D). Definitions and detailed feature list are

described in Pyradiomics feature documentation (https://pyradio-

mics.readthedocs.io).

The hyperparameter for feature extraction25 were as follows in

Table 1; the remaining parameters were set to default. For each

exam, features were extracted from each image separately.

Features used for Formal Method classifier were manually

chosen, in order to describe the distribution of voxel intensities and

shape characteristics, also with the support of Correlation Attribute

Evaluation (Weka software version 3.8.5).26,27 Figure 1 shows an

example of the Radiomic pipeline: 102 features were extracted from

the segmentation of a left tight pleomorphic sarcoma, and finally

were selected 2 first-order features and 3 Shape 2D features.

The next step was the discretization of extracted features, to sim-

plify the translation in formal models. Authors divided the features in

3 different intervals: low, basal, and up with the equal-width parti-

tioning. The discretized features were transformed into a formal

model according to the Calculus of Communicating Systems (CCS), a

process calculus introduced by Robin Milner.28,29 More detailed

information about this process are reported in the following section.

Formal Methods
Formal Methods18,19,30,31 are techniques derived from the Computer

Science field to verify the correctness of critical informatic systems.

Hence, thanks to the mathematical theory, this methodology allows

to build formal and rigorous representation of a system. As a matter

of fact, this methodology is widely used in Cybersecurity,32–34 Bioin-

formatics,35 and Computer Science to verify the safety of complex

system behaviors where there is the possibility of economic losses or

deaths (automated air traffic management or banking transitions).

In the current study, instead of having a critical informatic sys-

tem, authors considered the state of health of the patient: the meth-

odology aims to verify the presence or the absence of a disease. After

extracting the radiomic features, their numerical values were discre-

tized in 3 levels; according to the keywords used in this methodol-

ogy: a low level is represented by b1of3, a medium level is

represented by b2of3, and the highest level is represented by b3of3.

In order to create the formal model, radiomic features (Sphericity,

Kurtosis, Skewness, Elongation, and Mesh Surface, as illustrated in

the example below) were combined using the combination operator

represented by the “.” symbol, as shown in Figure 2.

The entire sequence of clinical or radiomics features is represented

by a “model” (one model is generated for each subject or patient).

The pattern of a disease is represented through a “property” or

“formula”; the property is computed by analyzing the common pat-

tern of the disease with the aid of mathematical logic algorithms.

For instance, a pattern can be composed of 2 consecutive values

a and b, followed, even if nonimmediately, by other 2 consecutive

values c and d. Such a statement can conveniently be expressed in a

temporal logic as:

prop F1 ¼ ðmin x ¼<a><b> F2 = <�> XÞ
prop F2 ¼ ðmin x ¼< c><d> tt = <�> XÞ:

The above representation is called “property” and, in case of a

MRI exam, each row represents the discriminant radiomics feature

values which correspond to the presence of a certain disease mark.

In Figure 3, there is a practical example of property with a Shape

feature called “Sphericity” and a First order feature called

“Kurtosis”. Their numerical values are described through the discre-

tization in 3 levels and different operators, which are:

• < and > are used for specify which action is performed;
• _ is used to perform an ‘OR’ combination of the values;
• min X is a function which define when the rule is satisfied;36

• tt or ff means the termination condition of the property.

With the increase of radiomics studies on a certain disease,

researchers can state (eg) that a low level of Kurtosis is indicative of

a high risk of metastases or local recidive. Normally, the property is

verified on a MRI exam independently of the number of slices con-

tained. The agent responsible for verifying the absence or the pres-

ence of the property is called “Model checker”:18 it is a powerful

automatic reasoning technique that allows a rigorous verification of

the property on the model of the patient. Practically, this agent takes

in input the model of the patient and the property of the disease sta-

tus, verifying if the model satisfies the property; finally, the agent

concludes with a simple result: the output is true if the model satis-

fies the property, otherwise it is false. If the output is true, this

Table 1. Description of the setting used for the feature extraction

Parameter Option name Value

Fixed bin count binCount 50

Image normalization normalize True

Outliers to remove removeOutliers 3

Interpolator for resampling interpolator sitk.sitkBSpline

Voxel size for resampling resampledPixelSpacing [0.6, 0.6, 0]

Forcing to texture calculation force2D True
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means the patient is affected by the disease status that the property

describes (eg, the risk of metastases). If the result is false, researchers

know the patient have a negligible risk of metastases and the meth-

odology also return a counterexample with the explication why the

model is considered false, which increments the understandability of

the technique. In addition to the previous advantages, the use of For-

mal Methods can also help to localize the site of the sarcoma. Being

a mathematical method, it allows to verify in which parts of the

model the property is satisfied. In radiological terms, this functional-

ity turns in a localization of the disease in the radiological exam. An

example of the whole workflow, including radiomics and Formal

Methods, is described in the Figure 4.

RESULTS

Clinical data
Our study population included 47 patients (23 men, 24 women; median

age of 69 years, range 16–82 years). During the follow-up period, 21

patients did not develop metastases or local recurrence (group A), 26

patients developed metastases or local recurrence (group B); in particu-

lar, 23 patients developed metastases and 3 patients local recurrence.

The median time elapsed between the diagnosis and last follow-

up was 790 days (range 458–2121 days) for group A, and the

median time elapsed between the diagnosis and onset of metastases

or local recurrence 216.5 days (range 66–1196 days) for group B.

The median volume of the segmentations (including the visible

edema) was 295.8 cm3 (range 28.8–2937.6 cm3) for group A, and

539.9 cm3 (range 109.3–3958.2 cm3) for group B. Regarding histo-

logical grade, 25 patients had high grade sarcoma (8 patients in

group A—17 patients in group B), 15 patients had intermediate

grade sarcoma (8 patients in group A—7 patients in group B) and 4

patients had low grade sarcoma (all these patients in group A); for 3

patients the histological grade was not available (1 patient in group

A—2 patients in group B). Other relevant clinical parameters and

treatment type are summarized in Table 2 and Table

“DBInformation” provided in the Supplementary Materials section.

Figure 2. Example of formal model of a patient belonging to group A. It is the combination of the Sphericity, Kurtosis, Skewness, Elongation and Mesh Surface

radiomic discretized features.

Figure 3. Example of formal property composed by the Sphericity and Kurtosis features.

Figure 1. Radiomic pipeline: starting on the left, segmentation of a left tight pleomorphic sarcoma, feature extraction and 5 selected features.

4 JAMIA Open, 2023, Vol. 6, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

iaopen/article/6/2/ooad025/7116329 by Biblioteca IR
C

C
S Istituto O

rtopedico G
aleazzi - M

ilano user on 18 April 2023

https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooad025#supplementary-data


MRI protocols were not uniform and only T2FS or STIR sequen-

ces were selected. Two exams were acquired in the sagittal plane, 4

exams were acquired in the coronal plane, and the remaining 41

exams were acquired in the axial plane. More details regarding to

MRI acquisition protocols are reported in Table “MRIAcquisition”

provided as Supplementary Materials.

In the public dataset, each individual patient did not have both

STIR and T2FS sequences available; therefore, we selected the only

available fluid-sensitive sequence.7,21

Segmentation and feature analysis
After visually assessment, 43 segmentations were retained, and 4

segmentations were manually changed, in order to better delineate

the profile of the lesion.

From segmentations, in total 102 radiomics features were

extracted from T2FS or STIR images. For formal modelling, we con-

sidered only 5 features:23

• Kurtosis (First-Order feature): Kurtosis is a measure of the ‘peak-

edness’ of the distribution of values in the image region of inter-

est (ROI);
• Skewness (First-Order feature): Skewness measures the asymme-

try of the distribution of values about the mean value;
• Elongation (Shape feature 2D): Elongation shows the relationship

between the 2 largest principal components in the ROI shape;
• Sphericity (Shape feature 2D): Sphericity measures the roundness

of the shape of the tumor region relative to a circle;

• MeshSurface (Shape feature 2D): Mesh surface is derived from

the approximated shape defined by the circumference mesh.

Figure 5 shows intercorrelation among selected features, calcu-

lated according to Spearman correlation coefficient.

Formal verification and statistical analysis
After generating the CCS models from all 47 patients, the disease

property was generated by a radiologist and 2 computer science

researchers, looking at 2 different exams, and it is shown in Table 3.

Please note: in Formal Methods there is no division of training and

testing, only the creation of the models, properties and their verifica-

tion on the models. Formal Methods do not learn from any patterns

or behaviors.

The following metrics were considered for evaluating the perform-

ance of the property to predict the development or not of metastases/

local recurrence (group B vs group A): specificity, sensitivity (also

called recall), accuracy, positive predictive value and negative predic-

tive value. Intercorrelation among selected features was calculated

with the Spearman correlation coefficient. Furthermore, the clinical

utility indexes (CUI) were calculated to take into account both occur-

rence and discrimination.37 The value for CUI ranges from 0 to 1:

• excellent utility (CUI � 0.81);
• good utility (CUI � 0.64);
• satisfactory/fair utility (CUI � 0.49);
• poor utility (CUI < 0.49);
• very poor utility (CUI � 0.36).

Figure 4. Explanation of the radiomic pipeline combined with the Formal Methods technique.

Table 2. Some clinical data for groups A and B

Age [mean(min–max)] Sex Volume cm3 [median(min–max)] No. of patients

Group A 48.5 (16–82) 13 F 8 M 295.8 (28.8–2937.611) 21

Group B 59.9 (34–78) 11 F 15 M 539.9 (109.3–3958.2) 26
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This step of the analysis was performed with Python 3.7.11 ver-

sion (Pandas 1.3.2 package).

Once the property was verified, the following metrics were computed:

• Sensitivity: 0.81;
• Specificity: 0.67;
• Accuracy: 0.74;
• Positive predictive value: 0.75;
• Negative predictive value: 0.74.

The positive CUI, calculated for the proposed formal method

was 0.606; the negative CUI was 0.491: both these values have a sat-

isfactory/fair utility value. Constructing the Confusion Matrix about

the classification, we have:

• in the actual group A, consisting of 21 patients, 14 were correctly

recognized, while 7 were classified as group B;
• in the actual group B, consisting of 26 patients, 21 of these were

correctly classified while 5 were labeled as group A.

Explainability
Combining Radiomics and Formal Methods allows to obtain a

“second-virtual opinion” for radiologists and clinicians. In addition,

this method can also localize the slices where the property is satis-

fied, giving a visual feedback, as shown in Figure 6. This can be very

useful when facing difficult radiological exams where the main

tumoral component is not clearly visible.

For example, in Figure 6 the localization method is used on

patient STS_038 (from group B) and, in Table 4 are depicted which

features values are aligned with the formula.

DISCUSSION

This study provides a formal method to predict the development of

distant metastases and local recurrence in STSs using MRI. The

identified property obtained an accuracy of 0.74, a positive CUI of

0.606 and a negative CUI of 0.491. In the following section, we

illustrate the choices in the materials and methods, the limitations,

Figure 5. Intercorrelation among selected features.

Table 3. Temporal logic properties used for the diagnosis of patients affected by sarcoma with local recurrence

prop F0¼ F1 _ F10

prop F1 ¼ (min X ¼ < b3of3sphericity> < b1of3kurtosis> F2 _ < - > X)

prop F2 ¼ (min X ¼ < b3of3sphericity> < b1of3kurtosis> F3 _ < - > X)

prop F3 ¼ (min X ¼ < b3of3sphericity> < b1of3kurtosis> F4 _ < - b3of3sphericity, b1of3kurtosis> X)

prop F4 ¼ (min X ¼ < b3of3sphericity> < b1of3kurtosis> tt _ < - b3of3sphericity, b1of3kurtosis> X)

prop F10 ¼ (min X ¼ < b3of3sphericity> < b1of3kurtosis, b2of3kurtosis> < b3of3meshsurface, b3of3elongation> F11 _ < - > X)

prop F11 ¼ (min X ¼ < b3of3sphericity> < b1of3kurtosis, b2of3kurtosis> < b3of3meshsurface, b2of3meshsurface> F12 _ < - >X)

prop F12 ¼ (min X ¼ < b3of3sphericity> < b1of3kurtosis, b2of3kurtosis> < b3of3meshsurface, b3of3elongation> F13 _ < - > X)

prop F13 ¼ (min X ¼ < b3of3sphericity> < b1of3kurtosis, b2of3kurtosis>< b3of3elongation, b3of3meshsurface> F14 _ < -> X)

prop F14 ¼ (min X ¼ < b2of3meshsurface, b2of3elongation> [-]ff _ < - > X)
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and recent articles regarding the same topic. For this work, 3 planes

were considered: sagittal, coronal, and axial; axial plane was the

most frequent acquisition plane. We decided to include all exams,

even if with different planes, because current routine MRI protocols

for STSs include all 3 orthogonal planes.

Regarding segmentations, it was preferred to include edema

inside the segmentations, because STS cells are present histologically

also in the tissues beyond the tumor.38 In addition, the ability to

analyze tumor cells beyond the gross tumor volume has relevant

implications such as in treatment.

Among all the features extracted through Pyradiomics,39 only 5

features were included in the property:

• Kurtosis (First-Order feature);
• Skewness (First-Order feature);
• Elongation (Shape feature 2D);
• Sphericity (Shape feature 2D);
• MeshSurface (Shape feature 2D).

As regards Kurtosis and Skewness, according to references

40–43, positive skewness and higher kurtosis can represent

increased heterogeneity and poorer prognosis in several tumours;

indeed, researchers in reference 44 showed that the presence of at

least 2 out of 3 characteristics (heterogeneity, necrosis, and peri-

tumoral enhancement) was a predictor of overall survival and

metastasis-free survival in STSs. Regarding to Elongation and

Sphericity, researchers in reference 45 included both features for

their Radiomics-T2FS model, aimed to differentiate low-grade

from high-grade STSs.

The principal limitations of the proposed study are as follows.

The first limitation is the relatively small sample size. However,

differently from other AI techniques, the proposed approach does

not require many exams because there is not a training step.

Regarding the second limitation, Elongation and Sphericity

have a Spearman correlation coefficient of 0.86. It means redun-

dant data can be present in the proposed property; anyway, we

decided to retain them both on the basis of the above-mentioned

article.45

The third limitation is the inclusion of patients with development

of metastases (23 patients) and local recurrence (3 patients) in the

same group B, considering these patients as a unique group.

The fourth limitation is due to differences in histology. Accord-

ing to references 46 and 47, the risk of distant metastasis in STSs

ranges from 20% to almost 100% based on grading and histological

type. Histology effect has not been investigated in this study and it

could be explored in further studies.

The fifth limitation is the heterogeneity of MRI protocols and

future works will verify the stability of the proposed approach

through various image acquisition protocols.

Regarding the state-of-the-art, researchers in reference 48 trained

a radiomics score for metastatic relapse-free survival in 35 patients

with myxoid/round cell liposarcomas. The model, combining the

radiomics score and relevant radiological features, achieved an AUC

of 0.925.

Researchers in reference 49 found 5 contrast enhancement MRI

radiomics models for predicting metastatic relapse-free survival,

using 50 patients having high-grade sarcomas; the model with the

highest integrative AUC obtained a value of 0.87.

Authors in reference 50 built a radiomics-based models to pre-

dict metastatic relapse at 2-years with a training data-set of 50

patients. On the testing cohort (20 patients), the best supervised

model obtained an accuracy of 0.75.

In reference 51, the authors constructed and validated a radio-

mics method for prediction of distant metastasis in STSs. They used

a training dataset with 54 sarcomas and a testing dataset with 23

sarcomas. The highest AUC and accuracy obtained were 0.902 and

0.913, respectively.

The above-mentioned articles48,49,51 considered only one histo-

type or the same MRI scanner. Differently, the proposed study

included different histologies and different MRI scanners (further

details regarding histological types and MRI scanner protocols are pro-

vided in “DBInformation” and “MRIAcquisition”—Supplementary

Materials section).

Researchers in reference 7 used the same public data-set of the

current study. They combined the texture features of FDG-PET and

MRI imaging to assess lung metastasis risk in STSs on 51 patients;

the model achieved an AUC, sensitivity and specificity of 0.984,

0.955, and 0.926, respectively.

Authors in reference 52 built a model for the prediction of lung

metastases in STSs, by optimizing MR and PET image acquisition

protocols. From the same public data-set of our study, the research-

ers selected 30 patients for their research and the model obtained an

AUC of 0.89.

However, both the previous articles7,52 did not validate their

results on independent datasets.

Figure 6. Three selected slices satisfying the property from a left tight sarcoma.

Table 4. Comparison between the values described in the property

and those found in the radiological examination

Sphericity Kurtosis Skewness Elongation Meshsurface

Property High Low – Medium/High High

Figure 6-1 Medium Medium Medium Low High

Figure 6-2 High Medium High Low High

Figure 6-3 High Low Low Medium High
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The above literature confirms the novelties of the proposed For-

mal Method approach, which can be considered as a valid alterna-

tive to other AI techniques. Moreover, even if the present results are

slightly lower than the state of the art, the proposed method is

highly-available, indeed it is based only on routine MRI protocols.

The aim of AI is to develop computer systems capable of rea-

soning and contributing to various fields, such as interpreting nat-

ural language,53 perceiving sensory information, and learning new

information. These systems should emulate human intellect, per-

forming tasks and improving their ability to perform them over

time.

The most commonly used AI approaches are ML and deep learn-

ing (DL), which are often used interchangeably. ML16 is a broad cat-

egory of approaches and algorithms that analyze data and draw

conclusions. DL, on the other hand, is a subset of ML that uses arti-

ficial neural networks to analyze extremely complex data. Creating

and utilizing a ML system can often pose challenges and difficulties.

The first issue may be the lack of data, as ML requires a large

amount of training data to be effective; but finding relevant and

high-quality data to train the computer model can be difficult. Fur-

thermore, overfitting and underfitting can arise due to noise or

unrepresentative data in the training dataset, leading to ML models

that are unable to accurately generalize predictions or classifications

to new data. Even with a perfect dataset, interpreting the results of

an ML system can sometimes be challenging because the model may

be difficult to explain.17

Formal Methods can be utilized to analyze and evaluate the cor-

rectness and accuracy of computer systems by means of mathemati-

cal modeling of system behavior and the verification of specified

properties. Formal Verification, Theorem Proving, Program Synthe-

sis, and Model Checking are examples of Formal Methods techni-

ques used to demonstrate a computer system’s correctness with

respect to specific requirements.18

By enabling errors in the software to be detected and resolved

during development, formal approaches can enhance the depend-

ability and security of computer systems, minimizing the probability

of catastrophic errors or system failures.

As a conclusion, despite the limitations, the current study sug-

gests that Formal Methods can provide beneficial assistance for per-

sonalized medicine. As a matter of fact:

• the availability of small datasets does not affect the robustness of

the model and therefore the reliability of the results;
• the construction through mathematical and rigorous methods

allows to understand the production and the meaning of the

property (avoiding the risk of a “black box” approach);
• the entire process is supervised by radiologists and AI experts.

CONCLUSIONS

The proposed approach, based on Formal Methods, can be an alter-

native tool to predict the risk of local recurrence and metastases in

STSs. If the data are confirmed from further validation, this techni-

que may assist physicians in choosing the appropriate treatment for

STSs and potentially improve patient survival. Future works can be

the development of these mathematical methods to extrapolate the

objective characteristics of the disease independently of MRI

scanners.
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