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In brief 26 

Ovarian tissue cryopreservation and culture provide an option for fertility preservation 27 

without tissue grafting, but need optimization. This study reveals that vitrified bovine ovarian 28 

tissue can be cultured on agarose gel and maintain follicle morphology, low activation and 29 

low apoptosis. 30 

 31 

Abstract 32 

Ovarian tissue preservation is hitherto a promising fertility insurance option for precious 33 

animals. Ovarian tissue vitrification and culture combined approach would eliminate the need 34 

of transplanting ovarian tissue to obtain mature oocytes. We aimed at optimizing vitrification 35 

and in vitro culture conditions for improved bovine ovarian tissue viability. Ovaries obtained 36 

from the slaughterhouse were punched into fragments and divided into three groups. Group 1 37 

(fresh) was divided into two and immediately placed in two culture systems (culture inserts 38 

and agarose inserts). Group 2 was vitrified, warmed, and placed in the two culture systems 39 

while group 3 was only equilibrated then placed in the two culture systems. All cultures were 40 

maintained for six days and spent media were collected on alternate days for cytokine 41 

(interleukin 1β and interleukin 6) evaluation. Fragments were fixed for morphology 42 

assessment and immunohistochemistry. Higher percentages (P<0.05) of grade one 43 

(morphologically intact) follicles were observed in fragments on agarose compared to those 44 

on culture inserts at days two and four of culture. Conversely, we found higher (P<0.05) shifts 45 

of primordial follicles to transitional follicles in fragments on culture inserts vis-à-vis agarose 46 

inserts which was consistent with higher proportion of Ki-67 and MCM-7 and activated 47 

caspase-3 positive follicles. In conclusion, in vitro culture of bovine ovarian tissue on agarose 48 

inserts maintained follicle morphology, low follicle activation and low apoptosis compared to 49 

culture inserts. 50 

 51 

Introduction 52 

Cryostorage of the germplasm is a possible approach to preserve the fertility of a given 53 

individual for later application of assisted reproductive technology (ART) (Picton et al. 2000). 54 

It is especially important for fertility preservation of cancer patients destined to undergo 55 

gonadotoxic therapies particularly those that are unable to produce gametes (Rives et al. 56 

2022).  Similarly, gonadal tissue preservation is one of the first line approaches to be 57 

considered when precious animals die suddenly or when gonadotoxic therapies are indicated 58 

(Meirow et al. 1999, Valli-Pulaski et al. 2018). Ovarian tissue cryopreservation is the only 59 

acceptable option for restoring both reproductive and endocrine functions of the ovary 60 

(Macklon 2020, Picton et al. 2000), especially for the purpose of biodiversity conservation in 61 

young endangered animals (Comizzoli 2015). The conventional cryostorage technique of 62 

ovarian tissue is the slow freezing method (Faheem et al. 2011). Recently, the focus has been 63 
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gradually turning towards vitrification, which is relatively simple to carry out in field 64 

conditions, since the technique does not require sophisticated laboratory equipment. Studies 65 

indicating the superiority of vitrification over slow freezing have been reported ranging from 66 

better tissue integrity to resumption of folliculogenesis and steroidogenesis both post grafting 67 

and in in vitro culture (Amorim et al. 2012, Gastal et al. 2018, Herraiz et al. 2020, Marques et 68 

al. 2019, Xiao et al. 2013). However, a number of factors could affect the efficiency of 69 

ovarian tissue vitrification, which may include but not be limited to the choice of 70 

cryoprotectant (CPA), rate of tissue permeation of CPA (Lotz et al. 2020), equilibration 71 

temperature (Mouttham and Comizzoli 2016), speed of cooling, size of fragments (Amorim et 72 

al. 2011b), decortication technique and thawing protocol (Herraiz et al. 2020), and presence or 73 

absence of non-permeable CPAs (Elliott et al. 2017). Vitrification requires a high amount of 74 

CPA, enough to create a glassy solid state when rapid cooling is applied in liquid nitrogen 75 

(Amorim et al. 2011a, Kometas et al. 2021, Shi et al. 2017). Therefore, CPA permeation of 76 

ovarian tissue is a critical factor that determines the success of vitrification, especially looking 77 

at the complexity of cell types and presence of extracellular space (Lotz et al. 2020). Although 78 

the technology of ovarian tissue cryopreservation is no longer considered experimental in 79 

humans according to the American Society for Reproductive Medicine (ASRM 2019) and 80 

despite the fact that babies have been born from this technology (Donnez and Dolmans 2017), 81 

many challenges are yet to be resolved. The bovine species is an excellent clinical model used 82 

to properly optimize and validate protocols for ultimate translation to the human patient and 83 

to other mammals (Anderson and Baird 2019, Callejo et al. 2013). 84 

The ultimate functional evaluation of thawed ovarian tissue may be after transplantation or in 85 

vitro culture. Warmed ovarian tissues can be xenografted in an immunocompromised animal 86 

or auto-transplanted (Kong et al. 2017). One of the limiting factors of this technique, apart 87 

from being invasive, is damage of the graft due to anoxia prior to establishment of a vascular 88 
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network, which may take several days in certain species (Anderson and Baird 2019, Kong et 89 

al. 2017, 2016, Liu et al. 2002, Van Eyck et al. 2009). Moreover, in some cases of cancer 90 

where individuals undergo gonadotoxic chemotherapies, the malignant cells may be present in 91 

the ovarian tissue thus risking the possibility of re-transplanting malignancy (Rosendahl et al. 92 

2010). Furthermore, acute depletion of the follicular pool arising from over activation post 93 

grafting has been reported (Gavish et al. 2014, Masciangelo et al. 2019). A promising 94 

alternative to the transplantation of ovarian tissue is in vitro culture, which can be done for 95 

whole tissue (in situ) or isolated follicles (ex situ) (Gastal et al. 2019, Lunardi et al. 2016, 96 

O'Brien et al. 2003, Paynter et al. 1999, Shoorei et al. 2019, Sutton et al. 2021, Telfer et al. 97 

2019). In addition, tissue damage from negative effects of vitrification were found to be 98 

ameliorated during in vitro culture of warmed ovarian tissue (Meng et al. 2022, Mouttham et 99 

al. 2015). However, in vitro culture of ovarian tissue is still experimental and more studies are 100 

required before it can be applied clinically (Telfer et al. 2019). The use of physical support 101 

such as hydrogel biomaterials is a well-known approach for supporting cellular integrity in 102 

tissue engineering (Awad et al. 2004). Regarding ovarian tissue, both culture inserts and 103 

hydrogels (agarose and alginate) have been reported for both in situ and ex situ culture of 104 

follicles (Laronda et al. 2014, Lunardi et al. 2016, West et al. 2007, Yang et al. 2017) 105 

(Fujihara et al. 2012). The main aim of this study is to optimize vitrification and subsequent in 106 

vitro culture of vitrified warmed bovine ovarian tissue. Therefore, the objectives were to 107 

evaluate the suitability of a vitrification protocol originally developed for larger ovarian tissue 108 

fragments intended for grafting, on smaller fragments suitable for in vitro tissue culture, and 109 

to test two in vitro culture conditions for sustaining bovine ovarian tissue viability after 110 

warming. 111 

Materials and method 112 

Chemicals and reagents  113 
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All chemicals were purchased from Sigma–Aldrich (Taufkirchen, Germany) unless stated 114 

otherwise. 115 

Ovary transport and preparation of ovarian fragments 116 

A total of 18 ovaries from 9 Belgian blue heifers were collected from slaughterhouse in a 117 

solution of normal saline and antibiotic (AB: Gentamicin 0.05 mg/mL (Gibco, Bleiswijk, 118 

Netherlands) in Dulbecco Phosphate Buffered Saline (DPBS), and immediately transported to 119 

the laboratory. No approval for use of animals for research was sought from ethics committee 120 

because ovaries were collected post mortem. 121 

Ovaries were washed three times with washing solution (DPBS and AB) and two times in 122 

dissecting solution (Leibovitz medium (Gibco, Bleiswijk, Netherlands) and AB). At least 2 123 

ovaries were used for each replicate experiment. Using a scalpel blade (Paramount Surgimed, 124 

New Delhi, India), the cortex of each ovary was sliced at an area with less visible follicles to 125 

make a 1 mm thick slice. A millimeter scale was placed beneath the dish containg the ovaries. 126 

A total of 76 equal ovarian tissue fragments were punched with 1.5 mm diameter biopsy 127 

punch (Kai medical, Oyana, Japan) from the sliced ovarian cortex for each experiment. 128 

Experimental design 129 

The detailed experimental design is presented in a flow chart (figure 1[I]) but briefly 130 

described as follows. Ovarian fragments were divided into 3 groups. Group 1 (fresh cultured 131 

[FC]) were immediately placed in culture for six days. Groups 2 and 3 were inserted on 30 G 132 

needles (four fragments per needle) to facilitate handling and maximize cooling rate. Three 133 

step equilibration and vitrification were performed. Group 2 (vitrified cultured [VC]) was 134 

vitrified and warmed, while group 3 was only equilibrated and warmed (equilibrated cultured 135 

[EC]). Each group was divided into two and placed in two culture systems (culture inserts and 136 

agarose inserts) for six days (see details below). Spent media were collected on alternate days 137 

from each well and sent for cytokine (interleukin 1β [IL-1β] and interleukin 6 [IL-6]) 138 
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profiling. At the end of each culture period, fragments were weighed and fixed for 6 hours in 139 

Bouin’s solution for morphology assessment and in neutral buffered formalin for 140 

immunohistochemistry. A total of six independent experiments were carried out.  141 

Vitrification and warming  142 

Vitrification procedure was based on the protocol described by Amorim et al. (2018, 2013).  143 

However, the tissue fragment size was reduced (1.5 mm diameter and 1 mm thickness) to 144 

conform with in vitro culture condition. Equilibration was performed in 5 ml tubes 145 

(Thermofisher, Roskilde, Denmark) at room temperature and based on a vitrification solution 146 

(VS) containing 10% (v/v) DMSO, 26% EG, 2.5% polyvinylpyrrolidone (PVP, MW 10 000) 147 

and 1 M sucrose in MEM (Gibco, Bleiswijk, Netherlands) + 20 mg/mL bovine serum albumin 148 

(BSA). Three step equilibrations involved 7 min in VS1 (25% VS in MEM + 20 mg/mL 149 

BSA), 4 min in VS2 (50% VS in MEM + 20 mg/mL BSA) and 3 min in VS3 (100% VS) at 150 

room temperature. Excess VS was soaked from the equilibrated fragments with sterile gauze 151 

then the needles were plunged directly into liquid nitrogen for vitrification (VC samples), 152 

while (EC) were directly passed into the different washes of warming solutions (WS). 153 

Ovarian fragments were warmed in WS1 (1 M sucrose in MEM supplemented with 20 154 

mg/mL BSA) at 37°C for 15 s and then moved through 3 washing steps with decreasing 155 

sucrose concentration at 37°C for 5 min each [WS2 (0.5 M sucrose in MEM supplemented 156 

with 20 mg/mL BSA), WS3 (0.25 M sucrose in MEM supplemented with 20 mg/mL BSA) 157 

and WS4 (MEM supplemented with 20 mg/mL BSA)]. 158 

Culture 159 

The culture medium was composed of Waymouth’s medium (Gibco, Bleiswijk, Netherlands) 160 

supplemented with insulin (10 µg/mL), transferrin (5.5 µg/mL), selenium (6.7 ng/mL), bovine 161 

serum albumin (1.25 µg/mL), sodium pyruvate (25 µg/mL) and gentamicin (0.05 mg/mL). 162 

Ovarian tissue fragments were cultured according to Yang et al. (2017) on culture inserts and 163 
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agarose inserts (Gohbara et al. 2010). Briefly, 1.5 g of agarose was heated and dissolved in 164 

distilled water (1.5% [w/v]) which corresponds to stiffness of 700 dynes/cm2 (Balgude et al. 165 

2001) and then poured and allowed to set in a 10-cm Petri dish. Hexahedrons (10 × 10 × 5 166 

mm) were dissected and then soaked in the culture medium for at least 24 hours for media 167 

infiltration. Twenty-four well dishes containing untreated culture inserts 0.4 µm pore size 168 

were used (Thermofisher, Roskilde, Denmark). For each replicate, 9 culture inserts and 9 169 

agarose inserts were used. Distilled water was placed in the 6 remaining empty wells to 170 

maintain adequate humidity in the dish. Culture medium was added to each well containing 171 

both inserts, so that the level of culture medium was near the upper surface of the agarose 172 

inserts thus, the agarose inserts were not completely submerged in the culture media. This 173 

creates a liquid gas interface that enhances gaseous exchange withing the tissue fragments 174 

(Gohbara et al. 2010). Four fragments were placed on each insert (agarose and culture) and 175 

kept separated from one another. Therefore, the groups were fresh cultured (FC); fresh 176 

cultured on agarose (FCA); vitrified cultured (VC); vitrified cultured on agarose (VCA); 177 

equilibrated cultured (EC) and equilibrated cultured on agarose (ECA). Culture was 178 

maintained for six days at 38°C and 5% CO2, and 200 µL of spent media was replaced every 179 

other day and used for assay of cytokines. 180 

Histology 181 

Routine histology was carried out using an automatic tissue processor (Richard-Allan 182 

MICROM STP120 Thermo Scientific, Waltham, USA). Bouin fixed blocks were sectioned (5 183 

µm thickness) and placed on glass slides and dried overnight. Hematoxylin and Eosin staining 184 

was conducted with Gemini AS automated slide Stainer (Epredia™ A81500001 Thermo 185 

Scientific, Waltham, USA) and cover slipped. Follicles were classified based on 186 

developmental stages as primordial when the oocyte was surrounded by flattened follicular 187 

cells; transitional when some the flattened follicular cells have been converted to cuboidal 188 
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cells or primary when all the follicular cells appeared cuboidal. Follicles were further graded 189 

into four grades based on (Paynter et al. 1999) with modification as follows (figure 1[II]): 190 

grade 1: spherical in shape, evenly distributed follicular cells, intact stroma, spherical oocyte 191 

and intact nucleus and nucleolus; grade 2: spherical in shape, evenly distributed follicular 192 

cells, intact stroma and spherical oocyte, misshapen nucleus and/or not homogenous 193 

cytoplasm; grade 3: follicular cells pulled away from the stroma but oocyte spherical; grade 4: 194 

follicular cells pulled away from the stroma and oocyte misshapen, vacuolated and pyknotic 195 

nucleus of granulosa cells. Follicles were expressed as percentage of the total follicles 196 

counted. Only follicles with visible nucleus were counted. Five sections were skipped 197 

between counted sections to avoid double counting. Representative micrographs of the 198 

different groups can be found in figure 2. 199 

Immunohistochemistry 200 

Immunohistochemical staining was performed automatically in a DAKO Autostainer 201 

(California, USA) following the manufacturer’s instructions for the three proteins assessed 202 

namely: Ki-67, (a conventional intranuclear proliferation marker with high expression at the 203 

G2 phase and mitosis), MCM-7 (less common but most reliable and sensitive proliferation 204 

marker which essentially functions in the initiation and elongation of DNA replication) 205 

(Juríková et al. 2016), and activated caspase-3 (commonly used as a reliable marker of 206 

cellular apoptosis). Briefly, formalin fixed blocks were sectioned (5 µm thickness) and placed 207 

on microscopic slides (Dako, California, USA). Slides were deparaffinized and rehydrated 208 

prior to antigen retrieval which was performed at 97˚C for 20 min in antigen retrieval solution 209 

[low pH (6.0) for Ki-67 and activated caspase-3; high Ph (9.0) for MCM-7 (Dako EnVision 210 

Flex, Glostrup, Denmark)]. Subsequently, the sections were washed in wash buffer (Dako 211 

EnVision Flex) and incubated with primary antibodies: anti-Ki-67 (clone MiB-1; Dako 212 

EnVision Flex), anti-MCM-7 (1:100; Santa Cruz Biotechnology, Heidelberg, Germany) and 213 
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anti-activated caspase-3 (1:400; Cell signaling, Massachusetts USA) in a Dako Autostainer 214 

Link48 for 20 min at room temperature. EnVison FLEX (Dako EnVision Flex, Glostrup, 215 

Denmark) reagents were used for visualization of all the studied antigens and the slides were 216 

counterstained with hematoxylin (Dako EnVision Flex, Glostrup, Denmark), as recommended 217 

by the manufacturer. Bovine tonsil was used as a positive control and finally sections were 218 

cover slipped, digitally scanned, and evaluated with a case viewer software (3Dhistech 219 

version 2.3.2). Follicles counted as immunopositive for the protein targets assessed must have 220 

shown brown staining on at least one follicular cell (figure 3, 4 and 5). 221 

Stromal cell density 222 

Nuclei of stromal cells were counted from an area of 5000 µm2 selected on each section in a 223 

midway between the periphery and the center of the section. The number of caspase-3 224 

positive stromal cells were also counted and presented as a ratio of the total stromal cells 225 

counted. 226 

Assay of cytokines  227 

Commercial ELISA kits for interleukin 1β (IL-1β) (Invitrogen, Vienna, Austria) and 228 

interleukin 6 (IL-6) (Invitrogen, Vienna, Austria) were used according to manufacturer’s 229 

instructions to measure the concentration of IL-1β and IL-6 in the spent culture media. High 230 

concentrations of these cytokines were associated with an increased activation of primordial 231 

follicle pool in murine ex vivo ovarian cortex (Bromfield and Sheldon 2013). Standard curve 232 

was created for each plate using the absorbance of the standard and the concentrations 233 

provided by the manufacturer. Then, absorbance was measured at room temperature with 234 

Multiskan GO spectrophotometer (Thermofisher scientific, Vantaa, Finland) and data were 235 

normalized against the weight of the ovarian tissue fragments to 10 mg for IL-1β and 5 mg for 236 

IL-6 then concentrations were interpolated using the standard curve. 237 

Statistical analysis 238 
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Discrete data obtained from counting follicles were analyzed using chi-square and presented 239 

in proportions as percentages. Concentrations of IL-1β were normally distributed (Shapiro-240 

Wilk test), therefore analyzed using one way analysis of variance (ANOVA) while analysis of 241 

covariance (ANCOVA) was used to measure effect of the culture system. In the case of IL-6, 242 

wherein data were not normally distributed, Kruskal-Wallis test was used and 95% confidence 243 

interval was considered. 244 

Results  245 

Morphology  246 

We investigated the effects of vitrification and culture system on the viability of primordial 247 

follicles within ovarian tissue fragments. When we consider the vitrified and equilibrated only 248 

groups, we found the lowest proportion of grade 1 follicles in the vitrified group (P<0.05) 249 

after six days of culture. Considering the two culture systems tested, the conventional culture 250 

inserts and agarose inserts, we observed higher proportion (P<0.05) of grade one follicles in 251 

fragments cultured on agarose (FCA and ECA) at day two of culture than those cultured on 252 

culture inserts (FC and EC). Similarly, at day four of culture, grade one follicles were 253 

significantly higher in VCA and ECA compared to those cultured on the conventional culture 254 

inserts (VC and EC, table 1).  255 

To explore the initiation and maintenance of follicle growth, we classified the follicles based 256 

on stage of development (figure 1 [II]) and determined the proportions (table 2). significantly 257 

(P<0.05) higher proportions of transitional follicles were observed at culture day 2 and 4 in 258 

fragments cultured on the conventional culture inserts (FC, VC, and EC) with very low 259 

variability at day 6. The distribution of primordial and transitional follicles was similar but 260 

inversely associated. In other words, the proportion of primordial follicles reduces as the days 261 

in culture increases with simultaneous increase in the proportion of transitional follicles. In 262 

addition to the evaluation of follicles, the stroma where these follicles reside was also 263 
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evaluated. The stromal cell density which involved stromal cell counts per 5000 µm2 did not 264 

show significant variations (P>0.05) among all the groups (table 3).  265 

Immunohistochemistry 266 

Immunolocalization of the two proliferation markers (Ki-67 and MCM-7) was carried out to 267 

validate the morphologically observed turnover of primordial to transitional follicles. In 268 

general, a higher proportion (P<0.05) of Ki-67 and MCM-7 positive follicles were recorded in 269 

fragments cultured on conventional culture inserts than in those cultured on agarose inserts 270 

which concurs with the distribution of the morphological classification (table 2). Interestingly, 271 

the two markers exhibited a very similar result although higher proportions were recorded in 272 

MCM-7. This is not surprising because MCM-7 is a protein that has been associated with 273 

initiation and elongation of DNA during replication, thus it can be detected earlier than Ki-67. 274 

Furthermore, apoptotic activity in the two culture systems was similar with the pattern of the 275 

proliferative activity. This means that, proportion of activated caspase-3 positive follicles 276 

were higher (P<0.05) in the culture system with conventional inserts than the culture system 277 

with agarose inserts. Similarly, activated caspase-3 positive stromal cells were significantly 278 

lower in fragments cultured on agarose inserts in most groups except at day 4 in EC (table 4).  279 

Cytokines 280 

One of the possible non-invasive ways of determining the integrity of cultured tissues is 281 

through spent culture media profiling. In this study, we evaluated two cytokines IL-1β and 6 282 

in the spent culture media. The mean serial concentrations of IL-1β across the six-day culture 283 

did not vary significantly among the groups (table 5). Similarly, the concentrations of IL-6 284 

were not different (P>0.05) across the six-day culture period. However, when we considered 285 

the effect of culture system, we found significant difference in IL-1β concentrations between 286 

culture on agarose and on culture inserts. 287 

 288 

 289 
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Discussion 290 

The objectives of this study were to evaluate the suitability of a vitrification protocol, and two 291 

in vitro culture conditions for sustaining bovine ovarian tissue viability. The vitrification 292 

protocol was a modification of a technique that was successfully applied to non-human 293 

primate where, ovarian fragments (8x3x1 mm) were vitrified-warmed and autografted 294 

(Amorim et al. 2013). Amorim et al. (2018) confirmed that both reproductive and endocrine 295 

functions of the grafted ovarian tissue were restored 18 months post grafting. In these two 296 

studies from Amorim’s lab, the same vitrification technique was applied although, the tissue 297 

size employed was designed to be suitable for tissue grafting as seen with previous studies 298 

involving transplantation post warming (Amorim et al. 2012, Kagawa et al. 2009). Therefore, 299 

we modified our tissue size to smaller fragments (1.5 mm diameter x 1 mm thickness) suitable 300 

for in vitro culture system (McLaughlin et al. 2018). In addition, it would simultaneously 301 

enhance tissue permeation rate of CPAs and increase cooling rate during vitrification. 302 

Furthermore, the vitrification protocol was composed of the best combination of different 303 

classes of CPAs including non-permeable CPAs (Elliott et al. 2017, Shahsavari et al. 2020) to 304 

ensure balanced osmotic changes during equilibration. 305 

Morphologically, when we consider the vitrified and equilibrated groups, the lowest 306 

proportion of grade 1 follicles was recorded in the vitrified group on the sixth day of culture. 307 

This shows that exposure of tissue fragments to vitrification results in damaging effects to the 308 

tissue structural integrity. On the contrary, Mouttham et al. (2015) reported that exposure of 309 

bovine ovarian tissue to equilibrating solution (50% concentration of vitrification solution) 310 

resulted in the same morphological damage that is observed after vitrification. However, these 311 

negative effects are certainly dependent on the composition of the solution and the protocol 312 

employed (Amorim et al. 2011b).  313 

Looking at our two culture systems, this study recorded a higher percentage of grade 1 314 

follicles in fragments cultured on agarose inserts within four days of culture. On the other 315 
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hand, a significant shift of primordial follicles to transitional follicles was observed from day 316 

2 and 4 of culture. This trend was significantly higher in the system with conventional culture 317 

inserts than in the system with agarose. This delineated a form of delayed activation in 318 

fragments cultured on agarose inserts, perhaps associated with a hidden role of mechanical 319 

signaling (Shah et al. 2018). Inert hydrogel biomaterials such as agarose or alginate are well 320 

known in supporting cellular integrity in tissue engineering (Awad et al. 2004), but their 321 

stiffness was inversely associated with the growth and development of secondary follicles 322 

(West et al. 2007). In this regard it could be hypothesized that the stiffness of the agarose gel 323 

inserts acting as extracellular matrix may have directly resulted in the delayed follicle 324 

activation. Woodruff and Shea (2011) also hypothesized that follicle activation, health and 325 

selection are dependent on physical environment where the follicle grows. Stromal cell 326 

density did not vary significantly in the present study similar to an earlier finding where no 327 

difference was reported in all treatment groups (Cavalcante et al. 2019).   328 

The morphological values were reinforced with the more objective immunostaining (Hawes et 329 

al. 2009). Immunosignals from both Ki-67 and MCM-7 showed similar pattern indicating a 330 

significant increase in proportion of immunopositive follicles from day 2 of culture on 331 

conventional culture inserts and on day 6 of culture on agarose. Generally, higher proportions 332 

of both Ki-67 and MCM-7 were observed in fragments cultured on the conventional culture 333 

inserts when compared with agarose inserts. Similarly, higher apoptosis (i.e., activated 334 

caspase-3) was observed in both follicles and stromal cells in ovarian tissue fragments 335 

cultured on the conventional culture inserts (table 3 and 4). This showed that despite having a 336 

more robust and immediate primordial follicle activation in fragments cultured on culture 337 

inserts, this condition was accompanied with lower viability. The high follicular cell 338 

proliferation recorded may be attributed to the immediate nutrient availability for tissue 339 

fragments since fragments were partially covered by a thin film of medium with a 340 



14 

 

simultaneous lower gas exchange. Morimoto et al. (2007) reported that higher oxygen tension 341 

is required to maintain human primordial follicle viability in in vitro culture up to 15 days.  342 

In the current study we have found a high proportion of primordial follicle activation within 343 

the first 4 days of culture on inserts, whereas most follicle activation was seen at the sixth day 344 

of culture on agarose. Hyperactivation of primordial follicles has been postulated to be 345 

attributed to suppression of the Hippo pathway which could be associated to mechanical 346 

signals during tissue preparation (Grosbois and Demeestere 2018, Telfer et al. 2019). Ideally, 347 

global activation of primordial follicles may be desirable perhaps to produce high number of 348 

preantral follicles which can then be isolated for further development and maturation of 349 

oocytes in multistep culture condition (Telfer and Zelinski 2013). This is because, in situ 350 

culture of primordial follicles is an ideal condition to initiate follicle growth until preantral 351 

stage where they stagnate and mostly regress (Telfer et al. 2019). However, this trait of 352 

superhigh activation of primordial follicles is not devoid of consequences to ovarian tissue 353 

preservation technology, ranging from abnormalities to follicle development and atresia in in 354 

vitro culture to post graft follicle pool depletion referred to as follicle “burn out” (Bertoldo et 355 

al. 2018, Gavish et al. 2014). Although the burn out phenomenon that occurs after the ovarian 356 

fragment has been transplanted could be as a result of tissue ischemia that occurs prior to 357 

vascularization of the graft; there is evidence that it could be sequel to hyperactivation 358 

(Gavish et al. 2014). Thus, we hypothesize that the use of possible attenuating agents of 359 

follicle hyperactivation could serve as an alternative to follicle burn out. Although 360 

investigations would be necessary, since delayed follicle activation was obtained in fragments 361 

cultured on agarose, this could be an option. The use of in vitro culture on agarose before 362 

grafting should be tested, as well as extended culture period to achieve higher follicle 363 

activation in vitro. 364 

In this study, we limited the culture period to six days to understand the activation pattern of 365 

the two culture systems. However, future perspective should include a longer duration 366 
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perhaps coupled with advanced molecular studies to understand the pathways involved which 367 

would likely lead to the ultimate goal of in vitro grown oocytes. Although producing a 368 

matured oocyte from primordial follicles have been demonstrated in the mice (Eppig and 369 

O’Brien 1996, O'Brien et al. 2003), the technology is at its infancy in the larger mammals 370 

(Telfer and Andersen 2021). Previously, studies have shown that, primordial follicle 371 

activation and development until the secondary stage is achievable in situ between 4 to 8 days 372 

in culture. However, further growth and development from the secondary stage requires 373 

follicle isolation and independent ex situ culture (Smitz et al. 2010, Telfer et al. 2019).  374 

Furthermore, it is challenging to non-invasively evaluate the integrity of tissue explants in real 375 

time, and tissues are usually exposed to an invasive end point evaluation procedure such as 376 

histology. However, one of the alternatives is to analyse the spent media for cytokines, 377 

biopolymers, or nutrient utilization (Plekhanov et al. 2020). In the current study, we assayed 378 

cytokines (IL-1β and IL-6) which were found to be statistically the same in most treatments, 379 

notwithstanding, the significant variability between culture on agarose and on culture inserts 380 

with regards to IL-1β. This indicate that, a more robust analysis of the spent culture media 381 

may be useful to strengthen our understanding on ovarian tissue culture system and perhaps 382 

pave the way for optimisation of culture formulations. Moreover, this may further help in the 383 

development of procedures for non-invasive ovarian tissue evaluation. The more consistent 384 

pattern of IL-1β concentrations seen in fragments cultured on agarose could be due to their 385 

interaction with the agarose insert as an extra cellular matrix since IL-1β has multifaceted 386 

functions (Bent et al. 2018). In contrast, a study on murine ex vivo ovarian cortex reported an 387 

association between increased IL-1, IL-6 and IL-8 and increased activation of primordial 388 

follicle pool when the culture was challenged with lipopolysaccharides (Bromfield and 389 

Sheldon 2013). In an older in vitro study, supplementation with human recombinant IL-1β 390 

reversed an induced neurodegeneration (Strijbos and Rothwell 1995).  391 
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In conclusion, this study shows that vitrification of bovine ovarian tissue using a protocol 392 

originally developed for larger tissue dimension can be used for smaller dimension although 393 

deleterious effects of exposure to cryoprotectants still remain a big challenge. This study also 394 

shows that in vitro culture of bovine ovarian tissue on agarose inserts maintained good follicle 395 

morphology, low follicle activation, and low apoptosis of both follicles and stromal cells vis-396 

a-vis culture inserts. This strongly indicates that agarose as a physical support could have 397 

played a role in the activation delay of follicles and could therefore be an attenuating option 398 

for fragments intended for grafting. It may equally serve as a model to further understand the 399 

mechanism of folliculogenesis in vitro.  400 

Our findings provide baseline information that may be utilized for further studies to 401 

understand the basic physiology of initiation and maintenance of primordial follicle growth 402 

necessary for fine tuning in vitro culture conditions of ovarian tissue. More studies must be 403 

carried out to understand mechanisms responsible for the observed effect of culturing ovarian 404 

fragments on agarose inserts. There is no doubt that the current study is just a tip of the 405 

iceberg regarding vitrification and in vitro culture of ovarian tissue. 406 
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 707 

Figure 1. I; Experimental flow chart for bovine ovarian tissue vitrification, culture, and 708 

analysis; MCM-7: Minichromosome maintenance protein complex component-7; IL: 709 

Interleukin. II; Hematoxylin and eosin stained sections of bovine ovarian tissue fragments 710 

showing different follicle grading and classification. A, morphologically intact grade 1 711 

primordial follicle showing spherical shape, evenly distributed follicular cells with intact 712 

stroma, spherical oocyte and intact nucleus and nucleolus (block arrow); B, grade 2 follicle 713 

showing spherical shape, evenly distributed follicular cells, intact stroma and spherical 714 

oocyte, misshapen nucleus (double head line arrow); C and D, grade 3 follicle (follicular cells 715 

pulled away from the stroma but oocyte spherical [double arrow heads]) and grade 4 follicle 716 

(follicular cells pulled away from the stroma and oocyte misshapen (arrowhead), vacuolated 717 

oocyte cytoplasm and/or pyknotic nucleus [arrowhead]) respectively; E, transitional follicle 718 

(line arrow) showing some the flattened follicular cells have been converted to cuboidal cells; 719 

F, primary follicle (triple arrowheads) showing all cuboidal follicular cells. Scale bar = 50 720 

µm. 721 
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 722 

 723 

Figure 2. Bovine ovarian tissue fragments from all experimental groups and different culture 724 

periods sectioned (5 µm) and stained with hematoxylin and eosin. Fresh: A, B and C (day 2, 4 725 

and 6 of culture respectively); Vitrified-warmed: D, E and F (day 2, 4 and 6 of culture 726 

respectively); Equilibrated-warmed: G, H, and I (day 2, 4 and 6 of culture respectively). 727 

Grade 1 follicles are indicated by the block arrows and double-head line arrows indicate grade 728 

2, while arrowhead indicates grade 4 follicle. Scale bar = 50 µm. 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 
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 747 

 748 

Figure 3. Activated caspase-3 immunohistochemical sections of bovine ovarian tissue 749 

fragments taken from the sixth day of culture. A and B represent the positive and negative 750 

controls for activated caspase-3 (bovine tonsil showing brown DAB (diaminobenzidine) 751 

positive germinal center cells (line arrows) in the positive control and DAB negative germinal 752 

center cells in the negative control); C, E and G represent the different treatments on agarose 753 

inserts while D, F and H represent the different treatments on culture inserts. Immunopositive 754 

nuclei are stained brown (line arrows). Scale bar = 50 µm. 755 
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 756 

 757 

Figure 4. Ki-67 immunohistochemical sections of bovine ovarian tissue fragments taken from 758 

the sixth day of culture. A and B represent the positive and negative controls for Ki-67 759 

(bovine tonsil showing brown DAB positive germinal center cells (line arrows) in the positive 760 

control and DAB negative germinal center cells in the negative control); C, E and G represent 761 

the different treatments on agarose inserts while D, F and H represent the different treatments 762 

on culture inserts. Immunopositive nuclei are stained brown (line arrows). Scale bar = 50 µm. 763 
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 764 

 765 

Figure 5. Minichromosome maintenance protein complex component-7 (MCM-7) 766 

immunohistochemical sections of bovine ovarian tissue fragments taken from the sixth day of 767 

culture. A and B represent the positive and negative controls for MCM-7 (bovine tonsil 768 

showing brown DAB positive germinal center cells (line arrows) in the positive control and 769 

DAB negative germinal center cells in the negative control); C, E and G represent different 770 

treatments on agarose inserts while D, F and H represent different treatments on culture 771 

inserts. Immunopositive nuclei are stained brown (line arrows). Scale bar = 50 µm. 772 
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Table Legends 773 

Table 1: Follicle grading after different treatments of bovine ovarian tissue fragments. 774 

 775 

Percentages (%) of the total number of follicles (n) counted in the six biological replicates. Values in the same 776 

column followed by a common superscript (a, b, c, d or e) are not significantly different (P>0.05). FC: Fresh 777 

cultured; FCA: Fresh cultured on agarose; VC: vitrified cultured; VCA: vitrified cultured on agarose; EC: 778 

equilibrated cultured; ECA: equilibrated cultured on agarose. 779 

 780 

 781 

 782 

 783 

 784 

Table 2: Follicle classification after different treatments of bovine ovarian tissue fragments. 785 

 786 

Percentages (%) of the total number of follicles (n) counted in the six biological replicates. Values in the same 787 

column followed by a common superscript (a, b, c, d or e) are not significantly different (P>0.05). FC: Fresh 788 

cultured; FCA: Fresh cultured on agarose; VC: vitrified cultured; VCA: vitrified cultured on agarose; EC: 789 

equilibrated cultured; ECA: equilibrated cultured on agarose. 790 

 791 

 792 

 793 

 794 

 795 

Table 3: Stromal cells of bovine ovarian tissue fragments after different treatments. 796 

 797 

The data in the column “Stromal cell density” are presented as mean ±  standard deviation while data in the 798 

column “Caspase-3 positive” are percentages (%) of the stromal cells density counted in the five biological 799 

replicates. Values in the same column followed by a common superscript (a, b, c, or d) are not significantly 800 

different (P>0.05). FC: Fresh cultured; FCA: Fresh cultured on agarose; VC: vitrified cultured; VCA: vitrified 801 

cultured on agarose; EC: equilibrated cultured; ECA: equilibrated cultured on agarose. 802 

 803 

 804 

 805 

 806 

 807 

Table 4: Immunohistochemistry of bovine ovarian tissue fragments after different treatments. 808 

 809 

Percentages (%) of the total number of follicles (n) counted in the six biological replicates. Values in the same 810 

column followed by a common superscript (a, b, c, or d) are not significantly different (P>0.05).  FC: Fresh 811 

cultured; FCA: Fresh cultured on agarose; VC: vitrified cultured; VCA: vitrified cultured on agarose; EC: 812 

equilibrated cultured; ECA: equilibrated cultured on agarose. 813 

 814 

 815 

 816 

 817 

 818 

Table 5: Cytokine profile in spent media of bovine ovarian tissue fragments after culture. 819 

 820 

Mean ± standard deviation obtained from the six biological replicates. Values in the same column followed by a 821 

common superscript (a or b) are not significantly different (P>0.05). FC: Fresh cultured; FCA: Fresh cultured on 822 

agarose; VC: vitrified cultured; VCA: vitrified cultured on agarose; EC: equilibrated cultured; ECA: equilibrated 823 

cultured on agarose. 824 



Table 1 

Groups Culture period 

Day two Day four Day six 

% n % n % n 

Follicle 

grades 

(Gr) 

Gr1 Gr2 Gr3 Gr4 Total Gr1 Gr2 Gr3 Gr4 Total Gr1 Gr2 Gr3 Gr4 Total 

FC 6.6
a,b

 72.9
a
 2.2

a
 18.2

a
 362 12.0

a
 65.7

a
 3.9

a,b,c
 18.3

a
 382 12.5

a
 62.5

a
 1.0

a
 24.0

a
 208 

FCA 33.6
c
 34.4

b
 8.1

b
 23.9

a
 259 15.5

a
 36.0

b,e
 1.9

a,d
 46.7

b
 317 8.4

a,b
 37.4

b
 2.8

a,b
 50.9

b
 214 

VC 4.4
a,b

 22.5
c
 1.7

a
 71.5

b
 298 0.4

b
 11.7

c
 2.5

a,b,d
 85.0

c
 240 3.4

b,c
 17.1

c
 5.1

b
 68.6

c
 175 

VCA 8.0
b,d

 43.8
d
 10.8

b
 36.9

c
 249 3.5

c
 35.7

b,e
 5.3

b,c
 55.5

d
 227 0.0

d
 27.4

d
 11.2

c
 69.3

c
 241 

EC  3.7
a
 29.0

b,c
 3.0

a,c
 64.3

b
 297 2.5

b,c
 30.2

b,d
 1.3

d
 66.0

e
 318 6.4

b,e
 23.6

c,d
 2.5

a,b
 67.5

c
 203 

ECA 13.2
d
 35.5

b,d
 6.8

b,c
 44.5

c
 220 9.4

a
 43.4

e
 6.9

c
 40.3

b
 159 2.9

c,e
 25.6

d
 6.5

b,c
 64.9

c
 308 

 



Table 2 

Groups Culture period 

Day two Day four Day six 

% n % n % n 

 Primordial Transitional  Primary Total Primordial Transitional  Primary Total Primordial Transitional  Primary Total 

FC 43.9
a
 37.3

a
 18.8

a
 362 36.4

a
 46.9

a,b
 16.8

a
 382 35.6

a
 46.2

a
 17.8

a,b,c
 208 

FCA 90.0
b
 8.5

b
 1.9

b
 259 55.8

b
 27.8

c
 16.4

a
 317 37.9

b
 36.9

a,b,c
 25.2

c
 214 

VC 53.4
c
 31.9

a
 14.8

a,c
 298 37.1

a
 40.8

a
 19.2

a
 240 37.7

a,b
 46.3

a
 16.0

a,b
 175 

VCA 82.3
d
 13.7

b,c
 4.4

b
 249 60.4

b
 23.3

c
 16.3

a
 227 54.4

c
 29.5

c
 12.4

a
 241 

EC 38.7
a
 30.6

a
 37.4

d
 297 21.7

c
 49.7

b
 28.6

b
 318 36.9

a,b
 41.9

a,b
 21.2

b,c
 203 

ECA 74.1
e
 16.4

c
 9.5

c
 220 72.3

d
 22.6

c
 5.0

c
 159 45.8

b
 35.1

b,c
 19.2

a,b,c
 308 

 



Table 3 

Groups Culture period 

Day two Day four Day six 

Cells/5000µm
2
 % Cells/5000µm

2
 % Cells/5000µm

2
 % 

Stroma  Stromal cell 

density 

Caspase-

3 

positive  

Stromal cell 

density 

Caspase-

3 

positive  

Stromal cell 

density 

Caspase-

3 

positive  

FC 71.2 ± 19.5 21.3
a 97.6 ± 14.5 10.2

a 79.4 ± 15.2 33.5
a 

FCA 95.8 ± 10.9 12.7
b 105.4 ± 23.9 5.7

b 89.0 ± 29.5 5.2
b 

VC 87.4 ± 21.0 8.2
c,d 81.8 ± 20.0 9.8

a,c 86.6 ± 27.0 9.2
c 

VCA 88.2 ± 27.5 6.3
c 74.4 ± 15.7 4.3

b 99.6 ± 19.4 3.6
b 

EC 96.4 ± 22.9 11.0
d 94.2 ± 33.2 4.2

b 98.0 ± 34.6 21.4
d 

ECA 106.6 ± 26.5 7.5
c,d 110.0 ± 28.9 10.5

c 90.4 ± 23.0 5.5
b 

 



Table 4 

Groups Culture period 

Day two 

%(n) 

Day four 

%(n) 

Day six 

%(n) 

 Caspase-3 Ki-67 MCM-7 Caspase-3 Ki-67 MCM-7 Caspase-3 Ki-67 MCM-7 

FC 63.4(123)
a 15.3(111)

a,b 32.4(108)
a 69.6(125)

a 62.9(124)
a 76.4(106)

a 76.6(167)
a 50.6(109)

a 74.5(98)
a 

FCA 31.6(76)
b,c 2.8(71)

c 16.3(43)
a 50.4(133)

b,c 4.7(127)
b 35.0(58)

b 64.1(78)
b,c,d 29.0(131)

b 40.2(97)
b 

VC 61.9(118)
a 33.5(179)

d 79.5(127)
b 64.5(93)

a,c 61.2(196)
c 87.3(79)

a 69.5(118)
a,b 57.7(78)

a,b 86.0(100)
c 

VCA 34.8(112)
b,c 2.1(97)

a,b 10.8(37)
a 34.9(43)

b,d 0.0(51)
b 7.7(52)

c 26.8(97)
e 2.4(83)

c 34.6(78)
a,b,c 

EC 52.0(152)
a,b 18.8(133)

a 60.7(107)
c 51.0(145)

b 48.6(109)
d 74.7(95)

a 88.6(123)
c 45.0(100)

a,b 65.0(60)
a,b 

ECA 37.6(85)
c 6.4(78)

b,c 22.0 (50)
a 23.9(46)

d 4.5(44)
b 15.6(32)

b,c 54.3(140)
d 13.3(105)

d 50.8(65)
a,b 

 



Table 5 

Groups Culture period 

Day two Day four Day six 

pg/mL ng/mL pg/mL ng/mL pg/mL ng/mL 

Cytokine  Interleukin 1β Interleukin 6 Interleukin 1β Interleukin 6 Interleukin 1β Interleukin 6 

FC 35.7 ± 12.8 171.4 ± 290.4 31.5 ± 12.5
a,b 82.1 ± 138.3 32.2 ± 16.7 15.8 ± 25.1 

FCA 48.2 ± 10.2 8.9 ± 15.2 57.2 ± 25.5
a,b 116.8 ± 200.3 55.7 ± 17.3 33.5 ± 57.3 

VC 31.7 ± 11.9 26.0 ± 44.1 30.8 ± 14.2
a,b 4.2 ± 7.0 35.8 ± 12.1 7.6 ± 12.9 

VCA 49.5 ± 15.7 2.8 ± 4.8 46.8 ± 20.9
a,b 4.9 ± 8.3 42.1 ± 21.0 23.5 ± 40.4 

EC 43.3 ± 18.0 84.5 ± 145.1 21.7 ± 14.3
a 4.8 ± 8.1 50.2 ± 20.2 13.3 ± 22.4 

ECA 46.3 ± 17.8 7.2 ± 12.2 58.9 ± 16.6
b 7.9 ± 13.4 47.9 ± 29.9 37.1 ± 63.6 

 


