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ABSTRACT

Fibroblast growth factor 23 (FGF-23) has been associated with increased cardiovascular risk and poor survival in dialysis
patients. It is well established that FGF-23 synthesis is directly induced by positive phosphate (P) balance. On the other
hand, P-lowering treatments such as nutritional P restriction, P binders and dialysis are capable of reducing FGF-23
levels. However, there are many uncertainties regarding the possibility of adopting FGF-23 to guide the clinical
decision-making process in the context of chronic kidney disease–mineral bone disorder (CKD-MBD). Furthermore, the
best assay to adopt for measurement of FGF-23 levels (namely the intact vs the C-terminal one) remains to be
determined, especially in conditions capable of altering the synthesis as well as the cleavage of the intact and
biologically active molecule, as occurs in the presence of CKD and its complications. This Editorial discusses the main
insights provided by the post hoc analysis of the NOPHOS trial, with particular attention given to evidence-based
peculiarities of the intact and the C-terminal assays available for measuring FGF-23 levels, especially in patients
receiving additive P-lowering therapy in the presence of inflammation, anemia and iron deficiency.
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Chronic kidney disease–mineral and bone disorder (CKD-MBD)
is one of the most common complications of CKD, and is asso-
ciated with increased risk of cardiovascular disease (CVD), frac-
tures and mortality [1]. Compared with other mineral biomark-
ers, serum levels of the phosphaturic hormone fibroblast growth
factor 23 (FGF-23) start to rise from earlier stages of CKD as a
compensatorymechanism tomaintain phosphate (P) homeosta-
sis. Therefore, it has been proposed that FGF-23 could be an early
indicator of P overload and that screening for it could help to
identify which patients might benefit from intervention, inde-

pendently of serum P levels [2]. Moreover, in dialysis patients,
high FGF-23 levels are independently associated with increased
mortality, even in normophosphatemic patients [3]. The associ-
ation between FGF-23 and mortality likely involves a cardiovas-
cular (CV) mechanism, since high FGF-23 levels have been as-
sociated with left ventricular hypertrophy [4], impaired vasore-
activity [5] and coronary artery calcification [6], independent of
traditional CV risk factors and serum P levels. Thus, it was hy-
pothesized that FGF-23 could be another therapeutic target for
CV protection in CKD.
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Although randomized clinical trials primarily investigating
the effect of FGF-23 reduction on clinical outcomes are still lack-
ing, therapeutic interventions suggested for treating CKD-MBD
and improving prognosis proved capable of indirectly lowering
FGF-23 levels in CKD [7]. These mainly include calcimimetics
[8–14] and P-lowering therapies [15–26], such as nutritional P
restriction, P binders (PB), inhibitors of intestinal P absorption
and increased dialysis efficiency. Conversely, the direct inhibi-
tion of FGF-23 activity by neutralizing anti-FGF-23 antibodies in-
duced hyperphosphatemia, hypercalcemia, accelerated vascu-
lar calcification and mortality in animal models [27, 28]. These
findings highlight the importance of identifying therapies ca-
pable of jointly lowering both FGF-23 and P levels, or lowering
FGF-23 specifically through P reduction. A variable reduction in
FGF-23 concentrations (by up to 40%) was achieved by the use
of calcium-free PB [15–22, 24, 29], highlighting the importance
of achieving recommended P targets to secondarily impact on
FGF-23 reduction. However, despite the widespread use of PB, up
to 70% of hemodialysis (HD) patients in Europe do not manage
to reach normophosphatemia [30]. Thus, additional P-lowering
treatments, such as the inhibitors of intestinal P transport, have
been advocated especially in patients on dietary P restriction
and PB,which are prone to the compensatory increase of intesti-
nal P absorption. Tenapanor is a nonbinder inhibitor of para-
cellular intestinal P absorption, capable of altering the perme-
ability of the tight junction to P flow by directly inhibiting the
sodium–hydrogen exchanger isoform 3. Tenapanor significantly
decreased both P and FGF-23 levels in HD patients alone [25], as
well as on top of standard PB therapy [26]. In contrast, nicoti-
namide (NA), an inhibitor of the sodium-dependent phosphate
cotransporter 2b (NaPiIIb), first showed an inconsistent effect on
P and FGF-23 reduction in CKD stage 3–4 [31, 32] but later was
shown to significantly reduced P levels in dialysis patients [33–
35].

In this issue of CKJ, Egli-Spicht et al. present their findings
on FGF-23 levels in the NOPHOS cohort, consisting of HD pa-
tients treated with NA modified-release (NAMR) or placebo, in
addition to PB [36]. In this post hoc analysis, the authors aim
to assess the relationship between P, FGF-23, inflammation and
iron metabolism, providing some encouraging insights into a P-
mediated reduction of FGF-23, and some food for thought on
some of the open problems in FGF-23 application in clinical prac-
tice, including the ideal assay to use, its association with the
pathways involved in inflammation and iron deficiency, and its
role in elderly patients.

The NOPHOS trial consisted of a multicentric, double-
blinded, placebo-controlled trial, conducted in Germany, Poland
and Austria, on patients undergoing regular maintenance HD,
who had hyperphosphatemia (with serum P concentration be-
tween 4.5 and 8.7 mg/dL) despite the use of one or two PB, who
were randomized 3:1 to receive NAMR versus placebo on top
of ongoing traditional PB. The authors have previously reported
that after 12 weeks of treatment, patients in the NAMR arm
had significantly lower levels of P and parathormone (PTH) com-
pared with placebo [P: 5.36 ± 1.38 vs 5.88 ± 1.32 mg/dL; PTH:
227 (121–366) vs 252 (141–447) pg/mL] [37]. Moreover, the serum
of patients treated with NAMR presented reduced calcification
propensity, assessed by T50 test. In the current post hoc analysis
patients in the active treatment armalso had a significant reduc-
tion in the trajectory of intact FGF-23 (iFGF-23) levels, although
not yet leading to significant differences in FGF-23 concentra-
tions, at 12-week follow-up. Although modest in size, this effect
is consistent with previous findings and somewhat encourag-
ing, considering that it might have been limited by the short

follow-up, the reduced sample size, and the high prevalence of
patients receiving calcium-containing PB (51%) and active vi-
tamin D (48%), both established inducers of FGF-23 synthesis.
The effect on FGF-23 could have been reduced also by the poor
compliance to NMAR, represented by the low rate (46%) of pa-
tients undergoingNMARwho completed the study, 30% ofwhom
were not compliant to prescribed therapy. The high pill burden
(averaging 3.8 and 4.9 capsules prescribed per day at baseline
and 12 weeks, respectively) and common side effects (diarrhea,
nausea, vomiting, thrombocytopenia and pruritus) might have
contributed to the unsatisfactory adherence to NMAR and to the
non-significant long-lasting benefit on serum P against placebo
at the 52-week follow-up [38].

Despite the limits of NMAR in achieving a prolonged reduc-
tion in serum P and FGF-23 levels, this post hoc analysis recog-
nized basal FGF-23 levels as the best independent predictor of
the response to P-lowering therapy in terms of P reduction. It
could be argued that higher FGF-23 levels may represent severe
P overload, which could be more difficult to counteract, due to
considerable amount of stored P and individual patients’ char-
acteristics responsible for positive P balance, such as incomplete
dialysis efficiency and poor adherence to nutritional counselling
and PB. In searching for the clinical plausibility of introducing
FGF-23 in clinical practice,more accurate recognition of patients
affected by severe P overload, who may benefit from additional
P-lowering interventions independently of serum P levels, may
represent a promising application of FGF-23 assessment, espe-
cially in younger patients with prolonged life expectancy and
those suitable for kidney transplantation.

However, uncertainties about the best way to assess FGF-23
(either the intact or the C-terminal assay) and the susceptibil-
ity of FGF-23 metabolism to uremic perturbations, such as in-
flammation, anemia and iron deficiency, still limit any evidence-
based suggestion of orienting clinical decision-making accord-
ing to FGF-23 levels. Egli-Spicht et al. provided a significant con-
tribution to shed light on these unsolved issues.

Two assays are currently available for measuring FGF-23:
the C-terminal and the intact one (namely cFGF-23 and iFGF-
23, respectively). The first recognizes two epitopes on the C-
terminal part of the molecule, thus capturing both biologically
active iFGF-23 and its presumed biologically inactive C-terminal
fragments. The second recognizes epitopes on either side of the
cleavage site, thus identifying only the biologically active iFGF-
23. Consensus is still lacking about which is the ideal assay to
use for measuring circulating FGF-23 levels in CKD. Probably in-
fluenced by the previous experience with second- and third-
generation assays for PTH detection, many of us argue that the
assay targeted on the biologically active molecule could be the
most appropriate for clinical application. However, the evalua-
tion is more complex than expected, and requires a better un-
derstanding of the pathophysiological mechanisms involved in
the regulation of cFGF-23 and iFGF-23 metabolism (Fig. 1).

iFGF-23 is secreted by osteocytes and osteoblasts as a 32-kDa
glycoprotein, composed of a hydrophobic signal sequence, an N-
terminal domain homologous with other FGFs and a C-terminal
domain, unique to FGF-23 and essential for interaction with the
FGF receptor (FGFR)–Klotho complex. Between the N- and C-
terminal domains there is a proteolytic cleavage site, where the
biologically active iFGF-23 can be processed and inactivated, re-
sulting in two presumably inactive N- and C-terminal fragments
[39]. Of note, C-terminal fragments can bind, but not transacti-
vate, the FGFR–Klotho complex, acting as a competitive inhibitor
for iFGF-23 [40]. Serum levels of iFGF-23 are regulated by a still
partially unknown interplay between systemic and local bone
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Figure 1: Hypothetical pathways linked to FGF-23 synthesis and cleavage. Ca, calcium; VDRAs, vitamin D receptor activators.

factors.Certainly, iFGF-23 secretion is triggered by dietary P load-
ing and increased levels of active vitamin D and PTH [41]. High
P levels increase FGF-23 activity, by inhibiting iFGF-23 cleavage
trough overexpression of N-acetylgalactosaminyltransferase 3
(GALNT3), the enzyme responsible for O-glycosylation of the
proteolytic cleavage site [42]. Conversely, high levels of calcium
and 1,25(OH)2D downregulate GALNT3 expression, leading to de-
creased FGF-23 activity [42]. However, to date it is established
thought that the net clinical effect of calcitriol on FGF-23 sys-
tem consists of increased FGF-23-mediated pathways, due to a
stronger effect of calcitriol on FGF-23 synthesis than on FGF-23
cleavage. Thus,when interpreting the entity of FGF-23-driven ef-
fects on mineral and CV homeostasis, not only its synthesis, but
also the rate of its cleavage should be carefully considered. This
could be relevant especially when the iFGF-23 to cFGF-23 ratio
is unbalanced, as it occurs in the presence of CKD, P overload,
inflammation, anemia and iron deficiency.

Uremia itself is associated with impaired cleavage of FGF-
23. In animal models of CKD, early FGF-23 increments were not
associated with its increased production in bone, suggesting
that they could result from an alternative tissue source or im-
paired cleavage [43]. The hypothesis of impaired cleavage was
sustained by the observation that as CKD progresses, the ratio of
circulating iFGF-23 to cFGF-23 rises, and that circulating FGF-23
in dialysis patients is mostly intact and biologically active [44].
However, in a large cohort of patients with and without CKD,
the association between iFGF-23 and heart failure and mortal-
ity was completely attenuated after adjustment for kidney func-
tion,while cFGF-23 levels remained significantly associatedwith
both outcomes in the same model [45]. Of note, C-terminal FGF-
23 fragments have been shown to directly increase the size of
adult rat cardiomyocytes and the cFGF-23 circulating levels (and
not those of iFGF-23) have been shown to be positively correlated
to heart hypertrophy in sickle cell disease [46]. Further research
is needed to elucidate whether kidneys differently metabolize
iFGF-23 and C-terminal fragments. Furthermore, a hypothetical

longer half-life of C-terminal chains, although biologically inac-
tive, might be taken as a proxy or memory of the iFGF-23 syn-
thesis through a longer time frame, which may reflect the FGF-
23 biological activity over a longer time than what is expected
by the punctual assessment of the single biologically active in-
tact molecule. Unfortunately, no assay is currently available to
accurately assess only the C-terminal component of the whole
circulating FGF-23 levels. If confirmed, this hypothesis could be
theoretically similar to what is already accepted for adopting
glycated hemoglobin and 25(OH)D, in respect of glycemia and
1–25(OH)2D, respectively. Notably, the International Federation
of Clinical Chemistry and Laboratory Medicine (IFCC) Commit-
tee on bone metabolism on FGF-23 determination has recently
highlighted the importance of developing assays capable of sep-
arately detecting intact FGF-23 and its fragments, for better dis-
crimination of the functions of FGF-23 fragments. Despite the
challenges related to the very low FGF-23 circulating levels, liq-
uid chromatography with tandem mass spectrometry was sug-
gested as potential solution for standardizing FGF-23 assays [47].

Previous studies analyzed the effect of different medica-
tions on FGF-23 levels by only one of the two available assays
(Table 1), making the comparison between the clinical utility
of the intact and C-terminal assays difficult to interpret. Egli-
Spicht et al. provided FGF-23 assessment by both the intact
and C-terminal assay, making their comparison more achiev-
able than previous investigations. Although iFGF-23 and cFGF-
23 were highly correlated (with a Pearson correlation coefficient
of 0.8), and equally predicted serum P levels, only the trend
for iFGF-23 significantly differed between the NAMR and the
placebo arms. A similar effect was previously described in a
small group of HD patients, where sustained control of serum
P levels (target range <4.5 mg/dL) was associated with lower lev-
els of only iFGF-23, whereas patients with uncontrolled hyper-
phosphatemia presented increased levels of both iFGF-23 and
cFGF-23 [23]. Aforementioned data may hypothetically suggest
that reduction in P levels mediates a decrease in FGF-23 mainly
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Table 1: Studies on therapeutic strategies to reduce FGF-23.

Author, journal, year Intervention Population cFGF-23 iFGF-23

Phosphate binders
Koiwa [16], Ther Apher
Dial, 2005

Sevelamer + CC vs CC only N = 46 n.t. ↓ with sevelamer + CC

HD ↔ with CC only
High P

Gonzalez-Parra [17],
Nephrol Dial Transplant,
2011

LC N = 18 ↓ n.t.

CKD 3
Normal P

Shigematsu [18], Nephrol
Dial Transplant, 2012

LC + CC N = 36 n.t. ↓
HD
High P

Toida [19], Clin Nephrol,
2012

LC vs CC N = 42 n.t. ↓ with LC

HD ↔ with CC
Yilmaz [20], Am J Kidney
Dis, 2012

Sevelamer vs CA N = 100 n.t. ↓ with sevelamer

CKD 4 ↔ with CA
High P

Soriano [21], Clin
Nephrol, 2013

CC vs LC N = 32 n.t. ↔ with CC

CKD 4–5ND ↓ with LC
High P

Spatz [22], Nephron Clin
Pract, 2013

Sevelamer N = 40 ↔ n.t.

CKD 3–5ND
High P

Chang [29], Clin Exp
Nephrol, 2017

CC vs LC N = 25 n.t. ↔ with CC

HD ↓ with LC
High P

Rodelo-Haad [23], PLoS
One, 2018

PB to achieve sustained P
control <4.5 mg/dL vs less
strict P control

N = 21 ↔ with sustained P control ↓ with sustained P control

HD ↑ without sustained P
control

↑ without sustained P
control

Ketteler [24], Nephrol
Dial Transplant, 2019

Sevelamer vs SO N = 549 n.t. ↓ with both treatments

CKD 5D
High P

Transport inhibitors
Ix [31], J Am Soc Nephrol,
2019

NA + LC vs NA + placebo vs
placebo + LC vs
placebo + placebo

N = 205 n.t. ↔ with all treatments

CKD 3b–4
Block [25], Nephrol Dial
Transplant, 2019

Tenapanor vs placebo (after
PB withdrawal)

N = 162 n.t. ↓ with tenapanor

HD ↑ with placebo
High P

Pergola [26], J Am Soc
Nephrol, 2021

Tenapanor + PB vs
placebo + PB

N = 235 ↓ with tenapanor ↓ with tenapanor

HD ↔ with placebo ↔ with placebo
High P

Wetmore [9], Clin J Am
Soc Nephrol, 2010

Cinacalcet + calcitriol vs
calcitriol alone

N = 91 n.t. ↓ with
cinacalcet + calcitriol

HD ↔ with calcitriol alone
Koizumi [8], Nephrol Dial
Transplant, 2012

Cinacalcet N = 55 n.t. ↓
HD
Parathyroid
hyperplasia

Moe [10], Circulation,
2015

Cinacalcet vs placebo N = 2602 n.t. ↓ with cinacalcet

HD ↔ with placebo
High PTH

Sprague [14], Clin J Am
Soc Nephrol, 2015

Cinacalcet vs vitamin D N = 312 n.t. ↓ with cinacalcet

HD ↑ with vitamin D
High PTH

Wolf [12], Clin Kidney J,
2020

Etelcalcetide vs cincalcet vs
placebo

N = 1706 n.t. ↓↓ with etelcalcetide

HD ↓ with cinacalcet
High PTH ↔ with placebo

Hashimoto [11],
Nephrology, 2022

Etelcalcetide vs control N = 124 n.t. ↓ with etelcalcetide

HD ↔ in controls
High PTH

CA, calcium acetate; CC, calcium carbonate; LC, lanthanum carbonate; N, number of participants; NA, nicotinamide; n.t., not tested; SO, sucroferric oxyhydroxide.
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by increasing its cleavage through post-translational modifica-
tions, resulting in lower iFGF-23 but unchanged cFGF-23 levels,
while the synthesis of iFGF-23 might require a longer time to be
downregulated.

Animal and human studies have shown that both cFGF-23
and iFGF-23 increase due to iron deficiency [48–50]. Furthermore,
an association between inflammation and FGF-23 was found,
mediated by either functional iron deficiency or inflammatory
cytokines [51, 52]. In particular, acute inflammation stimulates
both FGF-23 production and cleavage leading to an increase in
cFGF-23 but unchanged iFGF-23, while chronic inflammation
seems to increase both cFGF-23 and iFGF-23 levels [51]. This evi-
dence was confirmed by a stronger correlation found in vivo be-
tween markers of both iron deficiency and inflammation with
cFGF-23 comparedwith iFGF-23 concentrations [45]. Interleukin-
6 (IL-6) contributes to high FGF-23 levels in uremic rats, with
a positive feedback loop in which increased FGF-23 expression
promotes inflammation [52]. Finally, a bi-directional relationship
was found between erythropoietin (EPO) and FGF-23,with a sim-
ilar time-dependent effect. While acute increased EPO concen-
tration resulted in higher cFGF-23 but unchanged iFGF-23 levels,
chronically increased EPO led to high iFGF-23 levels, which in
turn inhibited EPO synthesis by a negative feedback loop [53]. In
contrast, the effect of hypoxia inducible factor (HIF) stabilizers
on FGF-23 is still uncertain and probably influenced by residual
renal function [53, 54].

The post hoc analysis of the NOPHOS trial by Egli-Spicht
et al. confirmed a significant interplay between the FGF-23 sys-
tem, anemia and inflammation in the real-world setting [35]. IL-
6 and C-reactive protein were positively associated with cFGF-
23 levels, but not with iFGF-23, possibly confirming that inflam-
mation acts on both production and cleavage, leading to in-
creased cFGF-23 and unchanged iFGF-23.Among other variables,
hemoglobin was positively associated with iFGF-23, but with
an effect size that was not clinically relevant, while P and PTH
were strongly associated with both iFGF-23 and, to a lesser ex-
tent, cFGF-23. Of note, the well-controlled levels of iron stores
at baseline might have accounted for the absence of a signif-
icant association between ferritin, transferrin and FGF-23, in-
dependently of the analytical assay. In line with previous evi-
dence, these findings suggest that in HD patients, despite the
strong correlation that exists between iFGF-23 and cFGF-23, the
intact should be the assay of choice, as it shows stronger asso-
ciations with mineral metabolism and it is prone to a lesser in-
teraction with inflammation and uremic anemia. Furthermore,
while anticipation of an early debut of FGF-23 in the clinical
arena is growing rapidly, the present data increase awareness
of how metabolism of FGF-23 is regulated by pathways other
than mineral metabolism. To date, inflammation, anemia and
iron depletion, and their treatment by EPO, HIF stabilizers and
iron supplementation, should be taken as possible confounders
or evenmediators of the link existing between FGF-23 (especially
as cFGF-23) and clinical hard endpoints (Fig. 1).

Although the HD population is ageing rapidly, the knowledge
on how to deal with CKD-MBD in the elderly is lacking, espe-
cially in frail patients with high pill burden, poor quality of life
and short life expectancy [55]. Egli-Spicht et al. observed a neg-
ative association between age and FGF-23. This could be in line
with the expected lower P intake in the elderly, consequent to a
general reduction of nutritional intake and hyporexia. It remains
difficult to determine whether lower FGF-23 levels may orient
toward softer P-lowering treatment in older patients. Certainly,
data from Egli-Spicht et al. reinforce the need for dedicated stud-
ies in elderly cohorts, to better understand the real need for a

stringent control of mineral parameters with related pill burden
in such frail patients.

In conclusion, the NOPHOS study and its post hoc analysis
presented in this issue of CKJ collectively highlight that an
additional P reduction could be beneficial in dialysis patients,
as it could lead to lower PTH and iFGF-23 levels and delayed
vascular calcifications. While we await the results of the HiLo
randomized clinical trial, which will better clarify which serum
P target to pursue in these patients [56], it is reasonable to
seek new therapies for lowering P towards the normal range as
currently suggested by KDIGO guidelines [1], possibly combining
different strategies including diet, HD removal, PB and trans-
port inhibitors. Unfortunately, the efficacy of NAMR was not
maintained in the long term, possibly due to the high burden
of gastrointestinal side effects and high pill burden, leading to
a considerable non-compliance rate. Many expectations rely
on the potential reduction of FGF-23 elicited by HIF stabilizers.
In this scenario, FGF-23 remains a promising biomarker of P
overload and a mediator of its CV toxicity. However, the FGF-23
system should be always taken as being open to pathways
other than mineral metabolism, like inflammation, anemia and
iron deficiency. Further investigations are needed to elucidate
which assay is the best to adopt to guide decision-making with
reference to FGF-23 levels in the clinical setting.
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NephroCan is a Canadian, fully integrated product and service 

provider for patients affected by chronic kidney failure and needing 

hemodialysis (HD) therapy. Our company offers a broad range of HD 

products including machinery: hemodialysis machine, central and 

portable reverse osmosis (RO) systems, patient chairs, and disposables: 

dialyzers, bloodlines, fistula needles, and bicarbonate cartridges and 

bags. 

NephroCan’s dialyzers (NephroFilters) are made with high-quality 

materials and pass rigorous testing to ensure safety, effectiveness, 

and efficacy. We offer a variety of NephroFilters to assist nephrologists 

and other healthcare providers in administering personalized care for 

their patients. NephroFilters are low flux or high-flux permeability and 

adaptable to different hemodialysis machines, designed for ease of 

use by healthcare professionals. 

Our HD machine (NephroHDM) features technology that enables 

precise and customized treatment for each patient. Our goal is to 

improve clinical outcomes and patient safety. The NephroHDM offers 

various therapeutic options that allow healthcare providers to tailor 

hemodialysis sessions based on each patient’s specific needs. The 

machine is practical, with an intuitive interface for a fast, easy set up, 

and safe monitoring of HD treatments. 

NephroCan’s CE-certified products are trusted by healthcare 

professionals around the world. Our commitment to quality and safety 

is reflected in our operations and processes, which ensure our products 

provide patients with the best hemodialysis treatment throughout 

their ESRD journey. 

Our distribution partners and end users agree on several 

reasons why NephroCan presents a unique offering:  

1. Extensive product portfolio
NephroCan offers a wide range of products and services that cover 

the “A to Z” of the hemodialysis spectrum. This broad portfolio 

provides integrated solutions and comprehensive treatments for 

dialysis patients with various medical needs. 

2. Commitment to innovation
NephroCan is committed to innovation and invests heavily in 

research and development to create new products that can 

improve patient outcomes. Our focus is to develop products and 

technologies that will better serve the healthcare industry in the 

coming years.  

3. Global perspective 

With an existing presence in the EU, Africa, Asia, and the Middle 

East, NephroCan’s goal is to expand our reach and serve patients 

in diverse geographical areas. This global vision allows us to share 

best practices and leverage expertise across regions to improve 

patient care. 

4. Patient and family-centred care approach 
NephroCan places a strong emphasis on putting patients and 

their families first. We tailor our products and services to meet 

the uniqueness of the communities we serve. This philosophy 

is reflected in our commitment to quality and safety, ensuring 

NephroCan is a trusted provider of hemodialysis products.  

You can learn more about how our products are driving positive 

change in the industry and improving patient outcomes 

worldwide by visiting our website: www.NephroCan.com. 

We invite you to see our product portfolio
in person at the upcoming ERA 2023 congress: 

Booth number
C.100

MiCo - Milano
Convention Center

June
15th - 17th


