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Abstract
We show that the stability conditions on the Kuznetsov component of a Gushel–
Mukai threefold, constructed by Bayer, Lahoz, Macrì and Stellari, are preserved
by the Serre functor, up to the action of the universal cover of GL+

2
(ℝ). As appli-

cation, we construct stability conditions on the Kuznetsov component of special
Gushel–Mukai fourfolds.
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1 INTRODUCTION

The idea of a stability condition on a triangulated category  was introduced by Bridgeland in [11], where he also proved
that the space of all such stability conditions admits a natural topologymaking it a complexmanifold, thus defining a novel
invariant of triangulated categories. The study of the properties of this stability manifold is difficult, even if we consider
only  = D𝑏(𝑋) for a smooth projective variety 𝑋 over ℂ, which was the setting that originally motivated Bridgeland. It
is, for instance, unknown if this space is nonempty for all 𝑋 of dimension ≥ 3, and a complete description of the stability
manifold is known only when 𝑋 is a curve [11, 34, 38]. For more results in this direction, we refer the reader to [1, 12] in
the case of surfaces, and in higher dimension to [2, 3, 9, 27, 31, 35], and references therein.
A related line of inquiry is the study of the stability manifold of certain triangulated subcategories of D𝑏(𝑋). The most

well-studied situation of this kind is when D𝑏(𝑋) admits an exceptional collection 𝐸0, … , 𝐸𝑚 and the subcategory  is⟨𝐸0, … , 𝐸𝑚⟩⟂. When𝑋 is a cubic fourfold,D𝑏(𝑋) admits an exceptional collection given by𝑋,𝑋(1),𝑋(2), and the right
orthogonal is called the Kuznetsov component, denoted by Ku(𝑋). Kuznetsov showed in [19] that for many cubic fourfolds
(notably, in each case 𝑋 was rational), Ku(𝑋) is equivalent to the derived category of a K3 surface. Afterward, it was
shown in [4] that Ku(𝑋) admits stability conditions, and that the corresponding moduli spaces of semistable complexes
are smooth, projective hyperkahler varieties [5].
The richness of these resultsmotivates the study of analogous situations. In particular, the derived categories of Gushel–

Mukai (GM) varieties are known to contain exceptional collections [22], the Kuznetsov components of which have been
shown to admit stability conditions in [4, 39]. See Section 2.2 for a summary.
In this paper, we consider the case when 𝑋 is a GM threefold. In [4, Theorem 6.9] Bayer, Lahoz, Macrì and Stellari

constructed a family of stability conditions on Ku(𝑋), which we denote by 𝜎(𝛼, 𝛽), depending on two real numbers 𝛼, 𝛽
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2 PERTUSI and ROBINETT

satisfying certain conditions (see Theorem 2.10 for amore precise formulation). Ourmain result concerns the action of the
Serre functor 𝑆Ku(𝑋) of Ku(𝑋) on the stability conditions 𝜎(𝛼, 𝛽). Recall that there is a right action of the universal cover
G̃L

+

2 (ℝ) of the group GL
+
2 (ℝ) of real 2 × 2 matrices with positive determinant on the stability manifold. We show that

𝑆Ku(𝑋)[−2] acts as the identity of G̃L
+

2 (ℝ) on the stability conditions in the same orbit of the stability conditions 𝜎(𝛼, 𝛽)
with respect to the G̃L

+

2 (ℝ)-action.

Theorem 1.1 (Theorem 3.6, Corollary 3.17, Corollary 4.3). Let 𝑋 be Gushel–Mukai threefold. Let 𝜎 be a stability condition
on the Kuznetsov component Ku(𝑋) which is in the same orbit of 𝜎(𝛼, 𝛽) with respect to the action of G̃L

+

2 (ℝ). Then

𝑆Ku(𝑋)[−2] ⋅ 𝜎 = 𝜎.

Theorem 1.1 shows that the stability conditions constructed in [4] are Serre-invariant in the sense of Definition 4.1. As
pointed out in Theorem 3.18, an analogous result holds more generally for certain Fano threefolds of Picard rank 1, index
1, and even genus. In this case, we show that the Serre functor of their Kuznetsov component preserves the orbit of the
stability conditions constructed in [4] with respect to the G̃L

+

2 (ℝ)-action.
As an application, we construct stability conditions on the Kuznetsov component of a special GM fourfold. Recall that

a special GM fourfold 𝑋 is a double cover of a linear section of the Grassmannian Gr(2, 5) ramified over an ordinary GM
threefold 𝑍. By [21, Corollary 1.3] there is an exact equivalence

Ku(𝑍)ℤ∕2ℤ ≃ Ku(𝑋),

where Ku(𝑍)ℤ∕2ℤ denotes the category of ℤ∕2ℤ-equivariant objects of Ku(𝑍) and the ℤ∕2ℤ-action on Ku(𝑍) is given by
𝑆Ku(𝑍)[−2].

Theorem 1.2 (Corollary 4.3, Remark 4.4). Let 𝑋 be a special GM fourfold and 𝑍 be its associated ordinary GM threefold.
Serre-invariant stability conditions onKu(𝑍) induce stability conditions on the equivariant categoryKu(𝑍)ℤ∕2ℤ. In particular,
they define stability conditions on Ku(𝑋).

In Corollary 4.5, we show that there is a unique G̃L
+

2 (ℝ)-orbit of Serre-invariant stability conditions on Ku(𝑋) of a GM
threefold 𝑋.

Related works andmotivations. In [41, Proposition 5.7], it is shown that the stability conditions induced on the Kuznetsov
component of a Fano threefold of Picard rank 1 and index 2 (e.g., a cubic threefold) with the method in [4] are Serre-
invariant. Using this result, the authors further proved that non-empty moduli spaces of stable objects with respect to
these stability conditions are smooth. They also gave another proof of the categorical Torelli Theorem for cubic threefolds
in [41, Theorem 5.17], following the strategy in [8, Theorem 1.1], where this result was proved for the first time (see also
[6] for a different approach).
In fact, the property of Serre-invariance is very helpful in the study of the properties of moduli spaces and the stability

of objects, see, for instance, [18, 32] for many recent applications. In [14] the notion of Serre-invariance is applied to show
that the moduli space of stable Ulrich bundles of rank 𝑑 ≥ 2 on a cubic threefold is irreducible.
On the other hand, not all triangulated subcategories of the bounded derived category of a smooth projective vari-

ety admit Serre-invariant stability conditions. In the recent paper [22], the authors show that the Kuznetsov component
(called residual category) of almost all Fano complete intersections of codimension ≥ 2 does not admit Serre-invariant
stability conditions.
In [14, Theorem 1.1], a criterion is proved which ensures that a fractional Calabi–Yau category of dimension ≤ 2 admits

a unique Serre-invariant stability condition, up to the action of G̃L
+

2 (ℝ). In Corollary 4.5, we show that this criterion
applies to the Kuznetsov component of a GM threefold. Note that this result was already known by [18, Theorem 4.25].
In particular, all known stability conditions on Ku(𝑋) for 𝑋 a Fano threefold of Picard rank 1, index 2 or index 1 and even
genus ≥ 6 are Serre-invariant.
The next interesting question is to investigate whether the property of Serre-invariance characterize the stability

conditions on Ku(𝑋), providing a complete description of the stability manifold as in the case of curves [34] (see
Remark 3.19).
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PERTUSI and ROBINETT 3

Stability conditions on the Kuznetsov component of a GM fourfold have been constructed in [39]. However, this exis-
tence is not shown through an explicit construction for special GM fourfolds, where it follows from the proof of the duality
conjecture for GM varieties in [23]. The stability conditions constructed in Theorem 1.2 are, to the authors’ knowledge,
the first explicit ones defined on special GM fourfolds. In the work in preparation [40], Theorems 1.1 and 1.2 are useful to
study properties (like non-emptyness) of moduli spaces of stable objects inKu(𝑋) of an ordinary GM threefold𝑋, together
with the results in [39] on moduli spaces on the associated special GM fourfold.

Strategy of the proofs. Our proof of Theorem 1.1 is inspired by the approach used in [41] to address the corresponding
question for cubic threefolds, although the situation in the case of GM threefolds is more complicated. Roughly speaking,
the main issue is the presence of the rank two exceptional bundle 𝑋 , which does not allow to use the same argument
applied for cubic threefolds, where the exceptional objects were two line bundles. In fact, the inverse of the Serre functor
decomposes as a composition of the left mutations with respect to𝑋 and𝑋 , a twist by𝑋(𝐻) and a shift; in the case of
cubic threefolds, we had a similar decomposition, but with only one left mutation with respect to the line bundle 𝑋 .
To overcome this problem, we first induce stability conditions 𝜎(𝑠, 𝑞) on Ku(𝑋) from (a double tilt of) tilt stability

conditions defined on D𝑏(𝑋), via the criterion given in Proposition 5.1 of [4], for pairs (𝑠, 𝑞) in a region that is slightly
larger than the one considered in [4], lying above the boundary given by Li in [28] (see Propositions 3.1 and 3.2). Next,
fixing one such stability condition, we study the action on it of the left mutation with respect to𝑋 and then with respect
to𝑋 . These left mutations induce equivalences between the right orthogonals of two distinct exceptional collections in
D𝑏(𝑋) andKu(𝑋). The Serre invariance of the considered stability condition follows from showing that its image via these
equivalences is in the same G̃L

+

2 (ℝ)-orbit of the induced stability conditions 𝜎(𝑠, 𝑞). See Section 3.2 for a more detailed
summary of the argument.
The proof of Theorem 1.2 consists in showing that Serre-invariant stability conditions, for instance the induced stability

conditions 𝜎(𝑠, 𝑞), are invariant with respect to the ℤ∕2ℤ-action on the Kuznetsov component of the GM threefold.

Plan of the paper. In Section 2, we review the notions of (weak) stability conditions, GM varieties and their Kuznetsov
components, and the construction of stability conditions in the case of GM threefolds. Section 3 is devoted to the proof
of Theorem 1.1. In Section 3.1, we induce stability conditions on the Kuznetsov component of 𝑋 following the method in
[4], enlarging the region parameterizing them over Li’s boundary, defined in [28]. In Section 3.2, we outline the proof of
Theorem 1.1, whichwill be performed in Sections 3.3–3.5. Section 4 is devoted to the proof of Theorem 1.2 andCorollary 4.5.

2 PRELIMINARIES ON GUSHEL–MUKAI VARIETIES AND STABILITY CONDITIONS

In this section, we review the definitions of (weak) stability conditions, GM varieties and some basic properties of their
Kuznetsov components. Then in the case of GM threefolds, we recall the construction of stability conditions from [4]. We
work over the field of complex numbers ℂ throughout this paper.

2.1 (Weak) stability conditions and tilting

A (weak) stability condition on a triangulated category  is given by two pieces of data: a full subcategory ⊆  called a
heart of a bounded t-structure and a group homomorphism 𝑍 ∶ 𝐾() → ℂ called a (weak) stability function. We review
these definitions now.

Definition 2.1 [11], Lemma 3.2. A heart of a bounded t-structure is a full subcategory ⊆  such that:

1. For any 𝐸, 𝐹 ∈  and 𝑘 < 0, we have Hom(𝐸, 𝐹[𝑘]) = 0.
2. For any 𝐸 ∈  , there is a filtration:

0 = 𝐸0
𝜙1
  → 𝐸1

𝜙2
  → ⋅ ⋅ ⋅

𝜙𝑚
   → 𝐸𝑚 = 𝐸

such that for each 𝑖, Cone(𝜙𝑖) ≅ 𝐴𝑖[𝑘𝑖] for some 𝐴𝑖 ∈  and 𝑘1 > 𝑘2 > ⋅ ⋅ ⋅ > 𝑘𝑚.
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4 PERTUSI and ROBINETT

A heart of a bounded t-structure is an Abelian subcategory of  [7]. We now define the (weak) stability functions
mentioned above.

Definition 2.2. Let be an Abelian category. A weak stability function on is a homomorphism of groups:

𝑍 ∶ 𝐾() → ℂ

𝐸 ↦ ℜ𝑍(𝐸) + 𝑖ℑ𝑍(𝐸),

where𝐾() denotes theGrothendieck group of, such that for all 0 ≠ 𝐸 ∈ , we haveℑ𝑍(𝐸) ≥ 0 andℑ𝑍(𝐸) = 0 implies
ℜ𝑍(𝐸) ≤ 0. We say that 𝑍 is a stability function if, in addition, when ℑ𝑍(𝐸) = 0 we haveℜ𝑍(𝐸) < 0.

We denote by 𝐾( ) the Grothendieck group of  . Let Λ be a finite rank lattice and 𝑣 ∶ 𝐾( ) → Λ a surjective group
homomorphism.

Definition 2.3. A weak stability condition on  with respect to Λ is a pair 𝜎 = (, 𝑍), where  is a heart of a bounded
t-structure and 𝑍 ∶ Λ → ℂ is a group homomorphism, such that:

1. The composition 𝐾() ≅ 𝐾( )
𝑣
 → Λ

𝑍
 → ℂ is a weak stability function on . We will omit the function 𝑣 and write

𝑍(𝐸) = 𝑍(𝑣(𝐸)) for brevity. Given such a 𝑍, we may define the slope of any 𝐸 ∈  as:

𝜇𝜎(𝐸) =

⎧⎪⎨⎪⎩
−
ℜ𝑍(𝐸)

ℑ𝑍(𝐸)
ℑ𝑍(𝐸) ≠ 0

+∞ otherwise.

We also obtain a notion of semistability (stability): we say 0 ≠ 𝐸 ∈  is 𝜎-semistable (𝜎-stable) if for any nonzero,
proper subobject 𝐹 ↪ 𝐸, we have 𝜇𝜎(𝐹) ≤ 𝜇𝜎(𝐸) (𝜇𝜎(𝐹) < 𝜇𝜎(𝐸∕𝐹)).

2. Any 𝐸 ∈  admits a Harder–Narasimhan filtration with 𝜎-semistable factors. Explicitly, this means that given 𝐸 ∈ ,
there is a filtration:

0 = 𝐸0
𝜙1
  → 𝐸1

𝜙2
  → ⋯

𝜙𝑚
   → 𝐸𝑚 = 𝐸

such that 𝐸𝑖∕𝐸𝑖−1 is 𝜎-semistable, with 𝜇𝜎(𝐸1∕𝐸0) > ⋯ > 𝜇𝜎(𝐸𝑚∕𝐸𝑚−1).
3. (Support property) There is a quadratic form 𝑄 on Λ⊗ℝ such that 𝑄|ker𝑍 is negative-definite, and 𝑄(𝐸) ≥ 0 for all

𝜎-semistable 𝐸 ∈ .

Definition 2.4. A weak stability condition 𝜎 = (, 𝑍) on  with respect to Λ is called a stability condition if 𝑍 is a
stability function.

Fix a (weak) stability condition 𝜎 = (, 𝑍) on  . Given a semistable object 𝐸 ∈  with 𝑍(𝐸) ≠ 0, we define the phase
of 𝐸 as

𝜙(𝐸) =
1

𝜋
arg(𝑍(𝐸)).

If 𝑍(𝐸) = 0, we set 𝜙(𝐸) = 1, and for any shift 𝐸[𝑛], we define 𝜙(𝐸[𝑛]) = 𝜙(𝐸) + 𝑛. The notion of phase of a semistable
object 𝐸 ∈  naturally gives rise to a slicing of  .

Definition 2.5. Let 𝜎 be a (weak) stability condition on  . The slicing of  associated with 𝜎 is a collection  of full
additive subcategories (𝜙) of  for each 𝜙 ∈ ℝ such that:

1. For 𝜙 ∈ (0, 1], (𝜙) is the subcategory of all 𝜎-semistable objects of phase 𝜙, together with the zero object.
2. For 𝜙 ∈ (0, 1] and 𝑛 ∈ ℤ, (𝜙 + 𝑛) = (𝜙)[𝑛].
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PERTUSI and ROBINETT 5

Wedenote by(𝐼) the extension-closed subcategory of  generated by the subcategories(𝜙)with𝜙 ∈ 𝐼, where 𝐼 ⊂ ℝ is
an interval. Given a (weak) stability condition 𝜎with slicing , the heart is recovered via = ((0, 1]), and conversely,
a slicing  arises from 𝜎 immediately by definition. In the next, we will use the notations (, 𝑍) and ( , 𝑍) for a (weak)
stability condition interchangeably.
We write StabΛ( ) to denote the set of stability conditions on  . The space StabΛ( ) can be given ametrizable topology

in a natural way, and Bridgeland [11] proved that with this topology, themap StabΛ( ) → Hom(Λ,ℂ) given by (, 𝑍) ↦ 𝑍

is a local homeomorphism, hence Stab( ) is a complex manifold of dimension rk(Λ).
Themanifold StabΛ( ) admits two natural group actions, one from the universal cover of GL+2 (ℝ) (denoted by G̃L

+

2 (ℝ))
and one from the group AutΛ( ) of exact autoequivalences which are compatible with 𝑣. For the former of these, given
some 𝑔 = (𝑔,𝑀) ∈ G̃L

+

2 (ℝ) with 𝑀 ∈ GL+2 (ℝ) and 𝑔 ∶ ℝ → ℝ increasing with 𝑔(𝜙 + 1) = 𝑔(𝜙) + 1, the action on a sta-
bility condition 𝜎 = ( , 𝑍) is given by 𝜎 ⋅ 𝑔 = ( ′,𝑀−1◦𝑍), where  ′(𝜙) = (𝑔(𝜙)). For the AutΛ( )-action, given some
Φ ∈ AutΛ( ), we have Φ ⋅ 𝜎 = (Φ(), 𝑍◦Φ−1

∗ ), where Φ∗ is the induced automorphism on 𝐾( ).
The first issue in the construction of stability conditions is to produce a suitable heart of a bounded t-structure. For

instance, the canonical choice of Coh(𝑋) cannot be the heart of a stability condition with respect to the numerical
Grothendieck group Λ =  (𝑋) of 𝑋, unless 𝑋 is a curve [43]. However, if we have a (weak) stability condition (, 𝑍),
it is sometimes possible to produce a new heart by tilting the old one. We discuss this procedure now.

Definition 2.6. Let be an Abelian category. A torsion pair is a pair of two full, additive subcategories ( ,  ) of such
that:

1. For any 𝑇 ∈  , 𝐹 ∈  , we have Hom(𝑇, 𝐹) = 0.
2. Given any 𝐸 ∈ , there are 𝑇 ∈  , 𝐹 ∈  and a short exact sequence:

0 → 𝑇 → 𝐸 → 𝐹 → 0.

The importance of this notion comes from the following theorem:

Theorem 2.7 [16]. Let  ⊂ D𝑏(𝑋) be a heart of a bounded t-structure and let ( ,  ) be a torsion pair in . Then, the
extension-closure ⟨[1],  ⟩ is also a heart of a bounded t-structure in D𝑏(𝑋).

Given a (weak) stability condition 𝜎 = (, 𝑍) on D𝑏(𝑋), one may produce a new heart according to the theorem above
by choosing any 𝜇 ∈ ℝ and considering the following torsion pair:


𝜇
𝜎 = ⟨𝐸 ∈  ∶ 𝐸 is semistable with 𝜇𝜎(𝐸) ≤ 𝜇⟩


𝜇
𝜎 = ⟨𝐸 ∈  ∶ 𝐸 is semistable with 𝜇𝜎(𝐸) > 𝜇⟩.

We say that the new heart ⟨𝜇
𝜎 [1], 

𝜇
𝜎 ⟩ is constructed by tilting the (weak) stability condition 𝜎 at the slope 𝜇. This

construction is ubiquitous in what follows.

Example 2.8. ([4, Example 2.8]) Let 𝑋 be a smooth projective variety of dimension 𝑛 with an ample class 𝐻. We have
that the group morphism

𝑍𝐻 ∶ Λ ≅ ℤ
2
→ ℂ; (𝐻𝑛 rk(𝐸),𝐻𝑛−1 ch1(𝐸)) ↦ −𝐻𝑛−1 ch1(𝐸) + 𝐻𝑛 rk(𝐸)

√
−1

defines a weak stability function on Coh(𝑋). Moreover, the pair 𝜎𝐻 = (Coh(𝑋), 𝑍𝐻) is a weak stability condition onD𝑏(𝑋)

with respect to Λ, known as slope stability. The slope with respect to 𝜎𝐻 is denoted by 𝜇𝐻 . Furthermore, if 𝑛 = 1, then 𝜎𝐻
is a stability condition on D𝑏(𝑋).
We remark that slope semistable coherent sheaves satisfy the classical Bogomolov–Gieseker inequality: for every 𝜇𝐻-

semistable 𝐸 ∈ Coh(𝑋) we have the inequality

(𝐻𝑛−1 ch1(𝐸))
2 − 2𝐻𝑛 rk(𝐸)𝐻𝑛−2 ch2(𝐸) ≥ 0. (2.1)
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6 PERTUSI and ROBINETT

2.2 Gushel–Mukai varieties and Kuznetsov components

A GM variety of dimension 𝑛, for 2 ≤ 𝑛 ≤ 6, is a smooth intersection

Cone(Gr(2, 5)) ∩ 𝑄,

where Cone(Gr(2, 5)) is the projective cone over the Plücker-embedded Grassmanian Gr(2, 5) ↪ ℙ9 and 𝑄 is a quadric
hypersurface in some ℙ(𝑊) ≅ ℙ𝑛+4 ↪ ℙ10. Gushel [15] and Mukai [37] showed that for 𝑛 ≥ 3, GM varieties are precisely
the Fano varieties of Picard number 1, degree 10 and coindex 3, while if 𝑛 = 2, GM surfaces are Brill–Noether general
polarized K3 surfaces. If the vertex of the cone Cone(Gr(2, 5)) is not in the linear section ℙ(𝑊), then 𝑋 is an ordinary GM
variety, otherwise 𝑋 is a special GM variety.
Kuznetsov and Perry [22] proved that the bounded derived categoryD𝑏(𝑋) of a GM variety𝑋 of dimension 𝑛 ≥ 3 admits

a semiorthogonal decomposition of the form

D𝑏(𝑋) = ⟨Ku(𝑋),𝑋,
∨
𝑋 , … ,𝑋((𝑛 − 3)𝐻), ∨

𝑋 ((𝑛 − 3)𝐻)⟩, (2.2)

where 𝑋 is the pullback to 𝑋 of the rank 2 tautological subbundle on the Grassmannian, 𝐻 ⊂ 𝑋 is a hyperplane class
and Ku(𝑋) ∶= ⟨𝑋,

∨
𝑋 , …,𝑋((𝑛 − 3)𝐻), ∨

𝑋 ((𝑛 − 3)𝐻)⟩⟂ is the Kuznetsov component. For 𝑛 = 2, set Ku(𝑋) ∶= D𝑏(𝑋).
Since Ku(𝑋) is an admissible subcategory of D𝑏(𝑋), it admits a Serre functor, which we denote by 𝑆Ku(𝑋). By [22,

Proposition 2.6] (which makes use of [20, Corollaries 3.7, 3.8]) the Serre functor of Ku(𝑋) has the following property:

∙ if 𝑛 is even, then 𝑆Ku(𝑋) ≅ [2];
∙ if 𝑛 is odd, then 𝑆Ku(𝑋) ≅ 𝜎[2] for a nontrivial involutive autoequivalence 𝜎 of Ku(𝑋).

Moreover, computing the Hochschild homology [22, Proposition 2.9] one sees that if 𝑛 is even, then Ku(𝑋) is a
noncommutative K3 surface, while for 𝑛 odd Ku(𝑋) is a noncommutative Enriques surface.
Let 𝑋 be a GM threefold. Since 𝜔𝑋 ≅ 𝑋(−𝐻), by Serre duality we can write the semiorthogonal decomposition (2.2)

as

D𝑏(𝑋) = ⟨Ku(𝑋),𝑋,
∨
𝑋 ⟩ = ⟨ ∨

𝑋 (−𝐻), Ku(𝑋),𝑋⟩.
Since ∨

𝑋 (−𝐻) ≅ 𝑋 , we obtain the alternative semiorthogonal decomposition

D𝑏(𝑋) = ⟨𝕃𝑋
(Ku(𝑋)),𝑋,𝑋⟩

which is the one used in [4] for the construction of stability conditions. Note that Ku(𝑋) and 𝕃𝑋
(Ku(𝑋)) are equivalent

by [24, Proposition 3.8], [10]. In order to be compatible with [4], we set

Ku(𝑋)1 ∶= ⟨𝑋,𝑋⟩⟂ (2.3)

sitting in

D𝑏(𝑋) = ⟨Ku(𝑋)1,𝑋,𝑋⟩
(in fact, in the rest of this paper we will need to be precise on which Kuznetsov component we are working on, see
Section 3.1). By [26, Proposition 3.9], the numericalGrothendieck group (Ku(𝑋)1) ofKu(𝑋)1 satisfies (Ku(𝑋)1) ≅ ℤ⊕2

and a basis is

𝑏1 = 1 −
3

10
𝐻2 +

1

20
𝐻3 (2.4)

𝑏2 = 𝐻 −
3

5
𝐻2 +

1

60
𝐻3.
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PERTUSI and ROBINETT 7

The Todd class of 𝑋 is

td(𝑋) = 1 +
1

2
𝐻 +

17

60
𝐻2 +

1

10
𝐻3.

2.3 Stability conditions on𝐊𝐮(𝑿)

The existence of stability conditions onKu(𝑋) of a GM variety is known. More precisely, if𝑋 has dimension 2, this follows
from Bridgeland’s work [12]. By the duality conjecture [23, Theorem 1.6] if𝑋 has dimension 6 or 5, the problem reduces to
the same question in dimensions 4 and 3, respectively: if 𝑋 is a GM fourfold, this is proved in [39], while the case of GM
threefolds is solved by Bayer, Lahoz, Macrì and Stellari in [4].
In this section, we focus on GM threefolds and we review the construction of stability conditions on Ku(𝑋) defined in

Equation (2.3) given in [4].
Stability conditions on Ku(𝑋) are induced from double-tilted slope stability on D𝑏(𝑋). First for 𝛼 > 0 and 𝛽 ∈ ℝ,

consider the weak stability conditions on D𝑏(𝑋) of the form

𝜎𝛼,𝛽 = (Coh𝛽(𝑋), 𝑍𝛼,𝛽)

with respect to the rank-3 lattice Λ generated by vectors (𝐻3 rk(𝐸),𝐻2 ch1(𝐸),𝐻 ch2(𝐸)) for 𝐸 ∈ D𝑏(𝑋). Here, Coh𝛽(𝑋) is
the heart of a bounded t-structure obtained by tiltingCoh(𝑋)with respect to slope stability at slope𝜇 = 𝛽 (seeExample 2.8),
and the central charge 𝑍𝛼,𝛽 is

𝑍𝛼,𝛽(𝐸) =
1

2
𝛼2𝐻3 ⋅ ch𝛽

0
(𝐸) − 𝐻 ⋅ ch𝛽

2
(𝐸) + 𝑖𝐻2 ⋅ ch𝛽

1
(𝐸), (2.5)

where ch𝛽
𝑖
(𝐸) is the 𝑖th component of the twisted Chern character ch𝛽(−) = e−𝛽𝐻 ⋅ ch(−) (see [4, Proposition 2.12]). For

𝐸 ∈ Coh𝛽(𝑋) the slope of 𝐸 defined by 𝜎𝛼,𝛽 is

𝜇𝛼,𝛽(𝐸) =

⎧⎪⎨⎪⎩
−
ℜ𝑍𝛼,𝛽(𝐸)

ℑ𝑍𝛼,𝛽(𝐸)
if ℑ𝑍𝛼,𝛽(𝐸) > 0

+∞ otherwise.
(2.6)

Note that 𝜎𝛼,𝛽-semistable objects satisfy the inequality (2.1) which can be taken as the quadratic form satisfying the
support property.
Second for 𝜇 ∈ ℝ, denote by Coh𝜇

𝛼,𝛽
(𝑋) the heart obtained by tilting Coh𝛽(𝑋)with respect to 𝜎𝛼,𝛽 at slope 𝜇𝛼,𝛽 = 𝜇. Fix

𝑢 ∈ ℂ such that 𝑢 is the unit vector in the upper half plane with 𝜇 = −
Re(𝑢)
Im(𝑢)

. By [4, Proposition 2.15] we have that

𝜎
𝜇

𝛼,𝛽
= (Coh𝜇

𝛼,𝛽
(𝑋), 𝑍

𝜇

𝛼,𝛽
) (2.7)

is a weak stability condition on D𝑏(𝑋) with respect to Λ, where 𝑍𝜇
𝛼,𝛽

=
1

𝑢
𝑍𝛼,𝛽 .

Now, we recall the following criterion from [4], which is useful for determining when weak stability conditions defined
on D𝑏(𝑋), like those above, restrict to stability conditions on the orthogonal complement of a subcategory determined by
an exceptional collection. In the following,  is a triangulated category with Serre functor 𝑆, 𝐸0, … , 𝐸𝑚 are exceptional
objects in  and = ⟨𝐸0, … , 𝐸𝑚⟩, giving a semiorthogonal decomposition  = ⟨⟂,⟩.
Proposition 2.9 [4], Proposition 5.1. Let 𝜎 = (, 𝑍) be a weak stability condition on  . Assume that:

1. 𝐸𝑖 ∈ 

2. 𝑆(𝐸𝑖) ∈ [1]

3. 𝑍(𝐸𝑖) ≠ 0 for all 𝑖.
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8 PERTUSI and ROBINETT

If for all 0 ≠ 𝐸 ∈ ∩⟂ = 1 we have 𝑍(𝐸) ≠ 0, then the pair (1, 𝑍|1
) defines a stability condition on⟂.

The criterion above was applied in [4] to show the following existence result.

Theorem 2.10 [4], Theorem 6.9. Let 𝑋 be a GM threefold. Then, the weak stability conditions 𝜎𝜇
𝛼,𝛽

defined in Equa-
tion (2.7) induce stability conditions on Ku(𝑋)1 so long as 𝛼 > 0 is sufficiently close to 0, 𝛽 > −1 is sufficiently close to −1
and 𝜇𝛼,𝛽(𝑋(−1)[1]) < 𝜇 < 𝜇𝛼,𝛽(𝑋).

3 ACTION OF THE SERRE FUNCTOR ON STABILITY CONDITIONS ON𝐊𝐮(𝑿)

This section is devoted to the proof of Theorem 1.1. In Section 3.1, we induce stability conditions on the Kuznetsov com-
ponent of 𝑋 from (a tilt of the) tilt stability conditions lying over Li’s boundary, defined in [28]. This allows us to enlarge
the region, where there are induced stability conditions onKu(𝑋)with the method of [4] and will be useful in Section 3.4.
In Section 3.2, we outline the proof of Theorem 1.1, which will be carried out in Sections 3.3–3.5.

3.1 Stability conditions over Li’s boundary

Let 𝑋 be a GM threefold. Note that we have the following semiorthogonal decompositions:

D𝑏(𝑋) = ⟨Ku(𝑋)1,𝑋,𝑋⟩, (3.1)

D𝑏(𝑋) = ⟨Ku(𝑋)2,𝑋,
∨
𝑋 ⟩, (3.2)

D𝑏(𝑋) = ⟨Ku(𝑋)3, ∨
𝑋 ,𝑋(𝐻)⟩ (3.3)

Here, Ku(𝑋)1 was already defined in Equation (2.3) and Ku(𝑋)2 ∶= Ku(𝑋) as in Equation (2.2). We can obtain Equation
(3.3) tensoring Equation (3.1) by 𝑋(𝐻) and setting Ku(𝑋)3 ∶= Ku(𝑋)1(𝐻). Analogously, by Serre duality we have

D𝑏(𝑋) = ⟨Ku(𝑋)3, ∨
𝑋 ,𝑋(𝐻)⟩ = ⟨𝑋, Ku(𝑋)3,

∨
𝑋 ⟩ = ⟨𝕃𝑋

(Ku(𝑋)3),𝑋,
∨
𝑋 ⟩,

so we getKu(𝑋)2 = 𝕃𝑋
(Ku(𝑋)3). Note also thatKu(𝑋)1,Ku(𝑋)2,Ku(𝑋)3 are equivalent to each other by [24, Proposition

3.8], [10].
As in [29, Section 1], [28], we consider the following reparameterization of the tilt stability condition 𝜎𝛼,𝛽 , whose

definition is recalled in Section 2. For 𝑞 > 0, 𝑠 ∈ ℝ and 𝐸 ∈ D𝑏(𝑋), we define

𝑍𝑠,𝑞(𝐸) = −(𝐻 ⋅ ch2(𝐸) − 𝑞 rk(𝐸)𝐻3) +
√
−1(𝐻2 ⋅ ch1(𝐸) − 𝑠 rk(𝐸)𝐻3).

For 𝐸 ∈ Coh𝑠(𝑋), we have the associated slope function

𝜇𝑠,𝑞(𝐸) =
𝐻 ⋅ ch2(𝐸) − 𝑞 rk(𝐸)𝐻3

𝐻2 ⋅ ch1(𝐸) − 𝑠 rk(𝐸)𝐻3
.

Then for 𝛼 > 0, 𝛽 ∈ ℝ, setting 𝑠 = 𝛽, 𝑞 = 𝛼2+𝛽2

2
, it follows that

𝜇𝛼,𝛽 = 𝜇𝑠,𝑞 − 𝑠, (3.4)

where 𝜇𝛼,𝛽 is defined in Equation (2.6) and 𝜇𝑠,𝑞 is defined in the above formula, and for 𝑞 > 1

2
𝑠2 the pair 𝜎𝑠,𝑞 =

(Coh𝑠(𝑋), 𝑍𝑠,𝑞) defines a weak stability condition on D𝑏(𝑋).
For 𝐸 ∈ D𝑏(𝑋), we consider the reduced character

𝑣𝐻(𝐸) ∶= [𝐻3 rk(𝐸) ∶ 𝐻2 ⋅ ch1(𝐸) ∶ 𝐻 ⋅ ch2(𝐸)]
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PERTUSI and ROBINETT 9

F IGURE 1 If 𝐸, 𝐹 are 𝜎𝑠,𝑞-semistable, their 𝜇𝑠,𝑞-slope is the gradient of the line connecting the point (𝑠, 𝑞) with (𝑠(𝐸), 𝑞(𝐸)) and
(𝑠(𝐹), 𝑞(𝐹)), respectively. We may also compare the 𝜇𝑠,𝑞-slope of 𝐸 and 𝐹, using the picture: 𝐸 has larger slope than 𝐹 is and only if the line
connecting 𝐸 to (𝑠, 𝑞) is above the line connecting 𝐹 with (𝑠, 𝑞) (see [30, Lemma 2]).

which defines a point in a projective plane ℙ2
ℝ
when 𝑣𝐻(𝐸) ≠ 𝟎. If rk(𝐸) ≠ 0, we consider the affine coordinates(

𝑠(𝐸) ∶=
𝐻2 ⋅ ch1(𝐸)

𝐻3 rk(𝐸)
, 𝑞(𝐸) ∶=

𝐻 ⋅ ch2(𝐸)

𝐻3 rk(𝐸)

)
∈ 𝔸2

ℝ
.

Note that since the inequality (2.1) holds for 𝜎𝑠,𝑞-semistable objects, we have that points below the parabola 𝑞 = 1

2
𝑠2 cor-

respond to 𝜎𝑠,𝑞-semistable objects. Furthermore, the slope of a 𝜎𝑠,𝑞-semistable objects 𝐸 ∈ Coh𝑠(𝑋) is the gradient of the
line connecting (𝑠, 𝑞) and (𝑠(𝐸), 𝑞(𝐸)) (see Figure 1).
By [28, Theorem 0.3] slope stable coherent sheaves on 𝑋 satisfy a stronger Bogomolov inequality. More precisely, in the

affine plane 𝔸2
ℝ
we consider the open region

𝑅 3

20

(3.5)

defined in [28, Definition 3.1] as the set of points above the curve 𝑠2 − 2𝑞 =
3

20
and above the tangent lines to the curve

𝑠2 − 2𝑞 = 0 at 𝑣𝐻(𝑋(𝑘𝐻)) for all 𝑘 ∈ ℤ (see Figure 2).
As a consequence, we obtain the following refined result.

Proposition 3.1 [4], Proposition 2.12, [28], Theorem 0.3. For (𝑠, 𝑞) ∈ 𝑅 3

20

, the pair 𝜎𝑠,𝑞 = (Coh𝑠(𝑋), 𝑍𝑠,𝑞) defines a weak

stability condition on D𝑏(𝑋) with respect to the lattice Λ2
𝐻 ≅ ℤ

⊕3 generated by the reduced Chern character.

Now using the same strategy as in [4] we can induce stability conditions on the Kuznetsov components Equations (3.1)–
(3.3) from 𝜎𝑠,𝑞 for certain values of (𝑠, 𝑞) ∈ 𝑅 3

20

. As done in Equation (2.7), we need to tilt a second time. For 𝜇 ∈ ℝ, we

denote by Coh𝜇𝑠,𝑞(𝑋) the heart obtained by tilting Coh
𝑠
(𝑋) with respect to 𝜎𝑠,𝑞 at 𝜇. Then [4, Proposition 2.15], which

applies in the same way to the reparameterized tilt stability conditions, implies that 𝜎𝜇𝑠,𝑞 = (Coh𝜇𝑠,𝑞(𝑋), 𝑍
𝜇
𝑠,𝑞) is a weak

stability condition on D𝑏(𝑋).
For 𝑖 = 1, 2, 3, we set

(𝑠, 𝑞) ∶= Coh𝜇𝑠,𝑞(𝑋) ∩ Ku(𝑋)𝑖
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10 PERTUSI and ROBINETT

F IGURE 2 We represent the boundary of the region 𝑅 3

20

among 𝑣𝐻(𝑋(−𝐻)) and 𝑣𝐻(𝑋(𝐻)) in red.

and

𝑍(𝑠, 𝑞) ∶= 𝑍
𝜇
𝑠,𝑞|Ku(𝑋)𝑖 (3.6)

where 𝑍𝜇𝑠,𝑞 =
1

𝑢
𝑍𝑠,𝑞 and 𝜇 = −

ℜ𝑢

ℑ𝑢
. We also note that the exceptional bundles in the semiorthogonal decompositions (3.1)–

(3.3) are on the boundary of 𝑅 3

20

as

ch≤2(𝑋(𝑘𝐻)) =

(
1, 𝑘𝐻,

𝑘2

2
𝐻2

)
, ch≤2(

∨
𝑋 ) =

(
2,𝐻,

1

10
𝐻2

)
,

ch≤2(𝑋) =

(
2, −𝐻,

1

10
𝐻2

)
, ch≤2(𝑋(−𝐻)) =

(
2, −3𝐻,

21

10
𝐻2

)
.

Proposition 3.2. Let (𝑠, 𝑞) be points in the region 𝑅 3

20

.

1. If (𝑠, 𝑞) is below the segment connecting 𝑣𝐻(𝑋(−𝐻)) and 𝑣𝐻(𝑋), then the pair 𝜎(𝑠, 𝑞) = ((𝑠, 𝑞), 𝑍(𝑠, 𝑞)) defines a
Bridgeland stability condition on Ku(𝑋)1 with respect to Λ2

𝐻 for 𝜇 ∈ ℝ satisfying 𝜇𝑠,𝑞(𝑋(−𝐻)[1]) ≤ 𝜇 < 𝜇𝑠,𝑞(𝑋).
2. If (𝑠, 𝑞) is below the segment connecting 𝑣𝐻(𝑋) and 𝑣𝐻(𝑋), then the pair𝜎(𝑠, 𝑞) = ((𝑠, 𝑞), 𝑍(𝑠, 𝑞)) defines a Bridgeland

stability condition on Ku(𝑋)2 with respect to Λ2
𝐻 for 𝜇 ∈ ℝ satisfying 𝜇𝑠,𝑞(𝑋[1]) ≤ 𝜇 < 𝜇𝑠,𝑞(𝑋).

3. If (𝑠, 𝑞) is below the segment connecting 𝑣𝐻(𝑋)and 𝑣𝐻( ∨
𝑋 ), then the pair𝜎(𝑠, 𝑞) = ((𝑠, 𝑞), 𝑍(𝑠, 𝑞))defines aBridgeland

stability condition on Ku(𝑋)3 with respect to Λ2
𝐻 for 𝜇 ∈ ℝ satisfying 𝜇𝑠,𝑞(𝑋[1]) ≤ 𝜇 < 𝜇𝑠,𝑞(

∨
𝑋 ).

In Figure 3, we represent the regions where there are induced stability conditions as in Proposition 3.2.

Proof. This is a refinement of [4, Theorem 6.8], where the statement is proved in the case of Ku(𝑋)1 for (𝑠, 𝑞) above the
parabola 𝑞 − 1

2
𝑠2 = 0 and 𝜇 as in item 1.

We study the case ofKu(𝑋)1, the others can be treated analogously. Note that𝑋 ,𝑋 ,𝑋(−𝐻),𝑋(−𝐻) are slope stable
sheaveswith slope−1

2
, 0,−3

2
,−1, respectively. Thus,𝑋 ,𝑋 ,𝑋(−𝐻)[1],𝑋(−𝐻)[1] belong to Coh

𝑠
(𝑋) for−1 ≤ 𝑠 < −

1

2
.

Since these objects are on the boundary of 𝑅 3

20

, by [2, Corollary 3.11] we have that 𝑋 , 𝑋 , 𝑋(−𝐻)[1], 𝑋(−𝐻)[1] are

𝜎𝑠,𝑞-stable in Coh
𝑠
(𝑋). For (𝑠, 𝑞) as in the assumptions of item (1), by a direct computation or comparing the slopes using

the picture, we see that

𝜇𝑠,𝑞(𝑋(−𝐻)[1]) < 𝜇𝑠,𝑞(𝑋(−𝐻)[1]) < 𝜇𝑠,𝑞(𝑋) < 𝜇𝑠,𝑞(𝑋).
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PERTUSI and ROBINETT 11

F IGURE 3 We represent in red the boundary of the regions defined in Proposition 3.2.

Thus for 𝜇 as in the statement, we have𝑋 ,𝑋 ,𝑋(−𝐻)[2],𝑋(−𝐻)[2] in Coh
𝜇
𝑠,𝑞(𝑋). Finally, by [4, Lemma 2.16] objects

inCoh𝜇𝑠,𝑞(𝑋)with vanishing central charge𝑍
𝜇
𝑠,𝑞 are objects inCoh

𝑠
(𝑋)with vanishing central charge𝑍𝑠,𝑞, which are torsion

sheaves supported on points. Since for such a sheaf𝑇we always haveHom(𝑋, 𝑇) ≠ 0, we conclude that𝑇 does not belong
to Ku(𝑋)1. Then, Proposition 2.9 implies the statement. □

Note that we omit 𝜇 from the notation of the induced stability condition. In fact, 𝜎(𝑠, 𝑞) does not depend on 𝜇, up to the
action of G̃L

+
(2,ℝ), as we show in the next lemma.

Lemma 3.3. Fix 𝑖 = 1, 2, 3. Let (𝑠, 𝑞) be a point in 𝑅 3

20

, 𝜇 > 𝜇′ ∈ ℝ satisfying the conditions in item (i) of Proposition 3.2.

Then, the stability condition induced from 𝜎
𝜇
𝑠,𝑞 is the same as the one induced from 𝜎

𝜇′

𝑠,𝑞 , up to the G̃L
+
(2,ℝ)-action.

Proof. Denote by 𝜎(𝑠, 𝑞, 𝜇) and 𝜎(𝑠, 𝑞, 𝜇′) the induced stability conditions on Ku(𝑋)𝑖 corresponding to the choice of 𝜇 and
𝜇′, respectively. We claim that

Coh𝜇𝑠,𝑞(𝑋) ⊂ ⟨Coh𝜇′𝑠,𝑞(𝑋),Coh𝜇′𝑠,𝑞(𝑋)[1]⟩.
Indeed, consider 𝐹 ∈ Coh𝑠(𝑋) semistable with 𝜇𝑠,𝑞(𝐹) > 𝜇, which is an object in Coh𝜇𝑠,𝑞(𝑋). Then 𝜇𝑠,𝑞(𝐹) > 𝜇′, so
𝐹 ∈ Coh𝜇

′

𝑠,𝑞(𝑋). Otherwise, consider 𝐹 ∈ Coh𝑠(𝑋) semistable with 𝜇𝑠,𝑞(𝐹) ≤ 𝜇, so 𝐹[1] ∈ Coh𝜇𝑠,𝑞(𝑋). If 𝜇𝑠,𝑞(𝐹) ≤ 𝜇′, then
𝐹[1] ∈ Coh𝜇

′

𝑠,𝑞(𝑋), while if 𝜇𝑠,𝑞(𝐹) > 𝜇′, then 𝐹[1] ∈ Coh𝜇
′

𝑠,𝑞(𝑋)[1]. By the definition of Coh
𝜇
𝑠,𝑞(𝑋), we deduce the claim.

As a consequence, we have the same relation between the restrictions of the hearts on Ku(𝑋)𝑖 by [4, Lemma 4.3], that
is,

(𝑠, 𝑞, 𝜇) ⊂ ⟨(𝑠, 𝑞, 𝜇′),(𝑠, 𝑞, 𝜇′)[1]⟩.
By definition 𝑍𝜇𝑠,𝑞 =

1

𝑢
𝑍𝑠,𝑞 and 𝑍

𝜇′

𝑠,𝑞 =
1

𝑢′
𝑍𝑠,𝑞, for unit vectors 𝑢, 𝑢′ in the upper half plane. Recall the generators 𝑏1 and

𝑏2 of (Ku(𝑋)1) defined in Equation (2.4). Since Ku(𝑋)3 = Ku(𝑋)1(𝐻) and Ku(𝑋)2 = 𝕃𝑋
(Ku(𝑋)3), we have that

𝑑1 ∶= 𝑏1(𝐻) =

(
1,𝐻,

1

5
𝐻2, −

5

6

)
, (3.7)

𝑑2 ∶= 𝑏2(𝐻) =

(
0,𝐻,

2

5
𝐻2, −

5

6

)
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12 PERTUSI and ROBINETT

form a basis of (Ku(𝑋)3), and

𝑐1 ∶= (𝕃𝑋
)∗(𝑑1) =

(
−3,𝐻,

1

5
𝐻2, −

5

6

)
, (3.8)

𝑐2 ∶= (𝕃𝑋
)∗(𝑑2) =

(
−4,𝐻,

2

5
𝐻2, −

5

6

)
for  (Ku(𝑋)2). An easy computation shows that multiplying by 1∕𝑢 and 1∕𝑢′ does not change the orientation of the
basis 𝑍𝑠,𝑞(𝑏1), 𝑍𝑠,𝑞(𝑏2) of ℂ. Thus, the basis 𝑍

𝜇
𝑠,𝑞(𝑏1), 𝑍

𝜇
𝑠,𝑞(𝑏2) and 𝑍

𝜇′

𝑠,𝑞(𝑏1), 𝑍
𝜇′

𝑠,𝑞(𝑏2) have the same orientation. Analogous
comments hold for 𝑑1, 𝑑2 and 𝑐1, 𝑐2.
Note that 𝑍𝜇𝑠,𝑞 =

𝑢′

𝑢
𝑍
𝜇′

𝑠,𝑞, thus setting𝑀 ∶=
𝑢

𝑢′
, we have 𝑍(𝑠, 𝑞, 𝜇) = 𝑀−1𝑍(𝑠, 𝑞, 𝜇′) and there exists a cover 𝑔 = (𝑔,𝑀) ∈

G̃L
+
(2,ℝ) such that 𝜎(𝑠, 𝑞, 𝜇′) ⋅ 𝑔 = (′,𝑀−1𝑍(𝑠, 𝑞, 𝜇′) = 𝑍(𝑠, 𝑞, 𝜇)), where

′ ⊂ ⟨(𝑠, 𝑞, 𝜇′),(𝑠, 𝑞, 𝜇′)[1]⟩.
It follows that the stability conditions 𝜎(𝑠, 𝑞, 𝜇) and 𝜎(𝑠, 𝑞, 𝜇′) ⋅ 𝑔 have the same central charge and their hearts are tilt of
the same heart(𝑠, 𝑞, 𝜇′). [2, Lemma 8.11] implies that they are the same stability condition. □

We end this section by showing that the induced stability conditions on each Ku(𝑋)𝑖 are in the same orbit with respect
to the action of G̃L

+
(2,ℝ).

Proposition 3.4. Fix 𝑖 = 1, 2, 3. The stability conditions induced in item (i) of Proposition 3.2 onKu(𝑋)𝑖 are in the same orbit
with respect to the G̃L

+
(2,ℝ)- action.

Proof. We explain the proof for 𝑖 = 1, the other cases are analogous.
Let (𝑠, 𝑞), (𝑠′, 𝑞′) as in Proposition 3.2(1). It is not restrictive to assume 𝑠′ ≥ 𝑠 and 𝑞 ≥ 𝑞′. By Lemma 3.5, we only need

to show that the central charges of 𝜎(𝑠, 𝑞) and 𝜎(𝑠′, 𝑞′) are in the same orbits with respect to the action of GL+(2,ℝ).
Note that for every (𝑠, 𝑞) as in Proposition 3.2(1), we can choose to tilt at 𝜇 = −

9

10
. Indeed, since (𝑠, 𝑞) is below the line

𝑞 = −
9

10
𝑠 −

2

5
passing through 𝑣𝐻(𝑋(−𝐻)) and 𝑣𝐻(𝑋), it satisfies the inequalities

⎧⎪⎨⎪⎩
𝜇𝑠,𝑞(𝑋(−𝐻)[1]) =

1

2
−𝑞

−1−𝑠
≤ −

9

10

𝜇𝑠,𝑞(𝑋) =

1

10
−2𝑞

−1−2𝑠
> −

9

10
.

By Lemma 3.3, the stability condition 𝜎(𝑠, 𝑞) does not depend on the choice of 𝜇, so we can assume 𝜇 = −
9

10
. In particular,

𝑢 =
1√
181

(9 + 10
√
−1).

Now, consider the central charges 𝑍𝜇𝑠,𝑞 and 𝑍
𝜇

𝑠′,𝑞′
. Since multiplying by 1

𝑢
does not change the orientation, we reduce to

compare the orientations of 𝑍𝑠,𝑞 and 𝑍𝑠′,𝑞′ on the basis 𝑏1, 𝑏2. We have

𝑍𝑠,𝑞(𝑏1) = 10

(
𝑞 +

3

10

)
+ 10

√
−1(−𝑠), 𝑍𝑠,𝑞(𝑏2) = 10

(
3

5
+
√
−1

)
.

Then |||||𝑞 +
3

10

3

5
−𝑠 1

||||| = 𝑞 +
3

5
𝑠 +

3

10
>
1

2
𝑠2 +

3

5
𝑠 +

9

40
> 0,

since (𝑠, 𝑞) is above the parabola 𝑞 = 1

2
𝑠2 −

3

40
. In particular, there exists 𝑁 ∈ GL+(2,ℝ) such that 𝑍𝑠′,𝑞′ = 𝑁−1 ⋅ 𝑍𝑠,𝑞. We

write 𝑁 =
1

det(𝑁−1)

(
𝑎 𝑏

𝑐 𝑑

)
, where
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PERTUSI and ROBINETT 13

𝑎 =
10𝑞 + 3 + 6𝑠′

10𝑞 + 3 + 6𝑠
, 𝑏 =

6(𝑞′ − 𝑞)

10𝑞 + 3 + 6𝑠

𝑐 =
10(𝑠′ − 𝑠)

10𝑞 + 3 + 6𝑠
, 𝑑 =

10𝑞′ + 3 + 6𝑠

10𝑞 + 3 + 6𝑠
.

As a consequence, we have 𝑍𝜇
𝑠′,𝑞′

= 𝑀−1𝑍
𝜇
𝑠,𝑞, where𝑀−1 =

1

𝑢
𝑁−1𝑢 and there exists (𝑔,𝑀) ∈ G̃L

+
(2,ℝ) such that 𝑔(0, 1) ⊂

(0, 2). This implies 𝜎(𝑠, 𝑞) ⋅ (𝑔,𝑀) = (
′
, 𝑍

𝜇

𝑠′,𝑞′
| (Ku(𝑋))1) with


′
⊂ ⟨(𝑠, 𝑞),(𝑠, 𝑞)[1]⟩.

Thus, the stability conditions 𝜎(𝑠′, 𝑞′) and 𝜎(𝑠, 𝑞) ⋅ (𝑔,𝑀) have the same central charge and their hearts are tilt of(𝑠, 𝑞).
We conclude that they are the same stability condition by [2, Lemma 8.11]. □

Lemma 3.5. Fix 𝑖 = 1, 2, 3. Let (𝑠, 𝑞), (𝑠′, 𝑞′) as in Proposition 3.2(i). If 𝑠 < 𝑠′, then(𝑠′, 𝑞′) ⊂ ⟨(𝑠, 𝑞),(𝑠, 𝑞)[1]⟩, while if
𝑠 = 𝑠′, then(𝑠′, 𝑞′) = (𝑠, 𝑞).

Proof. The argument is similar to the one used in the proof of [41, Lemma 3.8]. Consider the case 𝑖 = 1, the others are
analogous. By Lemma 3.3, we can fix 𝜇 = −

9

10
. We denote by 𝑠,𝑞 the slicing defined by 𝜎𝑠,𝑞. We claim that Coh𝜇𝑠,𝑞(𝑋) =

𝑠,𝑞(𝜙𝑢, 𝜙𝑢 + 1], where 𝜙𝑢 =
1

𝜋
arg(𝑢). Indeed, assume 𝐸 ∈ Coh𝜇𝑠,𝑞(𝑋) is 𝜎

𝜇
𝑠,𝑞-semistable. Then, there is a triangle 𝐴[1] →

𝐸 → 𝐵, where𝐴 ∈ Coh𝑠(𝑋) (resp. 𝐵 ∈ Coh𝑠(𝑋)) and its 𝜎𝑠,𝑞-semistable factors have slope 𝜇𝑠,𝑞 ≤ 𝜇 (resp.> 𝜇). If 𝑍𝑠,𝑞(𝐵) ≠
0, then𝐴[1]has larger slope than𝐵with respect to𝜎𝜇𝑠,𝑞. Thiswould contradict the semistability of𝐸, unless either𝐸 = 𝐵, or
𝐸 = 𝐴[1]. If𝐸 = 𝐵, the 𝜎𝑠,𝑞-semistable factors of𝐸would have phase in the interval (𝜙𝑢, 1] by definition of𝐵. Actually, this
also shows that 𝐸 is 𝜎𝑠,𝑞-semistable, as a destabilizing sequence of 𝐸 with respect to 𝜎𝑠,𝑞 would destabilize 𝐸 with respect
to 𝜎𝜇𝑠,𝑞. A similar observation shows that𝐴[1] ∈ 𝑠,𝑞(1, 𝜙𝑢 + 1]. It remains to consider the case when 𝑍𝑠,𝑞(𝐵) = 0, that is, 𝐵
is a torsion sheaf supported on points. Then, 𝐵 is 𝜎𝑠,𝑞-semistable of phase 1. Since𝐴[1] ∈ 𝑠,𝑞(1, 𝜙𝑢 + 1], we conclude that
𝐸 ∈ 𝑠,𝑞(𝜙𝑢, 𝜙𝑢 + 1]. This shows Coh𝜇𝑠,𝑞(𝑋) ⊂ 𝑠,𝑞(𝜙𝑢, 𝜙𝑢 + 1]. Since those are hearts of bounded t-structures, we deduce
that they are equal.
Now if 𝑠′ > 𝑠, it is easy to see that Coh𝑠

′

(𝑋) is a tilt of Coh𝑠(𝑋), that is, Coh𝑠
′

(𝑋) ⊂ ⟨Coh𝑠(𝑋),Coh𝑠(𝑋)[1]⟩. Equivalently,
𝑠′,𝑞′ (0, 1] ⊂ 𝑠,𝑞(0, 2]. The action by multiplication with 𝑢−1 preserves the distance of the slicings 𝑠,𝑞 and 𝑠′,𝑞′ , thus

Coh𝜇
𝑠′,𝑞′

(𝑋) = 𝑠′,𝑞′ (𝜙𝑢, 𝜙𝑢 + 1] ⊂ 𝑠,𝑞(𝜙𝑢, 𝜙𝑢 + 2] = ⟨Coh𝜇𝑠,𝑞(𝑋),Coh𝜇𝑠,𝑞(𝑋)[1]⟩.
Consider (𝑠′, 𝑞′) = Ku(𝑋) ∩ Coh𝜇

𝑠′,𝑞′
(𝑋). Since the cohomology with respect to the restricted heart of an objects 𝐸 ∈

Ku(𝑋) is the same as the cohomology in Coh𝜇𝑠,𝑞(𝑋) by [4, Lemma 4.3], we deduce that

(𝑠′, 𝑞′) ⊂ ⟨(𝑠, 𝑞),(𝑠, 𝑞)[1]⟩.
If 𝑠′ = 𝑠, we get Coh𝜇

𝑠′,𝑞′
(𝑋) = Coh𝜇𝑠,𝑞(𝑋), which implies(𝑠′, 𝑞′) = (𝑠, 𝑞). □

Notation: In the next, we will use the subscript 𝑠, 𝑞 (resp. 𝛼, 𝛽) when we refer to the reparameterized tilt stability
condition (resp. to the classical tilt stability). If we work in the region above the parabola 𝑞 − 1

2
𝑠2 = 0, we will prefer to

use the classical tilt stability condition depending on 𝛼 and 𝛽, and we will make use of the tilt stability below this parabola
and above Li’s boundary only where it is necessary.
We will denote by Coh𝑠(𝑋)𝜇𝑠,𝑞>𝜇 (resp. Coh

𝑠
(𝑋)𝜇𝑠,𝑞≤𝜇) the subcategory of Coh

𝑠
(𝑋) generated by 𝜇𝑠,𝑞-semistable objects

with slope 𝜇𝑠,𝑞 > 𝜇 (resp. ≤ 𝜇), and analogous notation with the subscript 𝛼, 𝛽.
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14 PERTUSI and ROBINETT

3.2 Proof of Theorem 1.1

Consider Ku(𝑋)3 defined in Equation (3.3). By [20, lemma 2.6], since 𝑆𝑋(−) = −⊗ 𝑋(−𝐻)[3], the Serre functor 𝑆Ku(𝑋)3
on Ku(𝑋)3 satisfies

𝑆−1
Ku(𝑋)3

(−) = 𝕃 ∨
𝑋
◦𝕃𝑋(𝐻)◦(− ⊗ 𝑋(𝐻))[−3] = (− ⊗ 𝑋(𝐻))◦𝕃𝑋

◦𝕃𝑋
[−3]. (3.9)

The goal of the next sections is to prove Theorem 1.1, which follows from the result below.

Theorem3.6. Let𝜎(𝑠3, 𝑞3) be a stability condition onKu(𝑋)3 as induced in Proposition 3.2(3). Then, there exists 𝑔 ∈ G̃L
+

2 (ℝ)

such that

𝑆−1
Ku(𝑋)3

⋅ 𝜎(𝑠3, 𝑞3) = 𝜎(𝑠3, 𝑞3) ⋅ 𝑔.

Then in Corollary 4.3 we show more precisely that 𝑆Ku(𝑋)3[−2] ⋅ 𝜎(𝑠3, 𝑞3) = 𝜎(𝑠3, 𝑞3), completing the proof of
Theorem 1.1.
Here, we outline the strategy of the proof of Theorem 3.6. The idea is to decompose 𝑆−1

Ku(𝑋)3
as in Equation (3.9) and

study the action of 𝕃𝑋
on 𝜎(𝑠3, 𝑞3) and then of 𝕃𝑋

on 𝕃𝑋
⋅ 𝜎(𝑠3, 𝑞3). In fact, 𝕃𝑋

(resp. 𝕃𝑋
) induces an equivalence

betweenKu(𝑋)3 andKu(𝑋)2 (resp.Ku(𝑋)2 andKu(𝑋)1), so𝕃𝑋
⋅ 𝜎(𝑠3, 𝑞3) and𝕃𝑋

⋅ 𝕃𝑋
⋅ 𝜎(𝑠3, 𝑞3) are stability conditions

on Ku(𝑋)2 and Ku(𝑋)1, respectively.
First, in Section 3.3 we consider special values of 𝑠3 and 𝑞3 very close to 0. Here, it is not necessary to work with the

reparameterized tilt stability conditions, so we use the notation with 𝛼 and 𝛽. In particular, we consider the stability con-
dition 𝜎(𝛼, 𝜖), for 𝜖 > 0 very small and 0 < 𝛼 < 𝜖. In Lemma 3.9, we show that the heart 𝕃𝑋

((𝛼, 𝜖)) onKu(𝑋)2 is a tilting
of (𝛼′, −𝜖′) for 0 < 𝜖′ ≤ 𝜖, 0 < 𝛼′ < 𝜖′. The basic idea is that when moving from 𝜖 to −𝜖′, the only problematic object
in Coh0𝛼,𝜖(𝑋) is 𝑋[2], which belongs to Coh

0
𝛼′,−𝜖′ (𝑋)[2]. Then, we show in Proposition 3.10 that the stability condition

𝕃𝑋
⋅ 𝜎(𝛼, 𝜖) on Ku(𝑋)2 is the same as 𝜎(𝛼′, −𝜖′) up to the G̃L

+

2 (ℝ)-action. This implies the same statement for every
stability condition 𝜎(𝑠3, 𝑞3) on Ku(𝑋)3 (see Corollary 3.11).
Next, in Section 3.4 we follow the same argument for the stability conditions 𝜎(𝑠2, 𝑞2) on Ku(𝑋)2 and the left mutation

𝕃𝑋
. Here, we need to work with the stability conditions over Li’s boundary, as we need to consider 𝑠2 very close to

−
1

2
and 𝑞2 close to

1

20
. Analogously, we show in Lemma 3.14 that the heart 𝕃𝑋

((−
1

2
+ 𝜖, 𝑞2)) on Ku(𝑋)1 is a tilt of

(−
1

2
− 𝜖′, 𝑞′

2
). This allows us to show in Corollary 3.16 that 𝕃𝑋

⋅ 𝜎(𝑠2, 𝑞2) on Ku(𝑋)1 is in the same orbit with respect to

the G̃L
+

2 (ℝ)-action of the induced stability conditions 𝜎(𝑠1, 𝑞1) on Ku(𝑋)1.
Finally, we simply observe that acting via (−) ⊗ 𝑋(𝐻) on a stability condition 𝜎(𝑠1, 𝑞1) onKu(𝑋)1, we get 𝜎(𝑠1 + 1, 𝑞′

1
),

namely a stability condition on Ku(𝑋)3 in the same orbit of 𝜎(𝑠3, 𝑞3).

3.3 Stability conditions on𝐊𝐮(𝑿)𝟑 and action of 𝕃𝑿

In this section, we study the action of 𝕃𝑋
on the stability conditions 𝜎(𝑠3, 𝑞3) on Ku(𝑋)3 defined in Proposition 3.2(3).

The main result is Corollary 3.11.
We start by considering (𝑠3, 𝑞3) close to (0,0). For this reason, we can simply work with the usual parameterization of

the tilt stability 𝜎𝛼,𝛽 and 𝛽 = 𝜖 > 0 very small.

Lemma 3.7. Fix 𝜖 > 0 very small. Assume that 𝐹 ∈ Coh0𝛼,𝜖(𝑋) for every 0 < 𝛼 < 𝜖. Then, there exist 𝜖′ > 0 very small and
0 < 𝛼′ < 𝜖′ such that

𝐹 ∈ ⟨Coh0𝛼′,−𝜖′ (𝑋),Coh0𝛼′,−𝜖′ (𝑋)[1],𝑋[2]⟩.
Proof. Step 1:We show that if 𝐸 ∈ Coh𝜖(𝑋) such that 𝜇+𝛼,𝜖(𝐸) ≤ 0, then there exists 0 < 𝜖′ ≤ 𝜖 such that 𝐸 is an extension
of objects in Coh−𝜖

′

(𝑋) and objects of the form [1], where  is a slope semistable coherent sheaf with 𝜇𝐻() = 0 and
𝜇+𝛼,𝜖([1]) = 𝜇𝛼,𝜖(𝑋[1]).
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PERTUSI and ROBINETT 15

Consider 𝐸 as above. Note that 𝜇𝛼,𝜖(𝑋[1]) =
−𝜖2+𝛼2

2𝜖
< 0 for 𝛼 < 𝜖 and converges to 0 for 𝛼 → 𝜖. Thus, up to taking 𝛼

close to 𝜖, we can assume that 𝜇+𝛼,𝜖(𝐸) ≤ 𝜇𝛼,𝜖(𝑋[1]). On the other hand, by definition 𝐸 is an extension of the form

−1(𝐸)[1] → 𝐸 → 0(𝐸),

where0(𝐸) (resp.−1(𝐸)) is in Coh(𝑋) and its slope semistable factors have slope 𝜇𝐻 > 𝜖 (resp. ≤ 𝜖). Clearly,0(𝐸) ∈

Coh−𝜖
′

(𝑋) for every 0 < 𝜖′ ≤ 𝜖. Consider −1(𝐸) and denote by 1, … ,𝑘 its slope semistable factors. Then, there exists
0 < 𝜖′ ≤ 𝜖 such that if 𝜇𝐻(𝑖) < 0, then 𝜇𝐻(𝑖) ≤ −𝜖′. Then, 𝑖[1] ∈ Coh−𝜖

′

(𝑋).
Assume there is an index 𝑖 such that 0 ≤ 𝜇𝐻(𝑖) ≤ 𝜖. Set ch(𝑖)≤2 = (𝑑, 𝑒𝐻,

𝑓

2
𝐻2) for integers 𝑑, 𝑒, 𝑓. Then 𝑑 > 0, 𝑒 ≥ 0.

Since 𝜇+𝛼,𝜖(𝐸) ≤ 𝜇𝛼,𝜖(𝑋[1]), it follows that

𝜇𝛼,𝜖(𝑖[1]) ≤ 𝜇+𝛼,𝜖(𝑖[1]) ≤ 𝜇+𝛼,𝜖(𝐸) ≤ 𝜇𝛼,𝜖(𝑋[1]). (3.10)

However, the point (𝑠(𝑖), 𝑞(𝑖)) corresponding to 𝑖 in the affine plane 𝔸2
ℝ
does not belong to 𝑅 3

20

by [28, Theorem 0.3]

(see Equation (3.5); equivalently, 𝑓 ≤ 0. This implies that

−𝑓𝜖 + 𝜖2𝑒 + 𝛼2𝑒 ≥ 0, (3.11)

with equality if and only if 𝑒 = 𝑓 = 0. The inequality (3.11) contradicts 𝜇𝛼,𝜖(𝑖[1]) ≤ 𝜇𝛼,𝜖(𝑋[1]) unless 𝑒 = 𝑓 = 0when it
is an equality. This implies the claim in Step 1.
Step 2:We improve the computation in Step 1, by showing the objects of the form [1] are extensions of copies of𝑋[1].
Note that [1] is a slope semistable torsion free sheaf. Moreover, [1] is 𝜎𝛼,𝜖-semistable with slope 𝜇𝛼,𝜖(𝑋[1]), since

the inequalities in Equation (3.10) are equalities. Since by [28, Theorem 0.1], Conjecture 4.1 of [2] holds, it follows that
ch3() ∶= 𝑔 ≥ 0.
It is not restrictive to assume that  is slope stable, up to replacing it with one of its stable factors. We claim that  ≅ 𝑋 .

Indeed, note that 𝜒(𝑋,) = 𝑑 + 𝑔 > 0. Thus, hom(𝑋,) + hom(𝑋,[2]) > 0. We observe that  is a reflexive sheaf.
Indeed, consider the short exact sequence

0 →  → ∨∨ → 𝑇 → 0

of coherent sheaves, where 𝑇 is torsion supported in dimension≤ 1. If 𝑇 ≠ 0, then 𝑇 would destabilize [1]with respect to
𝜎𝛼,𝜖 giving a contradiction. In particular, [1] is 𝜎𝛼,0-stable (see [6, Proposition 4.18]). Thus, there exists 𝛿 > 0 very small
such that  ∈ Coh−𝛿(𝑋) is 𝜎𝛼,−𝛿-semistable for some 0 < 𝛼 < 𝛿. By Serre duality, we have

Hom(𝑋,[2]) = Hom(,𝑋(−𝐻)[1]) = 0,

where the last equality follows from the fact that  and 𝑋(−𝐻)[1] are 𝜎𝛼,−𝛿-semistable in Coh−𝛿(𝑋) with
𝜇𝛼,−𝛿(𝑋(−𝐻)[1]) < 0 < 𝜇𝛼,−𝛿(𝑋) = 𝜇𝛼,−𝛿(). Thus, there exists a non-zero morphism 𝑋 → . Since both are slope
stable, we conclude that 𝑋 ≅ .
Step 3:We can now prove the statement of the lemma.
Consider 𝐹 ∈ Coh0𝛼,𝜖(𝑋) for 𝜖 > 0 very small and for every 0 < 𝛼 < 𝜖. By definition 𝐹 is an extension of the form

𝐴[1] → 𝐹 → 𝐵,

where 𝐵 (resp. 𝐴) belongs to Coh𝜖(𝑋)𝜇𝛼,𝜖>0 (resp. Coh
𝜖
(𝑋)𝜇𝛼,𝜖≤0). In the next, we show that

𝐵 ∈ ⟨Coh−𝜖′(𝑋)𝜇𝛼′,−𝜖′>0,Coh−𝜖′(𝑋)[1]⟩ (3.12)

and

𝐴[1] ∈ ⟨Coh−𝜖′(𝑋)[1],𝑋[2]⟩, (3.13)

for 𝜖′ > 0 very small and 0 < 𝛼′ < 𝜖′, which imply the statement.
By Step 2, we have that𝐴[1] is an extension of objects in Coh−𝜖

′

(𝑋)[1] and copies of𝑋[2]. This implies Equation (3.13).
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16 PERTUSI and ROBINETT

F IGURE 4 The tilt-stability 𝜎𝛼,𝜖 (resp. 𝜎𝛼′,−𝜖′ ) corresponds to the point (𝜖, 𝛿 ∶=
𝛼2+𝜖2

2
) (resp. (−𝜖′, 𝑞′ ∶= (𝛼′)2+(𝜖′)2

2
)) in the affine plane.

Tilting at 𝜇𝛼,𝜖 = 0 (resp. 𝜇𝛼′,𝜖′ = 0) is equivalent to tilting at 𝜇𝜖,𝛿 = 𝜖 (resp. 𝜇−𝜖′,𝑞′ = −𝜖′). Let 𝐵 be a 𝜎𝜖,𝛿-semistable object in Coh
𝜖
(𝑋) with

𝜇𝜖,𝛿(𝐵) > 𝜖. By [30, Lemma 3] the slope of its 𝜎−𝜖′,𝑞′ -semistable factors is greater than or equal to the slope of 𝐵−, which is the gradient of the
red line connecting (−𝜖′, 𝑞′) to 𝐵−. Since 𝐵− has positive 𝑠-coordinate, its slope with respect to 𝜎−𝜖′,𝑞′ is larger than 𝜇−𝜖′,𝑞′ (𝑋), which is
represented in blue.

Up to replacing 𝐵 with its semistable factors, we can assume that 𝐵 is 𝜎𝛼,𝜖-semistable. Consider 0 < 𝜖′ ≤ 𝜖,
0 < 𝛼′ < 𝜖′ and set 𝑞′ ∶= (𝛼′)2+(𝜖′)2

2
. By a similar argument as that at the beginning of Step 1, we have that 𝐵 ∈⟨Coh−𝜖′(𝑋),Coh−𝜖′(𝑋)[1]⟩. We will now use the result in [30] to control the slope of the tilt semistable factors of 𝐵 when

we deform the tilt stability condition 𝜎𝛼,𝜖 to 𝜎𝛼′,−𝜖′ . To this end, write ch(𝐵)≤2 = (𝑎, 𝑏𝐻,
𝑐

2
𝐻2) for some integers 𝑎, 𝑏, 𝑐. We

denote by 𝓁 the line connecting the point (𝜖, 𝛿 ∶= 𝛼2+𝜖2

2
) to the point ( 𝑏

𝑎
,
𝑐

2𝑎
) corresponding to 𝐵 in the affine plane. Let

𝐵+ and 𝐵− be the intersection points of the parabola 𝑞 = 1

2
𝑠2 with 𝓁. By [30, Lemma 3], if 𝐵𝑖 is a 𝜎𝛼′,−𝜖′ -semistable factor

of 𝐵, then its slope satisfies

𝜇𝛼′,−𝜖′ (𝐵
−) ≤ 𝜇𝛼′,−𝜖′ (𝐵𝑖) ≤ 𝜇𝛼′,−𝜖′ (𝐵

+).

We claim that the coordinate 𝑠(𝐵−) of 𝐵− on the 𝑠-axis is > 0. Indeed, 𝓁 has equation

𝑞 =

𝑐

2
− 𝑎𝛿

𝑏 − 𝑎𝜖
(𝑠 − 𝜖) + 𝛿,

so the 𝑠-coordinate of 𝐵± is given by the solutions of

1

2
𝑠2 −

𝑐

2
− 𝑎𝛿

𝑏 − 𝑎𝜖
𝑠 +

𝑐

2
− 𝑎𝛿

𝑏 − 𝑎𝜖
𝜖 − 𝛿 = 0. (3.14)

Recall that 𝜇𝛼,𝜖(𝐵) > 0, equivalently 𝜇𝜖,𝛿(𝐵) =
𝑐

2
−𝑎𝛿

𝑏−𝑎𝜖
> 𝜖 (see Equation (3.4) for the relation between reparameterized tilt

stability). Then, the coefficient of 𝑠 in Equation (3.14) is negative, while
𝑐

2
−𝑎𝛿

𝑏−𝑎𝜖
𝜖 − 𝛿 > 𝜖2 − 𝛿 > 0, as 𝛿 < 𝜖2 (equivalently

𝛼 < 𝜖). It follows that Equation (3.14) has two positive solutions.
Now, comparing the slopes using Figure 4, we deduce that

𝜇−𝜖′,𝑞′ (𝐵
−) > 𝜇−𝜖′,𝑞′ (𝑋) > −𝜖′,
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PERTUSI and ROBINETT 17

equivalently

𝜇𝛼′,−𝜖′ (𝐵
−) > 𝜇𝛼′,−𝜖′ (𝑋) > 0.

This proves Equation (3.12) and ends the proof of the lemma. □

Lemma 3.8. Let 𝜖 > 0 be very small. There exists 0 < 𝛼 < 𝜖 such that if 𝐹 ∈ Coh0𝛼,𝜖(𝑋), then 𝕃𝑋
(𝐹) is in Coh0𝛼,𝜖(𝑋).

Proof. As in [4, Lemma 5.9] we have the five terms exact sequence

0 → −1(𝕃𝑋
(𝐹)) → 𝑋[2]

⊕𝑘0 → 𝐹 → 0(𝕃𝑋
(𝐹)) → 𝑋[2]

⊕𝑘1 → 0,

where𝑖(𝕃𝑋
(𝐹)) denotes the cohomology in Coh0𝛼,𝜖(𝑋) and 𝑘0, 𝑘1 are integers. Note that

𝜇0𝛼,𝜖(𝑋[2]) =
2𝜖

𝜖2 − 𝛼2
→ +∞ if 𝛼 → 𝜖.

Thus up to replacing 𝛼, we can assume that𝑋[2] is the stable factor of 𝐹 with larger slope. It follows that−1(𝕃𝑋
(𝐹)) =

0, thus 𝕃𝑋
(𝐹) ∈ Coh0𝛼,𝜖(𝑋). □

Lemma 3.9. Let 𝜖 > 0 be very small. Then, there exist 0 < 𝛼 < 𝜖, 0 < 𝜖′ ≤ 𝜖, 0 < 𝛼′ < 𝜖′ such that

𝕃𝑋
((𝛼, 𝜖)) ⊂ ⟨(𝛼′, −𝜖′),(𝛼′, −𝜖′)[1]⟩.

Proof. Consider 𝐹 ∈ (𝛼, 𝜖) and its left mutation 𝕃𝑋
(𝐹). By Lemma 3.8, we can find 𝛼 such that 𝕃𝑋

(𝐹) ∈ Coh0𝛼,𝜖(𝑋).
Note that 𝐹 ∈ (𝛼′′, 𝜖) for every 0 < 𝛼′′ < 𝜖 by Lemma 3.5. By Lemma 3.7, there exist 𝜖′ > 0 very small and 0 < 𝛼′ < 𝜖′

such that

𝕃𝑋
(𝐹) ∈ ⟨Coh0𝛼′,−𝜖′ (𝑋),Coh0𝛼′,−𝜖′ (𝑋)[1],𝑋[2]⟩.

Up to taking a smaller 𝜖′, the above relation holds for every 𝐹 ∈ (𝛼, 𝜖). Note that (𝛼′, −𝜖′) = Coh0𝛼′,−𝜖′ (𝑋) ∩ Ku(𝑋)2
is a heart of a stability condition on Ku(𝑋)2 by Proposition 3.2(2). Since 𝕃𝑋

(𝐹) is in Ku(𝑋)2 and by [4, Lemma 4.3], its
cohomology in Coh0𝛼′,−𝜖′ (𝑋) belongs to Ku(𝑋)2 as well, we deduce that 𝕃𝑋

(𝐹) ∈ ⟨(𝛼′, −𝜖′),(𝛼′, −𝜖′)[1]⟩. Finally, we
observe that the statement does not depend on 𝛼′ < 𝜖′, by Lemma 3.5. □

Proposition 3.10. Let 𝜖 > 0 be very small. Then there exist 0 < 𝛼 < 𝜖, 0 < 𝜖′ ≤ 𝜖, 0 < 𝛼′ < 𝜖′ such that there exists 𝑔 ∈
G̃L

+

2 (ℝ) satisfying

𝕃𝑋
⋅ 𝜎(𝛼, 𝜖) = 𝜎(𝛼′, −𝜖′) ⋅ 𝑔.

Proof. Recall that the stability condition𝕃𝑋
⋅ 𝜎(𝛼, 𝜖) has heart𝕃𝑋

((𝛼, 𝜖)) and stability function𝑍′ ∶= 𝑍(𝛼, 𝜖)◦(𝕃𝑋
)−1∗ .

As done for instance in Proposition 3.4, we can check that there exists 𝑔 ∈ G̃L
+

2 (ℝ) such that 𝜎(𝛼′, −𝜖′) ⋅ 𝑔 = 𝜎′, where
𝜎′ = (′, 𝑍′) and′ is a tilt of(𝛼′, −𝜖′), up to shifting. More precisely, one first needs to check there exists𝑀 ∈ GL+

2
(ℝ)

such that 𝑍′ = 𝑀−1 ⋅ 𝑍(𝛼′, −𝜖′), or equivalently,

𝑍(𝛼, 𝜖) = 𝑀−1 ⋅ 𝑍(𝛼′, −𝜖′) ⋅ (𝕃𝑋
)∗. (3.15)

In order to do this, recall the basis 𝑑1 ∶= 𝑏1(𝐻), 𝑑2 ∶= 𝑏2(𝐻) of (Ku(𝑋)3) given in Equation (3.7) and the basis 𝑐1 ∶=
(𝕃𝑋

)∗(𝑑1), 𝑐2 ∶= (𝕃𝑋
)∗(𝑑2) of  (Ku(𝑋)2) defined in Equation (3.8). Recall also that 𝑍(𝛼, 𝜖) = −

√
−1𝑍𝛼,𝜖| (Ku(𝑋)3),

𝑍(𝛼′, −𝜖′) = −
√
−1𝑍𝛼′,−𝜖′ | (Ku(𝑋)2) as defined in Equation (3.6). Then

𝑍(𝛼, 𝜖)(𝑑1) = (1 − 𝜖) +
√
−1

(
1

5
− 𝜖 +

𝜖2

2
−
𝛼2

2

)
,
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18 PERTUSI and ROBINETT

𝑍(𝛼, 𝜖)(𝑑2) = 1 +
√
−1

(
2

5
− 𝜖

)
,

𝑍(𝛼′, −𝜖′)(𝑐1) = (1 − 3𝜖′) +
√
−1

(
1

5
+ 𝜖′ −

3

2
(𝜖′)2 +

3

2
(𝛼′)2

)
,

𝑍(𝛼′, −𝜖′)(𝑐2) = (1 − 4𝜖′) +
√
−1

(
2

5
+ 𝜖′ − 2(𝜖′)2 + 2(𝛼′)2

)
.

The two matrices having on the columns the components with respect to the standard basis of ℂ = ℝ
2 of 𝑍(𝛼, 𝜖)(𝑑1),

𝑍(𝛼, 𝜖)(𝑑2), and 𝑍(𝛼′, −𝜖′)(𝑐1), 𝑍(𝛼′, −𝜖′)(𝑐2), respectively, have determinant

𝛼2

2
+
𝜖2

2
−
2

5
𝜖 +

1

5
> 0,

(𝛼′)2

2
+
(𝜖′)2

2
−
2

5
𝜖′ +

1

5
> 0.

Thus, there exists 𝑀 ∈ GL+
2
(ℝ) satisfying Equation (3.15). More explicitly, setting 𝑀−1 =

(
𝑥1 𝑥2
𝑥3 𝑥4

)
, condition (3.15)

translates into {
𝑍(𝛼, 𝜖)(𝑑1) = 𝑀−1 ⋅ 𝑍(𝛼′, −𝜖′) ⋅ (𝕃𝑋

)∗(𝑑1),

𝑍(𝛼, 𝜖)(𝑑2) = 𝑀−1 ⋅ 𝑍(𝛼′, −𝜖′) ⋅ (𝕃𝑋
)∗(𝑑2)

which is equivalent to solve the linear system

⎧⎪⎪⎨⎪⎪⎩

(1 − 3𝜖′)𝑥1 + (
1

5
+ 𝜖′ −

3

2
(𝜖′)2 +

3

2
(𝛼′)2)𝑥2 = 1 − 𝜖

(1 − 3𝜖′)𝑥3 + (
1

5
+ 𝜖′ −

3

2
(𝜖′)2 +

3

2
(𝛼′)2)𝑥4 =

1

5
− 𝜖 +

𝜖2

2
−

𝛼2

2

(1 − 4𝜖′)𝑥1 + (
2

5
+ 𝜖′ − 2(𝜖′)2 + 2(𝛼′)2)𝑥2 = 1

(1 − 4𝜖′)𝑥3 + (
2

5
+ 𝜖′ − 2(𝜖′)2 + 2(𝛼′)2)𝑥4 =

2

5
− 𝜖.

Using a computer, we can find the solution of the above linear system and check the existence of a cover 𝑔 = (𝑔,𝑀) ∈

G̃L
+

2 (ℝ) with the desired properties.
Since by Lemma 3.9, the heart 𝕃𝑋

((𝛼, 𝜖)) is a tilt of(𝛼′, −𝜖′), by [2, Lemma 8.11] we conclude 𝜎′ = 𝕃𝑋
⋅ 𝜎(𝛼, 𝜖), as

we wanted. □

Corollary 3.11. For 𝑖 = 2, 3, if 𝜎(𝑠𝑖, 𝑞𝑖) is a stability condition on Ku(𝑋)𝑖 , then there exists 𝑔 ∈ G̃L
+

2 (ℝ) such that

𝕃𝑋
⋅ 𝜎(𝑠3, 𝑞3) = 𝜎(𝑠2, 𝑞2) ⋅ 𝑔.

Proof. By Proposition 3.4, we have that 𝜎(𝑠3, 𝑞3) (resp. 𝜎(𝑠2, 𝑞2)) is in the same orbit of 𝜎(𝛼, 𝜖) (resp. 𝜎(𝛼′, −𝜖′)) with
respect to the G̃L

+

2 (ℝ)-action. Since the action of 𝕃𝑋
commutes with the G̃L

+

2 (ℝ)-action, by Proposition 3.10, we deduce
the claim. □

3.4 Stability conditions on𝐊𝐮(𝑿)𝟐 and action of 𝕃𝑿

Our goal is now to investigate the action of the left mutation 𝕃𝑋
on a stability condition 𝜎(𝑠2, 𝑞2) on Ku(𝑋)2 as in

Proposition 3.2(2). The main statement is Corollary 3.16.
We would like to apply the same technique as in the previous section. In particular, we need to consider a stability con-

dition corresponding to (𝑠2, 𝑞2) very close to the point (−
1

2
,
1

20
) ∈ 𝜕𝑅 3

20

. Thus, we have to workwith the stability conditions

induced from (a tilt of) the tilt stability conditions 𝜎𝑠,𝑞 below the parabola 𝑞 − 1

2
𝑠2 = 0.
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PERTUSI and ROBINETT 19

We start by fixing 𝑠 = −
1

2
+ 𝜖 for 𝜖 > 0 very small such that 𝑠 < −

√
3

20
. For simplicity, we can assume 𝜖 < 1

10
. Consider

𝑞 > 0 such that the point (𝑠, 𝑞) satisfies the conditions in Proposition 3.2(2). Explicitly, we have that

𝑞 ∈

(
1

20
+
1

2
𝜖2 −

1

2
𝜖,

1

20
−

1

10
𝜖

)
. (3.16)

On the other side of the vertical wall for𝑋 , we consider 𝑠′ = −
1

2
− 𝜖′ for 𝜖′ > 0 very small. Note that if 𝑞′ varies in(

1

20
+
1

2
(𝜖′)2 +

1

2
𝜖′,

1

20
+

9

10
𝜖′
)
, (3.17)

then (𝑠′, 𝑞′) satisfies the conditions in Proposition 3.2(1), so this point induces a stability condition on Ku(𝑋)1 after
suitable tilting.
We fix 𝜇̄ = −

1

10
. Note that

𝜇𝑠,𝑞(𝑋) =
−𝑞
1

2
− 𝜖

> −
1

10
⟺ 𝑞 <

1

20
−

1

10
𝜖

and

𝜇𝑠,𝑞(𝑋[1]) =

1

10
− 2𝑞

−2𝜖
< −

1

10
⟺ 𝑞 <

1

20
−

1

10
𝜖

which holds by Equation (3.16).
On the other side, fix 𝜇̄′ = −

9

10
. Similarly, we have

𝜇𝑠′,𝑞′ (𝑋(−𝐻)[1]) < 𝜇̄′ < 𝜇𝑠′,𝑞′ (𝑋).

Lemma 3.12. Let 𝜖 > 0 be very small and 𝜇̄ = −
1

10
. Assume that 𝐹 ∈ Coh𝜇̄

−
1

2
+𝜖,𝑞

(𝑋) for every 𝑞 satisfying Equation (3.16).

For 𝜇̄′ = −
9

10
, there exists 𝜖′ > 0, 𝑞′ satisfying Equation (3.17) such that

𝐹 ∈ ⟨Coh𝜇̄′
−
1

2
−𝜖′,𝑞′

(𝑋),Coh𝜇̄
′

−
1

2
−𝜖′,𝑞′

(𝑋)[1],𝑋[2]⟩.
Proof. Fix 𝑠 = −

1

2
+ 𝜖.

Step 1:We claim that if 𝐸 ∈ Coh𝑠(𝑋) such that 𝜇+𝑠,𝑞(𝐸) ≤ 𝜇̄, then there exist 𝜖′ > 0 very small such that𝐸 is an extension
of objects in Coh𝑠

′

(𝑋)where 𝑠′ ∶= −
1

2
− 𝜖′, and objects of the form [1], where  is a slope semistable coherent sheaf with

𝜇𝐻() = −
1

2
and 𝜇+𝑠,𝑞([1]) = 𝜇𝑠,𝑞(𝑋[1]).

We follow the same argument as in Step 1 of the proof of Lemma 3.7. Up to taking 𝑞 → 1

20
−

1

10
𝜖, we can assume that

𝜇+𝑠,𝑞(𝐸) ≤ 𝜇𝑠,𝑞(𝑋[1]). Up to choosing 𝜖′ small enough, we have that 𝐸 is an extension of objects in Coh
𝑠′
(𝑋) and objects of

the form [1], where  is a slope semistable coherent sheaf with −1

2
≤ 𝜇𝐻() ≤ 𝑠 and 𝜇+𝑠,𝑞([1]) ≤ 𝜇𝑠,𝑞(𝑋[1]). However,

by a direct computation or comparing the slopes using Figure 5 we must have 𝜇𝐻() = −
1

2
and 𝜇𝑠,𝑞([1]) = 𝜇𝑠,𝑞(𝑋[1]),

as we wanted.
Step 2:We claim that the objects of the form [1] in Step 1 are extensions of copies of𝑋[1].
Indeed, the point

(
ch1()

rk()
,
ch2()

rk()

)
belongs to the boundary of 𝑅 3

20

. Thus by [28, Proposition 3.2] rk() is either 1 or 2. We

exclude the case rk() = 1, as the numerical Grothendieck group of 𝑋 does not contain the class of such object by [26,
Proposition 3.9]. Moreover,  is a slope semistable torsion-free sheaf. SinceHom(,𝑋[2]) = Hom(𝑋(𝐻),[−1]) = 0 by
stability, [33, Theorem 3.14] implies that  is a vector bundle with ch() = ch(𝑋). It follows that  ≅ 𝑋 .
Step 3:We end by showing the statement of the lemma, arguing as in Step 3 of the proof of Lemma 3.7.
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20 PERTUSI and ROBINETT

F IGURE 5 The dashed arrow is the vertical line 𝑠 = −
1

2
+ 𝜖, passing through the point (𝑠, 𝑞) corresponding to the fixed tilt stability. The

slope 𝜇𝑠,𝑞(𝑋[1]) is represented in blue. When [1] corresponds to a point in the region −1

2
≤ 𝑠 ≤ −

1

2
+ 𝜖 and 𝑞 ≤

1

2
𝑠2 −

3

40
, we have that

𝜇𝑠,𝑞([1]) ≥ 𝜇𝑠,𝑞(𝑋[1]).

F IGURE 6 We represent in blue the slope of𝑋 with respect to (𝑠′, 𝑞′), and in red that of 𝐵−, where 𝑠′ = −
1

2
− 𝜖′.

Consider 𝐹 ∈ Coh𝜇̄𝑠,𝑞(𝑋). By definition 𝐹 is an extension of the form

𝐴[1] → 𝐹 → 𝐵,

where 𝐵 (resp. 𝐴) belongs to Coh𝑠(𝑋)𝜇𝑠,𝑞>𝜇̄ (resp. Coh
𝑠
(𝑋)𝜇𝑠,𝑞≤𝜇̄).

By Step 2, we can find 𝑠′ such that 𝐴[1] is an extension of objects in Coh𝑠
′

(𝑋)[1] and copies of 𝑋[2]. In particular,
𝐴[1] ∈ ⟨Coh𝑠′ (𝑋)[1],𝑋[2]⟩. On the other hand, note that 𝐵 ∈ ⟨Coh𝑠′ (𝑋),Coh𝑠′ (𝑋)[1]⟩. It is not restrictive to assume
that 𝐵 is 𝜎𝑠,𝑞-semistable. By [30, Lemma 3], we have that

𝜇𝑠′,𝑞′ (𝐵
+) ≥ 𝜇+

𝑠′,𝑞′
(𝐵), 𝜇−

𝑠′,𝑞′
(𝐵) ≥ 𝜇𝑠′,𝑞′ (𝐵

−).

Comparing the slopes as in Figure 6, we see that
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PERTUSI and ROBINETT 21

𝜇𝑠′,𝑞′ (𝐵
−) > 𝜇𝑠′,𝑞′ (𝑋) > −

9

10
= 𝜇̄′.

We deduce that 𝐵 ∈ ⟨Coh𝑠′ (𝑋)𝜇𝑠′,𝑞′>𝜇̄′ ,Coh𝑠′ (𝑋)[1]⟩. Putting everything together, we deduce the statement. □

Lemma3.13. Fix 𝜇̄ = −
1

10
and 𝜖 > 0 very small. Then, there exists𝑞 satisfyingEquation (3.16) such that if𝐹 ∈ Coh𝜇̄

−
1

2
+𝜖,𝑞

(𝑋),

then 𝕃𝑋
(𝐹) is in Coh𝜇̄

−
1

2
+𝜖,𝑞

(𝑋).

Proof. Note that 𝜇̄ = −
Re𝑢
Im𝑢

for 𝑢 = 1√
101

(1 + 10
√
−1). In particular, by definition

𝑍
𝜇̄
𝑠,𝑞(−) =

1

𝑢
𝑍𝑠,𝑞(−) =

(√
101

101
−
10
√
101

101

√
−1

)
𝑍𝑠,𝑞(−).

Set 𝑠 = −
1

2
+ 𝜖. Then, Im𝑍𝜇̄𝑠,𝑞(𝑋[2]) =

√
101

101
(−2𝜖 + 1 − 20𝑞)which converges to 0 as 𝑞 → 1

20
−

1

10
𝜖. Thus, 𝜇𝜇̄𝑠,𝑞(𝑋[2]) →

+∞ for 𝑞 → 1

20
−

1

10
𝜖. The same argument of Lemma 3.8 implies the statement. □

The next results follow from Lemmas 3.12 and 3.13, arguing as in Lemma 3.9, Proposition 3.10, and Corollary 3.11.

Lemma 3.14. Let 𝜖 > 0 be very small. Then, there exist 𝑞 satisfying Equation (3.16), 𝜖′ > 0 very small and 𝑞′ satisfying
Equation (3.17) such that

𝕃𝑋

(


(
−
1

2
+ 𝜖, 𝑞

))
⊂ ⟨(

−
1

2
− 𝜖′, 𝑞′

)
,

(
−
1

2
− 𝜖′, 𝑞′

)
[1]⟩.

Proposition 3.15. Let 𝜖 > 0 be very small. Then, there exist 𝑞 satisfying Equation (3.16), 𝜖′ > 0 very small and 𝑞′ satisfying
Equation (3.17) such that there exists 𝑔 ∈ G̃L

+

2 (ℝ) satisfying

𝕃𝑋
⋅ 𝜎(−

1

2
+ 𝜖, 𝑞) = 𝜎(−

1

2
− 𝜖′, 𝑞′) ⋅ 𝑔.

Corollary 3.16. For 𝑖 = 1, 2, if 𝜎(𝑠𝑖, 𝑞𝑖) is a stability condition on Ku(𝑋)𝑖 , then there exists 𝑔 ∈ G̃L
+

2 (ℝ) such that

𝕃𝑋
⋅ 𝜎(𝑠2, 𝑞2) = 𝜎(𝑠1, 𝑞1) ⋅ 𝑔.

3.5 End of the proof

We are now ready to complete the proof of our main result.

Proof of Theorem 3.6. Let 𝜎(𝑠3, 𝑞3) be a stability condition on Ku(𝑋)3 as induced in Proposition 3.2(3). Consider a stability
condition 𝜎(𝑠1, 𝑞1) onKu(𝑋)1 as in Proposition 3.2(1) which is above the parabola 𝑞 −

1

2
𝑠2 = 0. By Corollaries 3.11 and 3.16,

there exists 𝑔 ∈ G̃L
+

2 (ℝ) such that

𝕃𝑋
⋅ 𝕃𝑋

⋅ 𝜎(𝑠3, 𝑞3) = 𝜎(𝑠1, 𝑞1) ⋅ 𝑔.

Note that if 𝐹 ∈ Ku(𝑋)1 is 𝜎𝑠1,𝑞1 -semistable, then 𝐹(𝐻) ∈ Ku(𝑋)3 is 𝜎𝑠1+1,𝑞′1 -semistable for 𝑞
′
1
=

1

2
+ 𝑠1 + 𝑞1 (see, for

instance, [30, Proof of Lemma 4]). Moreover, (𝑠1 + 1, 𝑞′
1
) satisfies the conditions in Proposition 3.2(3). This implies

(𝑠1, 𝑞1)(𝐻) ⊂ ⟨(𝑠1 + 1, 𝑞′
1
),(𝑠1 + 1, 𝑞′

1
)[1]⟩.
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22 PERTUSI and ROBINETT

Arguing as in Proposition 3.10, it follows that

(− ⊗ 𝑋(𝐻)) ⋅ 𝜎(𝑠1, 𝑞1) = 𝜎(𝑠1 + 1, 𝑞′
1
) ⋅ 𝑓 (3.18)

for 𝑓 ∈ G̃L
+

2 (ℝ). Since the action by equivalences and by G̃L
+

2 (ℝ) on the stability manifold commute, by Equation (3.9)
this implies

𝑆−1
Ku(𝑋)3

⋅ 𝜎(𝑠3, 𝑞3) = 𝜎(𝑠1 + 1, 𝑞′
1
) ⋅ ℎ̃

for ℎ̃ ∈ G̃L
+

2 (ℝ). By Proposition 3.4, we have that 𝜎(𝑠3, 𝑞3) and 𝜎(𝑠1 + 1, 𝑞′
1
) are in the same orbit with respect to the

G̃L
+

2 (ℝ)-action, which implies the claim. □

As a consequence, we obtain the same result for the Serre functors of Ku(𝑋)2 and Ku(𝑋)1.

Corollary 3.17. For 𝑖 = 1, 2, 3, let 𝜎(𝑠𝑖, 𝑞𝑖) be a stability condition on Ku(𝑋)𝑖 as induced in Proposition 3.2(i). Then, there
exists 𝑔 ∈ G̃L

+

2 (ℝ) such that

𝑆−1
Ku(𝑋)𝑖

⋅ 𝜎(𝑠𝑖, 𝑞𝑖) = 𝜎(𝑠𝑖, 𝑞𝑖) ⋅ 𝑔.

Proof. The case of 𝑖 = 3 is Theorem 3.6. For 𝑖 = 1, it is enough to note that (− ⊗ 𝑋(𝐻)) induces an equivalence between
Ku(𝑋)1 and Ku(𝑋)3. Using the fact that the Serre functors commute with equivalences and Equation (3.18), we deduce
the statement for Ku(𝑋)1. If 𝑖 = 2, we apply the same argument since 𝕃𝑋

induces an equivalence between Ku(𝑋)3 and
Ku(𝑋)2 and using Corollary 3.11. □

To complete the proof of Theorem 1.1, it remains to show that the Serre functor shifted by −2 acts as the identity on
𝜎(𝑠, 𝑞). This is done in Corollary 4.3.

3.6 Other Fano threefolds of Picard rank 1, index 1

It is natural to ask whether the above procedure applies to the Kuznetsov component of other Fano threefolds of Picard
rank 1 and index 1. Recall that there are 10 deformation types of these Fano threefolds, classified in terms of the genus
𝑔, which is the positive integer such that the degree 𝑑 ∶= 𝐻3 = 2𝑔 − 2, corresponding to 2 ≤ 𝑔 ≤ 12, 𝑔 ≠ 11 [17]. If 𝑋 has
even genus 𝑔 ≥ 6, then by [26, Lemma 3.6], [4, Proposition and Definition 6.3] there is a semiorthogonal decomposition
of the form

D𝑏(𝑋) = ⟨Ku(𝑋), 2,𝑋⟩.
Here, 2 is a vector bundle of rank 2, obtained by restricting the tautological bundle on a suitable Grassmannian Gr(2, 𝑛).
Fano threefolds of genus 6 are GM threefolds. When𝑋 has genus 10, thenKu(𝑋) ≃ D𝑏(𝐶2), where 𝐶2 is a smooth curve

of genus 2, while if 𝑋 has genus 12, then Ku(𝑋) ≃ D𝑏(𝑄3), where 𝑄3 is the Kronecker quiver with three arrows. If 𝑋 has
genus 8, then Ku(𝑋) is noncommutative, namely it is not equivalent to the derived category of a variety, and Ku(𝑋) is
equivalent to the Kuznetsov component of a cubic threefold. See [26, Section 4].
In all these cases, by [4] the construction reviewed in Section 2.3 allows us to induce stability conditions on Ku(𝑋) and

Theorem 2.10 holds for Ku(𝑋) replacing𝑋 with 2 in the statement. We note the following facts:

1. We can define Ku(𝑋)𝑖 for 𝑖 = 1, 2, 3 as in Equations (3.1)–(3.3) and explicit the Serre functor of Ku(𝑋)3 as in
Equation (3.9).

2. Li’s stronger Bogomolov inequality holds for slope stable coherent sheaves on 𝑋 by [28, Theorem 0.3], thus every pair
(𝑠, 𝑞) in the region 𝑅 3

2𝑑

defines a weak stability condition 𝜎𝑠,𝑞 on D𝑏(𝑋).

 15222616, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202200010 by U
niversita D

i M
ilano, W

iley O
nline L

ibrary on [12/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PERTUSI and ROBINETT 23

3. Since ch≤2(2) = (2, −𝐻,
𝑔−4

2𝑑
𝐻2), the point (−1

2
,
𝑑−6

8𝑑
) defined by 2 belongs to the parabola 𝑠2 − 2𝑞 =

3

2𝑑
. In particular,

2 is 𝜎𝑠,𝑞-stable for every (𝑠, 𝑞) ∈ 𝑅 3

2𝑑

, and thus we can induce stability conditions on Ku(𝑋) by restriction of a tilting

of 𝜎𝑠,𝑞 for (𝑠, 𝑞) as in Proposition 3.2.
4. By [26] the numerical Grothendieck group of Ku(𝑋) has rank 2 and a basis is given by

𝑏1 = 1 −
𝑑 + 2

4𝑑
𝐻2 +⋯ ,

𝑏2 = 𝐻 −
3𝑑 − 6

4𝑑
𝐻2 +⋯ .

It is not hard to check that the basis 𝑍(𝑠, 𝑞)(𝑏1), 𝑍(𝑠, 𝑞)(𝑏2) of ℂ have the same orientation for every (𝑠, 𝑞) as in
Proposition 3.2(1), using that (𝑠, 𝑞) is above the parabola 𝑞 = 1

2
𝑠2 −

3

4𝑑
.

Besides this, the argument explained in Section 3.2 does not use anything else specific of working with a GM threefold.
In fact, we have decided to consider GM threefolds, since this is the case we are interested for applications and in order to
make a more readable proof. We obtain the following generalization of Theorem 1.1 and Corollary 3.17.

Theorem 3.18. Let 𝑋 be a Fano threefold of Picard rank 1, index 1 and even genus 𝑔 ≥ 6. For 𝑖 = 1, 2, 3, let 𝜎(𝑠𝑖, 𝑞𝑖) be a
stability condition on Ku(𝑋)𝑖 as induced in Proposition 3.2(i). Then, there exists 𝑔 ∈ G̃L

+

2 (ℝ) such that

𝑆−1
Ku(𝑋)𝑖

⋅ 𝜎(𝑠𝑖, 𝑞𝑖) = 𝜎(𝑠𝑖, 𝑞𝑖) ⋅ 𝑔.

Remark 3.19. If 𝑌𝑑 is a Fano threefold of Picard rank 1, index 2, and degree 𝑑, by [26], there is a semiorthogonal
decomposition of the form

D𝑏(𝑋) = ⟨Ku(𝑌𝑑),𝑌𝑑 ,𝑌𝑑(1)⟩
and by [4] there are stability conditions on Ku(𝑌𝑑), induced by restriction of a double tilting of slope stability on D𝑏(𝑋).
Denote by𝑖

𝑑
the moduli space of Fano threefolds of index 𝑖 and degree 𝑑 for 𝑖 = 1, 2. By [26, Theorem 3.8], for 𝑑 = 3, 4, 5

there is a correspondence 𝑑 ⊂ 2
𝑑
×1

4𝑑+2
, dominant over each factor, such that for every point (𝑌𝑑, 𝑋4𝑑+2) ∈ 𝑑,

there is an equivalence

Φ𝑑 ∶ Ku(𝑌𝑑) ≃ Ku(𝑋4𝑑+2).

Via Φ𝑑, the stability conditions 𝜎(𝑠, 𝑞) on Ku(𝑋4𝑑+2) define stability conditions on Ku(𝑌𝑑). By Theorem 3.18 and [14,
Theorem 3.2], [18, Theorem 4.25], these stability conditions are in the same orbit with respect to the G̃L

+

2 (ℝ)-action of
those constructed in [4] on Ku(𝑌𝑑).
An interesting problem would be to understand whether there is a unique orbit of stability conditions on Ku(𝑌𝑑). This

observation could be an evidence toward a positive answer to this question.

Remark 3.20. In the odd genus cases, we have the following semiorthogonal decompositions by [25]:

D𝑏(𝑋12) = ⟨Ku(𝑋12), 5,⟩, D𝑏(𝑋16) = ⟨Ku(𝑋16), 3,⟩,
where 𝑋12 has degree 12, genus 7 and 𝑋16 has degree 16, genus 9. Here, 5 and 3 are vector bundles of ranks 5 and 3,
respectively. The Chern characters of 5 and 3 do not define points on the parabola 𝑠2 − 2𝑞 =

3

2𝑑
for 𝑑 = 12 and 𝑑 = 16,

respectively. Thus in order to generalize the argument of Theorem 3.6 to these cases, one needs first to control the tilt
stability of 5 and 3. On the other hand, in these cases the Kuznetsov component is equivalent to the bounded derived
category of a curve of genus ≥ 1. Thus by [34] there is a unique orbit of stability conditions with respect to the G̃L

+

2 (ℝ)-
action, and thus all the stability conditions are preserved by the Serre functor up to the G̃L

+

2 (ℝ)-action.
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24 PERTUSI and ROBINETT

4 SERRE-INVARIANT STABILITY CONDITIONS

In this section, we drop the superfluous subscript and write Ku(𝑋) = Ku(𝑋)𝑖 for any given 𝑖 = 1, 2, 3 to simplify the nota-
tion, as the results contained herein hold for all such choices. We introduce the following definition (see [14, Definition
3.1]).

Definition 4.1. A stability condition 𝜎 on Ku(𝑋) is Serre-invariant, or 𝑆Ku(𝑋)-invariant, if 𝑆Ku(𝑋) ⋅ 𝜎 = 𝜎 ⋅ 𝑔 for some
𝑔 ∈ G̃L

+

2 (ℝ).

In Theorem 3.6, we have established that the stability conditions onKu(𝑋) as in Proposition 3.2 are 𝑆Ku(𝑋)-invariant.We
now aim to explore the implications that this fact has for the existence of Bridgeland stability conditions on special GM
fourfolds (Corollary 4.3) and to show that there is a unique orbit with respect to the G̃L

+
(2,ℝ)-action of 𝑆Ku(𝑋)-invariant

stability conditions.

4.1 Stability conditions on special Gushel–Mukai fourfolds

We begin by setting up some notation. Let𝑌 be a variety with a line bundle𝑌(1). We say thatD𝑏(𝑌) admits a rectangular
Lefschetz decomposition with respect to 𝑌(1) if there is an admissible subcategory  ↪ D𝑏(𝑌) such that

D𝑏(𝑌) = ⟨,(1), … ,(𝑚 − 1)⟩ (4.1)

is a semiorthogonal decomposition for some integer 𝑚. Given such a decomposition of D𝑏(𝑌), pick 𝑛, 𝑑 ∈ ℕ such that
𝑛𝑑 ≤ 𝑚. Suppose we have a degree-𝑛 cyclic cover 𝑓 ∶ 𝑋 → 𝑌 of 𝑌 ramified in a Cartier divisor 𝑍 in the linear system cor-
responding to𝑌(𝑛𝑑). If 𝑖 ∶ 𝑍 ↪ 𝑌 is the inclusion, then the derived pullbacks 𝑖∗ and 𝑓∗ are fully faithful upon restriction
to . We obtain semiorthogonal decompositions

D𝑏(𝑋) = ⟨𝑋, 𝑓
∗, … , 𝑓∗(𝑚 − (𝑛 − 1)𝑑 − 1)⟩, (4.2)

D𝑏(𝑍) = ⟨𝑍, 𝑖
∗, … , 𝑖∗(𝑚 − 𝑛𝑑 − 1)⟩, (4.3)

with𝑋 = ⟨𝑓∗, … , 𝑓∗(𝑚 − (𝑛 − 1)𝑑 − 1)⟩⟂ and𝑍 defined similarly. The following theorem of Kuznetsov and Perry
relates𝑋 and𝑍 in the above scenario.

Theorem 4.2 [21], Theorem 1.1. In the setup above, there are fully faithful functors Φ𝑘 ∶ 𝑍 → 
𝜇𝑛
𝑋 for 0 ≤ 𝑘 ≤ 𝑛 − 2 such

that there is a semiorthogonal decomposition:


𝜇𝑛
𝑋 = ⟨Φ0(𝑍), … , Φ𝑛−2(𝑍)⟩. (4.4)

Here, 𝜇𝑛 is the group of 𝑛th roots of unity, acting on 𝑋 via automorphisms over 𝑌 and 
𝜇𝑛
𝑋 is the corresponding

equivariant category.
If we now assume that 𝑋 is a special GM fourfold, then the map 𝑋 → Gr(2, 5) is a double cover of its image 𝑌, ramified

over an ordinary GM threefold 𝑍 ↪ 𝑌. In the notation of [21], we have 𝑛 = 2, 𝑑 = 1, 𝑒 = 2, and𝑋 = Ku(𝑋),𝑍 = Ku(𝑍)

are the Kuznetsov components of the GM fourfold and threefold. By Theorem 4.2, the map Φ0 provides an equivalence of
categories Ku(𝑍) ≅ Ku(𝑋)𝜇2 . As shown in [21, Corollary 1.3, Proposition 7.10], which makes use of [13], we have dually an
equivalence

Ku(𝑍)ℤ∕2ℤ ≅ Ku(𝑋). (4.5)

The action ofℤ∕2ℤ on Ku(𝑍) is induced by the rotation functor 𝕃𝑖∗(− ⊗ 𝑋(𝐻))[−1], where 𝑖∗ =⟂ Ku(𝑍). Using this
equivalence and Theorem 3.6, we have the following result.
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PERTUSI and ROBINETT 25

Corollary 4.3. Let𝑋 be a special GM fourfold and 𝑍 be its associated ordinary GM threefold. The stability conditions 𝜎(𝑠, 𝑞)
on Ku(𝑍) defined in Proposition 3.2 induce stability conditions on the equivariant category Ku(𝑍)ℤ∕2ℤ. In particular, they
define stability conditions on Ku(𝑋).

Proof. It is sufficient to prove that 𝑆Ku(𝑍)[−2] ⋅ 𝜎(𝑠, 𝑞) = 𝜎(𝑠, 𝑞), since the ℤ∕2ℤ-action on Ku(𝑍) is induced by 𝕃𝑖∗(− ⊗

𝑋(𝐻))[−1] = 𝑆−1
Ku(𝑍)

[2], or equivalently by 𝑆Ku(𝑍)[−2]. By Theorem 3.6, there is some 𝑔 = (𝑀, 𝑔) ∈ G̃L
+

2 (ℝ) such that
𝑆Ku(𝑍)[−2] ⋅ 𝜎(𝑠, 𝑞) = 𝜎(𝑠, 𝑞) ⋅ 𝑔. Applying the involution 𝑆Ku(𝑍)[−2] to both sides of this equality yields: 𝜎(𝑠, 𝑞) = 𝜎(𝑠, 𝑞) ⋅

𝑔2. Writing 𝜎(𝑠, 𝑞) = ( , 𝑍), at the level of slicings this gives (𝜙) = (𝑔2(𝜙)) for any 𝜙 ∈ ℝ, hence 𝑔 ∶ ℝ → ℝ is an
increasing involution, so we must have 𝑔 = id. On the other hand, on central charges we have 𝑀−2◦𝑍 = 𝑍. The image
of 𝑍 is not contained in a line, hence𝑀−2 agrees with the identity on two linearly independent vectors in ℂ ≅ ℝ2, thus
𝑀2 = id. There are only three conjugacy classes of 2 × 2matrices over ℝ squaring to the identity, one of which has nega-
tive determinant, hence𝑀 = ±𝐼. We cannot have𝑀 = −𝐼, since𝑀 induces the identity on the circle, thus𝑀 = 𝐼 and we
deduce that 𝑆Ku(𝑍)[−2] ⋅ 𝜎(𝑠, 𝑞) = 𝜎(𝑠, 𝑞) as claimed.
As a consequence, if Forg ∶ Ku(𝑍)ℤ∕2ℤ → Ku(𝑍) denotes the forgetful functor, then by [36, Lemma 2.16] we have that

Forg−1 ⋅𝜎(𝑠, 𝑞) defines a stability condition on Ku(𝑍)ℤ∕2ℤ. Composing with the equivalence in Equation (4.5) we obtain
stability conditions on Ku(𝑋). □

Remark 4.4. Note that the above proof does not use anything specific on the stability conditions 𝜎(𝑠, 𝑞). In particular,
Corollary 4.3 holds more generally for every Serre-invariant stability conditions on Ku(𝑍).

4.2 Uniqueness

Let 𝑋 be a GM threefold. The aim of this section is to prove the following result.

Corollary 4.5. If 𝜎1, 𝜎2 are 𝑆Ku(𝑋)-invariant stability conditions, then there exists 𝑔 ∈ G̃L
+

2 (ℝ) such that 𝜎2 = 𝜎1 ⋅ 𝑔.

Corollary 4.5 has been recently proved in [18, Lemmas 4.22, 4.23, 4.24]. Here, we give an alternative proof making use
of the following result obtained from [14].

Theorem 4.6 [14], Theorem 3.2, Lemma 3.6. Let  be a ℂ-linear triangulated category of finite type whose Serre functor
satisfies𝑆2


= [4]andwhose numericalGrothendieck group ( )has rank 2.Assume further the following conditions hold:

1. 𝓁 ∶= max{𝜒(𝑣, 𝑣) ∶ 0 ≠ 𝑣 ∈  ( )} < 0.
2. There are three objects 𝑄1, 𝑄2, 𝑄′

2
∈  such that 𝑄2 and 𝑄′

2
have the same class in ( ), 𝑄1 is not isomorphic to 𝑄2, or

𝑄′
2
[1], and

− 𝓁 + 1 ≤ hom
1
(𝑄𝑖, 𝑄𝑖), hom

1
(𝑄′

2
, 𝑄′

2
) < −2𝓁 + 2,

hom(𝑄2, 𝑄1) ≠ 0

hom(𝑄1, 𝑄
′
2
[1]) ≠ 0

hom(𝑄′
2
, 𝑄2[3]) = 0.

Then, there exists a unique orbit of 𝑆 -invariant stability conditions on  with respect to the G̃L
+

2 (ℝ)-action.

Let us check the conditions of Theorem 4.6 for the Kuznetsov component Ku(𝑋) ∶= ⟨𝑋,𝑋⟩⟂ of a GM threefold 𝑋.
We have already recalled in Section 2.2 that 𝑆2

Ku(𝑋)
= [4] and  (Ku(𝑋)) has rank 2. By [26] the basis 𝑏1, 𝑏2 of (2.4) has

intersection form (
−2 −3

−3 −5

)
.
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26 PERTUSI and ROBINETT

For 𝑣 = 𝛼𝑏1 + 𝛽𝑏2 ∈  (Ku(𝑋)), we have

𝑣2 = −2𝛼2 − 6𝛼𝛽 − 5𝛽2 = −(𝛼 + 2𝛽)2 − (𝛼 + 𝛽)2 ≤ −1,

so 𝓁Ku(𝑋) = −1. To find the suitable objects𝑄𝑖 , we argue similarly as in [18, Lemma 4.26], just using conics instead of lines.
Let 𝐶 ⊂ 𝑋 be a smooth conic. Its ideal sheaf 𝐶 is in ⟨𝑋⟩⟂ and the left mutation 𝕃𝑋

(𝐶) is inKu(𝑋) by definition, sitting
in the triangle

𝑋 → 𝐶 → 𝕃𝑋
(𝐶). (4.6)

The latter can be computed using the short exact sequence

0 → 𝐶 → 𝑋 → 𝐶 → 0

and ℎ0( ∨
𝑋 |𝐶) = 4, ℎ𝑖( ∨

𝑋 |𝐶) = 0 for 𝑖 ≠ 0, ℎ0( ∨
𝑋 ) = 5, ℎ𝑖( ∨

𝑋 ) = 0 for 𝑖 ≠ 0. Assume further that 𝐶 is generic on 𝑋.
Consider now a smooth twisted cubic 𝐷′ ⊂ 𝑋 such that 𝐷′ does not intersect 𝐶 and its ideal sheaf 𝐷′ ∈ Ku(𝑋). Note that
the generic twisted cubic 𝐷′ satisfies these conditions. Finally, pick a twisted cubic 𝐷 ⊂ 𝑋 such that 𝐷 ∈ Ku(𝑋) and 𝐶 is
an irreducible component of 𝐷. The existence of such 𝐷 has been proved in [18, Lemma 4.24]. Set

𝑄1 ∶= 𝕃𝑋
(𝐶), 𝑄2 ∶= 𝐷, 𝑄′

2
∶= 𝐷′ .

Clearly 𝑄2 and 𝑄′
2
have the same class in ( ) and they are not isomorphic to 𝑄1. The following lemma ends the proof

of Corollary 4.5.

Lemma 4.7. With the notation above, we have

hom
1
(𝑄1, 𝑄1) = 2, hom

1
(𝑄2, 𝑄2) = hom

1
(𝑄′

2
, 𝑄′

2
) = 3,

hom(𝑄2, 𝑄1) ≠ 0 hom(𝑄1, 𝑄
′
2
[1]) ≠ 0, hom(𝑄′

2
, 𝑄2[3]) = 0.

Proof. Note that hom
1
(𝑄1, 𝑄1) = hom

1
(𝐶, 𝑄1) as 𝑄1 ∈ Ku(𝑋). By Serre duality, we have hom

𝑖
(𝐶,𝑋) =

hom
3−𝑖

( ∨
𝑋 ,𝐶) = hom

2−𝑖
( ∨

𝑋 ,𝐶) = ℎ2−𝑖(𝑋|𝐶) = 0 for every 𝑖, as 𝐶 is a generic conic. Thus, hom1
(𝐶, 𝑄1) =

hom
1
(𝐶,𝐶) = 2 (see [17, Lemma 4.2.1(ii), Proposition 4.2.5(iii)]). With a similar computation as in [44, Proposition 3.8],

we get hom1
(𝑄2, 𝑄2) = hom

1
(𝑄′

2
, 𝑄′

2
) = 3. By Serre duality, hom3

(𝑄′
2
, 𝑄2) = hom(𝑄2, 𝑄

′
2
(−𝐻)) = 0 by slope stability of

𝑄2 and 𝑄′
2
(−𝐻). Now note that

hom(𝑄2,𝑋) = hom(𝐷,𝑋[1]) = hom(𝑋,𝐷(−𝐻)[2]) = ℎ2(𝑋|𝐷) = 0

since ℎ𝑖(𝑋) = 0 for every 𝑖 and Serre duality. It follows that the space Hom(𝑄2,𝐶) has an injection in Hom(𝑄2, 𝑄1).
Since 𝐶 is a component of 𝐷, the former is not 0 and we get hom(𝑄2, 𝑄1) ≠ 0. Finally, we have

hom(𝑄1, 𝑄
′
2
[1]) = hom(𝐶,𝐷′[1]) = hom(𝐶,𝐷′[2]) = hom(𝐶,𝑋[2]) = ℎ1(𝐶(−𝐻)) = 1,

where in the first and second equalities we have used 𝐷′ ∈ Ku(𝑋) and in the third the fact that 𝐶 ∩ 𝐷′ = ∅. □
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