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Reduced circulating FABP2 
in patients with moderate to severe 
COVID‑19 may indicate enterocyte 
functional change rather than cell 
death
G. Assante1,2, A. Tourna1,2, R. Carpani3, F. Ferrari3, D. Prati3, F. Peyvandi 3,4, F. Blasi 3,4,  
A. Bandera3,4, A. Le Guennec 5, S. Chokshi 1,2, V. C. Patel 1,2,6, I. J. Cox 1,2*, 
L. Valenti3,4* & N. A. Youngson1,2*

The gut is of importance in the pathology of COVID‑19 both as a route of infection, and gut 
dysfunction influencing the severity of disease. Systemic changes caused by SARS‑CoV‑2 gut infection 
include alterations in circulating levels of metabolites, nutrients and microbial products which alter 
immune and inflammatory responses. Circulating plasma markers for gut inflammation and damage 
such as zonulin, lipopolysaccharide and β‑glycan increase in plasma along with severity of disease. 
However, Intestinal Fatty Acid Binding Protein / Fatty Acid Binding Protein 2 (I‑FABP/FABP2), a widely 
used biomarker for gut cell death, has paradoxically been shown to be reduced in moderate to severe 
COVID‑19. We also found this pattern in a pilot cohort of mild (n = 18) and moderately severe (n = 19) 
COVID‑19 patients in Milan from March to June 2020. These patients were part of the first phase of 
COVID‑19 in Europe and were therefore all unvaccinated. After exclusion of outliers, patients with 
more severe vs milder disease showed reduced FABP2 levels (median [IQR]) (124 [368] vs. 274 [558] pg/
mL, P < 0.01). A reduction in NMR measured plasma relative lipid‑CH3 levels approached significance 
(median [IQR]) (0.081 [0.011] vs. 0.073 [0.024], P = 0.06). Changes in circulating lipid levels are another 
feature commonly observed in severe COVID‑19 and a weak positive correlation was observed in 
the more severe group between reduced FABP2 and reduced relative lipid‑CH3 and lipid‑CH2 levels. 
FABP2 is a key regulator of enterocyte lipid import, a process which is inhibited by gut SARS‑CoV‑2 
infection. We propose that the reduced circulating FABP2 in moderate to severe COVID‑19 is a marker 
of infected enterocyte functional change rather than gut damage, which could also contribute to the 
development of hypolipidemia in patients with more severe disease.

Very soon after the onset of the COVID-19 pandemic, the gastrointestinal (GI) tract became a research focus, 
despite the evident respiratory nature of the disease’s pathogenesis and  lethality1. The evidence for GI involve-
ment initiated with frequent observation of symptoms such as nausea and vomiting, diarrhoea, abdominal pain, 
and anorexia. A meta-analysis of 38 studies which included more than 8000 COVID-19 patients showed that 
15.5% patients had at least one GI symptom, with 7.5% experiencing nausea/vomiting and 11.5%  diarrhoea2. GI 
symptoms are even more common in critically ill patients, with a study reporting the rates of feeding intolerance, 
abdominal distension, vomiting, constipation and diarrhoea being 56%, 67%, 64%, 37% and 28%  respectively3.

The discovery that the SARS-CoV-2 virus infects the lungs through binding the receptor angiotensin-con-
verting enzyme 2 (ACE2) increased interest in the GI tract as it is known to be present on enterocytes in the gut 
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 epithelium4. Subsequent studies confirmed the gut infection route in COVID-195,6 and that the gut is a reservoir 
for viral  particles1 which can persist even after clearance from the upper respiratory  tract7.

Direct invasion of enterocytes leading to cellular changes and cell death is one way in which SARS-CoV-2 
can damage the GI  tract8. However, the GI symptoms in COVID-19 are also likely to be generated by other 
pathophysiological  mechanisms9. ACE2 mediates intestinal functions such as the renin–angiotensin–aldosterone 
system by stimulating intracellular signal pathways when bound. SARS-CoV-2 binding to ACE2 can dysregulate 
this  function10,11. Furthermore, the gut microbiome is altered in COVID-19 patients which may lead to imbalance 
of gut homeostasis, inflammation and  dysfunction12,13. Finally, the high levels of circulating pro-inflammatory 
mediators, and immune cell infiltration of the gut may perturb GI function and induce  pathology6. The multi-
faceted role of the gut in COVID-19 infection and severity has led to efforts in treating the disease through 
modulation of microbiota  (probiotics14–16 and fecal microbial  transplantation17,18), diet (e.g. fibre  content1) and 
gut function itself (e.g. through regulating plasma serotonin which influences colonic peristaltic reflexes and 
GI  transit19).

We investigated the role of the gut in affected COVID-19 patients, grouped according to mild and moder-
ately severe disease, who were admitted to Fondazione Ca’ Grande Ospedale Maggiore Policlinico (Lombardy, 
Italy)20. For this pilot study we assayed commonly used plasma biomarkers of gut permeability (zonulin) and 
enterocyte cell death (Intestinal Fatty Acid Binding Protein / Fatty Acid Binding Protein 2, I-FABP/FABP2) as 
well as a range of plasma metabolites with nuclear magnetic resonance (NMR)  spectroscopy21. The earliest avail-
able timepoint plasma sample (closest to date of admission) was analysed and compared to patient clinical data 
recorded within 3 days of the experimental sample collection. We hypothesised that circulating plasma markers 
of gut inflammation and damage would differ according to severity of disease and could correlate to circulating 
levels of metabolites as measured by NMR spectroscopy.

Results
General characteristics of the pilot study cohort. Patients were grouped based on the ultimate level 
of breathing support that they received. Patients receiving nasal cannula (n = 17) or VentMask (n = 1) were 
placed in the mild group, while those who received CPAP were grouped as moderately severe (n = 19) (Table 1). 
Importantly, we use the classification ‘moderately severe’ as no patients were sedated and on parenteral nutrition 
receiving mechanical ventilation or extracorporeal membrane oxygenation (ECMO).

Within the moderately severe group, five patients (26.3%) succumbed to death. The gender and age distribu-
tions of the two groups were similar, and the only significantly different comorbidity was obesity, which was 
more common in the moderately severe group, though it was not possible to ascertain in all participants (Sup-
plementary File 1).

Multiple measurements of blood cells and molecules were at significantly different levels between the two 
groups in line with several studies which have reported COVID-19 associated changes (Table 1 and Supplemen-
tary File 1). For example, patients with more severe COVID-19 had elevated neutrophils, C-reactive protein 
(CRP), procalcitonin (Pct), ferritin and fibrinogen but reduced lymphocytes compared to milder COVID-19 
patients.

Gut damage marker ELISAs. Plasma zonulin levels and FABP2 levels were measured in 17 milder 
COVID-19 patients and 16 more severe COVID-19 patients.

For the zonulin ELISA measurements, one and two samples were respectively excluded from the mild [ID 503, 
zonulin 76.3 ng/ml] and moderately severe groups [ID 506, 562, zonulin 48.4 ng/mL, 47.5 ng/mL respectively] 
for being more than two standard deviations from the mild and moderately severe group means (9.7 and 13.4 ng/

Table 1.  Selected clinical and demographic parameters of the study population. CRP C reactive protein; AST 
aspartate aminotransferase; ALT Alanine aminotransferase. a Nasal cannula or VentMask, bCPAP, Continuous 
positive air pressure, cIQR, interquartile range.

Characteristic Milda Moderately-Severeb P value

No. of subjects 18 19

Male, n (%) 13 (72.2) 15 (78.9)

Female, n (%) 5 (27.8) 4 (21.1)

Age in yrs, median  (IQRc) 60.6 (52.0 − 64.0) 59.9 (55.1 − 66.2) 0.23

BMI, median (IQR) 26.3 (25.0 − 28.4) [n = 8] 28.5 (26.4 − 37.9) [n = 10] 0.20

AST Liver Enzyme, median (IQR) 31.5 (23.8 − 47.5) [n = 10] 52.5 (36.8 − 75.8) [n = 10] 0.19

ALT Liver Enzyme, median (IQR) 36.0 (29.3 − 42.0) 40.0 (30.0 − 58.0) 0.70

Lymphocytes, median (IQR) 1.47 (1.17 − 1.94) 0.81 (0.66 − 1.23) 0.002

Neutrophils, median (IQR) 4.13 (2.34 − 5.59) 5.34 (4.46 − 7.52) 0.019

CRP, median (IQR) 2.27 (1.08 − 4.37) 13.35 (8.22 − 24.0) 0.0003

Pct, median (IQR) 0.09 (0.05 − 0.14) 0.33 (0.15 − 1.14) 0.032

Ferritin, median (IQR) 333 (223 − 407) 932 (568 − 1635) 0.014

Fibrinogen, median (IQR) 439 (405 − 646) 625 (506 − 737) 0.015
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mL respectively). Zonulin was slightly higher (not significantly, P = 0.15) in the more severe group (N = 14) than 
the milder group (N = 16) (Fig. 1). When the outliers were not excluded the P value was 0.46.

For the FABP2 ELISA, one sample from the milder group [ID 291, FABP2 1415.9 pg/mL] and one from the 
more severe group [ID 290, FABP2 406.2 pg/mL] were excluded for being more than two standard deviations 
from the group means (333.7 and 164.5 pg/mL respectively. FABP2 levels were significantly reduced (P = 0.002) 
in the more severe group (N = 15) compared to the mild group (N = 16) (Fig. 1). When the outliers were not 
excluded the group difference was still statistically significant P = 0.01.

Plasma NMR. Thirty-two EDTA plasma samples were available for NMR analysis (milder COVID-19 group 
N = 17, more severe COVID-19 group N = 15). Illustrative NMR spectra from the more severe COVID-19 group 
are shown in Fig. 2, noting that the NMR spectra are dominated by peaks from the sampling contaminants 
EDTA and ethanol.

There was no difference between the NMR spectra from milder and more severe COVID-19 groups using 
principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), which was con-
firmed by no difference between groups on cross validation (Q2 < 0). The Variable in Importance Projection plots 
showed lipid-CH3 and lipid-CH2 to be the most discriminatory metabolite regions. The medians and IQRs for 
selected metabolites in the mild and moderately severe patient groups are presented in Supplementary Table 1. 
Only lipid  CH3 approached significance (P = 0.06) (t-test), between groups, being reduced in the moderately 
severe group compared to the mild group.

NMR associations within Covid severity groups. Relative NMR metabolite levels from 32 patients 
(milder COVID-19 group N = 17, more severe COVID-19 group N = 15) were compared to FABP2 and zonulin 
concentrations using Pearson r correlation (GraphPad Prism 9.2.0). Four data points (n = 2 mild COVID-19, ID 
503, 291; n = 2 moderately severe COVID-19 group, ID 506, 562; refer to ELISA exclusions above) were identi-
fied as outliers and so these data points were excluded from further analysis.

Correlation plots for the mild COVID-19 group (N = 15) and moderately severe COVID-19 group (N = 13) 
are shown in Fig. 3A,B respectively. The strongest positive associations in the more severe COVID-19 group, (i.e. 
low level when FABP2 is low) were in plasma lipids (both lipid-CH2 and lipid-CH3 regions) and lymphocytes.

Discussion
From onset of the COVID-19 pandemic the gut has repeatedly been implicated in infection, progression and 
severity of the disease. We and others considered the role of microbial translocation in exacerbating the hyperin-
flammation in moderate to severe COVID-1922,23. There is now strong evidence for increasing microbial translo-
cation in COVID-19 which correlates with  inflammation24–26 and may even influence  mortality27. Mechanistically, 
it is unclear whether the increased translocation is due to gut damage caused by enterocyte  infection5,6,28, or 
whether SARS-CoV-2 infected lung induces systemic hyperinflammation, microbial dysbiosis, and/or coagu-
lopathy which in turn causes the gut  damage13,29,30. One way to answer this question is to compare the levels of 
plasma biomarkers of gut permeability and damage with markers of inflammatory responses across the different 
disease stages. Gut permeability markers such as LPS, LBP, zonulin and cCD14 have been shown to be higher 
in COVID-19 patients than healthy  controls24,25,31,32. Giron et al., (2021) examined gut-associated biomarkers 
and metabolites in a cohort of patients with mild (outpatients), moderate (inpatients hospitalised in regular 
wards) and severe (inpatients hospitalised in ICU) COVID-19 (18–20 in each group)24. They observed large and 
significant increases in the tight junction permeability marker zonulin between the mild and moderate/severe 
groups, but no difference between the latter two. Therefore, in this cohort at least the biggest increases in gut 
permeability occur between the timepoints of infection and hospitalisation, with little further increase in the 

Figure 1.  Plasma FABP2 but not zonulin is decreased in patients with more severe COVID-19 compared 
to patients with milder COVID-19. (A) Plasma FABP2 levels in patients with milder (n = 16) or more severe 
COVID-19 (n = 15), respectively. (B) Plasma zonulin levels in patients with milder (n = 16) or more severe 
(n = 14) COVID-19, respectively. Student’s t-test used for group comparisons, mean ± SEM indicated with red 
lines.
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more severe stages which are associated with hyperinflammation. Our study of relatively mild and more severe 
COVID-19 patients (as determined by the level of respiratory support) admitted in medicine units, also showed 
little increase in zonulin between these stages.

As gut permeability and enterocyte cell death go hand in hand in conditions such as sepsis and intestinal 
ischaemia/reperfusion33, and as SARS-CoV-2 infection has been observed to kill gut epithelial  cells8, we expected 
that plasma FABP2 would also increase in COVID-19 patients. However, we saw the opposite, with a significant 
reduction in more severe compared to milder COVID-19 patients. The literature on plasma FABP2 in COVID-
19 is conflicted, with some studies reporting increased FABP2 in COVID-19 patients compared to healthy 
 controls25,32, some no  difference24,31,34 and some a  reduction35,36. Studies which classified disease condition as 
mild (outpatients), moderate (inpatients hospitalised in regular wards) and severe (hospitalisation in ICU) have 
either shown no  increases34,35 or a similar decrease in severe compared to moderate as we  saw25,36.

Figure 2.  (A,B) Illustrative expanded NMR spectra from patients in the moderately severe Covid group with 
differing FABP2 levels. (A) ID 112, FABP2 38 pg/mL, (B) ID 433, FABP2 195 pg/mL. The peaks marked with * 
were excluded from the analysis and include EDTA peaks (3.635–3.600 ppm; 3.235–3.220 ppm, 3.18–3.07 ppm; 
2.72–2.68 ppm; 2.58–2.53 ppm) and ethanol peaks (quartet 3.685–3.635 ppm, triplet 1.20–1.06 ppm). Lac, 
lactate; L–CH2, lipid-CH2 peak; L–CH3, lipid-CH3 peak. (C) Principal Component Analysis showing no 
difference between the mild [1, pink] and moderately severe [2, green] groups. (D) Partial Least Squares 
Discriminant Analysis showing no difference between the mild [1, pink] and moderately severe [2, green] 
groups. (E) Variable in Importance Projection plot showing L–CH2 and L–CH3 to be the top discriminating 
metabolites between the mild [1] and moderately severe [2] groups.
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Figure 3.  (A) Correlation Pearson R matrix showing association between gut biomarkers and plasma NMR 
metabolites for the milder group (N = 15), after two outliers were removed, as determined by ROUT (ID 
503, 291). (B) Associations between gut biomarkers and plasma NMR metabolites for the more severe group 
(N = 13), after two outliers were removed, as determined by ROUT analysis (ID 506, 562). Blue indicates a 
positive association, red indicates a negative association. Stronger associations indicated by deeper colour.
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Further studies are therefore needed to confirm the relationship between plasma FABP2 levels and COVID-19 
severity. However, the surprising decrease in the more severe patients deserves consideration as it gives insight 
into the state of the gut at the most critical timepoint for patient survival. A straightforward explanation could 
be that the expression of FABP2 is reduced in these patients due to reduced food intake or  malabsorption3,37,38. 
However, since in the present study we did not examine the most severe patients who were on mechanical 
ventilation, and therefore sedated and on parenteral nutrition, we ruled out a possible source of major bias in 
previous reports. Alternatively, or additionally, plasma FABP2 levels may be reduced as the gene’s expression is 
downregulated in enterocytes due to infection or an aspect of hyperinflammation itself. In vitro experiments 
with human small intestinal organoids found that fat metabolism and biosynthesis were some of the most sig-
nificantly downregulated processes in response to SARS-CoV-2  infection5 (FABP2 itself was reduced but non-
significantly). This metabolic change has been proposed to be an anti-viral measure, as SARS-CoV-2 infection 
and replication makes extensive use of cellular  lipids39,40. This alteration of gut lipid metabolism may even have 
importance for disease survival as the drug Ezetimibe which reduces fat uptake in the  gut41 has been reported 
to possibly reduce COVID-19  severity42.

Comparison of plasma FABP2 levels with other circulating metabolites and patient clinical data in the more 
severe COVID-19 group showed the strongest negative associations (i.e. high level when FABP2 is low) with 
CRP, Il–6 and zonulin. These data suggest that plasma FABP2 is especially low in patients with the highest levels 
of inflammation and gut permeability. The anti-correlation between plasma FABP2 and systemic inflammation 
fits with the observation that the 3 lowest FABP2 levels in the study were recorded in patients who died (out of 
a total of 5 who died). However, the significant difference in FABP2 levels between the 2 study groups was still 
seen if these patients were excluded. The strongest positive associations in the more severe COVID-19 group, 
(i.e. low level when FABP2 is low) were in plasma lipids (both lipid intramolecular  CH2 and  CH3 groups), and 
lymphocytes, both of which have been frequently observed in severe COVID-1940,43,44. However, considering 
the low sample numbers of these comparisons, care must be taken in their interpretation.

Several studies have focussed on the plasma lipid changes in COVID-19  patients39,40,45–50. It is important to 
note that patients with type 2 diabetes, obesity, or users of lipid lowering drugs are more likely to progress to 
severe COVID-19 due to their comorbidities, so this needs to be taken into account when stratifying patients into 
severity groups in order to investigate lipids in COVID-1951. Accordingly, low HDL cholesterol and high triglyc-
erides prior to infection are risk factors for progression to severe COVID-1946. Nonetheless, the most commonly 
reported lipid changes in COVID-19 patients at all stages of disease are reduced circulating cholesterol (LDL and 
HDL) and elevated  triglycerides21,47–50,52. Reported metabolite changes includes increased levels of acetoacetic 
acid, 3-hyroxybutyric acid, acetone and 2-hdroxybutyic acid; changes have also been reported in porphyrin levels, 
branched chain amino acids and tryptophan  pathways21,45,49,53. The most severely affected patients have a further 
reduction of HDL compared to patients with moderate  disease46,47, with increases of cholesterol and triglycerides 
upon recovery in  survivors52. As FABP2 expression level is an important determinant of lipoprotein production 
in the gut it is possible that it may contribute to the reduction in HDL in the more severely affected  patients54–59.

The extreme and progressive immunological response induced by SARS-CoV-2 infection explains many of 
the differences in systemic inflammatory markers between the milder and more severe  groups43. Higher neutro-
phil to lymphocyte ratio, CRP and procalcitonin have all been used to stratify severity of COVID-1944. Elevated 
ferritin has also been reported in many COVID-19  studies60. Ferritin correlates with pulmonary involvement 
in SARS-CoV-2  infection61, which fits with our use of pulmonary support to separate the two patient groups. 
Higher levels of the clotting factor fibrinogen are also associated with severe COVID-1962. Overall, these data 
indicate that there is a higher systemic inflammation response, particularly of the acute phase reaction in the 
more severe patient group than the mild group.

Limitations to our study were linked to the low number of patients examined and the low volume of plasma 
available. The period of sample collection was during a particularly challenging time in Milan, since it was the 
first major European city to experience the COVID-19 pandemic. Consequently, patient samples for highly 
selected research purposes were scarce 63,64. The low sample volume available meant we had to adjust the routine 
replicate experimental practices into singlicate analysis and use a minimal volume of 70 μl of plasma for NMR. 
A more extensive study of circulating markers of gut function, such as citrulline and gut cell death, is needed to 
confirm that the FABP2 levels in severe COVID-19 are indicative of altered lipid import and metabolism rather 
than apoptosis. Additionally, sample collection used EDTA as an anticoagulant, so a number of NMR peaks were 
obscured by the EDTA resonances, including those that would have given information on choline-containing 
compounds.

Another consequence of low sample numbers is that, unlike some published studies with larger patient groups, 
the NMR metabolites were not significantly different between the mild and moderately severe groups, with 
only lipid  CH3 approaching significance with a reduction in the moderately severe group (P = 0.06) compared 
to the mild group. Plasma NMR spectroscopy is high in information  content65. Therefore, detailed interpreta-
tion of plasma NMR findings may require information from a range of clinical and lifestyle factors, to allow 
for the impact of confounding factors on metabolite levels. It is therefore possible that increased sample num-
bers would have enabled subgroups to be analysed to fully account for confounding variables, such as gender, 
co-morbidities, medication and nutritional status. The presence of correlations between the ELISA measured 
parameters and NMR datasets seems to confirm that possibility. As previously discussed, there is an abundance of 
literature on reductions in plasma lipid species in COVID-19  patients21, and our observed trends of  formate53,66, 
 phenylalanine21,66–69 and 3-hydroxybutyrate21,49,66–69 increasing with COVID-19 severity is in agreement with 
previous plasma NMR  studies21.

In conclusion our data strengthen the possibility that downregulation of enterocyte fat metabolism in patients 
with moderate to severe COVID-19 is contributing to the reduced circulating cholesterol, potentially as an 
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anti-infection response. As has been proposed by others, our data therefore support the idea that manipulation 
of gut lipid absorption is a useful therapeutic approach to manage COVID-1942,70.

Methods
Clinical parameters. All experiments were performed in accordance with the ethics committee guidelines 
and regulations (COVID-19 and non-COVID patients). Informed consent was obtained from all participants 
and/or their legal guardians (COVID-19 and non-COVID patients).

Ethics was obtained for the “Fondazione Genomic SARS-CoV-2 study” (ethics number 109365) to Fondazione 
IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano. Blood samples were obtained with informed consent 
and plasma samples were collected into EDTA tubes. All studies were performed in accordance with guidelines 
and regulations. The clinical metadata was compiled by the Biological Resource Center and Translational Medi-
cine Unit, Dipartimento di Medicina Trasfusionale e di Ematologia, Fondazione IRCCS Ca’ Granda Ospedale 
Maggiore Policlinico, Università degli Studi di Milano.

Non-COVID patient samples for assay optimisation were recruited at King’s College Hospital after admis-
sion to the ward or from the hepatology out-patient clinic. The study was granted ethics approval by the UK 
NHS national research ethics committee (Apprival number 12/LO/1417) and local research and development 
department at King’s College Hospital (Approval number KCH12-126).

Laboratory measurements. Laboratory measurements were made in 33 plasma samples from COVID-
19 patients in a CL2 laboratory housed at the Institute of Liver Studies, Kings College Hospital. All assays were 
performed using plasma which was not treated to inactivate the virus (e.g. heat-inactivation) so as to avoid 
denaturation of proteins which can impair antibody detection.

To ensure safety while handling samples which potentially contained live SARS-CoV-2 several steps and 
procedures were undertaken. Tubes containing patient plasma were aliquoted within a biosafety hood in the 
CL3 laboratory (at the Roger Williams Institute of Hepatology). The initial steps of ELISAs were performed in 
the Mowat Laboratories biosafety hoods for blood handling with 96-well plates only removed from the hoods 
after the post-primary antibody incubation wash stage.

Active (uncleaved) zonulin was measured using a sandwich enzyme immunoassay (Human Zonulin ELISA 
Kit MyBioSource MBS706368) with manufacturer’s instructions.

Plasma Intestinal fatty acid-binding protein (I-FABP/FABP2) were measured using a sandwich enzyme immu-
noassay (Human FABP2/I-FABP Quantikine ELISA Kit, R&D systems DFBP20). The manufacturer’s instruc-
tions were followed with plasma diluted fivefold in sample diluent (22 μl plasma added to 88 μl diluent). Prior 
to analysis with COVID-19 samples we investigated whether heat-inactivation of the plasma, a commonly used 
method to destroy SARS-CoV-2 virus, could influence FABP2 assay fidelity. We performed the ELISA using 
plasma samples from four patients with decompensated liver disease and one healthy control. An aliquot of each 
sample underwent heat inactivation of the SARS-CoV-2 virus with incubation at 56 °C for 15 min. As expected 
without heat inactivation the healthy control sample (298.1 pg/mL) was lower than the samples from patients 
with decompensated liver cirrhosis (mean 789.3 ± 182.1 pg/mL SEM)71. However, heat inactivation drastically 
reduced the levels detected in all samples, even to below the level of detection in two samples, presumably by 
denaturing FABP2 protein and destroying the immunological detection site. We therefore examined FABP2 and 
zonulin in the COVID-19 samples without heat inactivation.

In the analysis of COVID-19 patient samples both zonulin and FABP2 were measured only once from the 
samples due to limitations of available sample volume. End-point analysis for both ELISAs was performed using 
a FLUOstar Omega microplate reader.

Plasma NMR studies. EDTA plasma samples were collected in sufficient volume for NMR study from 32 
patients. Samples were stored frozen at − 80 °C until NMR analysis at the Centre for Biomolecular Spectros-
copy, King’s College London. NMR results from the earliest time point (day 1 for all N = 32 subjects) have been 
included.

On the day of NMR analysis, the EDTA plasma samples were gently thawed. 70 µl of plasma and 110 µl of 
75 mM sodium phosphate buffer solution (with 6.2 mM sodium azide and adjusted to pH 7.4) were aliquoted into 
3 mm SampleJet NMR tubes (Bruker BioSpin, Germany). NMR data were also acquired from three samples of 
fetal calf serum to illustrate and confirm stability and reproducibility of the NMR spectrometer. The samples were 
transported at 4 °C locally to the Centre for Biomolecular Spectroscopy at Guy’s Campus, King’s College London.

On delivery to the NMR facility, the SampleJet racks were immediately placed on the SampleJet holder for 
sample storage at 4 °C prior to data collection. Proton (1H) NMR spectra were acquired at 37 °C (310 K) using a 
Bruker 600 MHz (AVANCE NEO) NMR spectrometer and a 1H/13C/15 N TCI Prodigy probe (nitrogen-cooled). 
Proton shimming was done under automation such that a 1.0–1.5 Hz linewidth for one of the alanine doublet 
peaks was routinely achieved. Pulse-collect and spin-echo 1D NMR data sets were acquired using PURGE water 
suppression and the PROJECT spin-echo sequences, as previously  described72. Both data sets were acquired with 
4 dummy scans, 64 data collects, constant receiver gain, 64 K points, acquisition time 2.62 s and recycle delay of 
4 s. The spin-echo time for the PROJECT sequence is 78 ms (64 loops). For confirmation of peak assignment, a 
TOCSY spectrum and an HSQC spectrum was acquired on a representative plasma sample.

The 1D NMR data sets were processed using 0.3 Hz exponential line broadening filter. Metabolite assignments 
were made based on chemical shift and coupling patterns with reference to published databases and confirmed 
by the TOCSY and HSQC NMR  studies73.

Mulitvariate analyses of the NMR spectral region 10.00–0.50 ppm were undertaken using spectral binning 
methodologies as previously  published74,75. Specifically, KnowItAll software (Wiley Science Solutions KnowItAll 
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Spectroscopy Edition software version 17.0.117.0 (https:// scien cesol utions. wiley. com/ knowi tall- spect rosco py- 
softw are/) and MetaboAnalyst v5.0 (https:// www. metab oanal yst. ca) were used. Certain regions of all NMR data 
sets were excluded from multivariate analyses because of confounding effects, which included the residual water 
region (5.00–4.50 ppm), EDTA peaks (3.635–3.600 ppm; 3.235–3.220 ppm, 3.18–3.07 ppm; 2.72–2.68 ppm; 
2.58–2.53 ppm) and ethanol contamination (quartet 3.685–3.635 ppm, triplet 1.20–1.06 ppm). Both fixed width 
spectral bins (0.02 ppm bucket widths) and variable width spectral bins (defined using the proprietary Inetilli-
bucketTM software of Wiley Sciences Solutions KnowItAll, which is based on defining local minima) were used 
to define metabolite regions. Following on from variable width spectral bucketing, specific regions were targeted 
to minimise any peak overlap, including formate, 8.468–8.455 ppm; phenylalanine, 7.452–7.414 ppm; N-acetyl 
glycoproteins, 2.05–2.03 ppm; alanine, 1.495–1.470 ppm; lactate, 1.34–1.32 ppm; lipid  CH2, 1.32–1.24 ppm; 
lipid  CH3, 0.90–0.82 ppm; valine, 1.057–1.023 ppm. Peaks were also quantified for acetone (2.06–2.03 ppm) 
and 3-hydroxybutyrate (region not overlapping with ethanol triplet, 1.21–1.20 ppm) and assigned to leucine 
and isoleucine.

Statistics. Differences for specific parameters between clinical groupings were assessed using Student’s 
t-tests (IBM SPSS Statistics v28.0.1.1).

MetaboAnalyst v15 (https:// www. metab oanal yst. ca) was used to compare NMR changes between clinical 
groupings using principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA).

Alterations in relative levels of circulating metabolites were correlated with measures of gut permeability 
(FABP2 and zonulin) using Pearson r Correlation (GraphPad Prism 9.2.0, Graphstats Technologies Private 
Limited, Karnataka, India). Outliers were determined by the ROUT algorithm in GraphPad Prism.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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