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Abstract: Introduction: Accurate assessment of resting energy expenditure (REE) can guide optimal
nutritional prescription in critically ill children. Indirect calorimetry (IC) is the gold standard for REE
measurement, but its use is limited. Alternatively, REE estimates by predictive equations/formulae
are often inaccurate. Recently, predicting REE with artificial neural networks (ANN) was found to be
accurate in healthy children. We aimed to investigate the role of ANN in predicting REE in critically
ill children and to compare the accuracy with common equations/formulae. Study methods: We
enrolled 257 critically ill children. Nutritional status/vital signs/biochemical values were recorded.
We used IC to measure REE. Commonly employed equations/formulae and the VCO2-based Mehta
equation were estimated. ANN analysis to predict REE was conducted, employing the TWIST system.
Results: ANN considered demographic/anthropometric data to model REE. The predictive model
was good (accuracy 75.6%; R2 = 0.71) but not better than Talbot tables for weight. After adding
vital signs/biochemical values, the model became superior to all equations/formulae (accuracy
82.3%, R2 = 0.80) and comparable to the Mehta equation. Including IC-measured VCO2 increased the
accuracy to 89.6%, superior to the Mehta equation. Conclusions: We described the accuracy of REE
prediction using models that include demographic/anthropometric/clinical/metabolic variables.
ANN may represent a reliable option for REE estimation, overcoming the inaccuracies of traditional
predictive equations/formulae.

Keywords: energy expenditure; metabolism; nutrition; children; pediatrics; critical care; pediatric
intensive care; neural networks

1. Introduction

A high metabolic variability may impact nutrition requirements for critically ill pa-
tients, particularly children. Accordingly, energy requirements are not stable throughout
the course of hospitalization, as they may depend on the medical and pharmacologic inter-
ventions (exogenous variables) on the one hand, and the individual metabolic response to
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inflammation (endogenous variables) and physiologic variables on the other [1]. Accurate
estimation of energy requirements is the starting point to define patients’ nutritional needs
and it is based on the assessment of energy expenditure. There is universal agreement
that the calculation of energy expenditure starts from the assessment of resting energy
expenditure (REE), adjusted (in non-critical conditions) for physical activity levels [2].
Indirect calorimetry (IC) provides an accurate measurement of REE by assessing patients’
respiratory gas exchange and converting oxygen consumption (VO2) and carbon dioxide
production (VCO2) into a caloric equivalent with the modified Weir equation [3]. Although
IC is the gold standard for REE measurement, it is often unavailable in most pediatric
ICUs (PICUs). Within a recent survey, only 14% of PICUs have resources to use IC and,
accordingly, nutritional targets for macronutrients, corrected for age/weight, may widely
vary too [4].

In the absence of IC, most dietitians use the REE predictive equations to define energy
needs and dietary prescriptions, which may often under- or overestimate energy needs,
respectively, in critically ill children [5]. The associated energy imbalance may accumu-
late over time, with deterioration of nutritional status and negative impacts on patients’
outcomes, carrying a higher risk of nosocomial infections along with longer mechanical
ventilation and a longer LOS, as well as lower survival rates [4]. Resulting metabolic unbal-
ances in ICU patients, such as blood glucose instability and related consequences, are well
recognized [6]. Artificial neural networks (ANN) might represent a more precise and accu-
rate method to estimate REE [7]. ANN are computerized algorithms resembling interactive
processes of the human brain allowing for the definition of very complex non-linear phe-
nomena, such as biological systems [8]. The aim of this study was to describe the accuracy
of ANN algorithms (ANNs) for the estimation of REE compared to measured REE by IC in
critically ill pediatric patients. We also aimed to compare the accuracy of the ANN-derived
REE with REE estimated from the most commonly employed estimation formulae.

2. Methods
2.1. Study Design and Study Population

In this single-center study, all data were consecutively collected in the context of a cross-
sectional prospective study [5,9]. For ANN analysis, data were evaluated retrospectively
(post-hoc analysis). We enrolled patients consecutively admitted to a 6-bed PICU of a
tertiary children’s hospital (Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico,
Milan, Italy) from May 2013 to December 2019. The study was approved by the Ethical
Committee of the Policlinico of Milan Hospital (Project identification code 135/2013) and
informed consent was obtained.

2.2. Nutritional Status and Clinical Characteristics

A multidisciplinary team completed the nutritional assessment and the anthropomet-
ric measurements during the hospital stay. Weight (using a gram scale, accurate to 0.1 kg)
and length with a 417 SECA stadiometer (® SECA Medical Measuring Systems and scales,
Birmingham UK) or a flexible but non-stretchable tape measure were recorded. Body mass
index (BMI) was derived (kg/m2). Z-scores for weight for age (WFA), BMI for age, weight
for length/height (WFL or WFH), and length/height for age (LFA or HFA) were calculated
using the WHO Anthro and Anthro Plus ® software, and the WHO reference charts [10].
Stunting (i.e., chronic undernutrition) was diagnosed according to the WHO criteria as
LFA (or HFA) z-score < −2. Wasting (i.e., acute undernutrition) was diagnosed according
to WHO criteria as WFL (or WFH) z-score < −1 (mild), < −2 (moderate), or < −3 (severe)
for children younger than 5 years and as BMI z score < −1 (mild), < −2 (moderate), or
< −3 (severe) for children older than or equal to 5 years old. Overweight was defined as
WFL (or WFH) z-score > 2 (for children <5 years), and as BMI z score > 1 (for children
≥ 5 years). Obesity was defined as WFL z score > 3 (for children <5 years), and as BMI
z score > 2 (for children ≥ 5 years). The REE was measured in thermoneutral conditions
using an open-circuit IC (Vmax 29®, Sensor Medics, Yorba Linda, CA, USA). VO2 and
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VCO2 were measured in spontaneously breathing (canopy mode) and mechanically venti-
lated (ventilation mode) children for a period of 30 min. Respiratory quotient (RQ) was
calculated as VCO2/VO2 and REE using the modified Weir formula, not accounting for
urinary nitrogen excretion [11]. Steady state conditions were defined as at least 5 min with
less than 5% variation in RQ, less than 10% variation in VO2 and in VCO2, and less than
10% variation in minute ventilation. Data from patients who did not meet steady state or
had an RQ < 0.67 or > 1.3 were excluded. Energy expenditure was estimated using the
following predictive equations/formulae: Harris–Benedict, Harris–Benedict for infants,
Schofield for weight, Schofield for weight and height, Oxford for weight, Oxford for weight
and height, WHO/FAO/UNU, Talbot tables for weight, Talbot tables for height, and the
Mehta equation [12–17].

The Mehta equation was calculated only in mechanically ventilated children as it
has been validated in this population [17,18]. Clinical characteristics, vital signs (heart
rate, blood pressure systolic and diastolic, oxygen saturation—SatO2%, respiratory rate,
and body temperature ◦C) and blood values, such as hemoglobin (Hb, g/dL), C-reactive
protein (CRP, mg/dL), albumin (g/dL), and blood glucose (mg/dL), were included in
the database. Blood concentrations were measured directly after blood sampling, with
methods standardized in the central laboratory of the hospital, when the patient entered the
study. Clinical characteristics and anthropometric measures were recorded upon admission.
Blood tests were performed on the day of the exam. Vital signs were recorded during the
IC exam.

2.3. Modelling of REE with Artificial Neural Networks
2.3.1. Data Pre-Processing

Our database included 49 variables, among all basic demographic and anthropomet-
ric characteristics (gender, male/female; ethnic origin, Caucasian/Asian/South Ameri-
can/African; age; weight; z-score WFA; height; z-score HFA; z-score WFH; BMI, z-score
BMI), nutritional status (normal weight, overweight, obesity, stunting, wasting—no, mild,
moderate, severe), outcome variables (diagnosis, comorbidities, presence of mechanical
ventilation, length of stay, gestational age, weight at birth, current therapy, current nu-
trition), vital signs (body temperature; heart rate; blood pressure, systolic and diastolic;
respiratory rate; oxygen saturation), and some blood values (albumin, hemoglobin, blood
glucose, C-reactive protein, aspartate aminotransferase, alanine aminotransferase, blood
creatinine, blood calcium, blood phosphate, alkaline phosphatase, serum iron, ferritin,
transferrin). Variables presenting at least one missing data were excluded from the ANN
analysis. For basic demographic and anthropometric data, we only missed data for z-score
WFH and z-score WFA as the World Health Organization provides z-score charts only
up to 5 years of age for z-score WFH and up to 10 years of age for z-score WFA (84
and 42 “missing” data, respectively). Regarding outcome variables, we missed complete
data for the two variables weight at birth and gestational age (missing data, 79 and 54,
respectively). Moreover, we excluded length of stay (LOS) from the ANN analysis as
we wanted to provide a predictive algorithm that could be applied by clinicians during
PICU hospitalization. Therefore, the inclusion of LOS among the variables would not have
provided useful information for a timely REE prediction. For practical reasons, we decided
to exclude the variables describing the diagnosis and comorbidities of the patients as this
would have required careful categorization of patients’ diagnosis and comorbidities in
different disease-based clusters. Since our goal was to provide an algorithm that could be
used by clinicians and given that different clinicians may categorize diseases and comor-
bidities with some slight but relevant differences, we decided to exclude these variables
from further ANN analysis to avoid difficulties associated with categorization replicability.
For the same reason, we excluded “current therapy” and “current nutrition” as it would
have been difficult to categorize drugs and feeding clinical approach for ANN analysis.
Finally, our original database presented missing data among all the blood values and vital
sign variables. The reason for the unavailability of these data is that, depending on the
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subject’s condition, clinicians may decide to request different blood exams. Moreover,
vital signs may not have always been recorded in the patient’s diary for different reasons
(e.g., the sensor was teared away by the patient, vital sign was assessed by the clinician but
not recorded in the patient’s diary).

2.3.2. Data Set Analysis

A physician expert in ANN analysis conducted the modelling and the data set analysis.
The original data set (data set 1) included the 24 variables for which we had no missing
data: mechanically ventilated, gender (male/female) ethnic origin (Caucasian, Asian, South
American, African), age, weight, height, BMI, BMI z-score, height for age z-score, normal
weight, overweight, obese, wasting (absent, mild, moderate, severe), stunting, VO2, VCO2,
and RQ. Multivariate analysis was carried out with supervised ANN, according to the
method previously described [19]. Five different approaches were used. First, the analysis
was applied to all 24 variables, including the gas values VO2, VCO2, and RQ, which were
obtained with IC. The reason for developing a model with all variables, gas values included,
was purely technical, with the aim of obtaining a “baseline” predictive model developed
under the best possible conditions, i.e., with the inclusion of gas exchange monitoring.
The system was then tested on four different variants of the data set, the first using a
data set with 21 variables, avoiding all gas values (VO2, VO2, RQ), the second including
the 21 variables and VO2, the third including the 21 variables and VCO2, and the fourth
including the 21 variables and RQ. This was done with the purpose of better defining the
contribution of each gas value to the accuracy of prediction.

In a subgroup of children, it was possible to extend the analysis to include some
additional endogenous and physiological variables. This extended data set (data set 2)
included less subjects but more variables (32 variables) with complete data for each subject:
the 24 variables mentioned above and 8 “functional” inputs hereby listed, that is, heart rate,
blood pressure (systolic and diastolic), SatO2, and body temperature, as well as CRP, Hb,
and blood glucose. We chose to include all vital signs except for respiratory rate and only
CRP, Hb, and blood glucose, among the blood values, because this combination allowed
us to both add more information on patients’ clinical/functional status while keeping
an acceptable number of subjects to perform ANN analysis. The inclusion of functional
inputs was aimed at testing the hypothesis of a more accurate estimation of REE during
the critical state beyond basic demographic and anthropometric data. Accordingly, the
inclusion of variables capable of describing modification of the functional status might
help to improve ANN model prediction. As for the original data set, the model was first
developed considering all the variables, with the scope of obtaining a baseline model. The
modelling was then tested on a 29-variable data set, without gas values, and then on a
30-variable data set, also including VCO2, which can be measured by new-generation
ventilators or by capnography with meaningful clinical relevance.

2.3.3. TWIST (Training with Input Selection and Testing) System

In order to cut down non-relevant variables in the database (i.e., the variables not
carrying meaningful additive information for the prediction task), which cause a loss in
the power of our inferences, we employed a special ‘artificial organism’ called TWIST,
suitably designed for sorting out the most relevant variables for the sake of predic-
tion/classification [20]. The TWIST system consists of a combination of two systems,
training/testing (T&T) and input selection (IS), respectively. The T&T system is a robust
data re-sampling technique that is able to arrange the source sample into sub-samples,
all of which possess a similar probability density function. In this way, the database was
split into two or more sub-samples in order to train, test, and validate the ANN models as
effectively as possible on the basis of the available data. The IS system is an evolutionary
‘wrapper’ system that selects variables in order to minimize their number while preserving
the actual amount of task-relevant information contained in the data set. The combined
action of these two systems allowed us to substantially increase the inferential power of
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our ANN system, while circumventing, at the same time, a few major technical issues.
Both systems are based on a genetic algorithm, the Genetic Doping Algorithm (GenD)
developed at Semeion Research Centre (Rome, Italy) [21].

The TWIST pre-processing singles out the variables that prove to be most significant
for the prediction/classification task, while producing, at the same time, the training set
and the testing set, which are extracted from a probability distribution very close to the
one that provided the best performance in the task. On the variables selected by the
TWIST system, the functional approximation/prediction task is carried out by means
of a supervised multi-layer perceptron, with four hidden units. The study sample was
randomly divided into two main sub-samples: the training set sub-sample and the testing
sub-sample. Training and testing sets were then reversed, and consequently, for each record
of the data set, a blind prediction was carried out. The accuracy results were expressed as
the average of the results obtained in the two independent testing sets.

2.4. Statistical Analysis

The REE value predicted by ANN was compared with the REE measured with IC by
univariate linear regression. The mean absolute error (MAE), i.e., the mean of the absolute
difference between the predicted and actual value, and the mean relative error, i.e., the
ratio of the MAE of the measurement to the actual measurement, the Pearson coefficient
of determination (R2), and the F-test for two sample analyses of variance were used to
measure the predictive accuracy of ANN, when appropriate. Data are given as mean
and standard deviation, absolute, or percentile values. Significance was assumed when
p < 0.001 taking into account the existence of multiple tests. Analyses were performed
using SPSS 20.0 (Statistical Package for Social Science. Inc., Armonk, NY, USA). The same
fitting was carried out with all the equations/formulae on study.

3. Results
3.1. Data Set 1
3.1.1. Population Characteristics

The whole population of the original data set (data set 1) consisted of 257 pediatric
patients (145 males, 56.4%) of whom, 102 (39.5%) were mechanically ventilated. Their
characteristics are shown in Table 1.

Table 1. Anthropometric and metabolic measurements of the study population.

N = 257

Demographic Metabolic (Indirect calorimetry)
Age, years 2.4 (6.0) # VO2, L/min 0.09 (0.05)

Male 145 (56.4) VCO2, L/min 0.07 (0.04)
Anthropometric RQ 0.77 (0.12)

Weight, kg 15.6 (12.2) Resting Energy Expenditure, kcal/die 623.3 (325.7)
Height, cm 93.4 (30.5) Metabolic (equations/formulae)

BMI, kg/m2 15.9 (3.2) REE Harris–Benedict equation 824.3 (260.2)
z-score BMI −0.7 (2.0) REE Harris–Benedict equation for infants 964.3 (134.6)

z-score weight for age −0.9 (1.7) Schofield (weight) equation 700.9 (347.6)
z-score height for age −1.2 (1.9) Schofield (weight and height) equation 703.0 (344.3)

z-score weight for height −0.6 (2.0) FAO/WHO/UNU equation 701.4 (353.1)
Outcomes Oxford (weight) equation 703.1 (335.9)

Mechanically ventilated 102 (39.5) Oxford (weight and height) equation 705.0 (332.8)
Length of PICU stay, days 6.0 (12.0) # Talbot (weight) equation 650.1 (332.4)

Talbot (height) equation 675.6 (325.5)
Mehta equation * 475.6 (257.0)

Abbreviations: BMI = Body Mass Index; PICU = Pediatric Intensive Care Unit; VO2 = Oxygen Consumption; VCO2 = Carbone Dioxide
Production; RQ = Respiratory Quotient; REE = Resting Energy Expenditure; FAO = Food and Agriculture Organization; WHO = World
Health Organization; UNU = United Nation University. Data are presented as mean and standard deviation or frequency and percentage.
* mechanically ventilated children. # data are expressed as median and interquartile range (IQR) according to their distribution.
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3.1.2. Linear Correlations

Figure 1 shows the linear correlation values between the study variables and the REE
value. As expected, VO2, VCO2, height, weight, and age were highly correlated with REE.
In any case, the absolute value of Pearson R of the other variables was rather low, and this
offers a further rationale for the application of ANN, especially when avoiding gas values.

Figure 1. Correlations between the study variables and the REE value. Abbreviations: VO2 = Oxygen Consumption; VCO2

= Carbone Dioxide Production; RQ = Respiratory Quotient; BMI = Body Mass Index; z-BMI = z-score BMI; z-HFA = z-score
Height for Age.

3.1.3. Fitting of REE with the Equations

Figure 2 show the real REE approximation obtained with all the equation/formulae
considered in the study. The blue line expresses the true REE values, the orange line is the
corresponding fitting of the method under evaluation, and the dotted line is the tendency
line of the method described by polynomial equations.

All the equations, with the exception of Mehta’s, appear to systematically overestimate
the true REE value and mostly in the left side where true REE reaches the lowest values.
The contrary is observed at the extreme right of the graphic, where true REE evaluations
skip over the estimated values (that is, this quite restricted cue may be under-estimated).
The most meaningful differences are displayed by the Harris–Benedict equations, even
more after adjusting for age <12 months.

3.1.4. Fitting of REE with Artificial Neural Networks: Baseline Analysis (24 variables)

The TWIST® system selected the following seven variables carrying the maximal
amount of information to build up a predictive model: gender (female, male), weight,
BMI, VO2, VCO2, and RQ. The final model, based on these seven variables, expressed a
functional approximation of the actual REE value within a protocol based on a bipartite
division of the data set between a training set sub-sample (n = 125) and a testing sub-sample
(n = 132). Training and testing sets were then reversed, and consequently, for each record of
the data set, a blind prediction was carried out. Within this approach, the neural network
tendency line appears to be almost superimposed on the true REE values curve (Figure 3).
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3.1.5. Comparative Statistics between Tests on Study

The modelling obtained by the ANN reached an average absolute error of 38.1 calories
(93.9% accuracy) with an R2 = 0.928. The comparative values obtained with the other
equations were less precise. The lowest absolute error resulted from the Mehta equation
(which also requires VCO2), that is, 89.7 calories (84.0% accuracy), followed by the Tal-
bot table for weight with an average absolute error of 142.3 calories (77.2% accuracy).
The Harris–Benedict equation showed, on the other hand, an average absolute error of
244.2 calories (60.8% accuracy) (Table 2).

Table 2. Fitting performances of true REE by the tests under study.

Overall Group (N = 257), Measured REE = 623.3 (325.7)

FITTING
METHOD

Predicted REE Absolute
Error Accuracy Relative

Error Accuracy F-Test Two-Sample

Mean SD Mean % Mean % F-
Statistic

p-Value (Two
Tails)

Pearson
(R2)

ANN with gas
(baseline) 651.4 329.0 38.1 93.9 0.058 94.2 0.982 0.881 0.928

Harris–Benedict 824.3 260.2 244.2 60.8 0.610 38.9 1.567 <0.001 0.497
Harris–Benedict

for infants 299.5 64.5 103.3 72.8 0.254 74.6 3.739 <0.0001 0.288

Schofield
(weight) 700.9 347.6 164.7 73.6 0.351 64.9 0.878 0.298 0.664

Schofield (weight
and height) 703.0 344.3 160.8 74.2 0.348 65.2 0.895 0.374 0.671

FAO/WHO/
UNU 701.4 353.1 168.7 72.9 0.358 64.2 0.851 0.196 0.653

Oxford (weight) 703.1 335.9 163.7 73.7 0.352 64.8 0.941 0.624 0.655
Oxford (weight

and height) 705.0 332.8 158.7 74.5 0.344 65.6 0.958 0.733 0.671

Talbot (weight) 650.1 332.4 142.3 77.2 0.300 70.0 0.960 0.746 0.691
Talbot (height) 675.6 325.5 147.6 76.3 0.320 68.0 1.002 0.989 0.684

Mehta * 475.6 257.0 89.7 84.0 0.160 84.0 1.380 0.107 0.906

Abbreviations: REE = Resting Energy Expenditure; ANN = Artificial Neural Networks; FAO = Food and Agriculture Organization;
WHO = World Health Organization; UNU = United Nation University; SD = standard deviation. * mechanically ventilated children.
Measured REE in mechanically ventilated children was 562.3 (301.9).
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3.1.6. ANN Analysis to Evaluate the Contribution Given by Gas Values to REE Fitting

We hereby describe the application of the TWIST system to five differential analyses,
the first including all gas values VO2, VCO2, and RQ (24 variables); the second avoiding
all gas values (21 variables); the third avoiding VCO2 and RQ and maintaining VO2; the
fourth avoiding VO2 and RQ while maintaining VCO2; and the fifth avoiding VO2 and
VCO2 while maintaining RQ (22 variables each).

Table 3 shows the variables selected for the modelling, the predictive results obtained
by ANN, and the comparison with the results obtained in the original (baseline) data set.

Table 3. Results obtained in the five differential analyses relevant to the role of gas values.

Data Set 1 Baseline 1 2 3 4

Variables number
of the data set 24 21 22 22 22

Gas variables VO2; VCO2; RQ none VO2 VCO2 RQ
Variables selected
by TWIST system male female Weight African mechanically ventilated

female age BMI weight male
weight weight Obese height female

BMI height VO2 z-HFA Asiatic
VO2 z-BMI overweight weight

VCO2 z-HFA Wasting (severe) height
RQ No wasting VCO2 BMI

wasting (mild) z-HFA
wasting

(moderate) normal weight

wasting
(severe) Wasting (severe)

stunting RQ
predictive
accuracy 93.9% 75.6% 92.9% 84.4% 78.0%

mean absolute
error 38.1 149.1 44.0 96.9 136.8

Person R2 0.928 0.713 0.914 0.829 0.701

Abbreviations: TWIST = Training with Input Selection and Testing; VO2 = Oxygen Consumption; VCO2 = Carbone Dioxide Production;
RQ = Respiratory Quotient; Z-BMI = z score for Body Mass Index; z-HFA = z-score Height for Age.

3.2. Data Set 2
3.2.1. Population Characteristics

The purpose of data set 2 was to provide more functional inputs to the ANN pre-
dictive model. Functional parameters were included in the original data set 1 but not
for all subjects. Therefore, the population for data set 2 was reduced to 199 pediatric
patients (112 males, 56.3%), of whom 93 (46.7%) were mechanically ventilated. Patients’
characteristics, including vital signs and blood values, are presented in Table 4.
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Table 4. Anthropometric, functional, and metabolic measurements of the study population.

N = 199

Demographic Metabolic (Indirect calorimetry)
Age, years 2.3 (6.4) # VO2, L/min 0.09 (0.05)

Male 112 (56.3) VCO2, L/min 0.07 (0.04)
Anthropometric RQ 0.75 (0.11)

Weight, kg 16.1 (12.7) Resting Energy Expenditure, kcal/die 632.3 (339.9)
Height, cm 94.0 (31.1) Metabolic (equations/formulae)

BMI, kg/m2 16.1 (3.4) REE Harris–Benedict equation 833.5 (262.3)
z-score BMI −0.6 (2.1) REE Harris–Benedict equation for infants 718.9 (357.7)

z-score weight for age −0.9 (1.7) Schofield (weight) equation 711.5 (353.4)
z-score height for age −1.1 (1.9) Schofield (weight and height) equation 712.6 (351.0)

z-score weight for height −0.6 (2.0) FAO/WHO/UNU equation 712.4 (358.9)
Outcomes Oxford (weight) equation 713.1 (340.6)

Mechanically ventilated 93 (46.7) Oxford (weight and height) equation 714.3 (338.3)
Length of PICU stay, days 7.0 (13.0) # Talbot (weight) equation 661.5 (342.0)

Vital signs Talbot (height) equation 684.7 (332.8)
Heart rate, bpm 117.6 (30.3) Mehta equation * 463.4 (257.2)

Systolic Blood Pressure, mmHg 103.5 (18.3)
Diastolic Blood Pressure, mmHg 61.0 (14.9)

Body Temperature, ◦C 36.6 (0.7)
Oxygen Saturation, % 97.7 (2.7)

Blood values
Hemoglobin, mg/dl 9.9 (1.8)

Blood glucose, mg/dl 106.4 (37.3)
C-Reactive Protein, mg/dl 2.3 (6.7) #

Abbreviations: VO2 = Oxygen Consumption; VCO2 = Carbone Dioxide Production; RQ = Respiratory Quotient; BMI = Body Mass Index;
PICU = Pediatric Intensive Care Unit; REE = Resting Energy Expenditure; FAO = Food and Agriculture Organization; WHO = World
Health Organization; UNU = United Nation University. Data are presented as mean and standard deviation or frequency and percentage.
* mechanically ventilated children. # data are expressed as median and interquartile range (IQR) according to their distribution.

3.2.2. Linear Correlations

The linear correlations between the study variables and the REE values were very
similar to data set 1 (Supplementary Materials, Additional File S1). The gas values (VO2,
VCO2), height, weight, and age were highly correlated with REE. In all other cases, the
Pearson R value of the other variables was low. Figure 4 shows the correlations between
the functional values added in data set 2 and REE.

Figure 4. Correlations between the study variables added in Data set 2 and the REE value. Abbreviations: SBP = Systolic
Blood Pressure; DBP = Diastolic Blood Pressure; CRP = C-reactive protein; SatO2% = Oxygen Saturation (%).
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3.2.3. Real REE Approximation with Artificial Neural Networks

The inclusion of functional variables in data set 2 improved the prediction values
of REE by ANN. Figure 5 shows the real REE approximation with ANN best to worse,
respectively. The neural network trend of the baseline model developed with the addition
of the gas values appears to be almost superimposed on the true REE values curve. The
model developed with no gas values fits less, while the VCO2 models stand somewhere in
between the two. Real REE approximation by the predictive equations/formulae is not
visually represented for data set 2, but it was comparatively worse than ANN modelling
and similar to the findings in Figure 2 (Supplementary Materials, Additional File S2).
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3.2.4. Comparative Statistics between All Methods on Study

All the methods explored for the prediction of REE are displayed in Table 5. As
anticipated, the inclusion of functional inputs in data set 2 provided an advantage in terms
of the performance of the ANN models. The best prediction of REE was obtained with
the ANN baseline model (with gas), reaching an average absolute error of 23.3 calories
(96.3% accuracy) with an R2 = 0.968. The comparative values obtained with the other
fitting methods were less precise. The ANN model with VCO2 and the Mehta equation
(which also requires VCO2) followed as the second-best method for REE estimation in
terms of absolute error. The ANN model developed without gas values fitted less but
was still better than the remaining equations/formulae in the study. The inclusion of
functional parameters among the inputs indeed improved the model. The Talbot table for
weight without gases ranked as the second predictor, with an average absolute error of
132.7 calories (79.0% accuracy). The Harris–Benedict equation was seemingly the worse
option, with an average absolute error of 245.4 calories (61.2% accuracy).
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Table 5. Fitting performances of true REE by the methods under study.

Overall Group (N = 199), Measured REE = 632.3 (339.1)

FITTING
METHOD

Predicted REE Absolute
Error Accuracy Relative

Error Accuracy F-Test Two-Sample

Mean SD Mean % Mean % F-
Statistic

p-Value (Two
Tails)

Pearson
(R2)

ANN with gas 631.0 331.3 23.3 96.3 0.050 95.0 1.053 0.718 0.968
ANN with VCO2 637.3 332.5 65.6 89.6 0.126 87.4 1.046 0.754 0.921
ANN with VCO2

(ventilated) 553.1 288.6 66.4 88.0 0.144 85.6 1.101 0.647 0.866

ANN without
gas 628.4 312.5 111.7 82.3 0.212 78.8 1.183 0.237 0.808

Harris–Benedict 833.5 261.6 245.4 61.2 0.603 39.7 1.680 <0.0001 0.529
Harris–Benedict

for infants 718.9 356.8 182.4 71.2 0.370 63.0 0.903 0.474 0.623

Schofield
(weight) 711.5 352.5 155.4 75.4 0.310 69.0 0.853 0.265 0.725

Schofield (weight
and height) 712.6 350.9 151.9 76.0 0.307 69.3 0.938 0.654 0.735

FAO/WHO
/UNU 712.4 357.9 160.1 74.7 0.317 68.3 0.897 0.446 0.715

Oxford (weight) 713.1 339.7 155.0 75.5 0.312 68.8 0.996 0.979 0.722
Oxford (weight

and height) 714.3 337.5 150.5 76.2 0.306 69.4 1.010 0.946 0.737

Talbot (weight) 661.5 341.1 132.7 79.0 0.264 73.6 0.988 0.933 0.751
Talbot (height) 681.2 333.4 136.0 78.4 0.274 72.6 0.985 0.913 0.758

Mehta * 463.4 257.2 90.8 83.5 0.164 83.6 1.386 0.647 0.901

Abbreviations: ANN = Artificial Neural Networks; VO2 = Oxygen Consumption; VCO2 = Carbone Dioxide Production; RQ = Respi-
ratory Quotient; REE = Resting Energy Expenditure; FAO = Food and Agriculture Organization; WHO = World Health Organization;
UNU = United Nation University. * mechanically ventilated children. Measured REE in mechanically ventilated children was 543.9 (298.2).

3.2.5. ANN Analysis to Evaluate the Contribution Given by Gas Values to REE Fitting

We hereby describe the application of the TWIST system to three differential analyses,
the first including all gas values VO2, VCO2, and RQ (32 variables); the second avoiding
all gas values (29 variables); and the third avoiding VO2 and RQ while maintaining only
VCO2 (30 variables).

Table 6 shows the variables selected for the modelling, the predictive results obtained
by ANN, and the comparison with the results obtained in the original (baseline) data set.
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Table 6. Results obtained in the three differential analyses relevant to the role of gas values.

Data Set 2 Baseline 1 2

Variables number of the
data set 32 29 30

Gas variables VO2; VCO2; RQ none VCO2
Variables selected by

TWIST system African mechanically ventilated South American

height male African
wasting mild Asian weight

VO2 African height
VCO2 weight BMI

RQ height obesity

SatO2%

BMI
z-HFA

wasting mild
body temperature SatO2%

CRP

VCO2
Blood glucose

CRP

predictive accuracy 96.3% 82.3% 89.5%
mean absolute error 23.3 111.7 65.6

Person R2 0.968 0.808 0.921
Abbreviations: TWIST = Training with Input Selection and Testing; VO2 = Oxygen Consumption; VCO2 = Car-
bone Dioxide Production; RQ = Respiratory Quotient; BMI = Body Mass Index; SatO2% = oxygen saturation;
z-HFA = z-score height for age; CRP = C-reactive protein. Variables only included in Data set 2 and selected by
TWIST are presented in Italic.

4. Discussion

We have described for the first time an ANN-based REE predictive model to offer
insight into the potential of machine learning to provide a valid and accurate REE prediction
in critically ill children. Machine learning may offer a new opportunity to explore the
complexity of metabolic changes in different physiologic and pathologic conditions [22].
The use of ANN models to predict REE has been found to be reliable in healthy children
and adults, including obese patients [7,23]. In our current study, we further described the
feasibility of employing ANN models to predict REE in critically ill children.

Our results highlight variables that are relevant to REE prediction. The TWIST system
selected VO2 and VCO2, RQ, weight, BMI, and gender (female, male) as meaningful
variables. The result is consistent with the fact that VO2 and VCO2 are used to compute
the modified Weir equation to obtain REE with IC, hence providing high concordance
due to mathematical coupling. Moreover, height, weight, and gender are among the
variables taken into account to estimate REE by the most commonly employed predictive
equations/formulae, including the Schofield equation, Harris–Benedict equation, Talbot
tables, and many others. The model developed by considering all the gas values (VO2,
VCO2, RQ) to predict REE was therefore the most accurate and was used as a baseline to
understand how accurate ANN can be compared to the modified Weir equation.

To better appreciate the contribution given by each gas value to the REE fitting model,
we further applied the TWIST system to four additional variants of the same data set, the
first avoiding all gas values VCO2, VO2, and RQ (21 variables); the second including only
VO2; the third including only VCO2; and the fourth maintaining only RQ (22 variables each).
When removing VO2, VCO2, and RQ altogether, the accuracy of the REE predictive model
was similar to most predictive equations/formulae. The Talbot table for weight prediction
correlated better and was slightly more accurate than the model. The Harris–Benedict
equation was the least accurate of all. The accuracy of the model did not considerably
improve when RQ was included in the data set analysis. Instead, the inclusion of either VO2
or VCO2 in the data set sensibly improved the accuracy of the REE predictive model. In
both cases, the accuracy was superior to all the predictive equations/formulae considered
for the study. Furthermore, the model developed including VO2 was almost as good as
the one developed considering all gas exchange variables (baseline). This finding may be
relevant from a more theoretical/physiological perspective, as it may indicate that oxygen
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consumption is more relevant than carbon dioxide production in defining REE. However,
a VO2-based predictive model would not be useful in clinical practice, since VO2 is not
commonly measured in the hospital setting, unless IC is performed. On the other hand, a
VCO2-based predictive model would be even more valuable in the critical care setting, as
VCO2 may be monitored in ventilated patients using capnography or even better, using
new-generation ventilators, which includes VCO2 monitoring among their functions. The
opportunity to use VCO2 in a predictive algorithm has already been explored by Mehta
et al. and Kerklaan et al., who developed and validated a VCO2-based predictive equation
(the Mehta equation) [17,18]. In the present analysis, the accuracy of the VCO2 predictive
model was equal to the accuracy of the Mehta equation.

Our results should not be considered as supportive of replacing IC, which remains
the true gold standard for assessing REE in PICU. Evidently, basic demographic and
anthropometric parameters alone do not provide sufficient information to allow an accurate
prediction of REE with machine learning. Compared to healthy and obese children, a
more complex and comprehensive metabolic monitoring is needed during acute illness to
accurately assess REE [7]. Our results do suggest that predicting REE with ANN models
may represent a better alternative to the common REE estimations when IC is not available
in the PICU setting.

Models developed by ANN would be highly improved with the inclusion of variables
possibly “marking” the changes from physiology to acute illness. For this reason, in
a smaller subset of patients, we were able to include data regarding vital signs and a
few blood values in the analysis (physiological and endogenous variables or “functional”
inputs). As expected, the inclusion of heart rate, blood pressure (systolic and diastolic),
SatO2, and body temperature, as well as CRP, Hb, and blood glucose, improved the accuracy
of the prediction. The variables selected by TWIST for ANN-based REE prediction were
slightly different in the data set 2 analysis compared to data set 1. The explanation could be
dual: the number of subjects included was different between the two data sets; moreover,
in data set 2, more variables were included. Interestingly, in the model considering all gas
values among the functional variables, only oxygen saturation (SatO2%) was selected by
the TWIST system. The explanation for this could be that VO2, VCO2, and RQ already
fully describe the metabolic state of hospitalized children, without the need for additional
endogenous or physiological information. Since SatO2 could indicate an imbalance between
gas exchanges, selecting this variable could help the system modulate the prediction. For
the model not considering gas values and for the model considering only VCO2 among the
gas values, body temperature, SatO2, CRP, and blood glucose, CRP was selected. The fact
that in both models, CRP was selected as a meaningful variable is consistent with the notion
that CRP is an indicator of illness severity and acute metabolic response and inflammation.
The selection of body temperature among the variables for the model with no gas values
is an important notion as body temperature importantly influences REE, with studies
showing a positive correlation with factors per degree Celsius ranging from 6% to 8% [24].
Finally, the inclusion of blood glucose among the variables selected by TWIST for the VCO2
model could be relevant, given that glucose abnormalities (especially hyperglycemia) are
common adverse events in the critical care setting, which can result from the endogenous
response to acute illness, regulated by different hormones (e.g., glucagon, cortisol, growth
hormone, catecholamine, insulin), but could also be influenced by many medications [25].

Our results suggest that machine learning may overcome the classic three of four fea-
tures of linear combination predictive models on which REE predictive equation/formulae
are based, and obtain a more accurate estimation of REE, by improving the number of
inputs considered in the predictive model. By applying the TWIST system to different
combinations of the same data set, all the models developed were superior to the predictive
equations/formulae considered in the study. As expected, the model with all gas values
(baseline model) was the most accurate. The model developed without gas values was less
accurate but still showed good accuracy for clinical practice. The VCO2 model reached a
very high degree of accuracy (close to 90%). The model was even more accurate than the
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Mehta equation, possibly suggesting a refinement of REE prediction based on VCO2. In
any case, these findings need to be confirmed in clinical practice by testing the model on
VCO2 values actually measured with capnography and/or by ventilators.

The current study has some limitations. Since these data were analyzed as part of a
post-hoc analysis, we were unable to include some variables that could have added useful
information to our model. For instance, we did not have a recorded severity of illness
score (e.g., Pediatric Risk of mortality Index II, PIM2). Moreover, we had insufficient data
to assess the effects of sedation, analgesia, vasoactive drugs, or other pharmacological
therapies on patients. Finally, even though blood values and vital signs were collected in
the database, many data were missing. Therefore, we chose to include all vital signs except
for respiratory rate and only CRP, Hb, and blood glucose, among the blood values, because
this combination allowed us to include more functional inputs, while keeping a sufficient
number of subjects for the scope of the study.

5. Conclusions

The delivery of optimal nutrition to critically ill children relies on accurate assessment
of energy needs. Indirect calorimetry, the gold standard for measurement of REE, is
not available in most centers. In the absence of IC, machine learning may represent a
feasible cost-effective solution to predict REE with good accuracy and therefore a better
alternative to the common REE estimations in the PICU setting. We described demographic,
anthropometric, clinical, and metabolic variables that are suitable for inclusion in ANN
models to estimate REE. The addition of VCO2 measurements from routinely available
devices to these variables may provide an accurate assessment of REE using machine
learning. Further refinement of models using other variables must be tested in larger
populations to determine the true role of machine learning in precise individual REE
prediction, particularly in critically ill children.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13113797/s1, Additional File S1: Correlations between the original study variables and the
REE value from Data set 2; Additional File S2: Real REE approximation with predictive equations
from Data set 2
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REE: Resting Energy Expenditure; IC: Indirect Calorimetry; VO2: Oxygen consumption; VCO2:
Carbon dioxide production; RQ: Respiratory Quotient; LOS: Length of stay; ICU: Intensive Care
Units; PICU: Pediatric Intensive Care Unit; WHO: World Health Organization; BMI: Body Mass
Index; WFA: Weight for age; WFL: Weight for length/height LFA: Length/height for age (LFA); Hb:
Hemoglobin; CRP: C-reactive protein; SatO2%: Oxygen saturation; SBP: Systolic Blood Pressure;
DBP: Diastolic Blood Pressure; ANN: Artificial Neural Networks; ANNs: Artificial Neural Network
Algorithms; TWIST: Training With Input Selection and Testing; T&T: Training/testing; IS: Input
Selection; GenD: Genetic Doping Algorithm; MAE: Mean Absolute Error.
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