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Abstract The monitoring of CO2 emissions has become a sensitive topic of
discussion in the last years. The engagement of the protocol of Kyoto, and the
subsequent activities that the different countries have carried out to reduce the
CO2 emissions, are factors which push the topic into the spotlight. An inter-
esting issue regards how the disparities of such emissions can be analyzed by
sources and by subpopulations. In this paper an innovative procedure to jointly
decompose the disparity by sources and by subpopulations is proposed. The
assessment of the inequality is determined by the Zenga-84 index. This new
methodology is applied to the analysis of the per capita CO2 emission dispari-
ties for European countries, by simultaneously considering their sources (coal,
oil, natural gas, and other) and the membership of the country to OECD.

Keywords CO2 emission · decomposition by sources · decomposition by
subpopulations · inequality · joint decomposition · Zenga-84 inequality index

1 Introduction

Many tools have been proposed in the literature for the inequality evaluation
and its analysis. Among them, a relevant role is played by the inequality
synthetic indexes: they have the capability to summarize the inequality level in
a single number. Among all the characteristics and properties they can have,
a very interesting peculiarity is their chance to be decomposed. The most
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famous kinds of decompositions for an inequality index are two: by sources
and by subpopulations.

The decomposition by subpopulations (or by subgroups) basically consists
of considering the observed population divided into - say k- exhaustive and
disjoint groups, and its aim is to assess a level of inequality to each subpop-
ulation, or at least to obtain an aggregate value for the inequality into the
subpopulations (Within component), and one related to the inequality across
them (Between component): for the statement of the topic, see for example
(Shorrocks, 1984). Instead, the decomposition by sources (or by factors) can be
performed when the target variable is the sum of - say c- other variables, called
sources, and its aim is to evaluate the contribution to the total inequality due
to each source: see for more details Shorrocks (1982).

Several proposals in literature deal with these well-known decompositions.
The papers of Bourguignon (1979), and Shorrocks (1980, 1982, 1984) have had
a great influence on the researches regarding the decomposition by subpop-
ulations of the Theil indexes and the generalized entropy indexes. The two
Dagum papers (Dagum, 1997a,b) have had a great effect on a lot of researches
concerning the decomposition by subpopulations of the Gini concentratio ra-
tio. Several approaches have been proposed to decompose inequality indexes
by sources. For instance, Rao (1969), Lerman and Yitzhaki (1984, 1985) and
Radaelli and Zenga (2005) proposed different methods to decompose the Gini
index by sources. Some other papers on the decompositions of inequality in-
dexes are Mehran (1975), Mookherjee and Shorrocks (1982), Mussard (2004),
and more recently, Radaelli (2010), Frosini (2012), Ebert (2010), Fiori and
Porro (2020), Arnold and Sarabia (2018), Porro and Zenga (2021).

Recently, Arcagni (2017), and Porro and Zenga (2020) have proposed the
decomposition by sources and by subpopulations of Zenga-84 inequality index,
respectively.

Many papers dealing with the decompositions of inequality indexes follow
the approach proposed in Shorrocks (1980, 1982, 1984). In these three papers
some constrict hypotheses about the decomposition procedure are assumed, in
analogy to the classical variance decomposition. The result is a very restricted
class of ”decomposable” inequality measures, which excludes many largely-
used inequality indexes as the Gini coefficient and the Bonferroni index, just
to mention two of them. To overcome this issue, many authors have followed
a different approach.

In the recent years Zenga and Valli (2017, 2018) have proposed a joint
decomposition, by sources and by subpopulations simultaneously, for the Bon-
ferroni inequality measures and for the point and synthetic Gini indexes, re-
spectively.

In this paper we propose an innovative joint decomposition by sources and
by subpopulations of the Zenga-84 inequality index, based on the relation-
ships between population quantiles and income quantiles, introduced in Zenga
(1984).

The same author proposed a new inequality index some years later, with
different properties (Zenga, 2007). Nevertheless, we decided to use the Zenga-
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84 index, because in the literature there is no joint decomposition for such
index. The aim of this paper is therefore to fill this gap. We highlight that
an exaustive comparison with decomposition procedures of other indexes is a
very interesting topic, but it is out of scope of this paper. In the literature,
it is well-known that the Zenga-84 index satisfies all the usual requirements
of an inequality indicator and it has shown to be a valid alternative to the
most common inequality indexes. We refer to Berti and Rigo (1995), Zenga
(1990, 1993), Porro and Zenga (2020) and references therein for a more de-
tailed revision of its properties, for all the proofs, and for a review of its im-
pact in the literature. Here it is worth to mention just some papers: Belzunce
et al. (1995), Fernandez Morales et al. (1996), Aly and Hervas (1999), Bertoli-
Barsotti (2001), Kleiber and Kotz (2003), Berti and Rigo (2006), Jedrzejczak
(2013), Jedrzejczak and Kubacki (2013), Arnold (2015), Jedrzejczak (2015),
and Arnold and Sarabia (2018).

Among the properties of the Zenga-84 index ζ, here we want to recall that
it has been empirically observed that ”...within the most common degrees
of concentration the ζ index is more sensitive than the Gini index” (Zenga,
1984). In particular, it has been recognized to be smaller than the Gini index
G whenever G < 0.33 and bigger (than the Gini index) whenever G > 0.362
(see Zenga, 1984). Just to provide a practical example, taking into account
that the range of the Gini index for the 32 countries in European Union is
the interval [0.209, 0.396] (Eurostat, 2018), it follows that the range of the
values assumed by ζ for the EU countries of 2018 is larger than 0.187, and
therefore the ”compression effect” due to the Gini index is dulled, allowing
easier comparisons among the countries.

The ζ index is suitable, for its additive structure, to be easily decomposed
by sources and by subpopulations. In this paper we describe a new joint de-
composition that takes into account simultaneously the sources and the sub-
populations. The joint decomposition presented allows to split the contribution
related to each source among the subpopulations: in this way it permits deeper
and more detailed analyses, since it is possible to evaluate the contribution to
each source due to each subpopulation. This result is original and informative,
since it allows to identify the contribution to the overall inequality of each
source due to each subpopulation. To better explain the potentialities of our
approach, we propose an application in a current and sensitive topic: we an-
alyze the CO2 emission distribution in different European countries (OECD
and non-OECD) and referring to different sources (coal, oil, natural gas, and
other). More in details, we are interested in evaluating the overall emission
inequality and in jointly decomposing such inequality by sources and by sub-
popolations.

The paper is organized as follows. Section 2 describes some useful prelim-
inaries, definitions, and notation. Section 3 is devoted to the explanation of
the joint decomposition. Section 4 presents the results of the decomposition
of inequality in CO2 emissions. Finally, section 5 ends up with some final
remarks.
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2 Preliminaries and notation

First of all, it is useful to recall the definitions of the Zenga-84 inequality
function Z(p) and of the inequality index ζ, introduced in Zenga (1984). For
further details, see the literature review on them in Porro and Zenga (2020).

Definition 1 Let Y be a non-negative continuous random variable with prob-
ability density function f , distribution function F , and positive finite expec-
tation µ. Let Q(y) be the first incomplete moment of Y , defined by Q(y) =
1
µ

∫ y

0
tf(t)dt. Then the Zenga-84 inequality function Z(p) of Y is defined as

the relative variation of y(p) with respect to y∗(p):

Z(p) =
y∗(p) − y(p)

y∗(p)
= 1−

y(p)

y∗(p)
p ∈ [0, 1] (1)

where y(p) and y∗(p) are the generalized inverse functions of F and Q, respec-
tively:

y(p) =

{
inf{x : F (x) ≥ p} if p ∈ (0, 1]
inf{x : F (x) > p} if p = 0

y∗(p) =

{
inf{x : Q(x) ≥ p} if p ∈ (0, 1]
inf{x : Q(x) > p} if p = 0.

The inequality index ζ of Y is the area below the Z(p) function, and it is
defined as

ζ =

∫ 1

0

Z(p)dp.

The definition of the function Z(p) and of the index ζ for a discrete random
variable is straightforward. In the remainder of the paper we focus on such kind
of variables, therefore the following definition deserves to be reported.

Definition 2 Let {(yh, nh.);h = 1, 2, ...r} be the non-negative distinct and
ordered values assumed by the statistical variable Y (with y1 < y2 < · · · <
yr) and their frequencies, observed on N units of a finite population: N =∑r

h=1 nh.. Let M(Y ) be the positive mean of Y , and let F and Q denote the
distribution function and the first incomplete moment of Y , respectively:

F (y) =
∑

{h : yh≤y}

nh.

N
, Q(y) =

∑
{h : yh≤y}

yhnh.

N ·M(Y )
.

In this case the function Z(p) is a step function, and it is defined as in the
continuous case, by formula (1). Its support is finite and the index ζ is the
sum of the areas of NC rectangles:

ζ =

NC∑
t=1

Ztwt (2)

where wt and Zt denote the basis and the height of the tth rectangle, respec-
tively.
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It is worth remarking here that ζ is bounded as it takes on values in the in-
terval (0, 1). In particular, it tends to 0 as the distribution approaches the
equalitarian case (where all the values are equal), and tends to 1 as the distri-
bution approaches the case of maximum inequality (where only one value is
not zero). The Z(p) curve is constant as the distribution of the values follows a
lognormal law (Zenga, 1984): this property is important since many papers in
the literature prove that several economical phenomena, like for example the
consumptions (Battistin et al., 2009), have a (quite) lognormal distribution.
The issue of the distribution unicity for a given Z(p) curve has been already
investigated in the litearature: it has been found that the Zenga-84 curve of a
random variable X does not always determine the distribution of X up to a
scale factor (Arnold, 2015). This issue should be taken into account whenever
the distribution of X is obtained from the Z(p) curve: see also Arnold and
Sarabia (2018) for further details.

As detailed in Porro and Zenga (2020), the calculation of the index ζ can
be simplified by using a procedure based on the cograduation table of Y , which
makes explicit an association rule between two discrete variables. For further
examples and details see also Zenga (1991) and Arcagni (2017).

The Appendix A provides an example about how data must be pre-processed,
and how the inequality index ζ can be computed through the filling of the
cograduation table.

The computation of the cograduation table allows to obtain the number
NC of cells with non-zero weight. Each one of them is associated with a value
of the counter t (with t = 1, 2, . . . , NC), a weight wt, and two values yτ(t) and

y∗τ∗(t), providing Zt =
y∗
τ∗(t)−yτ(t)

y∗
τ∗(t)

, as defined in formula (1), which can be used

to calculate the index ζ by formula (2). In this setting, the functions τ∗(t) and
τ(t) map t into the position of the values of Y ∗ and Y associated to the tth

cell with non-zero weight, respectively.
In the following we briefly report the main results about two decomposition

procedures of the index ζ already proposed in the literature: the former one,
introduced in Arcagni (2017), is about sources, while the latter, described in
Porro and Zenga (2020), deals with subpopulations. Both are presented here
according to the described notation.

Theorem 1 (Decomposition by sources) Let the statistical variable Y be
the sum of c sources (with c ≥ 2), meaning that Y =

∑c
j=1 Xj. Then the

inequality index ζ can be decomposed as

ζ =

NC∑
t=1

c∑
j=1

Ht(Xj)wt =

c∑
j=1

H·(Xj) (3)

where:

- H·(Xj) =
∑NC

t=1 Ht(Xj)wt is the contribution to the total inequality of the
source Xj (with j = 1, . . . c);
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Table 1 Distribution of the variable Y , according to the k subpopulations

Y
Subpopulations

S1 S2 · · · Sk

y1 n11 n12 · · · n1k n1.

y2 n21 n22 · · · n2k n2.

...
...

...
. . .

...
...

yr nr1 nr2 · · · nrk nr.

n.1 n.2 · · · n.k N

- Ht(Xj) =
x̄∗
jτ∗(t)−x̄jτ(t)

y∗
τ∗(t)

is the contribution to the pointwise inequality mea-

sure Zt of the source Xj (with j = 1, . . . c);
- x̄jτ(t) (x̄∗

jτ∗(t)) is the arithmetic mean of all the values of Xj which con-

cur by the different combinations of the sources to the value yτ(t) (y∗τ∗(t),

respectively).

Remark 1 We have to highlight the importance of x̄∗
jτ(t) and x̄jτ(t), since real

dataset may show repeated values: it can happen that different units have the
same value of the total variable Y , but different values of the c sources (for
further details see Section 6 in Arcagni, 2017).

Theorem 2 (Decomposition by subpopulations) Let Y be a statistical
variable evaluated on a finite population of N units, partitioned into k sub-
populations (k ≥ 2). Let nhl denote the frequency of the value yh in the lth

subpopulation, with h = 1, . . . r and l = 1, . . . , k (see Table 1). Then the in-
equality index ζ can be decomposed as

ζ =

k∑
l=1

k∑
g=1

NC∑
t=1

Ztlgwt =

k∑
l=1

NC∑
t=1

Ztl·wt =

k∑
l=1

k∑
g=1

Z·lg =

k∑
l=1

Z·l· (4)

where:

- Z·l· =
∑k

g=1

∑NC
t=1 Ztlgwt is the contribution to the total inequality of the

subpopulation Sl (with l = 1, . . . k);

- Z·lg =
∑NC

t=1 Ztlgwt is the contribution to the total inequality related to the
couple of the subpopulations Sl and Sg (with l = 1, . . . k, and g = 1, . . . k);

- Ztl· =
∑k

g=1 Ztlg is the contribution to the pointwise measure Zt of the
subpopulation Sl (with l = 1, . . . k);

- Ztlg =
y∗
τ∗(t)−yτ(t)

y∗
τ∗(t)

· nτ∗(t)g

nτ∗(t)·
· nτ(t)l

nτ(t)·
is the contribution to the pointwise measure

Zt of the couple of the subpopulations Sl and Sg (with l = 1, . . . k, and
g = 1, . . . k).

3 Joint decomposition

In this section we present a new multi-decomposition procedure, that can be
considered a merge of the two decompositions described in the previous sec-
tion. The aim is to provide a joint decomposition, which considers together
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sources and subpopulations. Like the other two, the proposed procedure fol-
lows a two-step approach: in particular, the first step is the decomposition of
each inequality pointwise measure, taking into account c sources and k sub-
populations. This means that each Zt is split in c×k values, one for each source
in each subpopulation. At the second step, by averaging, the decomposition of
the inequality index is obtained.

Theorem 3 (Joint decomposition) Let Y be a statistical variable evaluated
on a finite population of N units, partitioned into k subpopulations; and let Y
be the sum of c sources. Then the inequality index ζ can be decomposed as:

ζ =

c∑
j=1

k∑
l=1

k∑
g=1

NC∑
t=1

Htlg(Xj)wt =

c∑
j=1

k∑
l=1

NC∑
t=1

Htl·(Xj)wt

=

c∑
j=1

k∑
l=1

k∑
g=1

H·lg(Xj) =

c∑
j=1

k∑
l=1

H·l·(Xj). (5)

where

- H·l·(Xj) =
∑k

g=1

∑NC
t=1 Htlg(Xj)wt is the contribution to the total inequal-

ity due to the source Xj related to the subpopulation Sl;

- H·lg(Xj) =
∑NC

t=1 Htlg(Xj)wt is the contribution to the total inequality due
to the source Xj related to the couple of the subpopulations Sl and Sg;

- Htl·(Xj) =
∑k

g=1 Htlg(Xj) is the contribution to the pointwise measure Zt

due to the source Xj related to the subpopulation Sl;

- Htlg(Xj) =
x̄∗
jτ∗(t)−x̄jτ(t)

y∗
τ∗(t)

· nτ∗(t)g

nτ∗(t)·
· nτ(t)l

nτ(t)·
is contribution to the pointwise

measure Zt due to the source Xj related to the couple of the subpopulations
Sl and Sg.

The detailed proof of Theorem 3 can be found in the Appendix B.

Remark 2 It is worth mentioning that the decomposition described in formula
(5) allows to split the value of H·(Xj) and of Ht(Xj), both defined in Theorem
1, in two k × k matrices, with entries H·lg(Xj) and Htlg(Xj), respectively.

Remark 3 From the joint decomposition, since all the sums are finite, their
order can be exchanged, and the decomposition by subpopulation described
in Theorem 2 can be easily achieved, by remarking that:

Z·l· =

c∑
j=1

k∑
g=1

NC∑
t=1

Htlg(Xj)wt l = 1, . . . , k.

For the same reason, also the decomposition by sources described in The-
orem 1 can be obtained, by noting that:

H·(Xj) =

k∑
l=1

k∑
g=1

NC∑
t=1

Htlg(Xj)wt j = 1, . . . , c.
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4 Decompositions of CO2 emissions

In 2008 the first commitment period of the Kyoto Protocol began. Thirty-seven
industrialized countries and the European Union are committed to reduce their
emissions by an average of 5% compared to 1990 by 2012. In this analysis we
evaluate the situation of European countries in 2015.

Data are from the IEA, the International Energy Agency (2017). The
datasets used in the applications and the R-code to replicate the analyses
can be provided to the interested researchers upon request.

Following the approach proposed by Chien and Hu (2007) we divided the
EU countries ”...into OECD (developed) economies and non-OECD (devel-
oping) economies. The OECD members are considered more developed than
other economies in the world, and so we use the status of membership in
OECD as a proxy variable for being a developed economy”. In the non-OECD
subpopulation also some countries of the former USSR and Yugoslavia are
included. Mussini and Grossi (2015) for the first time analyzed the inequality
for CO2 emissions in such countries. This analysis can provide useful informa-
tion in case of enlargement of the EU through the inclusion of new members,
since the EU neighboring countries are usually the optimal candidates. Our
attention is devoted to the inequality in CO2 emissions, by simultaneously con-
sidering two different aspects: the first one is the membership of the country in
OECD, the second one pertains the sources which generate the CO2 emissions.
The considered sources are: Coal, Oil, Natural Gas and Other ; Other includes
industrial and non-renewable municipal waste.

As already mentioned, we measure the inequality by the Zenga-84 index
ζ. We propose a new joint decomposition by sources and by subpopulations,
to better analyze simultaneously the inequality in each subgroup of countries
and for each emission source, by applying the procedure described in Section
3. From that, as showed in the Remark 3, we can obtain as particular cases the
decomposition by sources, proposed in Arcagni (2017), and the decomposition
by subpopulations, introduced in Porro and Zenga (2020).

We consider 51 countries: 26 of them are OECD countries, the other 25
non-OECD. See Appendix C for the complete lists of the members of the
two subpopulations. Tables 2 and 3 show some descriptive statistics of the
examined variables: all of them are expressed in tonnes CO2 per capita. The
last column of Table 2 reports the value of the Zenga-84 inequality index,
computed for each source, singularly considered, by applying formula (2). The
Z(p) curves for the single four sources, and the one of the Total Emissions
are showed in Figure 1. All these curves have been computed by following the
formula (2). The amount of CO2 emissions due to the source Other is not
deeply analyzed in the following discussion, since it just represents a residual
part of the Total Emissions.

For the whole population of the countries, the mean of the Total Emissions
is equal to 5.999 tonnes per capita, and the standard deviation (SD) is 3.496;
the median is lower than the mean, denoting a positive asymmetry. Indeed,
the distribution of all the variables in both the subpopulations have positive
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Fig. 1 The Z(p) curve of the Total Emissions (in red), and of the analyzed sources, singu-
larly considered.

Variable Min Max Median Mean SD ζ
Coal (X1) 0 8.548 1.181 1.742 1.930 0.6750
Oil (X2) 0.230 17.390 2.357 2.735 2.790 0.4522
Natural Gas (X3) 0 9.324 1.170 1.431 1.604 0.6315
Other (X4) 0 0.435 0.035 0.091 0.119 0.7513
Total Emissions (Y ) 0.510 17.390 5.450 5.999 3.496 0.2707

Table 2 Descriptive statistics of the whole population of countries.

Variable Subpopulation Min Max Median Mean SD

Coal (X1)
OECD 0.060 8.548 1.328 1.998 1.954

non-OECD 0 6.908 0.323 1.476 1.907

Oil (X2)
OECD 1.194 11.603 2.845 3.152 1.949

non-OECD 0.230 17.390 1.212 2.303 3.446

Natural Gas (X3)
OECD 0 3.672 1.269 1.434 0.874

non-OECD 0 9.324 0.881 1.427 2.136

Other (X4)
OECD 0 0.435 0.124 0.158 0.126

non-OECD 0 0.260 0 0.021 0.056
Total OECD 3.460 15.470 6.095 6.742 2.691
Emissions (Y ) non-OECD 0.510 17.390 3.800 5.227 4.087

Table 3 Descriptive statistics of the two subpopulations (OECD and non-OECD) of coun-
tries.

asymmetry. The most important source of CO2 emissions is Oil (which repre-
sents on average the 45.6%), followed by Coal (29%) and Natural Gas (23.8%).
Oil is the source with the highest variability, meaning that it is the source with
the most significant value differences: this can be noted also by remarking that
Oil is the source with the biggest range.
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From Table 3 it arises that for OECD countries the mean of per capita
emissions is equal to 6.742 tonnes, with a range of 12.010 and a SD equal to
2.691; the median is close to the mean. Also in this subpopulation, Oil has
the highest contribution to the Total Emissions. The lowest variability can be
found for the source Natural Gas. The values of all the emissions are higher on
average for OECD countries than for the whole population of countries, but
the ranges and the variability are lower, denoting a more similar situation in
OECD countries.

Conversely, the mean of emissions for non-OECD countries is equal to
5.227, lower than the overall mean. The median equal to 3.800 and the high
value of SD (4.087) denote that there is a higher variability in the emissions
in the non-OECD countries, with a very important positive asymmetry in the
distribution. For the non-OECD countries, the more severe positive asymme-
tries correspond to the sources Coal and Oil.

The difference of the means for the Total Emissions in OECD and non-
OECD countries is not surprising, taking into account the different levels of
development in the two subpopulations.

The behavior of the source Natural Gas is particular: the mean is very
similar for OECD countries (1.434) and non-OECD (1.427), but the median
for non-OECD countries is remarkable lower than the one for OECD countries.
Furthermore, the comparison of the SD for the two subpopulations allows to
assert that the highest variability in the CO2 emissions from Natural Gas is for
non-OCED countries: also this can be related to more similar standards and
restrictions adopted in OECD countries. An analogous interpretation holds
for the source Oil, with a SD equal to 3.446 for non-OECD countries. The
variability for Coal is similar for OECD and non-OECD. The comparison of
the mean and the median suggests the presence of many non-OECD countries
with very low levels of emissions due to Coal. Figure 2 displays the graphical
representations of the source distributions for the two subpopulations.

The calculation of the cograduation matrix provides a number NC = 101
of cells with non-zero weight. The value of Zenga-84 inequality index for the
Total Emissions related to all the countries is equal to ζ = 0.2707. This value
is not high and it denotes a moderate level of inequality in CO2 emissions
for the total analyzed population. For this reason, we do not expect to find
in our analysis a subpopulation and/or a source with a high level of emission
inequality.

By applying the decomposition proposed in Theorem 3, we obtain four (as
the number of the considered sources) 2×2 matrices, each of them representing
the contribution to the total inequality due to each source. They are all stored
in Table 4.

In each matrix, the sum of the values in the central column represents the
contribution due to the corresponding source to the total inequality related
to subpopulation of OECD countries: the most relevant is due to the source
Coal, with a value of 0.0692. The sum of the values in the last column is
the contribution related to the non-OECD countries: the most significant one
(that is equal to 0.0982) is due to the source Oil. It is worth remarking that
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Fig. 2 Boxplots of the variable Total emissions and of the sources Coal, Oil, and Natural
Gas for OECD and non-OECD countries.

Coal (X1) OECD non-OECD Oil (X2) OECD non-OECD
OECD 0.0470 -0.0185 OECD 0.0189 0.0608

non-OECD 0.0222 0.0326 non-OECD 0.0087 0.0374
Total 0.0692 0.0141 Total 0.0276 0.0982

Natural Gas (X3) OECD non-OECD Other (X4) OECD non-OECD
OECD 0.0108 0.0211 OECD 0.0013 0.0064

non-OECD 0.0232 0.0017 non-OECD -0.0029 ≈ 0
Total 0.0340 0.0228 Total -0.0016 0.0064

Table 4 The four 2× 2 decomposition matrices for the CO2 emissions sources.
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Total Emissions (Y ) OECD non-OECD
OECD 0.0780 0.0698

non-OECD 0.0512 0.0717
Contribution to the 0.1292 0.1415
total inequality: Z·l· (47.73%) (52.27%)

Table 5 The decomposition by subpopulations matrix for the total inequality.

Source
Subpopulation Contribution to the

OECD non-OECD total inequality: H·(Xj)

Coal (X1)
0.0692 0.0141 0.0833

(83.07%) (16.93%) (100%)

Oil (X2)
0.0276 0.0982 0.1258

(21.94%) (78.06%) (100%)

Natural Gas (X3)
0.034 0.0228 0.0568

(59.86%) (40.14%) (100%)

Table 6 Partition among the subpopulations of the contributions of the sources.

three values:

H·21(X1) = −0.0185, H·12(X4) = −0.0029, H·1·(X4) = −0.0016

turn out to be negative: this can happen in the joint decomposition, because
for all t, y∗τ∗(t) is always greater or equal to yτ(t) (and therefore Zt ≥ 0),
but it is not true that x̄∗

jτ∗(t) is always greater or equal to x̄jτ(t). Here the

value H·1·(X4) = −0.0016 means that the source Other (X4) has a mitigating
impact on the total inequality in the subpopulation OECD.

From the joint decomposition, the decomposition by subpopulations can
be easily achieved. By summing the four matrices in Table 4 we obtain the
decomposition by subpopulations matrix in Table 5, with the values of Z·1· =
0.1292 for OECD countries, and Z·2· = 0.1415 for non-OECD ones. They show
that the contribution to the total inequality of CO2 emissions is higher for non-
OECD countries than for OECD ones, which adopt a more similar behavior,
since they must follow shared and more restrictive guidelines.

If we increase the depth of the analysis, we can easily obtain the Table 6
from the data in Table 4: it contains the repartitions among the subpopulations
of the contribution due to each source. From the Figure 3 it can be seen
that such repartitions are very different: for the source Oil, and for the Total
Emissions, the most relevant part is due to the non-OECD countries, while
for the other sources the opposite is true. An interpretation is that the sources
Coal and Natural Gas contribute to the total inequality with a more relevant
weight in the OECD countries than in the other countries; while the source Oil
counts much more (almost four times more) in the non-OECD countries. We
would like to stress that all these information cannot be obtained by the two
decompositions by sources and by subpopulations: only a joint decomposition
allows to reach such deep detail level. This analysis can be very useful, since it
indicates where the policymakers should act to reduce the inequality of CO2
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Coal Oil Natural Gas Total Emissions

OECD
non−OECD

Contributions of the sources

0.
0

0.
2

0.
4

0.
6

0.
8

Fig. 3 Representation of the partition among the subpopulations of the contributions of
the sources.

emissions: it identifies exactly which source and which group of countries need
an action.

An important decomposition is the classical one, in Between and Within
components. Summing all the values in the four principal diagonals of the
previous four matrices in Table 4 of the joint decomposition, we obtain the
Within component; summing all the remaining values, we calculate the Be-
tween component. These quantities are respectively equal to:

ζW = 0.1497 and ζB = 0.121.

The Within component represents the 55.3% of the total inequality and the
Between one the other 44.7%. In other words, the contribution to the total
inequality due to comparisons of values in the same subpopulations is higher
than the part related to the comparisons of countries in different subpopula-
tions. This is a quite surprising result, since we could expect a more similar
behavior within the two subpopulations. Probably, the sources have differ-
ent performance into the two subpopulations and they contribute to obtain
a Within component higher than the Between one. The joint decomposition
performed can help to investigate this aspect, since it allows to assess the
contribution to the Within and Between components due to each source.

From the matrices in Table 4, we can obtain the Table 7 and the chart
in the Figure 4. It is easy to see that the repartitions in Within and Be-
tween components are very different for the four sources: the contribution of
the source Coal is almost totally due to comparisons of values in the same
subpopulations, while for the other sources, the disparity across the subpopu-
lations, due to comparisons of values in different subpopulations, counts more.
As expected, the repartition of the Total Emissions Y is a sort of average of
those of all the sources.
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Variable
Component Contribution to the

Within Between total inequality: H·(Xj)

Coal (X1)
0.0796 0.0037 0.0833

(95.55%) (4.45%) (100%)

Oil (X2)
0.0563 0.0695 0.1258

(44.75%) (55.25%) (100%)

Natural Gas (X3)
0.0125 0.0443 0.0568
(22%) (78%) (100%)

Other (X4)
0.0013 0.0035 0.0048

(27.08%) (72.92%) (100%)

Total Emissions (Y )
0.1497 0.121 0.2707
(55.3%) (44.7%) (100%)

Table 7 Within and Between components of the contribution related to each source.

Coal Oil Natural Gas Other Total Emissions

Within
Between

Within and Between components of the contributions of the sources

0.
0

0.
2

0.
4

0.
6

0.
8

Fig. 4 Representation of the partition among Within and Between components of the
contributions of the sources.

From the joint decomposition, the decomposition by sources can also be
achieved, identifying the contribution to the total inequality due to each
source: the values obtained are reported in Table 8. From such data, it arises
that the highest contribution to the total inequality of Total Emissions is due
to the source Oil (for the 46.5%); Coal and Natural Gas follow with percent-
ages equal to 30.8% and 20.9%, respectively. All these values regards the whole
population: we can achieve more specific information, at subpopulation level,
by using the results of the joint decomposition. From Table 4, the Table 9 can
be filled. The advantage is that the contribution of each source is split among
the subpopulations: in other words, we can assess the contribution of each
source in each subpopulation. The data, illustrated in the Figure 5, show that
the source Oil largely dominates the others in the contribution to the inequal-
ity in non-OECD countries (with 69.40%), while in OECD ones its relevance is
much reduced (21.36%). The most important source in the OECD countries is
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Variable
Contribution to the

total inequality: H·(Xj)

Coal (X1)
0.0833
(30.8%)

Oil (X2)
0.1258
(46.5%)

Natural Gas (X3)
0.0568
(20.9%)

Other (X4)
0.0048
(1.8%)

Total Emissions (Y )
0.2707
(100%)

Table 8 The decomposition by sources matrix for the total inequality.

Variable
Subpopulation

OECD non-OECD

Coal (X1)
0.0692 0.0141

(53.56%) (9.97%)

Oil (X2)
0.0276 0.0982

(21.36%) (69.40%)

Natural Gas (X3)
0.034 0.0228

(26.32%) (16.11%)

Other (X4)
-0.016 0.0064

(-1.24%) (4.52%)

Total Emissions (Y )
0.1292 0.1415
(100%) (100%)

Table 9 Partition among the sources of the contributions of the subpopulations.

Coal (53.56%): in non-OECD countries, the role of this source is very different,
since it represents only the 9.97% of the contribution of that subpopulation.
As expected, similarly as before, the repartition of the contributions of the
whole population is in the middle between those of the two subpopulations.

5 Conclusions

The contribution of the article is twofold. First, we introduce a joint decom-
position of Zenga-84 inequality index ζ, splitting its value by sources and by
subpopulations, simultaneously. This result generalizes the decompositions of
such index, already introduced in the literature.

Second, we analyze the disparity of the CO2 emissions for European coun-
tries in 2015, considering jointly the sources (Coal, Oil, Natural Gas, and
Other) and the development level of the countries. For this task we use the ζ
inequality index, since it allows to evaluate also little changes in inequality, ob-
served in different situations. Applying the decomposition by subpopulations,
we can argue that the contribution to the inequality of CO2 emissions is higher
for non-OECD countries (Z·2· = 0.1415) than for OECD (Z·1· = 0.1292): per-
haps that is caused by more similar standards and restrictions that OECD
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OECD non−OECD All countries
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Fig. 5 Representation of the partition among the sources of the contributions of the sub-
populations.

countries agreed to respect. The decomposition by sources shows that the
most relevant contribution to the inequality in CO2 emissions is due to the
source Oil (46.5%), followed by Coal (30.8%) and Natural Gas (20.9%). The
proposed joint decomposition allows a deeper investigation, because it high-
lights that the behavior of the sources in each subpopulation is different, and
specularly the partition of the subpopulations in each source is dissimilar. It
shows indeed that for OECD countries the first source of the disparity in CO2

emissions is Coal, while for non-OECD countries is Oil. This information pro-
vides to the policymakers the intervention areas to be considered for reducing
the inequality of CO2 emissions. In conclusion, supported by the information
gain obtained by the multi-decomposition, we believe that the proposed pro-
cedure can be considered a valuable methodology that can help to improve
the analysis of a large number of real and complex phenomena.

A Example of pre-processing data procedure, computation of the
cograduation table, and calculation of the index ζ

The starting point is the original data matrix, where the values of the variable
Y and of the sources are stored, according to the splitting among the subpop-
ulations. A numerical example is in the Table 10, containing N = 20 units,
from k = 3 different subpopulations, and the values of the variable Y , ob-
tained by the sum of c = 2 sources (labelled by X1 and X2). For each unit are
reported in the last three columns the indicator variables (Subpop1, Subpop2
and Subpop3), with value equal to 1 if the unit belongs to the corresponding
subpopulation and zero otherwise.
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i Y X1 X2 Subpop1 Subpop2 Subpop3
1 0 0 0 1 0 0
2 0 0 0 0 0 1
3 0 0 0 1 0 0
4 0 0 0 0 1 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1
7 0 0 0 0 0 1
8 10 5 5 0 1 0
9 10 9 1 0 1 0
10 10 4 6 0 1 0
11 15 10 5 0 1 0
12 15 2 13 0 1 0
13 15 6 9 0 0 1
14 15 3 12 0 1 0
15 15 9 6 1 0 0
16 15 6 9 1 0 0
17 24 20 4 1 0 0
18 24 14 10 0 1 0
19 24 11 13 0 1 0
20 28 10 18 1 0 0

Total: 6 10 4

Table 10 Original Data Matrix.

yh nh. x̄1h x̄2h S1 S2 S3

0 7 0 0 2 2 3
10 3 6 4 0 3 0
15 6 6 9 2 3 1
24 3 15 9 1 2 0
28 1 10 18 1 0 0

Total: 20 6 10 4

Table 11 Derived Data Matrix.

Now, the data can be easily synthetized in Table 11, which consists of the fre-
quency distribution of Y and the frequencies nhl regarding the subpopulations
(as in Table 1). The two central columns (denoted by x̄1h and x̄2h) contain the
averages of the values of each source X1 and X2, corresponding to the same
value of yh (cf. Section 6 in Arcagni, 2017).

By using the first two columns of Table 11, the cograduation table can be
obtained. The first step is a table with in the first column the different positive
values y∗i and in the last column the corresponding shares:

si =
yini·∑r

h=1 yhnh·
.

The bottom row is filled with the values yh, and the first row with the corre-
sponding relative frequencies freq(yh):

freq(yh) =
nh·

N
.
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The inner cells are filled using the following procedure. First of all, the cell
in the lower left-hand corner of the table, corresponding to the couple (y∗1 =
10, y1 = 0) is filled with s1 = 0.136. After that, the second cell to be completed
is the one corresponding to the couple (y∗2 = 15, y1 = 0). There, it is allocated
0.214, which is the smallest of two values: s2 = 0.409 and the “remaining
frequency” of y1 (0.35 − 0.136 = 0.214). At this point the first column is
saturated, since all the first relative frequency freq(y1) = 0.35 has been used.
Then the procedure moves to the adjacent cell, corresponding to the couple
(y∗2 = 15, y2 = 10). Using the same rule as before, the cell is filled with 0.15,
since 0.15 is the minimum between the “remaining share” of y∗2 (0.409−0.214 =
0.195) and the frequency of y2, which is 0.15. Then the procedure moves to the
cell on the right (y∗2 = 15, y3 = 15), and it is filled by the remaining share of s2:
0.409− 0.214− 0.15 = 0.045, and so on. The procedure stops when the upper
right-hand cell is filled with the last frequency freq(y5) = 0.05. The result is
the following table in which a weight is associated to each couple (y∗i , yh).

freq(yh)
0.35 0.15 0.30 0.15 0.05 1

28 - - - 0.078 0.05 0.128
24 - - 0.255 0.072 - 0.327

y∗i 15 0.214 0.15 0.045 - - 0.409 si
10 0.136 - - - - 0.136

0 10 15 24 28
yh

In this cograduation table, there are NC = 8 cells with non-zero weight.
The inequality index ζ can be calculated, using the information provided by
Table 12, where:

- t counts the cells with non-zero weight;
- wt is the weight associated to the t-th cell;
- pt =

∑t
m=1 wm is the cumulative weight;

- y∗τ∗(t) and yτ(t) are the values of Y ∗ and Y associated to the t-th cell with
non-zero weight, since the two functions τ∗ and τ are defined by:

τ : {1, 2, . . . , 8} → {1, 2, . . . , 5}
t 7→ τ(t)

τ∗ : {1, 2, . . . , 8} → {1, 2, . . . , 5}
t 7→ τ∗(t)

such that yτ(t) and y∗τ∗(t) are the values of Y and Y ∗, respectively, corre-
sponding to the t-th cell with non-zero weight of the cograduation table;

- Zt is the value assumed by the function Z at the point pt, calculated
through formula (1).

Finally, the sum of the values in the last column of Table 12 provides the value
of the index ζ:

ζ =

8∑
t=1

Ztwt = 0.5317634. (6)
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t wt pt y∗
τ∗(t) yτ(t) Zt Ztwt

1 0.136 0.136 10 0 1 0.136
2 0.214 0.35 15 0 1 0.214
3 0.15 0.5 15 10 0.333 0.075
4 0.045 0.545 15 15 0 0
5 0.255 0.8 24 15 0.375 0,095625
6 0.072 0.872 24 24 0 0
7 0.078 0.95 28 24 0.1428 0,0111384
8 0.05 1 28 28 0 0

1 0.5317634

Table 12 Calculation of the values of the function Z and the index ζ.

B Proof of Theorem 3.

As stated in Theorem 1, we can decompose the pointwise inequality measure
Zt by sources as follows:

Zt =
y∗τ∗(t) − yτ(t)

y∗τ∗(t)

=

c∑
j=1

x̄∗
jτ∗(t) − x̄jτ(t)

y∗τ∗(t)

=

c∑
j=1

Ht(Xj) (7)

where Ht(Xj) is the contribution to Zt of Xj , x̄jτ(t) and x̄∗
jτ∗(t) are the arith-

metic means of all the values of Xj which concur by the different combinations
to the values yτ(t), and y∗τ∗(t), respectively.

Consider now the k subpopulations: by applying the decomposition pro-
cedure described in Theorem 2 at the contributions Ht(Xj), we can obtain a
k × k matrix for each value Ht(Xj). In particular, for each t ∈ {1, . . . , NC},
and for each l ∈ {1, . . . , k}, let

p(l|t) =
nτ(t)l

nτ(t).

be the relative frequency (corresponding to the value yτ(t)) of the subpopula-
tion l, and for each g ∈ {1, 2, . . . , k} let

a(g|t) =
nτ∗(t)g

nτ∗(t).

be the relative frequency (corresponding to the value y∗τ∗(t)) of the subpopu-

lation g. By setting these weights as marginal distributions, the inner cells of
the following table can be fulfilled by the products of the marginal cells:

y
S1 S2 · · · Sk

y∗

S1 a(1|t)p(1|t) a(1|t)p(2|t) · · · a(1|t)p(k|t) a(1|t)
S2 a(2|t)p(1|t) a(2|t)p(2|t) · · · a(2|t)p(k|t) a(2|t)
...

...
... · · ·

...
...

Sk a(k|t)p(1|t) a(k|t)p(2|t) · · · a(k|t)p(k|t) a(k|t)
p(1|t) p(2|t) · · · p(k|t) 1
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It is worth noting that for a fixed t ∈ {1, . . . NC} the aforementioned table is
the same for every j ∈ {1, . . . , c}, since the couple of the values (y∗τ∗(t), yτ(t))
is the same for all the sources.
By replicating this procedure, for each t ∈ {1, · · · , NC}, we can spread the
value of each Ht(Xj) among the subpopulations. We can then assign a value
to each ordered pair of subpopulations (say Sl and Sg), denoted by Htlg(Xj),
which is the portion of the contribution Ht(Xj) related to such ordered couple:

Htlg(Xj) = Ht(Xj)a(g|t)p(l|t). (8)

Now, we can perform the second step of the procedure: it consists of the
aggregation of all the split pointwise inequality measures defined in formula
8. Since it holds that

k∑
l=1

k∑
g=1

Htlg(Xj) = Ht(Xj)

the joint decomposition is achieved:

ζ =

c∑
j=1

H·(Xj) =

c∑
j=1

NC∑
t=1

Ht(Xj)wt =

c∑
j=1

k∑
l=1

k∑
g=1

NC∑
t=1

Htlg(Xj)wt.

C The analyzed subpopulations

Europe OECD countries: Austria, Belgium, Czech Republic, Denmark, Es-
tonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy,
Latvia, Luxembourg, Netherlands, Norway, Poland, Portugal, Slovak Repub-
lic, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom.

Europe non-OECD countries: Albania, Armenia, Azerbaijan, Belarus, Bosnia
and Herzegovina, Bulgaria, Croatia, Cyprus, FYR of Macedonia, Georgia,
Gibraltar, Kazakhstan, Kosovo, Kyrgyzstan, Lithuania, Malta, Republic of
Moldova, Montenegro, Romania, Russian Federation, Serbia, Tajikistan, Turk-
menistan, Ukraine, Uzbekistan.
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