
Engineering Applications of Artificial Intelligence 126 (2023) 107028

A
0
n

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Trace encoding in process mining: A survey and benchmarking
Gabriel M. Tavares a, Rafael S. Oyamada b,∗, Sylvio Barbon Junior c, Paolo Ceravolo b

a LMU Munich, Oettingenstraße 67, Munich, 80538, Germany
b University of Milan, Via Giovanni Celoria, 20, Milan, 20133, Italy
c University of Trieste, Piazzale Europa, 1, Trieste, 34127, Italy

A R T I C L E I N F O

Keywords:
Encoding methods
Process mining
Anomaly detection

A B S T R A C T

Encoding methods are employed across several process mining tasks, including predictive process monitoring,
anomalous case detection, trace clustering, etc. These methods are usually performed as preprocessing steps and
are responsible for mapping complex event data information into a numerical feature space. Most papers choose
existing encoding methods arbitrarily or employ a strategy based on expert domain knowledge. Moreover,
existing methods are employed by using their default parameters without evaluating other options. This
practice can lead to several drawbacks, such as suboptimal performance and unfair comparisons with the
state-of-the-art. Therefore, this work aims at providing a comprehensive survey and benchmark on event log
encoding by comparing 27 methods, from different natures, in terms of expressivity, scalability, correlation,
and domain agnosticism. To the best of our knowledge, this is the most comprehensive study so far focusing
on trace encoding in process mining. It contributes to maturing awareness about the role of trace encoding in
process mining pipelines and sheds light on issues, concerns, and future research directions regarding the use
of encoding methods to bridge the gap between machine learning models and process mining.
1. Introduction

Encoding methods are responsible for transforming complex infor-
mation into a representative feature space, i.e., mapping data from one
space to another. In process mining (PM), several tasks (e.g., predictive
process monitoring, trace clustering, anomaly detection, etc.) must
encode data as a step of the pipeline before feeding algorithms. This
step is crucial to correctly account for the goals of a user. For instance, if
a problem demands a solution where interpretability and explainability
are needed, the data should be encoded by methods that tend to
accomplish those objectives. On the other hand, if the most essential
requirements are space or time complexity, the user should agree to
lose part of the previous benefits to match these ones.

In PM literature, most of the efforts have been dedicated to de-
signing new algorithms and analytical methods but little attention has
been given to the impact of encoding methods across the existing
tasks. For instance, in predictive process monitoring Evermann et al.
(2016) used the word embedding method to map the cases of an event
log into real-valued vectors, whereas Tax et al. (2017) used one-hot
encoding. A custom function is adopted by Hompes et al. (2015),

∗ Corresponding author.
E-mail addresses: tavares@dbs.ifi.lmu.de (G.M. Tavares), rafael.oyamada@unimi.it (R.S. Oyamada), sylvio.barbonjunior@units.it (S. Barbon Junior),

paolo.ceravolo@unimi.it (P. Ceravolo).

whereas the count2vec (occurrence frequencies of activities) is em-
ployed by Appice and Malerba (2016). Thus, a researcher interested
in comparing the results of these works is in front of an uncontrolled
factor, as the impact of encoding is not documented and the methods
used are different. Moreover, in this work, we emphasize that very few
alternative encoding methods have been employed by the community
and demonstrate that arbitrarily encoding data might bring suboptimal
results and misalignment with the user’s goals. We believe that a better
understanding of the effect of encoding methods, according to the
datasets’ characteristics, is decisive in developing more interpretable,
explainable, robust, and accurate PM solutions.

Using anomaly detection as a case study, we extend the results
of our previous paper (Barbon Junior et al., 2020) by considering
several aspects. Further, the encoding procedure in this work is always
performed in an unsupervised fashion (i.e. each trace is encoded re-
gardless of label availability), though it can be employed either for
supervised or unsupervised tasks in process mining. Thus, we first
increase the number of encoding methods with respect to our previous
work and classify them according to their underlying characteristics.
Second, we include more datasets, considering more types of anomalies,
vailable online 19 September 2023
952-1976/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.engappai.2023.107028
Received 31 December 2022; Received in revised form 17 July 2023; Accepted 22
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

August 2023

https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
mailto:tavares@dbs.ifi.lmu.de
mailto:rafael.oyamada@unimi.it
mailto:sylvio.barbonjunior@units.it
mailto:paolo.ceravolo@unimi.it
https://doi.org/10.1016/j.engappai.2023.107028
https://doi.org/10.1016/j.engappai.2023.107028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.107028&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.

a
s
m
a
p
s
o

d
e
e
b
i

S
a
h
I
w
f
f
e
m
o
m
o
w
d

in order to increase the space of characteristics and achieve a better
understanding of how each encoding method behaves according to
the data properties. Third, we employ evaluation criteria that are
valuable for PM practitioners and can support the choice of a suitable
encoding method according to their goals. Lastly, we provide a review
of encoding methods from different literature and discuss how they
can be employed across popular PM tasks: predictive monitoring, trace
clustering, and anomaly detection.

More specifically, we first highlight how difficult it is not just to
choose a suitable encoding method but also to configure its parameters.
Subsequently, we perform an extensive experimental evaluation of 27
encoding methods with different parameters over 420 synthetic event
logs. We also discuss how current PM literature is limiting their exper-
iments by not considering the impact that encoding methods have in
any problem domain regarding different process mining tasks. Thus, we
discuss our results and focus the contribution of our work on answering
the following research questions:

1. How expressive is an encoding method for separating the prob-
lems’ classes?

2. What is the demand of time and memory to reach a suitable
encoding method?

3. Is there any correlation between the encoding method and the
performance achieved by algorithms in PM tasks?

4. How generic encoding methods are, i.e., can an encoding method
be applied to different PM tasks?

We answer these questions by applying specific evaluation metrics
ccording to different criteria. Through an in-depth analysis, we con-
ider the criteria expressivity, which measures how effective an encoding
ethod is at mapping data patterns from the event data nature to
new n-dimensional space by minimizing the information loss and

reserving the underlying event log properties; scalability, which mea-
ures computational costs in terms of elapsed time and memory usage
f encoding methods; correlation power, which maps how impactful

an encoding method is with respect to the final performance of a
given algorithm that is being employed to handle a specific PM task;
and the domain agnosticism, which considers if the encoding method
epends on or not the PM task. We demonstrate through our extensive
xperimental evaluation how difficult it might be to choose a suitable
ncoding method since each of the evaluated metrics has a different
est-performing method. Thus, the main contributions of this work
nclude:

• A review of encoding methods in PM and encoding methods from
different areas of the literature that can be employed in PM tasks.

• The application of new combinations of evaluation metrics to
measure the quality of encoding methods in PM tasks according
to different criteria.

• A deep experimental evaluation of several encoding methods
never employed before in PM.

• A discussion of insights into future research on encoding for PM.

We organize the presentation of our work as follows. First, in
ection 2 we define the problem of choosing the right encoding method
nd its parameters. Section 3 discusses how related works in PM
ave been employing encoding methods to develop their solutions.
n Section 4 we provide the necessary background to understand this
ork. In Section 5 we first discuss how encoding methods were applied

or different PM tasks in the literature and situate encoding methods
rom different areas of the literature. Subsequently, we organize the
ncoding methods found by families of algorithms and describe each
ethod. Section 6 describes the employed methodology to implement

ur experimental evaluation and Section 7 presents the carried experi-
ents and results. Then, in Section 8 we develop a discussion focused

n parameter impact and possible aggregation methods. In Section 9
e discuss the main insights obtained in this work and provide future
2

irections. We conclude our discussion in Section 10.
2. Problem definition

In this section, we address the problem of how arbitrarily employ-
ing encoding methods in PM tasks leads to sub-optimal performance
and results in unfair evaluations. Due to the wide range of encoding
methods available nowadays, choosing a suitable one given a problem
is challenging. This can be seen in the current literature, across differ-
ent research fields, with several automated solutions that have been
proposed to decrease human intervention in the design of algorithms
and data science pipelines (Olson and Moore, 2016; Kim and Teh, 2018;
Feurer et al., 2019). In PM, we believe this is even more challenging
due to the nature of event logs, where events can be described by
both numerical and categorical attributes, are aggregated by cases, and
are constrained by the control-flow of the process. For example, the
availability of a given amount of resources may be a precondition to
observe an event (e.g., the execution of an activity) with dependencies
to other preceding or concurrent events. Condensing all this informa-
tion into a single encoding method is difficult, and, in practical terms,
each method can only capture some aspects.

Usually, encoding methods for PM are adapted from other research
fields. Simple techniques are often considered, for instance, the one-hot
encoding scheme (Tax et al., 2017) or frequency-based encoding meth-
ods (Francescomarino et al., 2019). To capture the sequential nature
of event logs, methods originally proposed in the Natural Language
Processing (NLP) community have been employed (Koninck et al.,
2018; Tavares and Barbon, 2020). However, while we can take into
consideration the similarity between the sequential nature of traces and
natural language sentences, there are also differences that must be dis-
cussed. For instance, NLP tasks usually handle a very large vocabulary,
i.e., the set of unique words or tokens, whereas processes are usually
represented by considerably small vocabularies (e.g., the business pro-
cess activities). As an attempt of capturing additional complexity, graph
neural networks have been recently studied in the literature (Venu-
gopal et al., 2021). Convolutional neural networks have also been
used for feature extraction (Mehdiyev et al., 2022). Image-like data
engineering methods have been introduced by Pasquadibisceglie et al.
(2019), Senderovich et al. (2019) and Venugopal et al. (2021). More
recently, several pipelines have approached domain-specific encoding
methods, which we will further describe in Section 3, that exploit
derived features, such as the resource pool discovery algorithm used
to encode event resources by Camargo et al. (2019).

In the context of our work, we stress that adopting the right en-
coding method and selecting optimal parameters can directly impact
the final performance of a given task. Moreover, evaluating a new
algorithm, e.g., a trace clustering algorithm, by comparing it with other
solutions but employing different data inputs (i.e., different encoding
steps preceding the clustering), produces an unfair evaluation. Rama-
Maneiro et al. (2021) emphasize this problem, highlighting that a
given model cannot be compared with another if their implementations
consider different feature spaces. A brief example illustrating this issue
can be found in Camargo et al. (2019), where the authors are ap-
proaching the problem of predictive monitoring. In their evaluation, the
authors employ baselines to compare their proposal with existing LSTM
architectures, each one based on a different preprocessing procedure.
Regarding other predictive monitoring work, word embedding is em-
ployed in Camargo et al. (2019), Al-Jebrni et al. (2018) and Taymouri
et al. (2021) whereas a traditional one-hot encoding is used in Polato
et al. (2018), Mauro et al. (2019) and Kratsch et al. (2021), preventing
the comparison between these studies. This problem is exacerbated by
the fact that the PM community lacks shared benchmarks to be used in
algorithm evaluation and comparison.

In order to briefly illustrate the impact of arbitrarily encoding an
event log, we demonstrate in Fig. 1 the following scenario. We compare
two encoding algorithms, vary the parameter of vector dimensionality,
apply them to two datasets with different characteristics, and mea-

sure the accuracy achieved by a Random Forest classifier regarding

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.

S

Fig. 1. A brief example of performances achieved for two different datasets regarding the anomaly detection problem. For both datasets, we fixed two graph-based encoding
methods with different parametrizations regarding dimensionality.
a
a
a

u
V
w
p
t
𝑎
a
a
r
I
c
t
t

the anomaly detection problem.1 The event logs have different cardi-
nalities, different types of anomalies, and different rates of anomaly
injection. The first one has 10𝑘 traces, 444𝑘 events, and a 20% rate of
insertion anomaly (a random activity is inserted in the trace), whereas
the second has 5𝑘 traces, 221𝑘 events, and a 15% rate of rework anomaly
(an activity is doubled in the trace). As we can see in Fig. 1, for
the first event log (Event log 1), encoding the data employing the
Walklets method performed better than using the NMF-ADMM with
low dimensionality and worse for medium and high dimensionality.
In addition, the latter method presented a high accuracy variation
for different dimensionalities. For the second event log (Event log 2),
the Walklets encoding presented a more stable accuracy, while the
NMF-ADMM achieved higher accuracy w.r.t. the other dataset but
always performed worse than Walklets. This is just a brief example to
demonstrate that there is no best encoding method for every dataset or
default parameterization to apply.

In this work, we attempt to demonstrate in detail how differ-
ent methods perform on several datasets with distinct characteristics
and properties. We first demonstrate through extensive experimental
evaluation that each algorithm has distinct performances across dif-
ferent event logs and pipelines. We employ several metrics in order
to summarize the overall behavior of each method and focus the
general evaluation on expressivity, scalability, correlation, and domain
agnosticism, which will be further detailed in Section 6.

3. Related works

Insufficient attention has been given to encoding methods in predic-
tive monitoring tasks, trace clustering, and anomaly detection, despite
their significant impact on algorithm performance. Surveys and bench-
marks are being conducted in other problem domains to standardize
and investigate encoding methods’ behaviors in accordance with prob-
lem characteristics. For instance, Goyal and Ferrara (2018) surveyed
several graph-based embedding methods on different datasets and dis-
cussed the main challenges for future research in the field. Regardless
of the approached task (e.g. link prediction, node classification, etc.),
the authors demonstrate the difficulty of choosing not only the right
algorithm but also the right set of parameters (mainly the dimen-
sionality). Several trade-offs must always be taken into consideration,

1 A detailed description of the material and methods is provided in
ection 7
3

f

for instance increasing the memory usage to achieve more precision
or decreasing the dimensionality to decrease the computation time.
Goldberg (2016) covered a wide range of methods to encode textual
information. The work focuses on methods based on encoding methods
to feed neural network architectures regarding different tasks and also
provides historical notes for each category of task.

The aforementioned works usually focus on representational learn-
ing, which employs neural networks to learn a high-quality repre-
sentation (encoding) of data. In the natural language literature, the
word2vec (Mikolov et al., 2013a,b) can be seen as one of the most
important methods for this purpose. From this perspective, several
methods derived from it, for instance, Le and Mikolov (2014) and
Koninck et al. (2018). The resulting feature vectors representing the
original data are also called embeddings.

Recently, representational learning has been applied in PM as
well. Koninck et al. (2018) propose act2vec, trace2vec, log2vec, and
model2vec. Each approach derives from existing encoding methods in
the literature and leverages the previous level information to enrich the
learning. That is, the first level is act2vec, which extends the word2vec
architecture to learn the representation of activities. Subsequently, the
trace2vec adopts the doc2vec concept and jointly learns the represen-
tation of activities and traces. The log2vec architecture derives from
the same idea as trace2vec where the log representation is included
in the architecture to be jointly learned. Finally, for model2vec, the
uthors extend graph representation learning techniques to represent
process model discovered from the event log. The final architecture

lso includes all the previous representations to be learned jointly.
In the literature, we also find ‘‘hand-crafted’’ methods, which are

sually developed by following some expertise domain knowledge.
enugopal et al. (2021) propose the use of graph convolutional net-
orks for predictive monitoring. In their approach, the authors first
erform a feature engineering step to handle time features and then
ransforms each activity in an event log into a matrix 𝑛𝑢𝑚_𝑢𝑛𝑖𝑞𝑢𝑒_
𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 × 𝑛𝑢𝑚_𝑡𝑖𝑚𝑒_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. Camargo et al. (2019) employ a PM
lgorithm to encode resources in event logs. In a nutshell, the applied
lgorithm is able to automatically discover resource pools and, hence,
educe the dimensionality of categorical values by grouping them.
n Pasquadibisceglie et al. (2019), the authors propose the use of
onvolutional neural networks to perform predictive monitoring. Thus,
hey transform the data into an image-like structure in order to be able
o train the neural network. Chiorrini et al. (2022) present a method

or feature extraction that can be seen as an encoding method, where

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.

u
h
m
h
M
c
d
2
e
T
e

4

f
t
s
s

p

seven different features are extracted from each activity given a Petri
net. These features aim at capturing local information for the activity
with respect to its current case.

Although recent works in predictive process monitoring have ex-
plored more alternatives, it is noticeable that works in PM often use
a minimal variety of encoding methods. Most papers use naive tech-
niques like one-hot encoding. Moreover, other encoding approaches are
sually combined with results from feature engineer procedures that
andle numerical and time-related information. In recent works, the
ost common encoding methods for different tasks include the one-
ot (Tax et al., 2017; Kratsch et al., 2021; Francescomarino et al., 2017;
auro et al., 2019; Taymouri et al., 2021), counting the frequencies of

ategorical data (Francescomarino et al., 2019), some type of embed-
ing network (Al-Jebrni et al., 2018; Lin et al., 2019; Camargo et al.,
019; Taymouri et al., 2021), or hand-crafted representations (Camargo
t al., 2019; Venugopal et al., 2021; Pasquadibisceglie et al., 2019).
herefore, we motivate our work in order to fulfill this limitation by
xploring a wider range of encoding methods.

. Background notions

PM can be defined as a set of techniques to extract knowledge
rom event logs (van der Aalst, 2016). The goal is to provide analysis
hat uses event data to extract process-related insights, i.e., creating
olutions that are specifically tailored for business processes and their
takeholders.

Thus, let us first consider 𝛴 a universe of events, i.e., the set of all
ossible event identifiers. 𝛴∗ denotes the set of all sequences over 𝛴.

Definition 4.1 (Event, Attribute). Events may have various attributes,
such as timestamp, activity, resource, and others. Let be
the set of attribute names. For any event 𝑒 ∈ 𝛴 and an attribute 𝑛 ∈
 , then #𝑛(𝑒) is the value of attribute n for event e. Typically, values
are restricted to a domain. For example, #𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∈ 𝐴, where 𝐴 is the
universe of the legal activities of a business process, e.g. {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}.

With abuse of notation, we refer to the name of the activity of an
event #𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑒) as the event itself. Thus ⟨𝑎, 𝑏, 𝑑⟩ denotes a trace of three
subsequent events. An event can also be denoted by its position in the
sequence as 𝑒𝑖 with 𝑒𝑛 the last event of this sequence. A sequence of
events composes a trace 𝑡 ∈ 𝛴∗ and it can be defined as follows.

Definition 4.2 (Trace, Subtrace). In a trace each event appears only
once and time is non-decreasing, i.e. for 1 ≤ 𝑖 < 𝑗 ≤ |𝑡| ∶ 𝑡(𝑖) ≤ 𝑡(𝑗).
A trace can also be denoted as a function generating the corresponding
event for each position of its sequence: 𝑡(𝑖 → 𝑛) ↦ ⟨𝑒𝑖,… , 𝑒𝑛⟩. A subtrace
is a sequence 𝑡(𝑖 → 𝑗) where 0 < 𝑖 ≤ 𝑗 < 𝑛.

Now let 𝐶 be the case universe, that is, the set of all possible
identifiers of a business case execution. 𝐶 is the domain of an attribute
𝑐𝑎𝑠𝑒 ∈ .

Definition 4.3 (Case, Event Log). We denote a case 𝑐𝑖 ∈ 𝐶 as ⟨𝑎, 𝑏, 𝑑⟩𝑐𝑖 ,
meaning that all events share the same case identifier. For example, for
𝑐𝑖 we have #𝑐𝑎𝑠𝑒(𝑒1) = #𝑐𝑎𝑠𝑒(𝑒2) = #𝑐𝑎𝑠𝑒(𝑒3). An event log 𝐿 is a set of cases
𝐋 ⊆ 𝛴∗ where each event appears only once in the log, i.e., for any two
different cases the intersection of their events is empty.

Furthermore, we leverage the formal definition from Teinemaa et al.
(2019) to define how to transform a trace from its process nature
to a numerical feature vector. Moreover, in this work, we employ
the aggregation trace abstraction method described by the authors to
average the encoded values from (sub)traces.

Definition 4.4 ((sub)Trace Encoder). An encoder 𝑓 ∶ 𝑡(𝑖 → 𝑗) ↦
1×⋯×𝑝 is a function that takes as input a (sub)trace 𝑡(𝑖 → 𝑗), where

𝑝

4

0 < 𝑖 ≤ 𝑗 < 𝑛, and transforms it into a 𝑝-dimensional array ⊆ R .
In the context of this work, we approach the anomaly detection
problem to benchmark encoding methods. In general, anomalies are
behaviors in data that are different from the usual or normal patterns.
Anomaly detection can be approached as a supervised learning prob-
lem, where the goal is to train a model that can accurately classify
data points as normal or anomalous based on a labeled dataset. Given
an event log 𝐿 consisting of 𝐶 cases, each case 𝑐𝑖 is associated with a
binary label 𝑦𝑖, where 𝑦𝑖 = 1 if 𝑐𝑖 is anomalous and 𝑦𝑖 = 0 if 𝑐𝑖 is normal.
The goal is to learn a function 𝑓 (𝑐) that can accurately predict the label
𝑦 of a new case 𝑐 based on its attributes.

5. Encoding methods

We perform two reviews: first, on the PM literature by taking into
consideration which tasks use encoding methods at some point in
their proposals; second, we review the literature on encoding methods
in general, classify the found methods into families, and provide a
technical description of each of them.

5.1. Brief literature review on encoding in process mining

We perform a brief review aiming for a more generic and intuitive
idea of how many PM tasks are solved by employing an encoding
method at any point of their proposed pipelines or solutions.

Thus, the online repositories employed for this review were the ACM
Digital Library,2 the IEEE Xplore,3 and the Scopus.4 We did not include
Google Scholar in order to narrow our search since it usually captures
the same papers as the other repositories, plus papers from unknown
databases. Moreover, we searched only for works from the last 10 years
with respect to the date time this review was performed, i.e., from
2012 to 2022. A base query was defined and it was partially modi-
fied according to each PM task: ‘‘process mining’’ AND (‘‘encoding’’ OR
‘‘encode’’) AND < 𝑡𝑎𝑠𝑘 >, where the keyword task might be ‘‘clustering’’,
(‘‘predictive monitoring’’ OR ‘‘process monitoring’’), (‘‘anomaly detection’’
OR ‘‘conformance-checking’’). Notice that we are including the terms
conformance-checking and anomaly detection interchangeably since
anomaly detection can be seen as a sub-task of conformance-checking.

After filtering by including only conference and journal papers,
and dropping duplicates, we examined the abstracts of each retrieved
document to eliminate irrelevant papers. We achieved a total of 149
papers, where 74 are included as clustering (CLUS), 55 as predictive
process monitoring (PPM), and 20 as anomaly detection (AD). We
illustrate the number of publications for each task and per year in
Fig. 2a and the total publications for each task in Fig. 2b.

Furthermore, at this level, there might be specific targets when
encoding data. For instance, event attributes might need to be encoded
individually. This is a common setting in predictive process monitoring,
where each activity is encoded in order to predict the next one. On the
other hand, certain applications (e.g., clustering tasks) might need to
encode the complete trace. In this scenario, the trace can be encoded
in a straightforward fashion by the employed algorithm or it can be
encoded by aggregating the individual event attributes.

Subsequently, we present our second review, this time regarding
encoding methods from different literature. We organize the found
methods into three different families that are based on: process mining,
words (text), and graphs. To the best of our knowledge, most of the
methods employed have never been used in PM tasks. Furthermore,
to motivate researchers and practitioners to consider these alternative
methods more often, we only include in this study methods that have
open-source implementations.

2 https://dl.acm.org/
3 https://ieeexplore.ieee.org/Xplore/home.jsp
4
 https://www.scopus.com/search

https://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.scopus.com/search

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.

5

p
t
p
m

m
c
a
c
e
t

t
o

t
s
m
i
a
T
n
t

a
a

𝐸

Fig. 2. (a) Number of publications each year. (b) The total number of publications over the past ten years.
(

v
v
a
o
h

t
o
e
u

a
t
u
t
f

q
i
i
a
w
𝐷
𝑡

w
d
t

.2. PM-based encoding

Given an event log, we retrieve its respective process model and
erform conformance-checking techniques to measure its adherence
o the model. Each trace in the event log is evaluated. The results
roduced are employed as the encoded representation of the trace. The
ethods considered in our survey are illustrated below.
Token-replay (Berti and van der Aalst, 2019): given a process

odel, traces are replayed in it to obtain values that measure its
onformance. More specifically, the values accumulated at each step
re the number of tokens correctly consumed (𝑐), the number of tokens
orrectly produced (𝑝), the number of missing tokens to execute the
vent in the next step (𝑚), and the number of unconsumed tokens after
he last event execution (𝑟). Thus, the final measure defined by the

token-replay method is given by 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 1
2 (1 − 𝑚

𝑐) +
1
2 (1 − 𝑟

𝑝). All
he values produced, ⟨𝑐, 𝑝, 𝑚, 𝑟, 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠⟩, are used as the feature vector
f a given trace.
Alignment (Carmona et al., 2018): performs a comparison between

he process model and a trace and relates the trace to valid execution
equences, i.e., allowed by the model. An alignment is a sequence of
oves that can be synchronous, model-dependent, or log-dependent. It

s also important to note that more than one alignment between the log
nd model is possible, and techniques aim at finding the optimal one.
he final feature vector is composed of the cost of the alignment, the
umber of visited states, the number of queued states, the number of
raversed arcs, and the fitness value produced.
Log skeleton (Verbeek and de Carvalho, 2018): this technique aims

t summarizing activity traces by capturing a set of constraints that
pply to activities throughout the log. For example, the 𝑅𝑒𝑞

𝐿 captures
the equivalence relation between two activities, which exists if both
activities have the same frequency of occurrence in every trace. On
the other hand, the 𝐶𝑑𝑓

𝐿 counts the number of directly-follows oc-
currences for every pair of activities. Other examples of measures to
capture relations include the always-after and never-together; examples
of countermeasures include the sum of occurrences of a given activity
in the entire log and the min and max numbers of occurrences of an
activity in any trace. In the implementation used for this paper, six
different constraints are used.

Position profile (Ceravolo et al., 2017): this technique represents
an event log through a matrix, where each position refers to the
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 regarding all traces. It can be formally defined as a
triple 𝑎𝑝𝑓 = (𝑎, 𝑝, 𝑓) ∈ 𝐸, where 𝑎 is the activity, 𝑝 is the position of
the activity, 𝑓 is the frequency of occurrence of the given activity, and

is the universe of events.
5

t

5.3. Text-inspired encoding

Many solutions used for trace encoding in PM are adapted from
methods used in NLP. Exploiting the fact that words in sentences are
ordered in sequence and are constrained by dependencies, encoding
methods applied to text capture that information. Because traces are
composed of sequences of activities the same information appears
relevant to characterize them. In particular, in our survey, we consider
the following methods.

N-grams (Gasparetto et al., 2022): this method represents a given
sequence of elements through sub-sequences of 𝑛 items. Thus, con-
sidering a sequence 𝐬 = {𝑠1,… , 𝑠𝑖}, the n-grams representation of
these sequences is given by 𝑛 − 𝑔𝑟𝑎𝑚𝑠 = {(𝑠1,… , 𝑠𝑛), (𝑠2,… , 𝑠𝑛+1),…
𝑠𝑖−𝑛,… , 𝑠𝑖)}.
One-hot (Weiss et al., 2015): given a variable containing 𝑛 different

alues, the variable is transformed into an array where each unique
alue is represented as a binary vector with the 𝑖 − 𝑡ℎ position set to one
nd the rest set to zero. Clearly, the dimension of the vector depends
n the size 𝑛 of the unique values in the vector space, easily reaching
igh dimensional spaces.
CountVectorizer (count2vec) (Weiss et al., 2015): given a collec-

ion of categorical documents, this method produces a matrix of token
ccurrences, where each line in the matrix represents a document and
ach column a token. The size of the vector space depends on the 𝑛
nique values in the vector space.
HashVectorizer (hash2vec) (Weiss et al., 2015): it does the same

s count2vec. However, instead of storing tokens, it directly maps each
oken to a column position in the matrix of occurrences. It is mainly
seful for large datasets and unlike one-hot and count2vec, which have
he same dimensionality as the vocabulary length, this method has the
lexibility to hash tokens in any dimensionality.
TF-IDF (Luhn, 1958): the term frequency (TF) captures the fre-

uency of a particular token w.r.t. to a given document, whereas the
nverse document frequency (IDF) measures how common the token is
n the corpus. TF can be simply the number of times the token appears
nd the IDF is calculated as follows: 𝑖𝑑𝑓 (𝑡, 𝐷) = 𝑙𝑜𝑔(𝑁

𝑐𝑜𝑢𝑛𝑡(𝑑∈𝐷∶𝑡∈𝑑)),
here 𝑡 is the token and 𝑁 is the number of documents 𝑑 in the corpus
. Thus, the TF-IDF is obtained by multiplying both TF-IDF(𝑡, 𝑑,𝐷) =
𝑓 (𝑡, 𝑑) × 𝑖𝑑𝑓 (𝑡, 𝐷).
Word2vec (Mikolov et al., 2013a,b): the main contribution behind

ord2vec was learning distributed representations of words and re-
ucing the computational cost compared to the state-of-the-art at the
ime. Although there are two original model architectures for learning
he word vectors, Continuous Bag-of-Words (CBOW) and Continuous

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.

𝑃
𝑖

5

d
l
o
s
F
s
e
t
v
i
b
(
𝑢
𝑓

p
m
b
a
s
e
s
r

w

w
o

u
s
o
c
e

G
p
f
d

m
e
m
a
t
r
f

𝑅

a
g
𝐺
c
a

Skip-gram Model (skip-gram), the core characteristic of word2vec is
the removal of the hidden layer of a simple Neural Net Language
Model. CBOW predicts the current word based on the 𝑡 words around
it, i.e., it predicts 𝑤𝑡 given (𝑤𝑡−𝑖,… , 𝑤𝑡 − 1, 𝑤𝑡+1,… , 𝑤𝑡+𝑖). On the
other hand, given 𝑤𝑡, the skip-gram predicts the surrounding words
(𝑤𝑡−𝑖,… , 𝑤𝑡 − 1, 𝑤𝑡+1,… , 𝑤𝑡+𝑖). The parameter 𝑖 in both cases is a
parameter representing a range surrounding the current word 𝑤𝑡.

Doc2vec (Le and Mikolov, 2014): this algorithm is an extension
of word2vec and learns the embeddings of documents (sentence, para-
graph, essay, etc.). The difference w.r.t. word2vec is given by the
learning which is performed via the distributed memory and distributed
bag of words models and by adding another vector (document ID) to
the input.

GloVe (Pennington et al., 2014): this is an unsupervised learning
algorithm for obtaining vector representations for words. The main
intuition behind this model is the capturing ratios of word-word co-
occurrence probabilities in order to capture both local and global
dependencies. This is expressed by 𝐹 (𝑤𝑖, 𝑤𝑗 ,

-
𝑤𝑘) =

𝑃𝑖𝑘
𝑃𝑗𝑘

, where 𝑃𝑖𝑘 and
𝑗𝑘 are the probabilities that the word 𝑘 appears in the context of words
and 𝑗 respectively.

.4. Graph-based encoding

Process models are based on graphs, therefore, representing event
ata as graphs where nodes are activities and edges are control-flow re-
ationships becomes natural. Considering that graph embedding meth-
ds offer promising encoding capabilities, it is of interest to study how
uch algorithms behave in the PM domain (Barbon Junior et al., 2020).
urthermore, graph embeddings open new possibilities for PM analysis,
uch as capturing graph structures and finding similarities across differ-
nt process models. The intuition behind graph embedding methods is
o represent nodes of a graph as low dimensional vectors, where such
ectors are representative enough to keep its original relations (edges)
ntact. We can formally define the general idea as follows. A graph can
e described as 𝐺 = (𝑉 ,𝐸), where 𝑉 = {𝑣1,… , 𝑣𝑛} is a set of vertices
nodes) and 𝐸 is a set of edges 𝑒 = (𝑢, 𝑣) that connect a pair of vertices
, 𝑣 ∈ 𝑉 . Given a graph 𝐺, a graph embedding is a mapping function
∶ 𝑣𝑖 → 𝑦𝑖 ∈ 𝑅𝑑 , such that 𝑑 ≪ |𝑣| and 𝑓 preserves the original

structure of their local neighborhood and minimizes the information
loss. In this section, we describe graph embedding methods for event
log encoding.

DeepWalk (Perozzi et al., 2014): it can be seen as a two-stage
algorithm. First, a discovery of the local structure is performed through
random walks. There are two parameters here, the number of random
walks 𝛼 and the number of vertices to visit 𝑡 for each random walk.
Second, similar to the word2vec, the skip-gram is performed to learn
the embeddings. The intuition behind this algorithm is learning em-
beddings close to each other if they often occur in a similar structural
context.

Node2vec (Grover and Leskovec, 2016): this algorithm is similar to
DeepWalk, where the difference is a biased-random walk that aims at
employing a trade-off between breadth-first and depth-first searches.
In practice, such balance is capable of providing more informative
embeddings than DeepWalk.

Walklets (Perozzi et al., 2017): while DeepWalk and node2vec im-
licitly capture a certain level of local dependencies by generating
ultiple random walks from a starting point node, this algorithm com-

ines factorization approaches with random walks to capture both local
nd global information. It preserves dependencies by sub-sampling
hort random walks on the vertices and by skipping over steps in
ach random walk. This results in paths of fixed lengths composing
ets of pairs of vertices. Thus, these sets are used to learn the latent
epresentations.
role2vec (Ahmed et al., 2022): this is a framework that uses random

alks to approximate the pointwise mutual information matrix, which
6

is obtained by multiplying a matrix of structural features with the
pooled adjacency power matrix.

Laplacian Eigenmaps (Belkin and Niyogi, 2001): the algorithm
aims to find a low-dimensional this algorithm intuitively keeps the
embedding of two nodes close when the weight 𝑊𝑖𝑗 is high. Given a
graph 𝐺, this algorithm computes eigenvalues and eigenvectors 𝐿𝑦 =
𝜆𝐷𝑦, where 𝐷 is a diagonal weight matrix 𝐷𝑖𝑖 =

∑

𝑗 𝑊𝑗𝑖, and 𝑊 is the
weight matrix. Thus, 𝐿 = 𝐷 − 𝑊 is the Laplacian matrix that can be
used to minimize the function 𝜌(𝑌) = 1

2
∑

|𝑌𝑖 − 𝑌𝑗 |
2𝑊𝑖𝑗 = 𝑡𝑟(𝑌 𝑇𝐿𝑌),

here 𝑌 ∈ 𝐑𝑁×𝑑 is a matrix of 𝑑 eigenvectors (desired dimensionality
f the low-dimensional space) associated with the smallest eigenvalues.
GraRep (Cao et al., 2015): it aims to learn node embeddings by

tilizing higher-order structural information in a graph. It computes 𝑘-
tep transition matrices, performs Singular Value Decomposition (SVD)
n these matrices, concatenates the resulting singular vector matri-
es, and normalizes the concatenated matrix to obtain the final node
mbeddings.
Hope (Ou et al., 2016): this embedding algorithm is similar to

raRep, but instead of using the transition probability matrix, it em-
loys a similarity matrix 𝑆. Thus, 𝑆 can be obtained by using dif-
erent similarity measures and consequently preserves higher-order
ependencies.
BoostNE (Li et al., 2019): this algorithm performs a non-negative

atrix factorization to calculate the residuals generated by previous
mbedding models. It assumes the same idea as the gradient boosting
ethod in ensemble learning, where multiple weak learners lead to
better one when aggregated. Given a connectivity matrix obtained

hrough the adjacency matrix of the graph, the algorithm calculates 𝑘
esidual matrices and uses each one as input to the next one using the
ollowing equation:

𝑖 =

{

𝑋, if 𝑖 = 1
𝑚𝑎𝑥(𝑅𝑖−1 − 𝑈𝑖−1𝑉𝑖−1, 0), if 𝑖 ≥ 2

(1)

where 𝑈𝑖 ∈ 𝑅𝑛×𝑑𝑠
+ and 𝑉𝑖 ∈ 𝑅𝑛×𝑑𝑠

+ intuitively act like the embedding
representation of the center node and the context node in the 𝑖th level,
respectively. Assuming the defined residual matrix, the embedding rep-
resentation at the 𝑖th level is obtained by minimizing the loss function
𝐿 = min𝑈𝑖 ,𝑉𝑖 ,≥0 ‖𝑅𝑖 − 𝑈𝑖𝑉𝑖‖2𝐹 , for 1 <= 𝑖 <= 𝑘.

Diff2vec (Rozemberczki and Sarkar, 2020): the overall idea of this
lgorithm is sub-sampling diffusion graphs for each node in a graph and
enerating sequences of vertices through an Euler tour. Given a graph
, a graph 𝐺′ of 𝑙 vertices is sub-sampled in a diffusion-like random pro-
ess. Then, from 𝐺′, sequences of vertices are generated by performing
n Euler walk. In this process, 𝐺′ is first converted to a multi-graph by

doubling each edge. Thus, the Euler walk is employed instead of the
random walk since this algorithm can capture a more complete view
in graphs with this characteristic. The generated sequences of vertices
are then used to create the graph embedding.

GLEE (Torres et al., 2020): unlike most graph embedding algorithms
that expect similar nodes to have their embeddings close to each other,
this algorithm uses the Laplacian matrix of a given graph to find an
embedding with geometric properties. Examples of such properties are
dot product (angle), length (area or volume) of a line segment (or
polygon), the convex hull of a set of vectors, etc. Thus, given a graph
𝐺 and its Laplacian matrix 𝐿, this procedure extracts eigenvectors
corresponding to the largest eigenvalues in 𝐿. These vectors are used
as node embeddings.

NetMF (Qiu et al., 2018): this method is built on a theoretical
analysis that shows the equivalence of different graph embedding
algorithms based on DeepWalk. In the original paper, the authors
show that methods that use negative samplings, such as DeepWalk and
node2vec, implicitly perform matrix factorization. Thus, the framework
NetMF is proposed to unify existing methods and perform an explicit
factorization.

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.

n
f

(
m
l
G
c
d
s

𝑘
c
s
o
i
o
S
S

6

u
a
e

6

p
i
o

2
u
i
a
m
f
b
m
m
f
g
a
a
t
n

p

NMF-ADMM (Sun and Févotte, 2014): given an adjacency matrix,
the NMF-ADMM algorithm learns the embeddings by using the alter-
ating direction method of multipliers to solve the negative matrix
actorization problem.
GraphWave (Donnat et al., 2018): given an undirected graph 𝐺 =

𝑉 ,𝐸), an adjacency matrix 𝐴 (binary or weighted), and a diagonal
atrix 𝐷𝑖𝑖 =

∑

𝑗 𝐴𝑖𝑗 representing the degree of node 𝑖, this method
earns a structural embedding of every vertex 𝑣 ∈ 𝑉 . The resulting
raphWave represents the compact node embeddings, where each row
orresponds to a node in the graph and each column represents a
imension in the embedding space. These embeddings encode the
tructural similarities and local connectivity patterns of nodes.
NodeSketch (Yang et al., 2019): this method recursively generates

-order node embeddings in a recursive manner. These embeddings are
ategorized into low-order (𝑘 = 2) and high-order (𝑘 > 2). At each
tep, 𝑘, a Self-Loop-Augmented (SLA) adjacency matrix is generated to
btain the embeddings. Low-order SLA is obtained by simply adding the
dentity matrix to the original adjacency matrix 𝑀 ′ = 𝑀 + 𝐼 . On the
ther hand, high-order embeddings first sketch an approximate 𝑘-order
LA adjacency of the current nodes and merge it with the (𝑘− 1)-order
LA adjacency matrix in a weighted manner.

. Methodology

This section describes the experimental analysis carried out to eval-
ate encoding methods. We provide details on the software and materi-
ls and on the metrics used in order to assess the quality of the surveyed
ncoding methods.

.1. Implementation overview

Our implementation can be organized into three steps: (i) dataset
reparation, (ii) encoding generation, and (iii) evaluation of the encod-
ng methods from multiple perspectives. The source code is available
nline in this repository.5

First, we generated synthetic logs using the PLG2 tool (Burattin,
015). Subsequently, the encoding of the generated logs was performed
sing open-source libraries in Python as described in Table 1, which
nclude Sklearn,6 Karate Club,7 PM4PY,8 NLTK,9 Gensim,10 GloVe,11

nd the position profile implementation on github.12 We organize each
ethod according to families and provide the respective references

or original papers and online implementations. Moreover, we set as
aselines the methods count2vec, one-hot, n-grams, which implement the
ost simple transformations and are commonly employed in process
ining papers. In the case of event-level encoding, the procedure was

irst performed at the activity level and then the results were aggre-
ated to obtain the trace representation (trace-level encoding). This
ggregation takes the resulting encoded information of each activity
nd averages it into a unique feature vector. For graph-based methods,
his aggregation was obtained in two different ways: from edges or from
odes.

5 https://github.com/gbrltv/business_process_encoding
6 https://github.com/scikit-learn/scikit-learn
7 https://github.com/benedekrozemberczki/karateclub
8 https://github.com/pm4py/pm4py-core
9 https://github.com/nltk/nltk

10 https://github.com/RaRe-Technologies/gensim
11 https://github.com/maciejkula/glove-python
12 https://github.com/gbrltv/meta_trace_clustering/blob/main/clustering.
7

y#L64
6.2. Evaluation metrics

Assuming encoding methods are used to map the original problem
space into a different vector space, we observed the quality of the new
space based on several criteria. Moreover, each encoding method has
particularities regarding performance delivered, descriptive capability,
computational cost, and complexity of parameter space. Thus, to be
effective, an encoding method should meet the following criteria:

• Expressivity: the relative capacity of an encoding method to map
data from the event nature to a new n-dimensional space by pre-
serving its intrinsic behaviors and by minimizing the information
loss. In other words, it measures how well the method converts
event data from one representation to another since the goal of
encoding is to preserve the original meaning.

• Scalability: the property related to increasing or decreasing the
computational cost regarding the elapsed time and the memory
usage of encoding methods. The encoding method should be able
to map the event log quickly, without compromising the PM
pipeline run time.

• Correlation power: the capacity of an encoding method to im-
prove the original problem space. The new feature vector needs to
be highly correlated to the PM task goal, i.e., the encoded feature
vector should enhance the performance of PM tasks.

• Domain agnosticism: refers to how well a given encoding method
maps data from different domains. Encoding methods that are
non-agnostic can be used only in specific applications.

There are different strategies and metrics to assess encoding meth-
ods considering the presented criteria. In this work, we exploit the
followings. We exploited Principal Component Analysis (PCA) (Daf-
fertshofer et al., 2004) to verify how well a vector space can be
compressed. Classification complexity metrics (Lorena et al., 2019) to
measure how well samples, i.e., encoded traces, are distributed within
classes. The F1-score (Sasaki et al., 2007) to observe the impact of
encoding methods on accuracy. Time and space complexity to assess
the computational performances. Although individual metrics might
present trade-offs, e.g., PCA leads to information loss at the cost of bet-
ter interpretability, the combination of them to assess different criteria
is self-complementary. Furthermore, by jointly assessing these metrics
we are also capable of estimating an assumption of process complexity.
For instance, small memory usage and low execution time paired with
a positive correlation power might be intuitively interpreted as a less
complex problem. On the other hand, a complex problem that presents
low expressivity tends to perform poorly in the final PM task and hence
leading to a low correlation power. Table 2 summarizes each metric we
exploited.

6.3. Experimental design

Our experimental design relies on labeled data for ground truth
evaluation of the compared encoding methods, as an extension of Bar-
bon Junior et al. (2020). Synthetic event logs were generated based
on standard PM research practices and anomalies were injected into
the generated traces, representing an anomaly detection PM task. After-
ward, traces were labeled as anomalous or normal, making our data set
suitable for supervised learning. Our dataset was made more realistic
by adding heterogeneous behaviors to the event logs.

PLG2 (Burattin, 2015) was used to create five different process
models by performing a random generation of a process capable of
capturing several behaviors, such as sequential, parallel, and iterative
control-flow. The rationale of PLG2 is based on the combination of basic
control-flow patterns (Russell et al., 2006), e.g., sequence, parallel split,
and synchronization. In order to simulate real-world scenarios, the
patterns are progressively combined according to predetermined rules.

Each of the five generated process models defines five scenarios of

https://github.com/gbrltv/business_process_encoding
https://github.com/scikit-learn/scikit-learn
https://github.com/benedekrozemberczki/karateclub
https://github.com/pm4py/pm4py-core
https://github.com/nltk/nltk
https://github.com/RaRe-Technologies/gensim
https://github.com/maciejkula/glove-python
https://github.com/gbrltv/meta_trace_clustering/blob/main/clustering.py#L64
https://github.com/gbrltv/meta_trace_clustering/blob/main/clustering.py#L64

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.
Table 1
Encoding methods and related details.
Algorithm Year Family Implementation

n-grams (Gasparetto et al., 2022) – Baseline NLTK
one-hot (Weiss et al., 2015) – Baseline Sklearn
count2vec (Weiss et al., 2015) – Baseline Sklearn
token-replay (van der Aalst, 2016) 2016 PM PM4PY
alignment (van der Aalst, 2016) 2016 PM PM4PY
Log skeleton (Verbeek and de Carvalho, 2018) 2018 PM PM4PY
position profile (Ceravolo et al., 2017) 2017 PM GitHub
hash2vec (Weiss et al., 2015) – Text Sklearn
TF-IDF (Luhn, 1958) 1958 Text Sklearn
word2vec (CBOW) (Mikolov et al., 2013b) 2013 Text Gensim
word2vec (skip-gram) (Mikolov et al., 2013a) 2013 Text Gensim
doc2vec (Le and Mikolov, 2014) 2014 Text Gensim
GloVe (Pennington et al., 2014) 2014 Text GloVe
DeepWalk (Perozzi et al., 2014) 2014 Graph Karate Club
node2vec (Grover and Leskovec, 2016) 2016 Graph Karate Club
Walklets (Perozzi et al., 2017) 2017 Graph Karate Club
role2vec (Ahmed et al., 2022) 2018 Graph Karate Club
Laplacian Eigenmaps (Belkin and Niyogi, 2001) 2001 Graph Karate Club
GraRep (Cao et al., 2015) 2015 Graph Karate Club
Hope (Ou et al., 2016) 2016 Graph Karate Club
BoostNE (Li et al., 2019) 2019 Graph Karate Club
diff2vec (Rozemberczki and Sarkar, 2020) 2018 Graph Karate Club
GLEE (Torres et al., 2020) 2020 Graph Karate Club
NetMF (Qiu et al., 2018) 2018 Graph Karate Club
NMF-ADMM (Sun and Févotte, 2014) 2014 Graph Karate Club
GraphWave (Donnat et al., 2018) 2018 Graph Karate Club
NodeSketch (Yang et al., 2019) 2019 Graph Karate Club
Table 2
List of criteria, strategies, and metrics to evaluate encoding methods in process mining.
Criteria Analysis Acronym Description

Expressivity Principal
Component Analysis

PCA Using the 2D projection of a
PCA space it is possible to
observe patterns across
scenarios from different
complexities, ranging from
very low, low, average, high
and very high expressivity.

Ratio of the PCA
dimension to the
original dimension

T4 This measure is related to the
proportion of relevant
dimensions that the coded
feature vector is composed of.
A larger T4 value means more
encoded features are needed
to describe data variability.

Scalability Encoding Time Time Accumulated time in seconds
during the encoding task.

Encoding Memory Mem Accumulated memory in
kilobytes during the encoding
task.

Correlation power Ratio of intra/extra
class near neighbor
distance

N2 This measure is sensitive to
how data are distributed
within classes and labeling
noise in the data. Low values
are indicative of simple
problems.

F1-score F1 Average of F1-score obtained
from the anomaly detection
task, representing the
predictive performance
delivered by an encoding
method.

Domain agnosticism General usage of
algorithm

DA This is a binary evaluation
(Agnostic or Non-Agnostic)
considering agnosticism
regarding the PM domain.
8

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.
Table 3
Anomalies used to simulate the real-life event logs.
Anomaly Description

skip A sequence of 3 or fewer
necessary events are
skipped

insert 3 or fewer random
activities are inserted in
the case

rework A sequence of 3 or fewer
necessary events are
executed twice

early A sequence of 2 or fewer
events executed too early,
which is then skipped later
in the case

late A sequence of 2 or fewer
events executed too late

all Scenario where the event
log is affected by all
anomalies listed above

Fig. 3. 2D projections based on PCA transformation of the feature vectors of Baseline
Family encoding methods of event logs from five different scenarios (1, 2, 3, 4, and 5).
Each projection regards an encoding method, each point an encoded trace and each
color represents a scenario.

different complexities based on the number of activities and gateways
included in the scenario. An overview is presented in Table 4.

Creating the log requires simulating the process model. For that, we
applied the ProM plug-in13 for the simulation of a stochastic Petri net.
We went through 10 thousand simulated cases and kept the default val-
ues of the other parameters. We injected anomalies, following Bezerra
and Wainer (2013), by perturbing regular traces as proposed by Nolle
et al. (2019), as in Table 3.

For each scenario, we injected different percentages of anomalies
(5%, 10%, 15%, and 20%) by replacing normal traces. A total of
420 event logs were generated given five process models, six types of
anomalies, and four anomaly percentages using labels and descriptions
as additional attributes. Labels regard a normal execution or an anoma-
lous one. The description attribute describes the anomaly and its impact
on the case. It is important to note the different scenarios were created
with increasing trace lengths and log sizes (1k, 5k, and 10k cases). We
intuitively assume the complexity of event logs increases from scenario
1 to scenario 5 since we slowly increase these model properties such as
the number of gateways and activities.

7. Benchmarking process mining encoding

In this section, we report on the results achieved in our experiments
for each family of encoding methods (Baseline, Process Mining, Text,
and Graph).

13 http://www.promtools.org/doku.php
9

7.1. Expressivity

In this work, the expressivity of encoding methods is based on
PCA and T4 analysis. PCA models were calculated using the encoded
vector of all event logs for each encoding method, using a 2D sub-space
projection of the first and the second principal component to identify
how complex is the mapped space. Since the original problem (i.e., the
event logs) is the same, differences in the distribution and density of
the encoded logs can lead to interpretations about the mapping quality
offered by each encoding method. In the PCA, each point represents an
event log, and each color represents a scenario. The depiction highlights
the encoding capacity of generating feature vectors preserving inter-
and intra-traces similarities. This is demonstrated by the co-location of
samples, i.e., encoded logs, of similar scenarios, i.e., the same color
points near to same color points in each 2D projection. A high level
of expressivity relies on non-overlapped clusters of samples from the
same scenario with clusters sorted by scenarios’ complexity occupying
the whole sub-space projected. A low level of expressivity is associ-
ated with occluded samples with mixed sparse distributions or dense
overlapped allocation. An average expressivity is identified when the
projected distribution matches partially high and low characteristics.
Very high and very low expressivity are obtained when an encoding
method completely matches the mentioned characteristics, positively
or negatively.

Fig. 3 shows the PCA projections of Baseline methods (count2vec,
one-hot, and n-grams). Fig. 3.a and Fig. 3.b, regarding count2vec and
one-hot, look similar since they separate the same classes, but keep
uncovered a significant part of the space. Their analogous behavior
comes from the fact that both techniques are very similar, with the
difference that count2vec accounts for frequencies. However, as event
data vocabulary is small and the number of repetitive activities within
traces is not highly considerable, these methods present the same levels
of expressivity. On the other hand, n-grams (Fig. 3.c) have an average
expressivity as different scenarios overlap in the same areas.

Fig. 4 shows the projections of PM-based encoding methods. They
can be assessed to very high and high expressivity levels, respectively
alignment (Fig. 4.a) with the highest level, followed by token-replay
(Fig. 4.b) and Log skeleton (Fig. 4.c). It is worth observing that the
distribution in the alignment projection follows the complexity of sce-
narios. Furthermore, the position profile (Fig. 4.d) presented the worst
expressivity, i.e., low.

The Text encoding family presented average, low, and very low
levels of expressivity, as shown in Fig. 5. GloVe and hash2vec are from
average level, as observed in Fig. 5.a and Fig. 5.b, due to the unsuper-
vised nature of both methods. Low levels of expressivity were obtained
by TF-IDF (Fig. 5.c), CBOW (Fig. 5.d) and skip-gram (Fig. 5.e). This
similar behavior makes sense since the latter two ones are variations of
the same algorithm (word2vec). The worst expressivity level, very low,
was obtained by doc2vec (Fig. 5.f). Since this method is an extension
of the word2vec, if the original algorithm performed poorly it is natural
the extended version performs worse.

Very high, high, and average were the levels observed when using
the Graph encoding family (Fig. 6). Average was obtained by BoostNE
(Fig. 6.a) and role2vec (Fig. 6.m). PCA projections that represented
high expressivity were computed from encoded vectors of DeepWalk,
diff2vec, GLEE, GraRep, Hope, Laplacian Eigenmaps, NetMF, NMF-ADMM,
node2vec, NodeSketch and Walklets, respectively, Fig. 6.b, Fig. 6.c,
Fig. 6.d, Fig. 6.f, Fig. 6.g, Fig. 6.h, Fig. 6.i, Fig. 6.j, Fig. 6.k, Fig. 6.l,
and Fig. 6.n. Very high expressivity was observed using GraphWave
(Fig. 6.e), where it is possible to observe an organized gradient by
scenario complexity, all different event logs are identified spread in the
2D projection. The fact most methods have achieved high expressivity
indicates that graph-based methods in general are suitable for accom-
plishing expressivity for a process mining task. This result is confirmed
by the measurements obtained with the T4 measure.

http://www.promtools.org/doku.php

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.
Fig. 4. 2D projections based on PCA transformation of the feature vectors of Process Mining encoding family methods of event logs from five different scenarios (1, 2, 3, 4, and
5). Each projection regards an encoding method, each point an encoded event log and each color represents a scenario.
Fig. 5. The figure illustrates the 2D projections based on PCA transformation of the feature vectors of Text encoding family methods of event logs from five different scenarios
(1, 2, 3, 4, and 5). Each projection regards an encoding method, each point an encoded event log and each color represents a scenario.
Table 4
Overview of five process models. For each scenario, we generated event logs by combining three different cardinalities,
injecting seven different anomalies, at four different rates of injection (5%, 10%, 15%, and 20%). This resulted in 84 event
logs for each scenario and 420 event logs in total. gw, acts, evts, and vars stand for the number of gateways, activities, events,
and variants, respectively.
Log #gw trace size #acts #cases (103) #evts (103) #vars (103)

scenario 1 8 9-13 22
1 75 ± 1 1 ± 0
5 378 ± 5 2 ± 0
10 755 ± 9 2 ± 1

scenario 2 12 26-30 41
1 186 ± 1 1 ± 0
5 929 ± 5 5 ± 0
10 1857 ± 10 10 ± 0

scenario 3 22 42-50 64
1 308 ± 1 1 ± 0
5 1538 ± 5 5 ± 0
10 3077 ± 10 10 ± 0

scenario 4 30 3-30 83
1 89 ± 3 0 ± 0
5 439 ± 6 2 ± 0
10 879 ± 12 4 ± 0

scenario 5 34 4-37 103
1 133 ± 3 1 ± 0
5 659 ± 7 3 ± 0
10 1318 ± 13 6 ± 0
10

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.
Fig. 6. 2D projections based on PCA transformation of the feature vectors of Graph encoding family methods of event logs from five different scenarios (1, 2, 3, 4, and 5). Each
projection regards an encoding method, each point an encoded event log and each color represents a scenario.
T4 gives a rough measure, from 0 to 1, of the proportion of relevant
dimensions used by the encoding vector to map the event log (Barbon
Junior et al., 2020). Relevance is determined according to the PCA
criterion, which strives to describe most of the variability in the data
with uncorrelated linear functions of the features (Lorena et al., 2019).
A higher T4 value indicates a more complex relationship between the
input variables, indicating a larger number of original features are re-
quired to describe the data variability. Graph-based methods obtained
the best expressivity, followed by the Baseline family, as shown in
Fig. 7. In terms of T4 value, doc2vec reached the lowest expressivity
level, 0.92.

7.2. Scalability

We drive the discussion of scalability considering the time (seconds)
and memory (KB) consumption accumulated during the whole encod-
ing process. Since costly methods are prohibitive to real-life event logs
with huge volumes of data, their time and memory costs can directly
influence the choice of an encoding method. In our experiments, we
considered the time and memory consumed only during the encoding
task. By comparing three different versions of event log size (1k, 5k,
and 10k), we can observe how the costs are affected when encoding the
same group of problems using different methods. Figs. 8, 9, 10 and 11
11
were used to demonstrate the scalability of time and memory, limiting
the 𝑦-axis according to the higher observed value (time on left-side and
memory on right-side) over all experiments of each encoding method.

Baseline family analyses are supported by Fig. 8. In terms of mem-
ory cost, the Baseline encoding family showed that n-grams was the
most expensive method with a high space complexity. On the other
hand, position profile was the worst method in terms of time complexity.
One-hot demonstrated that memory costs increase more than time as
the problem is scaled. In terms of scalability, count2vec presented the
best scalability results of the Baseline family.

The PM encoding family presented high memory costs and average
time costs, but with good scalability in both measures, as visible when
the dataset increased and the performances slightly grew, as in Fig. 9.
Alignment method was the cheapest one in terms of memory, token-
replay presented a good balance in terms of time, and Log skeleton the
most costly in both, memory and time.

The Text encoding family presented the fastest methods with low
memory consumption. However, presented time scalability issues by
the majority of methods (GloVe, hash2vec, CBOW, skip-gram and
doc2vec), as represented by Fig. 10. The least scalable was doc2vec.
A notable exception was TF-IDF, which presented reduced memory
usage even with increasing problem size. Note that the scalability was
evaluated considering the ability to not suffer from data growth, and

Engineering Applications of Artificial Intelligence 126 (2023) 107028

12

G.M. Tavares et al.

Fig. 7. T4 value obtained from encoding methods for expressivity evaluation. Low T4 values are correlated to good expressivity and high T4 values indicate poor expressivity.

Fig. 8. Time and memory costs across different event log sizes (1k, 5k and 10k) when using Baseline encoding family.

Fig. 9. Time and memory costs across different event log sizes (1k, 5k and 10k) when using Process Mining encoding family.

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.

t
t

m

Fig. 10. Time and memory costs across different event log sizes (1k, 5k and 10k) when using Text encoding family.
Fig. 11. Time and memory costs across different event log sizes (1k, 5k and 10k) when using Graph encoding family.
t
p

t

he average usage of time and memory in the Text encoding family is
he lowest.

The Graph encoding family presented a heterogeneous usage of
emory and an average time cost, as Fig. 11 shows. GLEE, Hope

and NetMF were the fastest methods of this family. These methods
presented average scalability. The best scalability was demonstrated
by NodeSketch. The higher memory cost from the graph encoding
family was achieved by GraRep with a cost comparable to token-replay
(PM family) but with average scalability regarding time. The slowest
method was node2vec, using the smallest event log it presented 4 times
the average of the other methods of the same family. When dealing
with the larger event log the time difference reached 7 times the other
methods.

We organized the results of scalability and consumption of both
time and memory analysis as a heat map (Fig. 12). In the figure,
it is possible to observe that general low memory and little time
consumption count2vec, do not reflect the scalability, i.e., increasing
event log sizes, some methods compromise their costs with quadratic
complexity costs of time and memory. Alternatively, Log skeleton, token-
replay, and NodeSketch are very scalable but have a high memory and
time cost. When considering raw time consumption, it is very evident
how the PM family contains the slowest methods, being positioned in
the last three points.

7.3. Correlation power

Correlation is an important analysis perspective since it reflects how
correlated an encoding method is to the executed task in terms of per-
formance. In other words, how the encoding positively contributed to
the final performance. In our benchmark, we evaluated the correlation
13
based on an anomalous trace detection task. In particular, we evaluated
the F1-score obtained to detect anomalous behavior and the N2 from
the mapped space. N2 is a ratio that computes distances between an
example and its closest neighbor within a particular class (intra-class)
and between an example and its closest neighbor from a different class
(extra-class). The N2 value, which ranges from 0 to 1, is low when
there is a greater distance between examples of different classes than
between examples from the same class. Thus, a mapped space with a
lower N2 refers to a representation that is better equipped to distinguish
classes and support supervised learning. In our paper, we followed the
N2 calculation as described by Lorena et al. (2019).

Fig. 13 represents the obtained N2 values from encoded space from
all encoding methods. The figure presents each family with a particular
color and results are sorted by N2, from the best one to the worst N2
value. Position profile achieved the best N2 values, mean of 0.48, and
was the only method with less than 0.50 in terms of this measure. The
top 5 N2 values were obtained by Graph and Text families. The PM
encoding family, particularly alignment and token-replay reached high
N2 values, superior to 0.85. In contrast, Log skeleton obtained less than
0.70, ranking in the bottom 10 encoding methods, but supported the
best F1-score in the anomaly detection task.

When evaluating the F1-score, Log skeleton provided the best per-
formance (mean of 0.942), followed by position profile (mean of 0.935)
and all encoding from the Graph encoding family (above 0.915). Text
encoding family provided results above 0.903, except doc2vec that lead
to an average F1-score of about 0.845. Surprisingly, the most traditional
encoding used in PM, one-hot, obtained the worst results, i.e., inferior
o 0.840 of the F1-score. The obtained F1-scores are sorted by the
erformance from the best to the worst one in Fig. 14.

In order to provide a fair and statistically grounded comparison in
erms of predictive performance, we used Friedman’s statistical test and

Engineering Applications of Artificial Intelligence 126 (2023) 107028

14

G.M. Tavares et al.

Fig. 12. Ranking of Time Scalability, Memory Scalability, Time Consumption, and Memory Consumption. The better approaches are positioned in the first ranking position, colored
by white. The most costly and less scalable are the last potions with dark colors.

Fig. 13. Ratio of Intra/extra class nearest neighbor distance (N2), provided by the same group of tasks considering 27 different encoding methods. The bars are sorted from the
best score (left) to the worst one (right). Each bar is colored according to the coding family.

Fig. 14. F1-score obtained by several anomaly detection tasks performed using a Random Forest algorithm, considering 27 different encoding tasks. The bars are sorted from the
best score (left) to the worst one (right). Each bar is colored according to the coding family.

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.

n
o
t
c
a

7

c
C
f
d

i
m
p
t
w
p
a
c

t
l
v
m
h
i

i

Fig. 15. Nemenyi post-hoc test (significance of 𝛼 = 0.05 and critical distance of 10.71) considering the F1-score (predictive performance) accuracy obtained when performing the
anomaly detection task using all encoding methods over all scenarios (1k, 5k and 10k traces from five different scenarios). Statically similar methods are linked by the solid line.
i
(
c
b
c

8

r
t
i
e
t
e

8

b
i
h
i
s
c
m
t
v
o

d
a
o
e
f
2
i
G
p
w
I

the post-hoc test of Nemenyi. Both tests were employed to verify the
statistically significant difference between the performance of the F1-
score of each encoding method. The result of the statistical comparison
can be observed as a Critical Difference chart, as illustrated in Fig. 15.
Critical Difference test allows checking when there were statistical dif-
ferences between the segmenters, each diagram and method’s average
ranks are placed on the horizontal axis, with the best ranked to the
right. The solid line connects encoding methods with no significant
performance difference. Thus, Fig. 15 demonstrates no statistical dif-
ference among Log skeleton, position profile, NodeSketch, NMF-ADMM,
GraphWave, BoostNE, NetMF,Walklets, Hope, GLEE, Laplacian Eigenmaps,
ode2vec, all of them supporting high predictive performance. On the
ther hand, there is no statistical difference as encoding methods
hat provided lesser predictive models for one-hot, doc2vec, n-grams,
ount2vec, token-replay, alignment, hash2vec, GloVe, skip-gram, CBOW
nd TF-IDF.

.4. Domain agnosticism

The last comparison criterion regards Domain Agnosticism. We
onsider this criterion as important as Expressivity, Scalability, and
orrelation to comprehend the obtained results. Since a method valid

or multiple applications is instrumental to the construction of adaptive
ata science pipelines.

The methods comprising the baseline family are traditionally used
n different PM tasks. They perform straightforward transformations
apping traces into feature vectors. Their usage was not limited to PM
ipelines, indeed, they were created in other data mining areas. For
hese reasons, we consider the Baseline family as domain agnostic. As
ell, the Text and Graph families have been used for a wide range of
urposes. These last families are good examples of domain agnosticism
nd have been used with simple encoding scenarios as well as with
omplex and highly structured representations.

Considering our criteria, PM-based solutions are not domain agnos-
ic. This family of encoding methods was conceived to represent event
ogs and has been used exclusively for this purpose. It should not be
iewed as a limitation, but rather as a characteristic of specialized
ethods demonstrating a high correlation power, even at the cost of
igh computational costs, e.g., Log skeleton provided encoded spaces to
nduce models that obtained high F1-scores.

An overview of domain agnosticism and some implications of encod-
ng method performance and resource consumption could be observed
15

e

n Fig. 16. The most notable observation is that non-agnostic methods
token-replay, alignment, and Log skeleton) share high N2 values and high
osts of space and time complexity. Among the agnostic methods, the
est N2 and F1 performances are obtained with average space and time
omplexity, e.g., with GraphWave or BoostNE.

. Encoding method selection

After providing a general discussion focused on the employed met-
ics, in this section, we dive into the algorithms’ behaviors according to
heir parameters and the event logs’ characteristics. We first present the
mpact of parameters for each family of algorithms. Subsequently, we
valuate the algorithms’ behaviors for each type of anomaly injected in
he event logs. Lastly, we present a similar evaluation but consider the
vent logs’ properties. f

.1. Parameter impact

In this section, we present how parameters might present different
ehaviors for encoding methods according to each event log. Employ-
ng synthetic data is beneficial for this evaluation since it allows us to
ave more control over different properties and obtain insights regard-
ng which algorithm family and configurations can achieve better re-
ults according to the user’s preferences. Thus, we discuss the employed
onfigurations for parametric methods (i.e., graph- and word-based
ethods, see Table 5) across the employed scenarios. Furthermore, all

he results in this subsection are filtered and only the performance
alues lying between the first and third quartiles are included to avoid
utliers and bad visualizations.

Table 5 presents two important configurations that guide embed-
ing generation: feature vector size and aggregation methods. A key
spect that we aimed to capture with experiments is scalability. More-
ver, by analyzing different vector sizes we can assess how well the
ncoding method distributes the generated embeddings. This way, we
ixed feature vector sizes to {2𝑛}8𝑛=1, i.e., ranging from vectors of size

to 256. Due to vocabulary size, some embeddings were limited
n terms of possible size configurations (e.g., Laplacian Eigenmaps,
raRep, Walklets, NodeSketch, GLEE, and Hope). BoostNE required a
articular configuration that only allowed multiples of 17, this way,
e tried to obtain vector sizes as close as possible to powers of 2.

t is important to note that word and graph embeddings create an
mbedding representation for words and nodes, respectively. Therefore,

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.

a
i
t
g
a
p
e
H
t
t
(

Fig. 16. Mean values of time, memory, and predictive performance (F1) projected by time and memory in a logarithmic scale. The marker size represents the N2 and their color
gradient performance in terms of F1. The marker symbol represents the domain agnosticism evaluation.
Fig. 17. Performance metrics (one for row) for different vector sizes throughout all the employed scenarios (one for column).
𝐴

ggregation techniques are required to obtain a trace representation,
.e., an aggregation of the word or node representations. As for the
race, we selected two options: average and max pooling. For the
raph embeddings, we can obtain representations for both the nodes
nd edges, increasing the possible aggregation options. Considering the
roposed edge aggregations in Grover and Leskovec (2016), the edges
mbedding can be obtained following four binary operators: Average,
adamard, Weighted L1, and Weighted L2. Given 𝑓 (𝑥) as the function

hat returns the node embedding and 𝑢 and 𝑣 as two nodes belonging
o a graph, the edge embedding is computed as described in Eqs. (2),
16

3), (4), (5).
𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑓 (𝑢) + 𝑓 (𝑣)

2
(2)

𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑 = 𝑓 (𝑢) × 𝑓 (𝑣) (3)

𝑊 𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐿1 = |𝑓 (𝑢) − 𝑓 (𝑣)| (4)

𝑊 𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐿2 = |𝑓 (𝑢) − 𝑓 (𝑣)|2 (5)

Fig. 17 shows the behaviors of different parameter vector sizes (see

Table 5) across the five employed scenarios. We can see that for T4 and

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.
Table 5
Employed configurations for word- and graph-based encoding methods.

Encoding Vector size Trace Agg. Graph Agg. Edge Agg.

GraphWave {2𝑛}8𝑛=1 {avg, max} {node, edge} {avg, had, w1, w2}
Laplacian Eigenmaps {2𝑛}4𝑛=1 {avg, max} {node, edge} {avg, had, w1, w2}
NMF-ADMM {2𝑛}8𝑛=1 {avg, max} {node, edge} {avg, had, w1, w2}
DeepWalk {2𝑛}8𝑛=1 {avg, max} {node, edge} {avg, had, w1, w2}
GraRep {2𝑛}4𝑛=1 {avg, max} {node, edge} {avg, had, w1, w2}
node2vec {2𝑛}8𝑛=1 {avg, max} {node, edge} {avg, had, w1, w2}
Walklets {2𝑛}8𝑛=2 {avg, max} {node, edge} {avg, had, w1, w2}
role2vec {2𝑛}8𝑛=1 {avg, max} {node, edge} {avg, had, w1, w2}
NetMF {2𝑛}8𝑛=1 {avg, max} {node, edge} {avg, had, w1, w2}
NodeSketch {2𝑛}8𝑛=2 {avg, max} {node, edge} {avg, had, w1, w2}
BoostNE {17, 34, 68, 136, 255} {avg, max} {node, edge} {avg, had, w1, w2}
GLEE {2𝑛}4𝑛=1 {avg, max} {node, edge} {avg, had, w1, w2}
Hope {2𝑛}5𝑛=1 {avg, max} {node, edge} {avg, had, w1, w2}
diff2vec {2𝑛}8𝑛=1 {avg, max} – –
word2vec {2𝑛}8𝑛=1 {avg, max} – –
hash2vec {2𝑛}8𝑛=1 {avg, max} – –
GloVe {2𝑛}8𝑛=1 {avg, max} – –
doc2vec {2𝑛}8𝑛=1 {avg, max} – –
t
w
c
h
R
b
v
F
w

F
S
t
t

memory usage, although the parameters affect the metrics, they behave
similarly across all the scenarios. Both behaviors of this parameter
for the mentioned metrics are intuitive, since T4 measures the ratio
of the PCA dimension to the original data dimension, whereas the
memory usage naturally increases by increasing the dimensionality of
the encoded data. Furthermore, the elapsed time for encoding methods
across scenarios does not change and we can see in the figure a similar
behavior for them. Thus, if these are the metrics of interest of a user,
the choices are intuitive and straightforward.

On the other hand, regarding the classification complexity metrics
F1 and N2, the parameter choice depends on the characteristics of the
event log. For example, for scenarios 1, 4, and 5, the N2 has slight
differences, whereas it considerably changes for scenarios 2 and 3.
Considering the F1 metric, although the average behavior is similar
across the scenarios, we can see a high variation of performances in
the first three scenarios for small vector sizes.

This evaluation highlights the difficulty of choosing the right pa-
rameter values according to the user’s requirements. For instance, we
can see that high F1 scores are achievable by employing high and low
vector sizes. However, if only a limited amount of memory is available,
an algorithm selection procedure is needed to find the right algorithm
that achieves the desired score of F1 and fits the available storage.
Nevertheless, if the user faces characteristics similar to scenarios 2
and 3, other parameters and algorithms (e.g. PM-based methods, see
Fig. 13) should be evaluated to optimize the N2 metric.

Another parameter to be evaluated is the aggregation strategy for
algorithms from the graph and word families. Fig. 18 shows the overall
distributions of the employed methods for each type of aggregation.
First, Fig. 18(a) illustrates a high-level overview regarding the aggre-
gation of edges and nodes all at once. We can see that, in general,
aggregating nodes for the final encoded trace significantly overcome
the edge aggregation regarding the time and N2 metrics, whereas for
the remaining ones it slightly overcomes or performs equally. This is
due to the fact the full information of a trace is retained in the node
representation and not in the edges that connect the encoded trace
to similar or related (depending on the graph algorithm) neighbors.
Second, the overall aggregations for edges and nodes according to each
strategy (average or max) is presented in Fig. 18(b). We can see that
for edges the overall behavior is the same across all metrics except for
N2, which performs slightly better in general for average aggregation.
Moreover, there is no best aggregation regarding nodes, since for the
last three metrics the behavior is quite similar, whereas for F1 the
17

average is slightly better (higher average score and lower variation), p
and for N2 is the opposite. Lastly, in Fig. 18(c) we also show the
individual aggregation strategies for the edges, although there is no
significant difference in performances among these ones.

Finally, the aggregations for methods from the word family are
illustrated in Fig. 19. Similarly to Figs. 17 and 18, the metrics T4,
elapsed time, and memory usage present similar behaviors. In this
case, however, the F1 and N2 scores also behave similarly in general,
although the average aggregation presents a slightly lower variation for
the former one.

Despite the parameters evaluated in this section presenting similar
behaviors for the metrics of T4, elapsed time, and memory usage, it
is evident the wide distribution of possible performances regarding all
metrics that might be achieved by the same parameter value across
different event logs. Always selecting the same feature vector size and
aggregation strategy might lead to drastic differences among metrics.
Thus, in the next sections we evaluate which underlying characteristics
in the event logs might affect the performances.

8.2. Anomaly analysis

In this section, we evaluate how each anomaly type affects the
encoding methods in general. The performances regarding each type
of anomaly are aggregated throughout all the families to visualize
the general behaviors in Fig. 20. We employ the violin plots for this
visualization since it better highlights the density curves and allows us
to deeply see where the main differences among the anomalies lie. For
instance, similar F1 scores are achieved by all methods and parameters
regarding the all anomaly. We can assume the attribute anomaly as
he easiest one for F1 since most performances tend to be almost 1,
hereas, for the remaining anomalies, we see a small concentration

lose to 1 although the overall behavior is the same. On the other
and, the N2 metric is significantly affected by the different anomalies.
egarding the all, attribute, and late anomalies, some extra effort should
e considered to find the right algorithm and its parameters since the
alues of the performance are more concentrated above their averages.
inally, the remaining metrics behave similarly for this evaluation as
ell.

In order to go deeper into the anomaly analysis, we present in
ig. 21 the same idea but this time separated by families and via bars.
ince we are including all the results without excluding outliers as in
he previous discussion, we can highlight overall differences among
he families. Regarding the F1 metric we can notice a significant poor

erformance by the PM encoding methods, except for the attribute

Engineering Applications of Artificial Intelligence 126 (2023) 107028

18

G.M. Tavares et al.

Fig. 18. (a) Overall aggregation of edges and nodes. (b) Specific aggregation of edges and nodes. (c) Aggregation strategies for edges.

Fig. 19. Distribution of metrics for aggregations of word-based encoding methods.

Fig. 20. Distribution of performances for each anomaly type.

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.
Fig. 21. Overall performances for each anomaly type and grouped by algorithm families.
m

anomaly. We can also notice slight variations in performances among
anomalies with respect to the text-based methods, whereas this does
not occur for the graph-based methods. Contradictorily, we can see
a better performance of PM methods regarding the N2 metric, which
emphasizes the difficulty of selecting a suitable algorithm for each task.
Furthermore, the graph-based methods were overcome by the other
ones in this metric.

More specifically, methods from the baseline and PM families
present the lowest T4 metrics since they are non-parametric, which
means they have the same encoded dimension regardless of the event
log. Nevertheless, they are more time-consuming, especially the encod-
ing methods based on PM techniques, due to the expensive nature of
the algorithms and the lack of efficiency-oriented tools in the literature.
Furthermore, the PM methods are drastically affected by the anomalies
because some anomalies are easier to detect (e.g., early) than others
(e.g., rework). Encoding methods from the graph and word families
are not affected by the anomalies and they present the same patterns
in general.

8.3. Log behavior

Besides the anomaly type affecting the PM family algorithms, in this
section, we will analyze further properties of event logs that might also
affect the performance metrics.

In Fig. 22, we show the overall performances achieved by each
family of algorithms over the scenarios. Regarding the F1 metric,
the first three scenarios present a slightly higher variation in perfor-
mance, suggesting more difficulty in finding the right algorithms and
parameters. However, this variation is due to the fact that simple
data (i.e., a small number of activities, short traces, etc.) do not
require exploring such a wide range of parameters, and the higher the
parameter values (e.g., vector size) the higher the information loss.
Regarding the remaining metrics, we can see some disturbance with
respect to scenarios 2 and 3. There is a high variation and high average
values for N2, which emphasizes that the event properties affect the
algorithms’ performances. The PM family performs better for T4 but it
is outperformed in the sense of scalability by all the other ones. Overall,
the graph methods perform better or are similar with respect to most
of the other ones across all scenarios.

This analysis indicates that event log properties do not drastically
affect the employed encoding methods, except for the PM family. This is
19
intuitive since this family has an underlying bias to handle this specific
data domain, i.e., process data.

Since the specific event properties do not present many behavior
changes, in Fig. 23 we perform the last evaluation regarding the log
characteristics but with respect to their sizes for each performance
metric. For F1, we can notice that the log size affects only the PM
methods, indicating they are not scalable. Again, scenarios 2 and 3
seem problematic since the families’ behaviors significantly change for
the N2 metric although the remaining behavior remains the same as
discussed in the previous figure. The T4 has the expected behavior since
this metric should not be affected by the event log sizes. Similarly, the
scalability metrics regarding the elapsed time and memory usage are
also intuitive since they increase as the event log size increases as well.

9. Issues, discussion, and future directions

Research comparisons about encoding methods focused on PM are
still embryonic. We classified encoding methods from different areas
in Section 5, and we observed that works in PM do not investigate
the strong and weak points of each method. Thus, we have proposed
a study involving a large set of methods from different families over
several event logs.

Investigating the pros and cons of encoding methods based on
expressivity, scalability, correlation power, and domain agnosticism over
different encoding families and several event logs with various com-
plexities, we were able to gain insights and share some assumptions for
future directions and possible novel PM encoding methods. We believe
the criteria employed in this work to assess the effectiveness are the
most important aspects to take into consideration in order to achieve
significant accomplishments for any PM task that needs to encode
event logs. In addition, the deep evaluation regarding the impact that
parameters and data characteristics have on the performance metrics
will serve as guidelines for practitioners and researchers when choosing
a suitable algorithm and set of parameters.

9.1. Overview of experiments

The combination of metrics to evaluate different criteria can serve
as user requirements when deciding which encoding method should
be employed for the specific problem. The expressivity of an encoding

ethod can measure how effectively the data original event data is

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.

m
s
i
o
t
t
t
t
a
t
d

m
t
c
a
t

Fig. 22. Performances by scenario.
Fig. 23. Performances (rows) for each scenario (columns) according to different event log sizes.
p
b

apped into a new feature space by preserving the underlying process
tructure and minimizing the information loss. The scalability is also an
mportant concern since real-life event logs consist of a large volume
f data which can lead to high computational costs regarding elapsed
ime and memory usage. Understanding the correlation power between
he nature of an encoding method and the performance of the executed
ask is also a relevant analysis that allows practitioners to estimate
he complexity of analyzing a specific event log. Lastly, the domain
gnosticism is a novel and important discussion introduced in this work
o consider if encoding methods can be adapted for different problem
omains.

From the extensive evaluation in Section 7, we can conclude that
ethods from graph and word families can be very expressive or not in

erms of T4 (see Fig. 7). Thus, from the presented results practitioners
ould leverage the insights to select the right algorithm in case this is
relevant or priority metric for a particular task. Visually, according
20

o the PCA figures, the graph-based methods are better since they
resent fewer overlaps among the scenarios in general, although word-
ased methods like hash2vec and GloVe also present good expressivity

in terms of visualization. On the other hand, regarding the scalability,
we present a generic analysis in Section 7 and provide a more deep
discussion in Section 8. In the latter section, it is clearly illustrated
that PM encoding methods suffer at scaling when the event log size
increases, regardless of other data characteristics like the number of
activities or trace sizes.

In terms of correlation power, the PM methods present some stren
gths depending on the type of anomaly present in the event log. Al-
though this family performed poorly in general regarding the F1 metric,
it outperformed the other ones for N2. However, these methods are
extremely sensitive to anomalies in general. Furthermore, the graph-
based methods present stability since it does not drastically change
across the different anomalies and scenarios employed in this work.
The same behavior can be seen for word-based methods, although they

performed slightly worse than graph-based methods in the sense of

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.

q
t
c
d
a
p

d
e
p
b
s
w
m
o
d
g
c
e
o
m
i
e

a
e
t
o
t
p
T
r
l
l
L
t

correlation power. Nevertheless, it presents better scalability in terms
of elapsed time, memory usage, and also event log sizes. Lastly, the
scenarios do not seem to affect the F1 metric in general, except for PM
methods, but they affect the N2 across the scenarios.

9.2. Challenges and future directions

Addressing further issues on encoding methods in PM, online PM
may introduce new challenges for the current encoding methods. As
emphasized by Ceravolo et al. (2020), measures such as accuracy and
memory consumption need to drive the creation of methods to match
online PM goals, as the encoding methods used in such solutions. The
concern of limitations posed by an online PM task was also highlighted
by Tavares et al. (2019), mentioning the demand for adapting when
dealing with concept drifts and focusing on inter-activity time im-
plications. STARDUST (Pasquadibisceglie et al., 2022) is an example
of online PM, particularly on trace streams. The authors discussed
approaches to handling traces recorded without the final activity. It is
therefore essential to investigate encoding methods that support online
PM tasks coping with new challenges, such as reduced memory con-
sumption and the ability to map partial traces. In our experiments, we
used scalability measure to support insights and discussions regarding
this topic.

Currently, the predictive process monitoring problem also faces this
issue regarding the lack of encoding methods specific to PM. Represen-
tation learning or feature learning is a learning paradigm that has been
recently introduced in the community by Koninck et al. (2018). We
believe this is a promising path for improving the encoding procedure
in process mining tasks. In the mentioned work, the authors derived
their new proposals from the word2vec. However, we believe PM re-
uires a specialized method or a sufficiently generic one regardless of
he problem domain since the event data might be considered more
omplex than sequential text. We claim that since the nature of event
ata, in general, contains several multi-perspective constraints, such
s sequential rules, relational information, concurrency of resources,
arallel activities, etc.

Encoding regards mapping data into another representation for
ifferent goals. The new space could not allow interpretations and
xplainability as previously supported by the original data. Moreover,
ractitioners need to trust the generated mapped space, as mentioned
y Elkhawaga et al. (2022). In particular, the predictive model pre-
ented in a great part of predictive monitoring tasks does not explain
hy it provided wrong predictions, so the reason why a prediction
odel made a mistake cannot be understood. Shedding some light

n this topic, Rizzi et al. (2020) presented post-hoc explainers and
ifferent encoding methods for identifying the important features. On a
eneral note, our experiments using expressivity and domain agnosticism
onfirmed the wide range of representations provided by different
ncoding methods, even from the same family. Regarding this point
f eXplainable Artificial Intelligence (XAI), as a tendency, encoding
ethods able to provide high explainability levels should be integrated

nto the PM pipeline as a key component, not a separate step follow-up
ffort for particular applications.

The significant number of encoding methods and reduced avail-
bility of experts pose an additional challenge to selecting and prop-
rly setting the encoding method. Strategies focused on accuracy or
ime performance are applied when selecting a method, but the cost
f testing different setups and costly tuning strategies could impact
he PM pipeline conception. This problem has been addressed by
romising strategies based on meta-learning (Tavares and Junior, 2021;
avares et al., 2022a; Tavares et al., 2022b), but the current solutions
equire creating a meta-database containing the history of possible so-
utions. Also, the criteria to recommend a particular algorithm are still
imited to simple performance functions. Therefore, Automatic Machine
earning (AutoML) (Olson and Moore, 2016; Feurer et al., 2019) proves
21

o be an important research area that impacts the aforementioned
concerns regarding encoding methods used in PM tasks. Alternatively,
another learning paradigm that could be explored for this nature of
data is self-supervised learning (SSL). The general idea behind SSL is
learning a set of possible outcomes given an input, instead of predicting
a unique value as traditional methods. For instance, the data2vec was
recently presented by Baevski et al. (2022), where the authors propose
a generic framework for encoding any type of data, although only
the domains of image, speech, and language have been considered.
Intuitively, this might be interesting for capturing mutual dependencies
in event data.

Finally, we also highlight the need for an automated method for se-
lecting a suitable encoding method and its parameters according to the
event log properties and user requirements. Our extensive experimental
evaluation showed that although all algorithm families are capable of
performing well for each metric, sometimes it is hard to find the right
algorithm configuration among a wide range of options.

10. Conclusion

The main contributions presented in this work include a review of
process mining tasks using encoding methods, a review and detailed
description of encoding methods from other areas never employed
in PM before that were categorized into families, and an extensive
experimental evaluation and benchmark assessing relevant evaluation
metrics to measure the effectiveness of an encoding method with
respect to different parameters and data characteristics. We believe this
work can support researchers and practitioners to achieve significant
accomplishments in different application areas in PM. Furthermore,
we stress current challenges and issues in the literature regarding the
difficulty of choosing the right algorithm and its parameters. We also
discuss how arbitrarily selecting algorithms leads to unfair evaluation
and sub-optimal solutions. This is the first work that focuses on a
detailed analysis for preprocessing event logs instead of focusing only
on the task algorithm itself (i.e. a clustering or learning algorithm).

We also highlighted the need for a better understanding of how
each method behaves according to different scenarios of event logs and
different PM tasks. Thus, to fill this gap we simulated such scenarios by
employing the PLG2 tool to generate synthetic processes with distinct
properties and presented the results as a benchmark. In total, 27
encoding methods were evaluated throughout 420 different event logs
containing different anomalies. We considered four different evaluation
criteria to measure the effectiveness of encoding methods for process
mining tasks. We limited our evaluation to only one task, anomaly
detection, but the analysis and insights presented in this work can
be leveraged for other applications, such as predictive monitoring and
clustering.

We conclude this work by stressing the difficulty of choosing suit-
able algorithms and their parameters according to the user’s prefer-
ences since each pipeline setting performs differently according to the
event log characteristics. This might be a direction to novel automated
solutions whether for entire pipelines or preprocessing steps only.
We also believe that an encoding method that handles explicitly the
nature of processes is essential for advancing the state-of-the-art. This is
claimed by considering that most methods are adapted or adopted from
other areas. Therefore, this research line is promising and has several
opportunities for work to be developed.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.
References

Ahmed, N.K., Rossi, R.A., Lee, J.B., Willke, T.L., Zhou, R., Kong, X., Eldardiry, H., 2022.
Role-based graph embeddings. IEEE Trans. Knowl. Data Eng. 34 (5), 2401–2415.
http://dx.doi.org/10.1109/TKDE.2020.3006475.

Al-Jebrni, A., Cai, H., Jiang, L., 2018. Predicting the next process event using convo-
lutional neural networks. In: International Conference on Progress in Informatics
and Computing. (PIC), pp. 332–338. http://dx.doi.org/10.1109/PIC.2018.8706282.

Appice, A., Malerba, D., 2016. A co-training strategy for multiple view clustering in
process mining. IEEE Trans. Serv. Comput. 9 (6), 832–845. http://dx.doi.org/10.
1109/TSC.2015.2430327.

Baevski, A., Hsu, W., Xu, Q., Babu, A., Gu, J., Auli, M., 2022. Data2vec: A general
framework for self-supervised learning in speech, vision and language. In: Chaud-
huri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., Sabato, S. (Eds.), International
Conference on Machine Learning. (ICML), In: Proceedings of Machine Learning
Research, vol. 162, PMLR, pp. 1298–1312.

Barbon Junior, S., Ceravolo, P., Damiani, E., Marques Tavares, G., 2020. Evaluating
trace encoding methods in process mining. In: International Symposium: From Data
to Models and Back. Springer, pp. 174–189.

Belkin, M., Niyogi, P., 2001. Laplacian eigenmaps and spectral techniques for embed-
ding and clustering. In: International Conference on Neural Information Processing
Systems: Natural and Synthetic (NIPS’01). NIPS ’01, MIT Press, Cambridge, MA,
USA, pp. 585–591.

Berti, A., van der Aalst, W.M., 2019. Reviving token-based replay: Increasing speed
while improving diagnostics. In: ATAED@ Petri Nets/ACSD. pp. 87–103.

Bezerra, F., Wainer, J., 2013. Algorithms for anomaly detection of traces in logs of
process aware information systems. Inf. Syst. 38 (1), 33–44.

Burattin, A., 2015. PLG2: Multiperspective processes randomization and simulation for
online and offline settings. arXiv:1506.08415.

Camargo, M., Dumas, M., Rojas, O.G., 2019. Learning accurate LSTM models of business
processes. In: Hildebrandt, T.T., van Dongen, B.F., Röglinger, M., Mendling, J.
(Eds.), Business Process Management. (BPM), In: Lecture Notes in Computer
Science, vol. 11675, Springer, pp. 286–302. http://dx.doi.org/10.1007/978-3-030-
26619-6_19.

Cao, S., Lu, W., Xu, Q., 2015. GraRep: Learning graph representations with global struc-
tural information. In: International on Conference on Information and Knowledge
Management (CIKM). CIKM ’15, Association for Computing Machinery, New York,
NY, USA, pp. 891–900. http://dx.doi.org/10.1145/2806416.2806512.

Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M., 2018. Conformance Checking
- Relating Processes and Models. Springer, pp. 1–263. http://dx.doi.org/10.1007/
978-3-319-99414-7.

Ceravolo, P., Damiani, E., Torabi, M., Barbon Junior, S., 2017. Toward a new generation
of log pre-processing methods for process mining. In: Carmona, J., Engels, G.,
Kumar, A. (Eds.), Business Process Management Forum. (BPM), In: Lecture Notes
in Business Information Processing, vol. 297, Springer, pp. 55–70. http://dx.doi.
org/10.1007/978-3-319-65015-9_4.

Ceravolo, P., Tavares, G.M., Junior, S.B., Damiani, E., 2020. Evaluation goals for online
process mining: A concept drift perspective. IEEE Trans. Serv. Comput..

Chiorrini, A., Diamantini, C., Genga, L., Pioli, M., Potena, D., 2022. Embedding process
structure in activities for process mapping and comparison. In: Chiusano, S.,
Cerquitelli, T., Wrembel, R., rvåg, K.N., Catania, B., Vargas-Solar, G., Zumpano, E.
(Eds.), New Trends in Database and Information Systems (ADBIS), Vol. 1652.
Springer, pp. 119–129. http://dx.doi.org/10.1007/978-3-031-15743-1_12.

Daffertshofer, A., Lamoth, C.J., Meijer, O.G., Beek, P.J., 2004. PCA in studying
coordination and variability: A tutorial. Clin. Biomech. 19 (4), 415–428.

Donnat, C., Zitnik, M., Hallac, D., Leskovec, J., 2018. Learning structural node embed-
dings via diffusion wavelets. In: International Conference on Knowledge Discovery
and Data Mining (SIGKDD). KDD ’18, Association for Computing Machinery, New
York, NY, USA, pp. 1320–1329. http://dx.doi.org/10.1145/3219819.3220025.

Elkhawaga, G., Abu-Elkheir, M., Reichert, M., 2022. Explainability of predictive process
monitoring results: Can you see my data issues? Appl. Sci. 12 (16), 8192.

Evermann, J., Rehse, J., Fettke, P., 2016. A deep learning approach for predicting
process behaviour at runtime. In: Dumas, M., Fantinato, M. (Eds.), Business
Process Management Workshops. (BPM), In: Lecture Notes in Business Information
Processing, vol. 281, pp. 327–338. http://dx.doi.org/10.1007/978-3-319-58457-
7_24.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F., 2019.
Auto-sklearn: Efficient and robust automated machine learning. In: Hutter, F.,
Kotthoff, L., Vanschoren, J. (Eds.), Automated Machine Learning - Methods,
Systems, Challenges. In: The Springer Series on Challenges in Machine Learning,
Springer, pp. 113–134. http://dx.doi.org/10.1007/978-3-030-05318-5_6.

Francescomarino, C.D., Dumas, M., Maggi, F.M., Teinemaa, I., 2019. Clustering-based
predictive process monitoring. IEEE Trans. Serv. Comput. 12 (6), 896–909. http:
//dx.doi.org/10.1109/TSC.2016.2645153.

Francescomarino, C.D., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A., 2017.
An eye into the future: Leveraging A-priori knowledge in predictive business
process monitoring. In: Carmona, J., Engels, G., Kumar, A. (Eds.), Business Process
Management. (BPM), In: Lecture Notes in Computer Science, vol. 10445, Springer,
pp. 252–268. http://dx.doi.org/10.1007/978-3-319-65000-5_15.
22
Gasparetto, A., Marcuzzo, M., Zangari, A., Albarelli, A., 2022. A survey on text
classification algorithms: From text to predictions. Information 13 (2), 83. http:
//dx.doi.org/10.3390/info13020083.

Goldberg, Y., 2016. A primer on neural network models for natural language processing.
J. Artificial Intelligence Res. 57, 345–420. http://dx.doi.org/10.1613/jair.4992.

Goyal, P., Ferrara, E., 2018. Graph embedding techniques, applications, and per-
formance: A survey. Knowl.-Based Syst. 151, 78–94. http://dx.doi.org/10.1016/
j.knosys.2018.03.022.

Grover, A., Leskovec, J., 2016. Node2vec: Scalable feature learning for networks. In:
International Conference on Knowledge Discovery and Data Mining (SIGKDD). KDD
’16, Association for Computing Machinery, New York, NY, USA, pp. 855–864.
http://dx.doi.org/10.1145/2939672.2939754.

Hompes, B., Buijs, J., van der Aalst, W., Dixit, P., Buurman, J., 2015. Discovering
deviating cases and process variants using trace clustering. In: Benelux Conference
on Artificial Intelligence. (BNAIC).

Kim, H., Teh, Y.W., 2018. Scaling up the automatic statistician: Scalable structure
discovery using Gaussian processes. In: Storkey, A.J., Pérez-Cruz, F. (Eds.), In-
ternational Conference on Artificial Intelligence and Statistics. (AISTATS), In:
Proceedings of Machine Learning Research, vol. 84, PMLR, pp. 575–584.

Koninck, P.D., vanden Broucke, S., Weerdt, J.D., 2018. Act2vec, trace2vec, log2vec,
and model2vec: Representation learning for business processes. In: Weske, M.,
Montali, M., Weber, I., vom Brocke, J. (Eds.), Business Process Management.
(BPM), In: Lecture Notes in Computer Science, vol. 11080, Springer, pp. 305–321.
http://dx.doi.org/10.1007/978-3-319-98648-7_18.

Kratsch, W., Manderscheid, J., Röglinger, M., Seyfried, J., 2021. Machine learning
in business process monitoring: A comparison of deep learning and classical
approaches used for outcome prediction. Bus. Inf. Syst. Eng. 63 (3), 261–276.
http://dx.doi.org/10.1007/s12599-020-00645-0.

Le, Q., Mikolov, T., 2014. Distributed representations of sentences and documents. In:
Proceedings of the 31st International Conference on International Conference on
Machine Learning - Vol. 32. ICML ’14, JMLR.org, pp. II–1188–II–1196.

Li, J., Wu, L., Guo, R., Liu, C., Liu, H., 2019. Multi-level network embedding with
boosted low-rank matrix approximation. In: Spezzano, F., Chen, W., Xiao, X. (Eds.),
International Conference on Advances in Social Networks Analysis and Mining.
(ASONAM), ACM, pp. 49–56. http://dx.doi.org/10.1145/3341161.3342864.

Lin, L., Wen, L., Wang, J., 2019. MM-pred: A deep predictive model for multi-attribute
event sequence. In: Berger-Wolf, T.Y., Chawla, N.V. (Eds.), International Conference
on Data Mining (SDM), SDM 2019, Calgary, Alberta, Canada, May 2-4, 2019. SIAM,
pp. 118–126. http://dx.doi.org/10.1137/1.9781611975673.14.

Lorena, A.C., Garcia, L.P., Lehmann, J., Souto, M.C., Ho, T.K., 2019. How complex is
your classification problem? A survey on measuring classification complexity. ACM
Comput. Surv. 52 (5), 1–34.

Luhn, H.P., 1958. The automatic creation of literature abstracts. IBM J. Res. Dev. 2
(2), 159–165. http://dx.doi.org/10.1147/rd.22.0159.

Mauro, N.D., Appice, A., Basile, T.M.A., 2019. Activity prediction of business process
instances with inception CNN models. In: Alviano, M., Greco, G., Scarcello, F.
(Eds.), Advances in Artificial Intelligence. (AI*IA), In: Lecture Notes in Computer
Science, vol. 11946, Springer, pp. 348–361. http://dx.doi.org/10.1007/978-3-030-
35166-3_25.

Mehdiyev, N., Mayer, L., Lahann, J., Fettke, P., 2022. Deep learning-based clustering of
processes and their visual exploration: An industry 4.0 use case for small, medium-
sized enterprises. Expert Syst. n/a (n/a), e13139. http://dx.doi.org/10.1111/exsy.
13139.

Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013a. Efficient estimation of word
representations in vector space. In: Bengio, Y., LeCun, Y. (Eds.), International
Conference on Learning Representations. (ICLR).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J., 2013b. Distributed
representations of words and phrases and their compositionality. In: Burges, C.J.C.,
Bottou, L., Ghahramani, Z., Weinberger, K.Q. (Eds.), Neural Information Processing
Systems. (NIPS), pp. 3111–3119.

Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M., 2019. BINet: Multi-perspective
business process anomaly classification. Inf. Syst. 101458.

Olson, R.S., Moore, J.H., 2016. TPOT: A tree-based pipeline optimization tool for
automating machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (Eds.),
Workshop on Automatic Machine Learning (AutoML), Co-Located with ICML. In:
JMLR Workshop and Conference Proceedings, vol. 64, JMLR.org, pp. 66–74.

Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W., 2016. Asymmetric transitivity preserving
graph embedding. In: Krishnapuram, B., Shah, M., Smola, A.J., Aggarwal, C.C.,
Shen, D., Rastogi, R. (Eds.), International Conference on Knowledge Discovery and
Data Mining. (SIGKDD), ACM, pp. 1105–1114. http://dx.doi.org/10.1145/2939672.
2939751.

Pasquadibisceglie, V., Appice, A., Castellano, G., Fiorentino, N., Malerba, D., 2022.
STARDUST: A novel process mining approach to discover evolving models from
trace streams. IEEE Trans. Serv. Comput. 1–14. http://dx.doi.org/10.1109/TSC.
2022.3215502.

Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D., 2019. Using convolutional
neural networks for predictive process analytics. In: International Conference on
Process Mining. (ICPM), IEEE, pp. 129–136. http://dx.doi.org/10.1109/ICPM.2019.
00028.

http://dx.doi.org/10.1109/TKDE.2020.3006475
http://dx.doi.org/10.1109/PIC.2018.8706282
http://dx.doi.org/10.1109/TSC.2015.2430327
http://dx.doi.org/10.1109/TSC.2015.2430327
http://dx.doi.org/10.1109/TSC.2015.2430327
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb4
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb5
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb5
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb5
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb5
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb5
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb6
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb6
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb6
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb6
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb6
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb6
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb6
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb7
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb7
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb7
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb8
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb8
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb8
http://arxiv.org/abs/1506.08415
http://dx.doi.org/10.1007/978-3-030-26619-6_19
http://dx.doi.org/10.1007/978-3-030-26619-6_19
http://dx.doi.org/10.1007/978-3-030-26619-6_19
http://dx.doi.org/10.1145/2806416.2806512
http://dx.doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1007/978-3-319-65015-9_4
http://dx.doi.org/10.1007/978-3-319-65015-9_4
http://dx.doi.org/10.1007/978-3-319-65015-9_4
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb14
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb14
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb14
http://dx.doi.org/10.1007/978-3-031-15743-1_12
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb16
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb16
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb16
http://dx.doi.org/10.1145/3219819.3220025
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb18
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb18
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb18
http://dx.doi.org/10.1007/978-3-319-58457-7_24
http://dx.doi.org/10.1007/978-3-319-58457-7_24
http://dx.doi.org/10.1007/978-3-319-58457-7_24
http://dx.doi.org/10.1007/978-3-030-05318-5_6
http://dx.doi.org/10.1109/TSC.2016.2645153
http://dx.doi.org/10.1109/TSC.2016.2645153
http://dx.doi.org/10.1109/TSC.2016.2645153
http://dx.doi.org/10.1007/978-3-319-65000-5_15
http://dx.doi.org/10.3390/info13020083
http://dx.doi.org/10.3390/info13020083
http://dx.doi.org/10.3390/info13020083
http://dx.doi.org/10.1613/jair.4992
http://dx.doi.org/10.1016/j.knosys.2018.03.022
http://dx.doi.org/10.1016/j.knosys.2018.03.022
http://dx.doi.org/10.1016/j.knosys.2018.03.022
http://dx.doi.org/10.1145/2939672.2939754
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb27
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb27
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb27
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb27
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb27
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb28
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb28
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb28
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb28
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb28
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb28
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb28
http://dx.doi.org/10.1007/978-3-319-98648-7_18
http://dx.doi.org/10.1007/s12599-020-00645-0
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb31
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb31
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb31
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb31
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb31
http://dx.doi.org/10.1145/3341161.3342864
http://dx.doi.org/10.1137/1.9781611975673.14
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb34
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb34
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb34
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb34
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb34
http://dx.doi.org/10.1147/rd.22.0159
http://dx.doi.org/10.1007/978-3-030-35166-3_25
http://dx.doi.org/10.1007/978-3-030-35166-3_25
http://dx.doi.org/10.1007/978-3-030-35166-3_25
http://dx.doi.org/10.1111/exsy.13139
http://dx.doi.org/10.1111/exsy.13139
http://dx.doi.org/10.1111/exsy.13139
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb38
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb38
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb38
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb38
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb38
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb39
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb39
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb39
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb39
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb39
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb39
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb39
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb40
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb40
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb40
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb41
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb41
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb41
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb41
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb41
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb41
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb41
http://dx.doi.org/10.1145/2939672.2939751
http://dx.doi.org/10.1145/2939672.2939751
http://dx.doi.org/10.1145/2939672.2939751
http://dx.doi.org/10.1109/TSC.2022.3215502
http://dx.doi.org/10.1109/TSC.2022.3215502
http://dx.doi.org/10.1109/TSC.2022.3215502
http://dx.doi.org/10.1109/ICPM.2019.00028
http://dx.doi.org/10.1109/ICPM.2019.00028
http://dx.doi.org/10.1109/ICPM.2019.00028

Engineering Applications of Artificial Intelligence 126 (2023) 107028G.M. Tavares et al.
Pennington, J., Socher, R., Manning, C.D., 2014. Glove: Global vectors for word
representation. In: Empirical Methods in Natural Language Processing. (EMNLP),
pp. 1532–1543.

Perozzi, B., Al-Rfou, R., Skiena, S., 2014. DeepWalk: online learning of social represen-
tations. In: Macskassy, S.A., Perlich, C., Leskovec, J., Wang, W., Ghani, R. (Eds.),
International Conference on Knowledge Discovery and Data Mining. (SIGKDD),
ACM, pp. 701–710. http://dx.doi.org/10.1145/2623330.2623732.

Perozzi, B., Kulkarni, V., Chen, H., Skiena, S., 2017. Don’t walk, skip! online learning
of multi-scale network embeddings. In: International Conference on Advances in
Social Networks Analysis and Mining (ASONAM). ASONAM ’17, Association for
Computing Machinery, New York, NY, USA, pp. 258–265. http://dx.doi.org/10.
1145/3110025.3110086.

Polato, M., Sperduti, A., Burattin, A., de Leoni, M., 2018. Time and activity sequence
prediction of business process instances. Computing 100 (9), 1005–1031. http:
//dx.doi.org/10.1007/s00607-018-0593-x.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J., 2018. Network embedding as matrix
factorization: Unifying DeepWalk, LINE, PTE, and node2vec. In: International
Conference on Web Search and Data Mining (WSDM). WSDM ’18, Association for
Computing Machinery, New York, NY, USA, pp. 459–467. http://dx.doi.org/10.
1145/3159652.3159706.

Rama-Maneiro, E., Vidal, J., Lama, M., 2021. Deep learning for predictive business
process monitoring: Review and benchmark. IEEE Trans. Serv. Comput. 1. http:
//dx.doi.org/10.1109/TSC.2021.3139807.

Rizzi, W., Francescomarino, C.D., Maggi, F.M., 2020. Explainability in predictive process
monitoring: When understanding helps improving. In: Fahland, D., Ghidini, C.,
Becker, J., Dumas, M. (Eds.), Business Process Management Forum - BPM. In:
Lecture Notes in Business Information Processing, vol. 392, Springer, pp. 141–158.
http://dx.doi.org/10.1007/978-3-030-58638-6_9.

Rozemberczki, B., Sarkar, R., 2020. Fast sequence-based embedding with diffusion
graphs. CoRR arXiv:2001.07463.

Russell, N., ter Ahm Arthur Hofstede, van der Aalst, W.M., Mulyar, N.N., 2006.
Workflow Control-Flow Patterns: A Revised View.

Sasaki, Y., et al., 2007. The truth of the F-measure. Teach. Tutor. Mater. 1 (5), 1–5.
Senderovich, A., Francescomarino, C.D., Maggi, F.M., 2019. From knowledge-driven to

data-driven inter-case feature encoding in predictive process monitoring. Inf. Syst.
84, 255–264. http://dx.doi.org/10.1016/j.is.2019.01.007.

Sun, D.L., Févotte, C., 2014. Alternating direction method of multipliers for non-
negative matrix factorization with the beta-divergence. In: International Conference
on Acoustics, Speech and Signal Processing. (ICASSP), pp. 6201–6205. http://dx.
doi.org/10.1109/ICASSP.2014.6854796.

Tavares, G.M., Barbon, S., 2020. Analysis of language inspired trace representation
for anomaly detection. In: Bellatreche, L., Bieliková, M., Boussaïd, O., Catania, B.,
Darmont, J., Demidova, E., Duchateau, F., Hall, M., Merčun, T., Novikov, B.,
Papatheodorou, C., Risse, T., Romero, O., Sautot, L., Talens, G., Wrembel, R.,
Žumer, M. (Eds.), ADBIS, TPDL and EDA 2020 Common Workshops and Doctoral
Consortium. Springer International Publishing, Cham, pp. 296–308.
23
Tavares, G.M., Barbon Junior, S., Damiani, E., Ceravolo, P., 2022a. Selecting optimal
trace clustering pipelines with meta-learning. In: Brazilian Conference on Intelligent
Systems. (BRACIS), Springer, pp. 150–164.

Tavares, G.M., Ceravolo, P., Da Costa, V.G.T., Damiani, E., Junior, S.B., 2019.
Overlapping analytic stages in online process mining. In: International Conference
on Services Computing. (SCC), IEEE, pp. 167–175.

Tavares, G.M., Junior, S.B., 2021. Process mining encoding via meta-learning for an
enhanced anomaly detection. In: European Conference on Advances in Databases
and Information Systems. Springer, pp. 157–168.

Tavares, G.M., Junior, S.B., Damiani, E., 2022b. Automating process discov-
ery through meta-learning. In: Sellami, M., Ceravolo, P., Reijers, H.A.,
Gaaloul, W., Panetto, H. (Eds.), Cooperative Information Systems. (CoopIS),
Springer International Publishing, Cham, pp. 205–222.

Tax, N., Verenich, I., Rosa, M.L., Dumas, M., 2017. Predictive business process moni-
toring with LSTM neural networks. In: Dubois, E., Pohl, K. (Eds.), Conference on
Advanced Information Systems Engineering. (CAiSE), In: Lecture Notes in Computer
Science, vol. 10253, Springer, pp. 477–492. http://dx.doi.org/10.1007/978-3-319-
59536-8_30.

Taymouri, F., Rosa, M.L., Erfani, S.M., 2021. A deep adversarial model for suffix and
remaining time prediction of event sequences. In: Demeniconi, C., Davidson, I.
(Eds.), International Conference on Data Mining. (SDM), SIAM, pp. 522–530.
http://dx.doi.org/10.1137/1.9781611976700.59.

Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M., 2019. Outcome-oriented predictive
process monitoring: Review and benchmark. ACM Trans. Knowl. Discov. Data 13
(2), 17:1–17:57.

Torres, L., Chan, K.S., Eliassi-Rad, T., 2020. GLEE: geometric Laplacian eigenmap
embedding. J. Complex Netw. 8 (2), http://dx.doi.org/10.1093/comnet/cnaa007.

van der Aalst, W.M.P., 2016. Process Mining - Data Science in Action, Second Edition.
Springer, http://dx.doi.org/10.1007/978-3-662-49851-4.

Venugopal, I., Töllich, J., Fairbank, M., Scherp, A., 2021. A comparison of deep-
learning methods for analysing and predicting business processes. In: International
Joint Conference on Neural Networks. (IJCNN), IEEE, pp. 1–8. http://dx.doi.org/
10.1109/IJCNN52387.2021.9533742.

Verbeek, H.M.W., de Carvalho, R.M., 2018. Log skeletons: A classification approach to
process discovery. CoRR arXiv:1806.08247.

Weiss, S.M., Indurkhya, N., Zhang, T., 2015. Fundamentals of Predictive Text Mining,
Second Edition In: Texts in Computer Science, Springer, http://dx.doi.org/10.1007/
978-1-4471-6750-1.

Yang, D., Rosso, P., Li, B., Cudre-Mauroux, P., 2019. NodeSketch: Highly-efficient graph
embeddings via recursive sketching. In: International Conference on Knowledge Dis-
covery and Data Mining (SIGKDD). KDD ’19, Association for Computing Machinery,
New York, NY, USA, pp. 1162–1172. http://dx.doi.org/10.1145/3292500.3330951.

http://refhub.elsevier.com/S0952-1976(23)01212-5/sb45
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb45
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb45
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb45
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb45
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/3110025.3110086
http://dx.doi.org/10.1145/3110025.3110086
http://dx.doi.org/10.1145/3110025.3110086
http://dx.doi.org/10.1007/s00607-018-0593-x
http://dx.doi.org/10.1007/s00607-018-0593-x
http://dx.doi.org/10.1007/s00607-018-0593-x
http://dx.doi.org/10.1145/3159652.3159706
http://dx.doi.org/10.1145/3159652.3159706
http://dx.doi.org/10.1145/3159652.3159706
http://dx.doi.org/10.1109/TSC.2021.3139807
http://dx.doi.org/10.1109/TSC.2021.3139807
http://dx.doi.org/10.1109/TSC.2021.3139807
http://dx.doi.org/10.1007/978-3-030-58638-6_9
http://arxiv.org/abs/2001.07463
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb53
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb53
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb53
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb54
http://dx.doi.org/10.1016/j.is.2019.01.007
http://dx.doi.org/10.1109/ICASSP.2014.6854796
http://dx.doi.org/10.1109/ICASSP.2014.6854796
http://dx.doi.org/10.1109/ICASSP.2014.6854796
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb57
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb57
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb57
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb57
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb57
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb57
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb57
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb57
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb57
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb57
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb57
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb58
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb58
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb58
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb58
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb58
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb59
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb59
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb59
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb59
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb59
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb60
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb60
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb60
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb60
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb60
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb61
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb61
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb61
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb61
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb61
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb61
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb61
http://dx.doi.org/10.1007/978-3-319-59536-8_30
http://dx.doi.org/10.1007/978-3-319-59536-8_30
http://dx.doi.org/10.1007/978-3-319-59536-8_30
http://dx.doi.org/10.1137/1.9781611976700.59
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb64
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb64
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb64
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb64
http://refhub.elsevier.com/S0952-1976(23)01212-5/sb64
http://dx.doi.org/10.1093/comnet/cnaa007
http://dx.doi.org/10.1007/978-3-662-49851-4
http://dx.doi.org/10.1109/IJCNN52387.2021.9533742
http://dx.doi.org/10.1109/IJCNN52387.2021.9533742
http://dx.doi.org/10.1109/IJCNN52387.2021.9533742
http://arxiv.org/abs/1806.08247
http://dx.doi.org/10.1007/978-1-4471-6750-1
http://dx.doi.org/10.1007/978-1-4471-6750-1
http://dx.doi.org/10.1007/978-1-4471-6750-1
http://dx.doi.org/10.1145/3292500.3330951

	Trace encoding in process mining: A survey and benchmarking
	Introduction
	Problem Definition
	Related Works
	Background Notions
	Encoding Methods
	Brief Literature Review on Encoding in Process Mining
	PM-based Encoding
	Text-inspired Encoding
	Graph-based Encoding

	Methodology
	Implementation Overview
	Evaluation Metrics
	Experimental Design

	Benchmarking Process Mining Encoding
	Expressivity
	Scalability
	Correlation power
	Domain agnosticism

	Encoding Method Selection
	Parameter Impact
	Anomaly Analysis
	Log Behavior

	Issues, Discussion, and Future Directions
	Overview of Experiments
	Challenges and Future Directions

	Conclusion
	Declaration of competing interest
	Data availability
	References

