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ABSTRACT
Background. The fecalmicrobiota from obese individuals can induce obesity in animal
models. In addition, studies in humans, animal models and dogs have revealed that the
fecal microbiota of subjects with obesity is different from that of lean subjects and
changes after weight loss. However, the impact of weight loss on the fecal microbiota
in dogs with obesity has not been fully characterized.
Methods. In this study, we used 16S rRNAgene sequencing to investigate the differences
in the fecalmicrobiota of 20 pet dogswith obesity that underwent aweight loss program.
The endpoint of the weight loss program was individually tailored to the ideal body
weight of each dog. In addition, we evaluated the qPCR based Dysbiosis Index before
and after weight loss.
Results. After weight loss, the fecal microbiota structure of dogs with obesity changed
significantly (weighted ANOSIM; p= 0.016, R= 0.073), showing an increase in bacterial
richness (p = 0.007), evenness (p = 0.007) and the number of bacterial species
(p= 0.007). The fecal microbiota composition of obese dogs after weight loss was
characterized by a decrease in Firmicutes (92.3% to 78.2%, q= 0.001), and increase in
Bacteroidetes (1.4% to 10.1%, q= 0.002) and Fusobacteria (1.6% to 6.2%, q= 0.040).
The qPCR results revealed an overall decrease in the Dysbiosis Index, driven mostly
due to a significant decrease in E. coli (p= 0.030), and increase in Fusobacterium spp.
(p= 0.017).
Conclusion. The changes observed in the fecal microbiota of dogs with obesity after
weight loss with a weight loss diet rich in fiber and protein were in agreement with
previous studies in humans, that reported an increase of bacterial biodiversity and a
decrease of the ratio Firmicutes/Bacteroidetes.

Subjects Microbiology, Veterinary Medicine
Keywords Fecal microbiota, Canine obesity, Weight loss, 16S rRNA, Dysbiosis

INTRODUCTION
Canine obesity is a serious metabolic disease that affects the quality of life and decreases life
span (Salt et al., 2019; German et al., 2012). The prevalence of obesity has been increasing
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in the past years in small animals (Courcier et al., 2010), and it is a major healthcare
problem in veterinary practice (Chandler et al., 2017; German, 2006). Obesity is associated
with a greater risk of developing other diseases such as diabetes mellitus, cardiovascular
and orthopedic diseases, and even some types of cancer (Kopelman, 2000; Tropf et al.,
2017; German et al., 2010b). Diet restriction increased life span in dogs and weight loss
regimen based on weight loss diet and exercise decreased plasma insulin concentrations and
insulin:glucose ratio (Kealy et al., 2002; German et al., 2009). Due to the detrimental effect
of obesity on the welfare of both dogs and their owners, investigating new approaches to
prevent obesity and promote weight loss in small animals is of crucial interest in veterinary
research (Day, 2017; Bartges et al., 2017).

In the past years, there has been interest on investigating a possible role for gutmicrobiota
in obesity in humans, mouse models (Zhao, 2013; Turnbaugh et al., 2008; Ridaura et al.,
2013), and also in dogs (Forster et al., 2018; Handl et al., 2013; Park et al., 2015; Kieler
et al., 2017; Salas-Mani et al., 2018). Studies have found that obesity is associated with
alterations, disruption, and decreased biodiversity of the intestinal microbiota (Durack &
Lynch, 2019; Ley et al., 2005; Ley et al., 2006;Cotillard et al., 2013). In addition, colonization
of germ-free mice with the fecal microbiota of obese humans lead to significant weight
gain when compared to mice that received fecal microbiota from lean controls (Ridaura et
al., 2013), suggesting that gut microbiota impacts host physiology and metabolism.

While a relationship between the gut microbiome and obesity has been observed,
it remains unclear as to how the gut microbiome contributes to the development of
obesity, but proposed mechanisms include the production of short chained fatty acids
(SCFAs), monosaccharides, and other bioactive molecules. These bacterial products may
lead to an increase in dietary energy harvest (Turnbaugh et al., 2006), changes in lipid
metabolism (Ghazalpour et al., 2016), changes in fat storage regulation (Bäckhed et al.,
2004; Bäckhed et al., 2007), altered satiety (Arora, Sharma & Frost, 2011), and an increase
in systemic low-grade inflammation via the interaction with either the enteric nervous
system (Schwartz, 2000; Tehrani et al., 2012; De Lartigue, De La Serre & Raybould, 2011),
the endocrine system (Mondo et al., 2020; Kirchoff, Udell & Sharpton, 2019; Scarsella et al.,
2020), or the immune system (Cani et al., 2007; Cani et al., 2012).

In human and animal models of obesity, a greater abundance of the phylum Firmicutes
and lesser abundance of Bacteroidetes have been reported (Turnbaugh et al., 2009; Vrieze
et al., 2012), and the Firmicutes/Bacteroidetes (F:B) ratio is commonly used as a marker of
gut microbial dysbiosis in obesity. The F:B ratio is greater in individuals with obesity and,
interestingly, decreases after weight loss (Ley et al., 2005; Ley et al., 2006). Previous data
have shown similarities in the gut microbiota of humans and dogs (Swanson et al., 2011;
Coelho et al., 2018), but it is not clear whether results from human and animal models can
be translated to canine obesity.

One study in research Beagles evaluated the fecal microbiota of lean dogs and dogs that
developed obesity after overfeeding for 6months. Analysis of fecalmicrobiota demonstrated
differences in microbial communities between dogs in the obese and lean groups, with a
lesser diversity in the obese group. In particular, there was a lesser abundance of Firmicutes
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and Fusobacteria in the obese group, and the abundance of Proteobacteria was significantly
greater in the obese group compared to the lean group (Park et al., 2015).

In one study of client-owned dogs, a dominance of the phylum Firmicutes has been
seen, with significant differences at the taxonomic level, between dogs with obesity and
those in ideal body condition, but no significant differences in the overall composition of
fecal microbiota or bacterial diversity (Handl et al., 2013). However, in a second study, a
trend towards lower fecal microbial diversity was seen in dogs with obesity, compared with
dogs in ideal bodyweight (Forster et al., 2018).

Two studies have evaluated the impact of weight loss on the fecal microbiota of dogs
with obesity. In one study, the fecal microbiota was assessed before, during, and after 12
weeks of a weight loss program that consisted of diet and exercise or diet alone. Despite
the short follow-up period, differences in bacterial abundance were identified after 6 weeks
and 12 weeks of the weight loss program. While not all the dogs lost as much weight as
expected, a decrease inMegamonas and an unknown genus of the family Ruminococcaceae
was observed in the dogs with a higher weight loss rate (Kieler et al., 2017). The fecal
microbiota composition of research Beagles with obesity has also been assessed before
and after a 17-week weight loss program with a hypocaloric diet (Salas-Mani et al., 2018).
Despite all dogs reaching ideal body weight, no significant impact on diversity was seen and
microbial communities remained similar to baseline values after 17 weeks. At the genus
level, significant differences were found only in the abundances of the Firmicutes genera
Lactobacillus, Clostridium, and Dorea, which decreased after the weight loss program, and
Allobaculum, which increased (Salas-Mani et al., 2018).

A number of limitations need to be considered in these studies. Microbiome analysis
evaluates a large number of variables, which limits the statistical power, especially in
small cohorts (Falony et al., 2016). In addition, studies with healthy client-owned dogs
have identified large individual variations, which need to be taken into account (Garcia-
Mazcorro et al., 2012). Given that obesity develops over time, it is reasonable to expect
that significant changes will be seen only when follow-up focuses on the long-term
improvement. Therefore, the aim of this study was to use 16S rRNA sequencing to evaluate
the differences in fecal microbiota composition of client-owned dogs with obesity before
and after weight loss. We also performed quantitative PCR to calculate the Dysbiosis Index
in obese dogs before and after weight loss and to compare the values obtained with the
established reference intervals from healthy dogs (AlShawaqfeh et al., 2017). Moreover,
we evaluated the fecal microbiota of obese client-owned dogs enrolled in the weight loss
program that did not reach ideal body weight to quantify the effect of the diet alone on the
fecal microbiota.

MATERIALS & METHODS
Study Animals, eligibility criteria and ethical considerations
Client-owned dogs with obesity were referred to the Royal Canin Weight Management
Clinic, University of Liverpool, UK. All were presented between June 2009 and August
2017, and completed their weight loss regimens between November 2009 and August
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2018. To be included in the study, dogs had to be clinically healthy with no signs of
gastrointestinal disease, a BCS of ≥6, and no antimicrobial usage in the past month
(Igarashi et al., 2014). None of the dogs had antimicrobials throughout their weight loss
program. No fecal analyses were performed on the fecal samples and so occult infection
with intestinal parasites could not be excluded. However, no dog showed signs consisted
with parasitic infection.

Historical data and fecal samples, before and after participation in the weight loss
program, had to be available for the analysis. The final number of dogs with obesity that
met the inclusion criteria was 25. At time point zero (T0), fecal samples of all 25 dogs
were collected. Twenty dogs completed the weight loss program and reached their target
weight, whilst five dogs stopped their program early as request of the owners for undeclared
reasons. From dogs that completed the weight loss, a fecal sample from the visit in which
they reached their target body weight, was collected to include in the analysis as time point
two (T2). Dogs that did not complete the weight loss program but had a fecal sample from
the first follow-up visit (time point one (T1)) were included in the analysis to account for
the effect of the new diet on the fecal microbiota. The study protocol was reviewed and
approved by the University of Liverpool Veterinary Research Ethics Committee (Approval
reference: RETH000353 and VREC793), the Royal Canin ethical review committee, and
the WALTHAM ethical review committee. Owners of dogs with obesity gave informed
consent in writing.

Weight loss regimen
Prior to commencing weight reduction, all dogs were considered to be healthy apart from
their obesity. All dogs were screened for overall health by performing complete blood count,
serum biochemical analysis, serum free thyroxine concentration (by equilibrium dialysis)
and urinalysis. Dogs were weighed at admission, and the body condition score (BCS) was
estimated using a 9-integer scale by the attending clinician (AJG). Percentage body fat was
measured by dual-energy X-ray absorptiometry (DEXA) as previously described (Raffan et
al., 2006). For weight reduction, all dogs were fed a dry therapeutic diet (Canine Satiety R©

diet, Royal Canin), with the exception of one dog (OBE16) that was fed a combination
of wet and dry food (Canine Satiety R© diet, Royal Canin). Moreover, the formulation of
Satiety changed in 2010 (Table 1, Data S1). The endpoint of the study was achievement of
ideal body weight which, given differing degrees of adiposity, was individually set for each
dog using the results of body composition analysis from before weight loss, as previously
reported (German et al., 2012). Briefly, pre-weight-loss body composition datawere entered
into a computer spreadsheet which contained a bespoke mathematical formula to predict
ideal bodyweight. The formula was based upon typical changes in body composition seen
from previous weight loss studies at the same clinic (German et al., 2007; German et al.,
2010a).

Fecal collection and DNA extraction
Fecal samples fromdogswith obesity were collected after spontaneous defecation and stored
at −20 ◦C being shipped to the Gastrointestinal Laboratory at Texas A&M University in
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Table 1 Average composition of diets for weight loss.Diet formulation changed in 2010; figures in col-
umn refer to pre-2010 and post-2010 diets, respectively.

Criterion Dry fooda Wet foodb

ME content 2,900/2,865 Kcal/kg 602 Kcal/kg
Per 100g AF g/1,000 Kcal (ME) Per 100g AF g/1,000 Kcal (ME)

Moisture 8/10 28/33 83 1,379
Crude protein 30/30 103/105 8.5 141
Crude fat 10/10 33/33 2.0 33
Starch 19/18 66/61 1.8 30
NFE 30/29 102/100 3.0 50
Crude fiber 18/16 60/58 2.0 33
Total dietary fiber 28/28 97/97 3.2 53
Ash 5.3/5.7 18/20 1.5 25

Notes.
ME, Metabolizable energy content, as measured by animal trials according to the American Association of Feed Control Offi-
cials protocol (AAFCO, 2010); AF, as fed; DM, dry matter.

aSatiety Support Canine Dry (Royal Canin).
bSatiety Support Canine Wet (Royal Canin).

February 2019. DNA was extracted from approximately 100 mg of stool using the Mo Bio
PowerSoil R© DNA isolation kit (MoBio Laboratories, USA) according to themanufacturer’s
instructions.

Quantitative PCR (qPCR) and Dysbiosis Index (DI)
Quantitative PCR was performed using universal bacteria primers and primers for the
following bacterial groups: Blautia spp., Clostridium hiranonis (C. hiranonis), Escherichia
coli (E. coli), Faecalibacterium spp., Fusobacterium spp., Streptococcus spp., and Turicibacter
spp. The analysis was performed using a CFX 96 Touch TM Real-Time PCR Detection
system (Biorad Laboratories). Ten µL SYBR-based reaction mixtures: 5 µL of SsoFastTM

EvaGreen R© Supermix (Biorad Laboratories), 2.2 µL of water, 0.4 µL of each primer (final
concentration: 400 nM), and 2µL of DNA (1: 10 or 1: 100 dilution) were used for a protocol
of 95 ◦C for 2min, and 40 cycles at 95 ◦C5 s and 10 s at the optimized annealing temperature
for each primer set. Afterwards, a melt curve analysis was completed (AlShawaqfeh et al.,
2017).

Results from the qPCR analysis for Blautia spp., C. hiranonis, E. coli, Faecalibacterium
spp., Fusobacterium spp., Streptococcus spp., and Turicibacter spp. are expressed as the
abundance of DNA for each bacterial group (logarithm of starting quantity or logarithm of
relative DNA copy number). Relative DNA copy number for the mentioned bacteria were
used to calculate a single numerical value known as the Dysbiosis Index (AlShawaqfeh et
al., 2017). A value < 0 is indicative of a normal microbiota, numbers between 0 and 2 are
considered equivocal, while numbers greater than 2 indicate fecal dysbiosis. The dysbiosis
index is a commercially available assay, and the reference intervals have been validated
with dogs from various countries, including the UK.
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16S rRNA gene sequencing
The V4 variable region of the 16S rRNA gene was sequenced at the MR DNA
laboratory (http://www.mrdnalab.com, Shallowater, TX, USA). Primers 515F (5′-
GTGYCAGCMGCCGCGGTAA) (Parada, Needham & Fuhrman, 2016) to 806RB (5′-
GGACTACNVGGGTWTCTAAT) (Apprill et al., 2015) and HotStarTaq Plus Master Mix
(Qiagen, USA) were used to amplify samples and perform the Illumina MiSeq protocol
following the manufacturer’s guidelines. Raw sequences were uploaded into Sequence Read
Archive of the NCBI GenBank database under the accession number PRJNA580258.

Analysis of sequences
Quantitative Insights into Microbial Ecology 2 (QIIME 2.0) was used for analysis of the
16S rRNA amplicon sequences (Bolyen et al., 2019). Sequences were demultiplexed and the
OTU table was created using DADA2 (Callahan et al., 2016). Operational taxonomic units
(OTUs) were defined as sequences with at least 97% similarity within the Greengenes v
13.8 database (DeSantis et al., 2006). Prior to downstream analysis, sequences assigned as
chloroplast, mitochondria, and low abundance OTUs, containing less than 0.01% of the
total reads in the dataset were removed (McDonald et al., 2012). All samples were rarefied
to an even depth of 36,775 sequence reads, based on the lowest read depth of samples.

Alpha diversity was evaluated with Chao1, Shannon diversity, and observed OTUs.
Beta-diversity metric was estimated by unweighted and weighted phylogeny-based UniFrac
distances and visualized using PCoA (Principal Coordinate Analysis) plots.

Statistical analysis
Normality was tested for all continuous variables using the Shapiro–Wilk test. Results were
reported as mean (standard deviation [SD]) or median (range), when data were normally-
or not normally-distributed, respectively. Differences in dog characteristics (i.e., age)
between groups at baseline were compared using either the t -test. The ANOSIM (Analysis
of Similarity) test within PRIMER 6 software package (PRIMER-E Ltd., Luton, UK) was
used to analyze significant differences in microbial communities between groups.

Alpha diversity indices (Shannon, Chao1, and Observed OTUs), Dysbiosis Index, and
quantitative PCR results were compared between groups using Wilcoxon test. A statistical
software package (Prism version 8.0; GraphPad Software, San Diego, CA, USA), was used
for the described analyses. To minimize false discoveries in univariate statistics, OTUs
not present (0%) in at least 50% of the samples of at least one of the compared groups
were considered rare and excluded from analysis. Filtered taxa were tested with Wilcoxon
test for paired analysis using statistical software (R Studio Software version 1.2.1335 c©,
R Studio, Boston, MA, USA; and JMP Pro 14; SAS, Durham, NC, USA). P-values were
adjusted using the Benjamini–Hochberg Step-up method with a false discovery rate (FDR)
of 0.05. For all statistical analyses, significance was set at p< 0.05.

RESULTS
Animal population characteristics
After a mean of 330.9 (SD 203.4) days on weight loss diet, BCS changed significatively in
dogs with obesity when compared before (BCS 8; range 6–9) and after weight loss (median
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Table 2 Demographics for dogs with obesity enrolled in this study.Unpaired T -test was used to compare age between the groups of obese dogs
that completed the study vs. obese dogs that did not complete the study (p= 0.730). Mann-Whitney for unpaired analysis and Wilcoxon for paired
analysis were used to test significance of differences in BCS between groups: obese before vs. after weight loss (p< 0.001); obese dogs that completed
the program at baseline vs. obese dogs that did not complete the study (p= 0.551).

Days on weight
loss diet,
Mean (SD)

Age in months,
Mean (SD)

Sex Sexual
status

BCS Baseline,
median (range)

BCS after
weight loss,
median (range)

BCS during
weight loss,
median (range)

Obese dogs, completed
study (n= 20)

330.9 (SD 203.4) 69.4 (SD 32.3) 10F/10 M 18N/2I 8 (6–9) 5 (4–7) N/A

Obese dogs, did not
complete study (n= 5)

536.4 (SD 154.8) 75 (SD 23.6) 3F/2M 5N 8 (8–9) N/A 8 (8–9)

Notes.
F, female; M, male; N, neutered; I, intact; BCS, Body condition score.

BCS 5; range 4–7; p< 0.001). However, BCS was not significantly different at baseline
between the group of dogs that lost weight and those that did not complete the weight
loss program ( p= 0.551). At baseline, the mean age in dogs with obesity that lost weight
was 69.4 (SD 32.3) months, and 75.0 (SD 23.6) months for those that did not lose weight
(p= 0.730), (Table 2, Data S1). The breeds included in the obese group were: Labrador
Retriever (n= 7), Golden Retriever (n= 2), Cavalier King Charles spaniel (n= 2), Border
Collie (n= 2), Pug (n= 2), Lhasa Apso (n= 1), American Bulldog (n= 1), Dachshund
(n= 1), Rottweiler (n= 1), Newfoundland (n= 1), Bichon Frise (n= 1), Rough Collie
(n= 1), and mixed breed (n= 3).

Body composition measurements were available for 19 out of the 20 dogs with obesity
that lost weight (n= 20) and mean body fat mass was 44.8% (SD 5.0%) before weight loss
(T0) and 30.4% (SD 6.5%) after weight loss (T2, p< 0.001). Mean rate of weight loss of
starting body weight was 0.68% (SD 0.29%) per week, while the energy intake during the
weight loss period was 60.8 (SD 5.5) kcal per kg0.75 of ideal body weight per day (Table 2,
Data S1).

Dogs were classified as having discontinued prematurely (n= 5) when their body weight
at the time that they dropped out of the study (T2) were still significantly above of their
ideal weight. The time between enrollment (T0) and the first follow-up (T1) was 15 (14–37)
days, during which they had lost a median of 2.7% (0.0%–4.8%) of their starting body
weight. At the time they dropped out of the program, after 414 (414–781) days on weight
loss, they lost 9.9% (−3.6%–21.3%) of body weight. Although one dog did eventually lose
21.3% of its body weight, it was still significantly (∼13%) above its ideal weight at the
time it discontinued and had also not lost any weight when the follow-up fecal sample was
taken. All other dogs in this group lost <11% of their starting weight and were also above
their ideal weights at the point that their weight loss was ended. The median rate of weight
loss of starting body weight was 0.10% (−0.06%–0.39%) per week and the energy intake
was 54.0 (51.8%–60.9%) kcal per kg0.75 of ideal body weight per day. Body composition
measurements were available in 4 out of 5 of the dogs at baseline, and median body fat
was 44.7% (44.0%–47.5%). Body condition score did not change significatively during the
period of weight loss (Data S1). No significant differences were identified for alpha and
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beta diversity when sex, age and neutered status were investigated for association with fecal
microbiota in all dogs at baseline (Data not shown).

qPCR and dysbiosis index
On analysis by qPCR, there was a decreased abundance of E. coli (T0: 4.8 vs. T2: 3.5;
p= 0.030), and an increased abundance of Fusobacterium spp. (T0: 7.4 vs. T2: 8.0;
p= 0.017) after weight loss (Fig. 1). The values for the abundances of the evaluated
bacteria by qPCR and for the Dysbiosis Index showed that the changes observed in the
fecal microbiota before and after weight loss were mostly within the established reference
intervals for clinically healthy dogs.

Changes in the fecal microbiota with weight loss in dogs with obesity
Weighted UniFrac analysis of similarities revealed significant clustering of the microbial
communities in dogs with obesity before and after weight loss (weighted ANOSIM;
p= 0.016, R= 0.073; Fig. 2A). Alpha diversity evenness and richness, as indicated by
Shannon (p= 0.007), Chao1 (p= 0.007), and Observed OTUs (p= 0.007) indices were
significantly increased after weight loss (Fig. 2B).

When the bacterial abundance was investigated at the taxa level, significant differences
were found for the phyla Bacteroidetes, Firmicutes and Fusobacteria (Fig. 3A). The median
Firmicutes/Bacteroidetes ratio decreased from 0.123 to 0.014 (p= 0.004) in dogs with
obesity after weight loss (Fig. 3B). The relative abundance of Bacteroidetes (T0: 1.4% vs.
T2: 10.1%; q= 0.002; Fig. 4A) and Fusobacteria (T0: 1.6% vs. T2: 6.2%; q= 0.040; Fig. 5A)
increased significantly after weight loss, whilst the abundance of the phylum Firmicutes,
instead decreased (T0: 92.3% vs. T2: 78.2%; q= 0.001; Fig. 6A).

The increase in Bacteroidetes was driven by the genera Bacteroides (T0: 0.7% vs. T2:
7.9%; q= 0.017; Fig. 4C) and Paraprevotella (T0: 0% vs. T2: 0.1%; q= 0.033; Fig. 4F).

From the phylum Fusobacteria, the genus Fusobacterium (T0: 1.6% vs. T2: 6.2%;
q= 0.099; Fig. 5C) increased after weight loss. However, the corrected q-value did not
reach significance.

Belonging to the phylum Firmicutes, the family Clostridiaceae decreased in abundance
after weight loss (T0: 37.3% vs. T2: 24.6%; q= 0.068), but this difference did not reach
significance after Benjamini correction (Fig. 6B). The same was noticed for the genus
Clostridium (T0: 0.7% vs. T2: 0.6%; q= 0.119; Fig. 6C). The genus Megamonas (T0: 0.2%
vs. T2: 0.0%; q= 0.027; Fig. 6E) and the genus Catenibacterium (T0: 2.3% vs. T2: 0.5%;
q= 0.017) decreased significantly after weight loss (Fig. 6F), and the genus Coprobacillus
increased in abundance (T0: 0% vs. T2: 0.5%, q= 0.033; Fig. 6G).

A short-term change in diet does not alter fecal microbiota
The fecal microbiota beta diversity of the dogs with obesity that stopped the weight
loss program before reaching the endpoint (n= 5) was analyzed before and during the
weight loss program. No significant differences were evident between the two time points
(Weighted ANOSIM; p= 0.778 R=−0.080; Fig. 7A). Alpha diversity evenness and
richness, as indicated by Shannon (p= 0.313), Chao1 (p= 0.438), and Observed OTUs
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Figure 1 Dysbiosis Index and quantitative PCR results for Blautia spp., C. hiranonis, E. coli, Faecal-
ibacterium spp., Fusobacterium spp., Streproccocus spp., and Turicibacter spp. Bacterial concentrations
are expressed in Log DNA (Log of the starting quantity, which is the relative DNA copy number). The
dotted lines indicate the established reference intervals for each bacterial group for clinically healthy dogs.
The Dysbiosis Index is a mathematical algorithm that summarizes the resuts in one number. A negative
value is indicative of a normal microbiota, numbers between 0 and 2 are considered equivocal, and values
greater than 2 indicate dysbiosis. Wilcoxon test was used to compare bacterial abundance and Dysbiosis
Index between dogs with obesity before and after weight loss. Significance ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <

0.001.
Full-size DOI: 10.7717/peerj.9706/fig-1
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Figure 2 Principal coordinate analysis of beta and alpha diversity of dogs with obesity before and af-
ter weight loss. (A) PCoA plot based on weighted UniFrac distances of 16S rRNA genes. Visible cluster-
ing was confirmed by ANOSIM, showing that fecal microbiota of obese dogs changed significatively after
weight loss (p = 0.016, R = 0.073). (B) Observed OTUs, an indicator of species richness, and (C) Chao1,
indicator of rare bacterial species abundance showed an increase after weight loss (p = 0.007). (D) Shan-
non index, indicator of bacterial evenness, also increased significatively when dogs lost weight (p= 0.007).

Full-size DOI: 10.7717/peerj.9706/fig-2
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Figure 3 Abundance of fecal bacteria at phylum level found in obese dogs before and after weight loss.
(A) Relative abundance of the phyla detected in fecal samples of obese dogs before weight loss and after
weight loss. Increases of the abundance of the phyla Bacteroidetes (q = 0.002) and Fusobacteria (q =
0.040), and decreases of the abundance of the phylum Firmicutes (q = 0.001) were observed after weight
loss. (B) Firmicutes/Bacteroidetes ratio values for each dog. After weight loss, Firmicutes/Bacteroidetes ra-
tio decreased significantly as a consequence of a greater abundance of Bacteroidetes and lesser of Firmi-
cutes (p= 0.004).

Full-size DOI: 10.7717/peerj.9706/fig-3

(p= 0.438) indices did not show significant differences after a median period of 15 days
on weight loss diet.

DISCUSSION
In this study, we report significant differences in the fecal microbiota in a population of
20 obese client-owned dogs after weight loss. Dogs with obesity were enrolled in a weight
loss program with the endpoint set as the achievement of target body weight (German et
al., 2007; German et al., 2010a; German et al., 2010b).

We observed that the fecal microbiota richness and evenness of dogs increased
significantly after weight loss, which is consistent with previous studies for dogs and
humans with obesity, where a lesser richness and evenness of the fecal microbiota was
reported in obese individuals (Park et al., 2015; Peters et al., 2018). At the phylum level,
our results showed a decrease of the abundance of Firmicutes (92.3% vs. 78.2%) and an
increase of the abundance of Bacteroidetes (1.4% vs. 10.1%) after weight loss, as a result,
we observed a decrease of the F:B ratio in dogs with obesity after weight loss (Fig. 3B). This
is consistent with the literature (Ley et al., 2006), since the F:B ratio of obese individuals has
been reported to be greater in studies that analyzed the fecal microbiota of obese humans,
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Figure 4 Relative abundance of bacterial populations belonging to the phylum Bacteroidetes detected
in fecal samples of obese dogs that changed after weight loss. Significance ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <

0.001. Red significance lines indicate p-values that did not pass multiple comparison correction.
Full-size DOI: 10.7717/peerj.9706/fig-4
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Figure 5 Relative abundance of bacterial populations belonging to the phylum Fusobacteria detected
in fecal samples of obese dogs that changed after weight loss. Significance ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <

0.001. Red significance lines indicate p-values that did not pass multiple comparison correction.
Full-size DOI: 10.7717/peerj.9706/fig-5

dogs, and animal models of obesity, that also decreased after weight loss (Ley et al., 2005;
Ley et al., 2006; Turnbaugh et al., 2006; Turnbaugh et al., 2009; Salas-Mani et al., 2018).
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Figure 6 Relative abundance of bacterial populations belonging to the phylum Firmicutes detected in
fecal samples of obese dogs that changed after weight loss. Significance ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <

0.001. Red significance lines indicate p-values that did not pass multiple comparison correction.
Full-size DOI: 10.7717/peerj.9706/fig-6

An important difference of the core microbiota between humans and dogs is the
abundance of the phylum Fusobacteria. In human studies, Fusobacteria is not as abundant
in the fecal microbiota compared to dogs (Swanson et al., 2011; Coelho et al., 2018). In fact,
in humans, a high abundance of Fusobacteria is associated with colon cancer (Kelly,
Yang & Pei, 2018). In contrast, in dogs, Fusobacteria appears to play an important
role in the maintenance of health, and has been reported to be decreased in dogs with
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Figure 7 Principal coordinate analysis of beta diversity and alpha diversity indices of obese dogs that
did not complete the weight loss program. (A) PCoA plot based on weighted UniFrac distances of 16S
rRNA gene shows no clustering of microbial communities from feces of obese dogs before weight loss
(red) and during weight loss (purple). Fecal microbiota profile of obese dogs did not change after a me-
dian period of 15 days weighted ANOSIM; p = 0.778,R = −0.080). (B) Observed OTUs, an indicator of
species richness, (C) Chao1, indicator of rare bacterial species abundance (p = 0.438), and (D) Shannon
index, indicator of bacterial evenness (p = 0.313), were not different in obese dogs after a median period
of 15 days on weight loss program.

Full-size DOI: 10.7717/peerj.9706/fig-7

gastrointestinal diseases (AlShawaqfeh et al., 2017;Minamoto et al., 2014). Previous studies
have demonstrated that a greater abundance of Fusobacteria is associated with leanness
and it increases after weight loss in dogs (Park et al., 2015; Handl et al., 2013). Our results
by 16S rRNA gene sequencing confirm that the abundance of Fusobacteria increases after
weight loss (Fig. 5A).
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In agreement with this, results from qPCR (Fig. 1) showed also a significant increase
in Fusobacterium spp. and a significant decrease in E. coli, with a numerical decrease in
the Dysbiosis index, although this was not significant. Most dogs remained within the
established reference interval for clinically healthy dogs.

A greater abundance of the class Clostridia has been associated with an obese phenotype
and it is reported to decrease after weight loss in humans (Nadal et al., 2009). In a similar
study in dogs, the genus Clostridium decreased after a weight loss program of 17 weeks
(Salas-Mani et al., 2018). Our results also showed a slight decrease of Clostridium after
weight loss. However, this difference was not statistically significant (Fig. 6C).

One of the factors to consider may be the variability between diets. In order to evaluate
the effect of the weight loss diet in the gut microbiota, fecal microbiota of dogs with obesity
before and after an initial period on the weight loss diet was analyzed in a small cohort
of dogs with obesity that did not complete the weight loss program. The fecal microbiota
analysis before and after this period did not show significant differences (Fig. 7). Despite
the short-term on weight loss diet and the small sample size, similar results were shown
in the study carried out by Kieler and colleagues (Kieler et al., 2017), that evaluated the
fecal microbiota of overweight pet dogs after a weight loss program. In addition, the same
weight loss diet used in our study was used with or without exercise in the mentioned
study, and researchers observed only minor changes in the microbiome composition. In
that particular study, the dogs were followed for 12 weeks, and it is not clear how many
dogs reached an ideal body weight. The main finding was that a decrease in abundance of
the genusMegamonas correlated with a greater weight loss rate during 12-week weight loss
program (Kieler et al., 2017). We also observed a decrease in the genus Megamonas after
weight loss, which could be attributed to an effect of the weight loss diet. However, the role
ofMegamonas in obesity is unclear and merits further investigation.

There is significant interest in body weight management by modifying macronutrient
distribution in diets. Fiber promotes digestive health and weight control and has been
demonstrated to improve satiety in dogs (Weber et al., 2007), however, the effect of diet on
fecal microbiota in dogs is controversial. Whilst diet has been shown to modulate the gut
microbiota in humans (David et al., 2014), in dogs this correlation is not always clear. Gut
microbiota seems to be modulated by diet only when its formulation changes significantly
in macronutrient content from the previous diet (Schmidt et al., 2018; Kim et al., 2017) or
the intestinal microbiota is compromised due to a gastrointestinal disease (Bresciani et al.,
2018). Consistently, in healthy dogs, small variations in diets seem not to have substantial
effects on the composition of the fecal microbiota (Sandri et al., 2017; Schauf et al., 2018;
Bresciani et al., 2018). The diet used in our study is considered a high-protein, high-fiber
diet (Table 1). Although we cannot exclude that changes observed in the fecal microbiota
of dogs with obesity after weight loss are associated to the new diet, minor changes have
been reported when an increase of fiber is included in the diet of healthy dogs (Middelbos
et al., 2010).

It has been hypothesized that increased satiety, an important factor to aid weight loss,
could be mediated by short-chain fatty acids (SCFAs) (Arora, Sharma & Frost, 2011). Our
results confirm significant differences in SCFAs-producing bacteria, as Clostridiaceae,
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Veillonellaceae and Blautia between obese before and after weight loss (Data S2). However,
study of SCFAs in obese dogs and after weight loss it is necessary to confirm its role in
satiety and hence, in weight modulation.

CONCLUSIONS
In summary, this study shows that the fecal microbiota of dogs with obesity significantly
changes after weight loss. In addition, our results by qPCR show that after weight loss with
a high-fiber and high-protein diet, the abundance of the bacterial population analyzed are
mostly within the reference intervals for clinically healthy dogs.
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