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In the field of fault-tolerant quantum computing, continuous-variable systems can be utilized to protect
quantum information from noise through the use of bosonic codes. These codes map qubit-type quantum
information onto the larger bosonic Hilbert space, and can be divided into two main categories: translational-
symmetric codes, such as Gottesman-Kitaev-Preskill (GKP) codes, and rotational-symmetric codes, including
cat and binomial codes. The relationship between these families of codes has not yet been fully understood.
We present an iterative protocol for converting between two instances of these codes—generalized GKP
(so-called qunaught) states and fourfold-symmetric binomial states corresponding to a zero-logical encoded
qubit—using only Gaussian operations. This conversion demonstrates the potential for universality of binomial
states for all-Gaussian quantum computation and provides a method for the heralded preparation of GKP states.
Through numerical simulation, we obtain GKP qunaught states with a fidelity of over 98% and a probability of
approximately 3.14%, after only two steps of our iterative protocol, though higher fidelities can be achieved with
additional iterations at the cost of lower success probabilities.
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I. INTRODUCTION

In the context of fault-tolerant quantum computing,
among the physical platforms able to host quantum infor-
mation, continuous-variable systems offer a valid alternative
to finite-dimensional ones [1,2]. In fact, by exploiting the
infinite-dimensional Hilbert space associated to each mode
of a bosonic field, it is possible to protect, in a hardware-
efficient manner, the quantum information carriers from the
detrimental effects of noise. In particular, to achieve error
correction using continuous-variable systems, one resorts to
bosonic codes, where qubit-type quantum information is en-
coded redundantly in the larger bosonic Hilbert space [3–7].

A variety of bosonic codes have been introduced so
far [8–10]. At the level of single-mode encoding, two main
families have been considered, endowed with distinct fea-
tures related to their underlying symmetries in the quantum
phase space: translational- and rotational-symmetric codes.
The celebrated codes introduced by Gottesman, Kitaev, and
Preskill (GKP codes) [4] belong to the first class; they display
various attractive features, including the ability to correct
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any error and to allow for universal quantum computation
with Gaussian operations alone, as well as excellent perfor-
mance for sensing [11] and quantum communication [12].
On the other hand, cat [13,14] and binomial [6] codes pos-
sess rotational symmetry [7], which is specifically resilient to
phase-insensitive losses—one of the main sources of noise in
bosonic platforms, in particular in optics—and they have been
instrumental to achieve the first demonstration of quantum er-
ror correction beyond the break-even point [15]. The possible
relations between these two families of codes have not been
uncovered in full. In this work, we focus on binomial and GKP
states, proving that the latter can be heralded from the former
via protocols composed of Gaussian operations alone.

Specifically, GKP states can be introduced as simultaneous
eigenstates of two commuting displacement operators in po-
sition and momentum. The spacing between the peaks can be
chosen such that a two-dimensional code space is available
to encode a qubit [16]. Like GKP states, a grid state [17],
or qunaught state [18], is the simultaneous eigenstate of two
displacement operators in position and momentum, but the
spacing is chosen such that the eigenspace has dimension
one, and therefore no quantum information is encoded (hence
the name qunaught). However, these qunaught states can still
be used for quantum error correction [18,19]. Furthermore, a
Bell pair of GKP states can be obtained by combining two
qunaughts at a beam splitter [18], therefore entailing their
universality for quantum computation with Gaussian opera-
tions alone. The qunaught states can also be used to prepare
three-dimensional cluster states, which support topological
qubit error correction [20]. The protocol that we introduce
here specifically targets qunaught states and uses, as inputs,
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binomial states encoding the logical qubit state |0〉. We high-
light two features of our results.

First, our scheme yields a Gaussian conversion protocol be-
tween two useful and experimentally motivated non-Gaussian
states, while only a handful of examples of such protocols
are available so far [17,21–25]. Indeed, from a theoretical
viewpoint, our protocol demonstrates that binomial states
corresponding to the encoded qubit |0〉 can provide a uni-
versal resource for all-Gaussian quantum computation, in
the sense that they complement probabilistic Gaussian pro-
tocols [26–30] to achieve universality. Previously, it was
only known that binomial |0〉 states provided computational
universality in combination with the preparation of other spe-
cific encoded binomial states (e.g., |+〉 and |H〉), along with
complex non-Gaussian operations necessary to implement
two-qubit gates [7].

Second, our results provide a generation scheme for GKP
states, which could become useful especially in the context
of optics. In general, many protocols have been proposed
with this purpose in a variety of architectures (see, e.g.,
Refs. [31,32], and references therein) and the first experi-
mental demonstrations have been recently achieved in trapped
ions [33] and superconducting microwave systems [34–36].
However, in the context of photonics, where highly scalable
architectures have been achieved [37,38], it is still a challenge
to prepare such GKP states due to the requirement of highly
nonlinear operations. For instance, by exploiting strong inter-
actions of properly shaped free electrons with light, optical
GKP states with squeezing parameter above 10 dB and fideli-
ties above 90%, with corresponding postselection probability
of 10%, could be potentially generated [39]. Using the nonlin-
earity from cross-Kerr interaction, it has been shown that GKP
states with 10 dB squeezing could be generated with average
fidelities of 99.99% and 99.9%, with corresponding success
probabilities of 2.7% and 4.8%, respectively [40].

By substituting nonlinear interactions with proper non-
Gaussian input states, other schemes have been proposed.
In particular, Vasconcelos et al. [21] and Etesse et al. [22]
provided iterative schemes to “breed” (i.e., add iteratively)
peaks of a qunaught state by using as input squeezed cat states
in combination with linear optics and homodyne measurement
with postselection. However, the dependence on measurement
result leads to the success probability decreasing rapidly as the
number of iterations increase. As an improvement over these
protocols, Weigand and Terhal [17] showed that breeding can
be related to phase estimation. After gradually projecting the
input squeezed cat states onto an approximate eigenstate of
the displacement operator as the approximate eigenvalue is
learned through successive iterations of the protocol, a grid
state is generated. This protocol becomes deterministic in the
limit of a large number of iterations. However, it is an open
question whether other input states than squeezed cat states
allow for achieving qunaught states with Gaussian protocols.

The method that we introduce here is inspired by the one
in Ref. [17]. In contrast to the latter, our protocol converts
input binomial states (instead of squeezed cat states) into
a qunaught state. Our protocol projects the input binomial
states onto the eigenstates of the displacement operators in
the directions of both of the quadratures of the field, q̂ and
p̂, yielding a qunaught state. This projection is achieved by

successively measuring the q̂ and p̂ quadratures of the bosonic
field, which progressively transforms the rotational symmetry
into a translational one. We therefore refer to our protocol as
the QP protocol.

The circuit that allows for implementing our protocol is
composed of passive linear optics elements and homodyne
detection, and all the nonlinearity comes from the input
binomial states. As said, such states have been generated
experimentally in microwave cavities [35,41–44]. A pro-
posal for their all-optical experimental generation has also
been given [45], where the nonlinearity necessary to gener-
ate such states is achieved by realizing a measurement of
a non-Gaussian observable through photon-number-resolving
detectors combined with linear optical devices. Similarly,
the method of Ref. [46], achieving arbitrary state generation
based on Gaussian boson sampling combined with postse-
lected photon-number-resolving measurement, could also be
used to produce binomial states. Our protocol is able to gen-
erate qunaught states with 4.95 dB squeezing with >98%
fidelity and success probability of >3%.

This paper is organized as follows. We first review some
background concepts concerning binomial and qunaught
states in Sec. II. Then we introduce our QP protocol in Sec. III.
In Sec. IV, we show through numerical simulations that this
protocol yields qunaught states and we analyze in detail its
performance, characterizing how the fidelity of the generated
states to the target qunaught state, along with its correspond-
ing success probability, depends on various parameters. We
close the paper with a summary and discussion in Sec. V.
The Appendices provide complementary information on the
effect of q̂ and p̂ measurements in the QP breeding protocol
(Appendix A), on the performance and features achieved after
two iterations of the protocol depending on the measurement
outcomes obtained (Appendices B and C), and finally on
how the output fidelity depends on the order of the rotational
symmetry, as well as on the truncation parameter of the input
binomial states (Appendix D).

II. INPUT AND TARGET STATES:
BINOMIAL AND QUNAUGHT STATES

Here we briefly review the definitions of binomial and
qunaught states, i.e., the input and target states, respectively,
of the conversion protocol that we consider.

A. Binomial states

The zero-logical code word of the N-fold binomial codes
is defined as [6,47]

|0N 〉 =
�K/2�∑
k=0

√
1

2K−1

(
K

2k

)
|2kN〉, (1)

where �K/2� is the floor function of K/2, with K the trunca-
tion parameter, and N is the order of the rotation symmetry,
i.e., this state is invariant under a rotation by π/N .

In particular, for the parameter values K = 3 and N = 2,
we have

|ψ0〉 ≡ |02〉 = 1

2
|0〉 +

√
3

2
|4〉, (2)
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FIG. 1. (a) Wigner function of the binomial state, defined in
Eq. (2), that we use as input state. (b) Wigner function of the target
qunaught state, with 4.95 dB effective squeezing.

where we have introduced the notation |ψ0〉 because this
will be the input state of our conversion protocol. This state
encodes the qubit state 0. Note that what is referred to as
binomial state encoding zero-type logical information differs
in different works [e.g., in Refs. [7,45] it corresponds to
1/2|0〉 + √

3/2|1〉 and in Ref. [41] to 1/
√

2(|0〉 + |4〉)]. We
will adopt the definition in Eq. (2) throughout the rest of this
paper. The Wigner function of this binomial state is plotted in
Fig. 1(a).

B. Qunaught states

The qunaught state, also called the grid state, canonical
GKP state, or sensor state, as it allows for detecting small
displacements in phase space [11], is defined as [4]

|ψ〉 ∝
∞∑

t=−∞
e−π�2t2

D̂(t
√

π )Ŝ(�)|0〉, (3)

where Ŝ(�) is the squeezing operator that yields q̂ → q̂� and
p̂ → p̂/�, and D̂(β ) = exp(βâ† − β∗â) is the displacement
operator, with â (â†) the annihilation (creation) operator of
the bosonic mode. With this definition, the qunaught state has
a spacing of

√
2π between its peaks. As already mentioned,

the qunaught state does not contain quantum information, as
it is associated with a one-dimensional subspace.

One measure of the quality of a grid state with density
matrix ρ̂ is the effective squeezing [17]

δ = 1√
π

√
ln

∣∣Tr[D̂(
√

π )ρ̂]
∣∣−2

. (4)

The effective squeezing can be interpreted as a measure of
how close the state ρ̂ is to an eigenstate of the operator
D̂(

√
π ). It is clear from Eq. (4) that for an ideal, infinitely

squeezed grid state one has δ = 0. More generally, for an ac-
tual grid state one has δ = �. In this paper, we will consider a
target qunaught state with squeezing � = 0.4, corresponding
to SGKP = 4.95 dB, where SGKP = −10 log10(�2/�2

0) [48],
with �2

0 = 1/2 the variance of the quadrature noise for the
vacuum. The Wigner function of this qunaught state is visual-
ized in Fig. 1(b).

III. QP BREEDING PROTOCOL

Our iterative protocol for converting input binomial states
into the target qunaught state is inspired by the breeding

FIG. 2. Sketch of our Gaussian conversion protocol with two
iterations. Two binomial states are combined in a real balanced
(50:50) beam splitter. We use the same definition of beam splitter
as in Ref. [23]. We then use a homodyne detector to measure the
first modes’ q̂ quadrature. The second mode yields the output state,
which is used as the input state of the second iteration. In the second
iteration, the measurement is done in the p quadrature to induce the
symmetry of the grid states.

protocol of Ref. [17]. However, instead of starting from input
squeezed-cat states, we start from the binomial state in Eq. (2)
and we consider alternating q̂ and p̂ measurements.

Figure 2 shows the circuit implementing two iterations of
our protocol. In the first iteration, two pairs of input binomial
states |ψ0〉 are entangled in real balanced beam splitters. The
first modes’ position quadratures q̂ are then measured. The
resulting state in the second mode at the output of each beam
splitter becomes the input state of the next iteration. As we
investigate further in Appendix A, each q̂ and p̂ measurement
induces a squeezing on the output state in q̂ and p̂ quadratures,
respectively. Therefore, in the second iteration, we measure
the p̂ quadrature to balance the squeezing strength in the two
directions.

Figure 3 illustrates how to generalize the unit circuit of
Fig. 2 to four iterations of the protocol. The resulting output
state |ψout〉 depends on the measurement outcomes obtained
at each measurement. Extending the protocol to even more

FIG. 3. Sketch of our Gaussian conversion protocol using multi-
ple iterations of the building-block circuit in Fig. 2.
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FIG. 4. Probability of measuring the rescaled outcome q/
√

2π

at the first homodyne measurement in the circuit of Fig. 2 for input
binomial states as defined in Eq. (2). The values q/

√
2π = −0.062

(denoted C, since it is the central peak), q/
√

2π = −0.689 (denoted
S1, since it is a side peak), and q/

√
2π = −0.816 (denoted S2, since

it is a further point close to the side peak) are the most probable
outcomes.

iterations is done following the same pattern from the unit
circuit in Fig. 2.

In what follows, we will be interested in two different
scenarios. In the first scenario, we consider postselection on
values of the homodyne result that are close to zero all the
time. In the second scenario, we allow for postselection on
different values. As we will see, generally speaking, the first
protocol will yield higher fidelity to the target qunaught state,
and lower success probability, than the second protocol.

In order to simulate the measurement in the position and
momentum basis, we construct corresponding observables
within a finite Hilbert space. We truncate the Hilbert space
dimension to 50, consider the matrix representation of the
position and momentum quadratures in the Fock basis, and
diagonalize them numerically to obtain the eigenvectors and
eigenvalues. Since the number operator is phase invariant, the
eigenvalues are the same for q̂ and p̂. In particular, the eigen-
values closest to zero are q/

√
2π = ±0.062 and p/

√
2π =

±0.062. The obtained eigenvectors are used to implement the
projective quadrature measurements considered in this paper.

IV. PERFORMANCE ANALYSIS

In this section, we numerically evaluate the performance
of our QP-breeding protocol, focusing first on the output
state obtained after the first iteration, then on the output state
obtained after two iterations, and finally on the output states
after multiple iterations.

A. First iteration

In Fig. 4, we show the probability distribution of the mea-
surement outcomes of the first q̂ measurement. We can see
that the most probable measurement outcomes correspond to
a central peak and two side peaks. More specifically, the three
highest probabilities are at the central peak C, at the top of a

FIG. 5. Wigner functions of the output states after the first itera-
tion, corresponding to the peak points (a) C, (b) S1, and (c) S2, of the
probability distribution shown in Fig. 4.

side peak S1, at the point next to the top of a side peak S2,
and at their respective mirror images with respect to the axis
q = 0. Together, these measurement outcomes occur with a
probability of 51.56% [49].

The Wigner functions of the state in the unmeasured output
mode for these three cases are shown in Fig. 5. In Fig. 5(a), we
see that the state obtained for a measurement outcome corre-
sponding to the central peak of the distribution displays a grid
structure. However, the fidelity of this state with a qunaught
state is only 73.0% (with a corresponding success probability
of 22.9%). To further increase the fidelity we need to increase
the number of iterations. In Figs. 5(b) and 5(c), we show the
states obtained for measurement outcomes corresponding to
the side peaks S1 and S2, respectively. These states resemble
squeezed cat states. Note that squeezed cat states are the input
states in the protocol of Ref. [17], where p̂ measurements are
used iteratively. This hints that we will approach a qunaught
state in the next iteration with a measurement in p̂ quadrature.

B. Two iterations

Next, we study the output state after two iterations of the
protocol, i.e., after one round of homodyne detection in q̂
and one in p̂ have been performed, as illustrated in Fig. 2.
Since there are 50 possible outcomes for each quadrature
measurement with our truncation of the Fock space, there are
503 = 125 000 possible sequences of measurement outcomes
when using two iterations. However, as we saw in Fig. 4,
the most probable measurement outcomes (the peaks) in the
first iteration are C, S1, S2, and their symmetric points with
respect to the axis q = 0. Furthermore, the symmetry of the
probability distribution along the axis q = 0 allows us to only
consider half of these cases (either positive or negative q).

Moreover, the probability distribution of the p̂-
measurement outcomes in the second iteration displays a
similar structure as for the q̂ measurement at iteration level
one, with well-defined peaks. This is illustrated in Fig. 6 for
the most probable outcomes obtained in the first iteration.
Here we introduce a new label S to indicate a new side peak
in the p̂-measurement probability distribution, as shown in
Fig. 6 [50]. We can thus focus our analysis on the cases that
occur with higher probability, and analyze the corresponding
output states in the unmeasured mode.

In Table I, we show the fidelity and probability of occur-
rence, along with the effective squeezing, for some of the
most probable cases after two iterations. As we can see, in
the case labeled by CCC, where we postselect on the central
peak for each of the measurements, we can reach a fidelity
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FIG. 6. Probability of measuring the rescaled outcome p/
√

2π

in the second homodyne measurement in the circuit of Fig. 2, for
the most probable outcomes of the first homodyne measurement (in
q̂ quadrature), corresponding to the peaks in Fig. 4. The case S1S2

is identical to the case S2S1. The peak S corresponds to the value
p/

√
2π = −0.944.

of 98.34%, and this case occurs with 1.3% probability. The
Wigner function of the corresponding output state is shown
in Fig. 7(c). A slightly higher fidelity, but a lower success
probability, is achieved in the CCS case. All in all, two itera-
tions of the QP protocol allow for achieving a fidelity above
98% with a probability of 3.14%, where we postselect on q
and p values located at the center or side peaks considered.
In Fig. 8, we show the success probability with which var-
ious values of the fidelity to the target state can be reached
after two iterations; the highest fidelity with nonzero success
probability is 98.87%, the two right-most points in Fig. 8
corresponding instead to a zero success probability within
the numerical precision of our calculation. A more extensive
table with cases, corresponding fidelities, and probabilities of
achieving the target state with a fidelity above 96% is provided
in Appendix B.

As we introduced in Eq. (4), the effective squeezing δ is
another parameter that reflects how well a state is approaching
our target state. Figure 9 shows the probability to achieve an
output state with effective squeezing below a certain value
with two iterations of our protocol. We observe that there
is above 7.4% (30%) probability to obtain an output state
with effective squeezing below 0.4 (0.46). For reference, the

TABLE I. Fidelity to the 4.95-dB-squeezing qunaught state,
probability, and effective squeezing for the output state generated
after two iterations of the QP protocol with a few different mea-
surement results. For all these cases, the fidelity is above 0.98. For
comparison, the effective squeezing obtained from Fig. 5 of Ref. [17]
is between 0.3 and 0.4.

Peaks Fidelity Probability Effective squeezing

CCS 0.9887 0.004 0.3765
CCC 0.9834 0.0134 0.3522
S1S2C 0.9830 0.0038 0.4918
S1S1C 0.9816 0.0063 0.5003

FIG. 7. Wigner functions of (a) the input state [defined in Eq. (2)]
and (b)–(f) the output states generated by the first five iterations,
respectively, of the QP protocol, when all the measurement values
are postselected to be 0.062

√
2π . The target state is fixed to be the

4.95-dB-squeezing qunaught state shown in Fig. 1(b).

input binomial state’s effective squeezing is 0.53, while, as
we mentioned, the target qunaught state’s effective squeezing
is 0.4. We thus have a nonzero probability to reach an even
stronger effective squeezing than in the target state, which is
linked to the appearance of more peaks in the wave function
of the output state than those in the wave function of the target
state, as shown in Appendix C.

0.94 0.95 0.96 0.97 0.98 0.99 1.00

Fidelity

0.00

0.02

0.04

0.06

0.08

P
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b
a
b
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y

FIG. 8. Success probability as a function of the lower bound
on the fidelity between the protocol’s output states and the tar-
get qunaught state. Here, the output states are generated after two
iterations.
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FIG. 9. Success probability as a function of the upper bound of
the effective squeezing after two iterations.

C. More iterations

Considering qunaught states as simultaneous eigenstates
of two commuting displacement operators, it is natural to
study the case of further iterations of projection measurements
in the q̂ and p̂ quadratures. In Fig. 7, we show the Wigner
function of the output state that results when postselecting on
the lowest eigenvalue 0.062

√
2π in all measurements for one

to five iterations. By comparing with Fig. 1(b), we see that the
output states gradually approach a qunaught state after each
even number of iterations, i.e., when the symmetry in the two
directions in phase space is preserved.

In Table II, we show the fidelity and the success probability
after even numbers of iterations, when we postselect on the
lowest eigenvalue at every measurement. We see that while
the fidelity can reach values above 0.989, the corresponding
success probability decreases rapidly for large numbers of
iterations.

In Appendix D, we investigate how the output fidelity
changes when we consider as input other binomial states, i.e.,
identified by other rotational symmetry order N or truncation
parameter K .

V. CONCLUSION

We have developed a protocol for the heralded generation
of qunaught states, which is inspired by the scheme described
in Ref. [17]. However, our protocol uses input binomial states
and alternating quadrature measurements in combination with
beam splitters, rather than relying on squeezed cat states and

TABLE II. Fidelity to the 4.95-dB-squeezing qunaught state and
probability for the output state generated after zero to eight itera-
tions, when postselecting on the lowest eigenvalue at each q̂ and p̂
measurement.

Iteration Fidelity Probability

0 0.941 1
2 0.9848 0.0134
4 0.9875 4.5×10−10

6 0.9884 6.4×10−40

8 0.9897 6.4×10−159

on fixed p̂ measurements as in the original scheme. Our pro-
tocol produces states that are approximately eigenstates of
the commuting displacement operators, resulting in qunaught
states. Using numerical simulations, we have demonstrated
that it is possible to achieve qunaught states with a fidelity
of above 98% with a probability of 3.14% after only two
iterations of the protocol. While it is possible to achieve higher
fidelities with more iterations of the protocol, this comes at the
cost of lower success probabilities.

Our scheme shows that binomial states can be Gaussian
converted to grid states (and hence, in turn, with further proba-
bilistic Gaussian operations, to a computational basis |0〉 GKP
state), and as such they are universal in combination with
Gaussian resources. Previously, they were only known to be
universal in combination with other non-Gaussian resources,
such as further auxiliary specific encoded binomial states and
nonlinear operations [7]. More in general, binomal |0〉 states
therefore add to the relatively short list of non-Gaussian states
that can potentially provide all-Gaussian and fault-tolerant
universality. Specifically, in Ref. [51] it has been demon-
strated that ideal zero-logical encoded GKP qubits promote
circuits composed of Gaussian elements to universality and
fault tolerance via magic-state (Gaussian) distillation. The
robustness of such a result to small deviations would therefore
entail that also squeezed cat states could provide all-Gaussian
fault-tolerant universality, via Gaussian conversion to zero-
logical encoded GKP qubits as envisaged in the protocols
introduced in Refs. [17,21,22]. The same would be true for
single-photon states—via Gaussian conversion to squeezed
cat states [52]—and for binomial states—via the conversion
protocol proposed in this work. One interesting question that
stems from our work is which other non-Gaussian states pro-
mote the Gaussian toolbox of operations to universal quantum
computation. The study of conversion protocols can shed light
on this question.
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FIG. 10. Wigner function of the output state after (a) one and
(b) two iterations of the protocol in Fig. 2, but with the measured
modes all being measured along the quadrature q̂.
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FIG. 11. Wigner function of the output state after (a) one and
(b) two iterations of the protocol in Fig. 2, but with the measured
modes all being measured along the quadrature p̂.

APPENDIX A: EFFECT OF q̂ AND p̂ MEASUREMENTS
IN THE QP BREEDING PROTOCOL

Figures 10 and 11 show the effect of sequential q̂ and p̂
measurements, in case the same quadratures are measured
repeatedly (instead of in an alternating way). We see that each
q̂ and p̂ measurement induces a squeezing on the output state
in q̂ and p̂ quadratures, respectively, and this guides us in the
choice of alternating q̂ and p̂ measurements.

APPENDIX B: FIDELITY TO TARGET QUNAUGHT
STATES DEPENDING ON THE MEASUREMENT

OUTCOMES AFTER TWO ITERATIONS

In Table III, we show the fidelity and probability of occur-
rence, along with the effective squeezing, for all combinations
of q̂ and p̂ measurement outcomes yielding a fidelity above
96% to the target qunaught state after two iterations of the QP
protocol. Since we here consider more cases than in Table I,
we introduce a new notation for indicating the peaks. This
notation is defined in the two panels of Fig. 12.

TABLE III. Fidelity to the 4.95-dB-squeezing qunaught state,
probability, and effective squeezing for the output state generated
after two iterations of the QP protocol with the measurement results
that yield fidelities above 0.96.

Peaks Fidelity Probability Effective squeezing

q18q18 p16 0.963 0.0006 0.4806
q18q19 p24 0.983 0.0038 0.4918
q18q20 p24 0.9723 0.0021 0.4828
q19q18 p24 0.983 0.0038 0.4918
q19q19 p16 0.968 0.0017 0.5022
q19q19 p17 0.9721 0.002 0.4894
q19q19 p24 0.9816 0.0063 0.5003
q19q20 p24 0.9659 0.0036 0.5133
q20q18 p24 0.9723 0.0021 0.4828
q20q19 p24 0.9659 0.0036 0.5133
q20q20 p16 0.9661 0.0011 0.5061
q20q20 p17 0.9644 0.0008 0.4832
q24q24 p16 0.9669 0.0037 0.4185
q24q24 p17 0.9887 0.004 0.3765
q24q24 p24 0.9834 0.0134 0.3522

FIG. 12. Top (bottom) panel: Probability of measuring the
rescaled outcome q/

√
2π (p/

√
2π) in the first (second) homodyne

measurement in the circuit of Fig. 2 for input binomial states. We
label the peaks using the label of the corresponding Fock eigenvalue,
for the first 25 (i ∈ [0, 24]) of the 50 eigenvalues.

-1.5 -1 -0.5 0 0.5 1 1.5

q/
√

2π

0.18

0.10

0.00

P
ro

b
ab

il
it
y

FIG. 13. Probability distribution in the position representation of
the best output state after two iterations of the QP protocol.
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FIG. 14. Fidelity to a target qunaught state with squeezing
� = 0.4 as a function of the number of iterations for binomial input
states with rotational symmetry of order (a) N = 2, (b) N = 3, and
(c) N = 4, and for K = 2–7 for each N .
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FIG. 15. Fidelity to a target qunaught state with squeezing
� = 0.35 as a function of the number of iterations for binomial input
states with rotational symmetry of order (a) N = 2, (b) N = 3, and
(c) N = 4, and for K = 2–7 for each N .
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APPENDIX C: PROBABILITY DISTRIBUTION IN THE
POSITION REPRESENTATION OF THE BEST OUTPUT

STATE AFTER TWO ITERATIONS

As shown in Table I, the highest fidelity is achieved in the
CCS case within two iterations of the protocol. In Fig. 13, we
plot the probability distribution in the position representation
of the corresponding best output state.

APPENDIX D: FIDELITY TO TARGET QUNAUGHT
STATES DEPENDING ON ORDER OF ROTATIONAL

SYMMETRY AND TRUNCATION PARAMETER OF THE
INPUT BINOMIAL STATE

Here we consider other binomial states than that of Eq. (2)
as input for the QP protocol. In Fig. 14, we plot the fidelity
to the same target qunaught state as in the main text as a
function of the number of iterations of the QP protocol, con-
sidering both even and odd numbers of iterations of the q̂
and p̂ measurements, for other input binomial states. These
other binomial states correspond to various values of the

order of the rotational symmetry N , as well as of the trun-
cation parameter K . The oscillating behavior of the fidelity
to the target qunaught state as a function of the iteration
number corroborates our choice of a set of alternating q̂ and
p̂ measurements as the basic building block for our iterative
protocol. This figure also informs us that the highest fidelities
are achieved for the case that we studied in the main text, i.e.,
N = 2 and K = 3, which is hence a sweet spot for targeting
the generation of qunaught states with this protocol. From the
figure, we also note that a comparable result in terms of the
fidelity is obtained in the case of K = 2.

All these observations also appear to be valid if we choose
a slightly different target qunaught state. In Fig. 15, we il-
lustrate this robustness by plotting the same quantities as in
Fig. 14 for a target qunaught state with squeezing � = 0.35.
Our intuition for this result is that the crucial factor determin-
ing the best input state is the spacing between peaks in the
input state, which affects the spacing between peaks in the
output state. Changing the squeezing of the target qunaught
state does not change the spacing between peaks in that
state.
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