
Δ‑Machine Learning to Elevate DFT-Based Potentials and a Force
Field to the CCSD(T) Level Illustrated for Ethanol
Apurba Nandi,* Priyanka Pandey, Paul L. Houston, Chen Qu, Qi Yu, Riccardo Conte,
Alexandre Tkatchenko,* and Joel M. Bowman*

Cite This: J. Chem. Theory Comput. 2024, 20, 8807−8819 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Progress in machine learning has facilitated the development of potentials that
offer both the accuracy of first-principles techniques and vast increases in the speed of
evaluation. Recently, Δ-machine learning has been used to elevate the quality of a potential
energy surface (PES) based on low-level, e.g., density functional theory (DFT) energies and
gradients to close to the gold-standard coupled cluster level of accuracy. We have demonstrated
the success of this approach for molecules, ranging in size from H3O+ to 15-atom acetyl-acetone
and tropolone. These were all done using the B3LYP functional. Here, we investigate the
generality of this approach for the PBE, M06, M06-2X, and PBE0 + MBD functionals, using
ethanol as the example molecule. Linear regression with permutationally invariant polynomials
is used to fit both low-level and correction PESs. These PESs are employed for standard RMSE
analysis for training and test data sets, and then general fidelity tests such as energetics of
stationary points, normal-mode frequencies, and torsional potentials are examined. We achieve
similar improvements in all cases. Interestingly, we obtained significant improvement over DFT
gradients where coupled cluster gradients were not used to correct the low-level PES. Finally, we present some results for correcting
a recent molecular mechanics force field for ethanol and comment on the possible generality of this approach.

■ INTRODUCTION
Developing high-dimensional, ab initio-based potential energy
surfaces (PESs) is an active area of theoretical and computa-
tional research. Major progress has been made in using and
developing machine learning (ML) approaches for PESs with
more than four atoms, based on fitting thousands of CCSD(T)
energies1−5 or forces.6,7 Some of these ML approaches have
used permutationally invariant polynomials (PIPs) or PIPs as
inputs to neural network software.1−5 Of course, there are
numerous other ML methods. It is perhaps of interest and
relevance to this paper that the precision of a PIP PES for
ethanol was shown to be as good as the best performing ML
methods and to be substantially faster (factors of 10 or more)8

than all the ML methods considered, i.e., GAP-SOAP,9 ANI,10

DPMD,11 sGDML,6,7 PhysNet,12 KREG,13 and pKREG.14 The
data set for these comparisons was from the rMD17
database,15 which uses 500 K direct dynamics based on the
PBE0 functional to obtain energies and forces. The metrics
used in the “learning curves” were root-mean-square errors in
energies and forces. This followed the standard protocol used
earlier to assess many ML methods for potentials.16

CCSD(T) data sets for larger molecules are rare, owing to
the steep scaling of CCSD(T) calculations of order ∼ N,7 N
being the number of basis functions. The potential energy
surface for the 10-atom formic acid dimer is one example
where PESs have been reported at the CCSD(T) level, using

PIPs17 and later an atom-centered high-dimensional NN.18

Complex reactive potentials for 6 and 7-atom chemical
reactions, which are fitted to tens of thousands or even
hundred thousand CCSD(T) energies, have been re-
ported.19,20 The PIP-based automated ROBOSURFER soft-
ware5 has been applied to develop a number of complex PESs
for 9-atom chemical reactions.21,22

Correcting ab initio-based potential energy surfaces has been
a long-standing goal of computational chemistry. Of relevance
here are approaches that aim to bring a PES, based on a low-
level of electronic theory, typically DFT or MP2 theory, to a
higher level such as coupled cluster (CC) theory. In
consideration of larger molecules and clusters, where high-
level methods are prohibitively expensive, the motivation for
doing this is clear. “Δ-machine learning” (Δ-ML) is the
method of direct relevance to the present paper. This approach
seeks to add a correction to a property obtained using an
efficient and thus perforce low-level ab initio theory.6,7,23−25 A
hierarchical Δ-ML method using multiple quantum chemistry
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methods has been applied to the five-atom CH3Cl PES.26 In
this sense, the approach is related, in spirit at least, to the
correction potential approach mentioned above, when the
property is the PES. Other, related methods that utilize a high
and lower level of electronic structure theory are mentioned in
the Discussion section.

We recently applied a Δ-ML approach, originally given for
the three-atom F + H2,

27 to larger systems.28−33 Additionally,
the approach has also been proposed to correct many-body
force fields.34 In all these examples, the B3LYP functional was
used to obtain the low-level PES.

Considering the success of the Δ-ML method with the
B3LYP functional,35,36 it is both interesting and significant to
explore whether this straightforward approach can be extended
to other functionals and to molecular mechanics, including
“classical” force fields (FFs). There is a vast literature on
molecular mechanics force fields, and the reader is directed to
a recent and relevant (vide infra) paper that surveys this field.37

While these FFs, which are heavily semi or totally empirical,
have made an enormous impact in biomolecular simulations,
there is strong motivation to progress from these. Broadly put,
there are two approaches that can be undertaken. One is to
replace these FFs with strictly ML FFs, based on electronic
structure energies and forces for the covalent and noncovalent
interactions, and sophisticated treatments of long-range
interactions. This is a major challenge for an ML method
that aims to deal with hundreds of atoms in a single step. A
recent example of this approach by Tkatchenko, Müller and
co-workers can be found in ref 38. Of course, invoking the “no
free lunch” axiom, this approach is far more demanding in
computational effort compared to a classical FF. A second
approach is to correct a classical force field. There have been
several papers along these lines including one from this group
aimed at correcting a sophisticated classical FF for water, by
correcting the short-range 2-b, 3-b, and even 4-b interactions.34

However, while water is essential for life it is not a
biomolecule. Other similar approaches, focused on correcting
the short-range interactions have also appeared recently.39

While these approaches may be less computationally
demanding than a full ML approach, they are still far more
demanding than biomolecular FFs.

A variation of the second approach, which is our focus, is to
continue to use the empirical FF expression for the potential,
i.e., harmonic bond stretches and bends, periodic torsional
potentials, plus simple 2-b noncovalent interactions and long-
range electrostatics, and to add a computationally efficient ML
correction. To facilitate the goal of efficiency, the ML
correction can be applied to some terms, at least, in the
classical FF are corrected using ab initio electronic energies.
Recently, Meuwly and co-workers,37,40 investigated correcting
the CHARMM classical force field for specific examples. An
earlier, but still recent, example of this approach used atomic
force matching (AFM), using MP2 theory, to determine
classical FF intramolecular terms of ethanol plus the 2-b
intermolecular interaction between an ethanol and water
molecules.41 Here, we use this AFM-corrected FF for ethanol
to investigate our computationally efficient Δ-ML approach,
which substantially improves several key properties of AFM-
corrected FF. Most notably, it addresses the harmonic normal-
mode frequencies, which are greatly overestimated by this FF
for all but the lowest several normal modes.

The paper is organized as follows. A brief review of the Δ-
ML approach is provided, along with the essentials of the

highly efficient ML linear-regression approach we use with
permutationally invariant polynomials. Results and discussion
follow, including remarks on the extension of the Δ-ML PIP
approach to much larger molecules.

■ THEORY
Δ-ML Approach. The Δ-ML approach is given by the

equation28

= +V V VLL CC LL CC LL (1)

where VLL→CC is the corrected PES, VLL is a PES fit to low-level
DFT electronic data, and ΔVCC−LL is the correction PES based
on high-level coupled cluster energies. As shown in ref 28, we
use PIPs to represent the PESs on the right-hand side. This
might suggest that the cost to evaluate their sum is twice the
cost to evaluate VLL. However, because the correction potential
is “small” and more slowly varying over configuration space,
relative to VLL, the PIPs expansion for that PES is much smaller
than the one for the VLL. Thus, the cost of evaluating that term
is much less than the cost to evaluate VLL. If the above were
not true, then the Δ-ML would not be a viable approach. We
will return to this with specific numbers below for the present
application to ethanol. Also, we note that the above equation
was given 16 years ago,27 and so we rediscovered it.

To investigate the efficacy of the Δ-ML approach, four
widely used functionals are employed here, M0642 and M06-
2X42,43 functionals with the 6-311+G(d,p) basis, PBE44 with
the def2-SVP basis, and PBE045,46 including many-body
dispersion (MBD)47 with the “intermediate” basis setting.48

Additionally, we also replace VLL with a classical force field.

Figure 1. Optimized geometry of trans and gauche conformers of
ethanol and their two isomerization TSs at CCSD(T)-F12a/aug-cc-
pVDZ level. Reproduced from ref 49. Copyright 2022 American
Chemical Society.

Table 1. RMS Fitting Error (in cm−1) of VLL for Training
and Test Data Sets

PBE M06 M06-2X B3LYP PBE0 + MBD

training 45 79 47 40 40
test 56 82 57 51 51
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Previously, it was noted that the difference between
CCSD(T) and DFT energies, ΔVCC−LL, does not vary as
strongly as VLL with respect to the nuclear configurations and
therefore, a small number of high-level electronic energies is
adequate to fit the correction PES.

It is not clear if this observation applies, at least
semiquantitatively, for classical force fields. In this case, the
differences can be much larger, as expected, and indeed verified
here for ethanol. We investigate this using a previous data set
of 2319 CCSD(T)-F12a/aug-cc-pVDZ electronic energies.49

As noted above, the permutationally invariant polynomial
(PIP) approach is used to fit both the VLL and ΔVCC−LL PESs.
The theory of permutationally invariant polynomial is well
established and has been presented in several review
articles.1,2,50−52 In terms of a PIP basis, the potential energy,
V, can be written in compact form as

=
=

x yV c p( ) ( )
i

n

i i
1

p

(2)

where ci are linear coefficients, pi are PIPs, np is the total
number of polynomials for a given maximum polynomial
order, and y are the collection of Morse variables. For example,
yαβ is given by exp(−rαβ/λ), where rαβ is the internuclear
distance between atoms α and β. The range (hyper)parameter,

λ, equals 2 Bohr; this is the typical value that has been used in
many of our PIPs PESs.2,50 The linear coefficients are obtained
using standard least-squares methods for large data sets of
electronic energies molecules and gradients.
The Ethanol Force Field. Figure 1 shows conformations

of trans and gauche-ethanol and two saddle point transition
states. These are from electronic structure calculations at the
CCSD(T)-F12a/aug-cc-pVDZ level.

The molecular mechanics force field we consider is the
recent one that was corrected using force matching MP2
gradients computed with triple-ζ-quality basis sets using the
Adaptive Force Matching method.41 The mathematical
expression for the total energy of the force field includes
intramolecular interaction terms for interactions of atoms that
are linked by molecular bonds.

= + +V V V VFF bond angle dihedral (3)

where Vbond and Vangle are modeled by the quadratic energy
functions, corresponding to the oscillations about an
equilibrium bond length and bond angle, based on the
Harmonic approximation, and Vdihedral is modeled by the cosine
function, corresponding to the torsional rotation of four atoms
about a central bond.

=V k r r( )bond bond e
2 (4)

=V k ( )angle angle e
2

(5)

= +V k (1 cos(3 ))dihedral dihedral e (6)

The value of fitting parameters, kbond, kangle, kdihedral, as well as
the equilibrium bond lengths and angles are taken from ref 41.

Table 2. RMS Fitting Error (in cm−1) of Correction PESs
ΔVCC−LL for Training and Test Data Sets

PBE M06 M06-2X B3LYP PBE0 + MBD

training 67 53 32 28 26
test 90 61 40 30 30

Figure 2. Two upper panels show energies of ethanol from VLL→CC vs direct CCSD(T) ones for the indicated data sets calculated using the PBE
functional. Corresponding fitting errors relative to the minimum energy are given in the lower panels.
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■ COMPUTATIONAL DETAILS
We use the data set from our recently reported “MDQM21”
data set,8 which includes a total of 11,000 energies and their
corresponding gradients generated from ab initio molecular
dynamics (AIMD) simulations at B3LYP/6-311+G(d,p) level
of theory. This data set was partitioned into a training set of
8,500 energies and gradients and a test set of 2500 energies
and gradients. The same training and test data set were used
for single point energy and gradients computations at M06/6-
311+G(d,p),42 M06-2X/6-311+G(d,p),42,43 and PBE/def2-
SVP44 level of theory using MOLPRO53 quantum chemistry
package and at PBE0+MBD45−47 level of theory with
“intermediate” basis setting using the FHI-aims electronic
structure package.48,54

■ RESULTS AND DISCUSSION
Δ-ML for DFT Functionals. The low-level PES, VLL, is

fitted using PIPs with a maximum polynomial order of 4
(14,752 terms) with permutational symmetry 321111. This
notation indicates the three equivalent H atoms of the CH3-
group and the 2 equiv H atoms of the CH2 group. The range of
the energies for training and testing is 0 to roughly 30,000
cm−1. (Note, this energy range is much above the range in the
rMD17 data set for ethanol of roughly 8500 cm−1.) The root-
mean-square (RMS) fitting errors for training and test data sets
are shown in Table 1. We see these fits are not overfit and that
the precision is high, given the range of the data set.

Next, we train ΔVCC−LL on the difference between the
CCSD(T) and DFT absolute energies at 2069 geometries and
test the obtained surface on the remaining 250 geometries. To
fit the ΔVLL→CC, we have used a maximum polynomial order of
2 with permutational symmetry 321111 for the training data

set. This results in a basis size of 208 PIPs generated using our
MSA software.55,56 The RMS training and test errors for the
energies of correction PES are shown in Table 2.

Finally, to obtain VLL→CC we add the correction ΔVCC−LL to
the low-level DFT PES, VLL. The correlation plots of the
VLL→CC fit for a training set of 2069 points and a test set of 250
points for the PBE and M06 DFT functional are presented in
Figures 2 and 3, respectively. The RMS training and test errors
for the energies of Δ-corrected PES are shown in Table 3.

To determine the accuracy of the VLL→CC PES for various
DFT functionals, we perform the geometry optimization and
normal-mode frequency analysis for both trans and gauche
isomers and their two isomerization saddle point geometries
(Anti and Syn). The structures of these isomers and the saddle
points are shown in Figure 1. The energetics of all four
stationary points of ethanol relative to the trans minima,
calculated using various DFT functional, are listed in Table 4.
The Δ-corrected PES leads to better optimized energetics for
all four stationary points across all DFT functionals, as seen in
Table 5.

The comparison of harmonic mode frequencies of various
Δ-corrected PES calculated using different DFT PESs (VLL)
for trans ethanol with the corresponding direct CCSD(T)
frequencies are shown in Table 6. The overall agreement of

Figure 3. Two upper panels show energies of ethanol from VLL→CC vs direct CCSD(T) ones for the indicated data sets calculated using the M06
functional. Corresponding fitting errors relative to the minimum energy are given in the lower panels.

Table 3. RMS Fitting Error (in cm−1) of Corrected PESs
VLL→CC for Training and Test Data Sets

PBE M06 M06-2X B3LYP PBE0 + MBD

training 78 79 56 53 53
test 87 97 62 52 52
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these harmonic frequencies with the direct CCSD(T) ones is
excellent, as presented in Figure 4. Note that the Δ-corrected
PES tends to minimize the gap between the direct-CCSD(T)
frequencies and the calculated ones, especially for the high-
frequency modes. As depicted in Figure 4, although PBE
functional has the highest deviation in frequency from the
CCSD(T) values, the correction tends to reduce the deviation
within a few cm−1.

Next, we examine the change in the PES gradient after the
incorporation of the correction. In order to make a more
detailed examination of the errors in gradients, we calculated
the cosine of the angle between the direct CCSD(T) and DFT
gradient vector as well as corresponding VLL→CC PES gradient
vector, also the mean absolute difference (magnitude of 27
gradient components for each geometry) between these two
gradient vectors for 10 randomly selected geometries. This is

shown in Figure 5. As seen, there is a substantial reduction in
the errors in the gradient in the Δ-ML corrected PES
compared to the DFT PESs. Specially, in case of PBE the
gradient differences are much larger as well as the cos θ values.
This is especially encouraging as the correction PES, ΔVCC−LL,
is trained only on CCSD(T) energies without CCSD(T)
gradients. Presumably, including gradient data in the training
of ΔVCC−LL would result in a larger reduction in the error. We
plan to investigate this in the future.

Next, we compare the PES calculated torsional barrier for
the methyl rotor with the direct CCSD(T) level. The methyl
rotor torsional potentials (not fully relaxed) for the trans
minima as a function of the torsional angle are shown in Figure
6. For all the DFT functionals, the results from the Δ-corrected
PESs are comparable to the direct ab initio calculations at the
CCSD(T) level, as mentioned in Table 7. Note that the methyl

Table 4. Comparison of the Energetics in kcal/mol (cm−1) of All Four Stationary Points of Ethanol Relative to the trans
Minima from Direct DFT Calculations

isomer PBE M06 M06-2X B3LYP PBE0 + MBD

trans 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
gauche −0.37 (−129) 0.37 (129) 0.08 (28) 0.05 (18) 0.05 (19)
TS1 (Anti) 1.98 (692) 1.17 (409) 1.16 (407) 1.05 (367) 1.18 (411)
TS2 (Syn) 1.24 (432) 1.69 (591) 1.45 (507) 1.44 (505) 1.13 (395)

Table 5. Comparison of the Energetics in kcal/mol (cm−1) of All Four Stationary Points of Ethanol Relative to the trans
Minima for Direct CCSD(T) and Δ-ML PESs

isomer direct CCSD(T)

VLL→CC

LL = PBE LL = M06 LL = M06-2X LL = B3LYP LL = PBE0 + MBD

trans 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0 (0.00)
gauche 0.13 (45) 0.04 (14) 0.21 (73) 0.13 (45) 0.11 (38) 0.14 (51)
TS1 (Anti) 1.09 (381) 1.22 (427) 1.12 (392) 1.08 (378) 1.08 (378) 1.04 (363)
TS2 (Syn) 1.36 (476) 1.41 (493) 1.27 (444) 1.34 (469) 1.35 (472) 1.24 (435)

Table 6. Comparison of Harmonic Frequencies (in cm−1) of DFT PESs and Δ-Corrected PES Computed Using Indicated DFT
Functionals and Corresponding Ab Initio Ones (CCSD(T)-F12a/aug-cc-pVDZ) for Trans-ethanol

mode

CCSD(T) PBE M06 M06-2X B3LYP PBE0 + MBD

direct VLL ΔML VLL ΔML VLL ΔML VLL ΔML VLL ΔML

1 222 251 252 245 241 251 245 237 243 241 241
2 274 282 292 289 280 281 274 269 273 275 273
3 413 408 415 419 415 423 418 417 417 420 417
4 813 793 816 791 804 822 818 820 818 817 822
5 907 891 913 908 906 923 911 896 909 916 910
6 1049 1018 1060 1039 1049 1057 1055 1035 1055 1055 1056
7 1115 1103 1120 1115 1106 1134 1115 1094 1115 1131 1116
8 1180 1140 1189 1166 1175 1185 1180 1176 1181 1181 1183
9 1274 1230 1281 1246 1267 1273 1280 1266 1284 1276 1285
10 1300 1245 1293 1281 1293 1310 1302 1299 1302 1303 1303
11 1402 1331 1396 1376 1400 1403 1405 1402 1403 1394 1406
12 1456 1406 1449 1435 1443 1459 1450 1446 1454 1453 1458
13 1484 1408 1485 1451 1480 1489 1488 1483 1488 1475 1488
14 1501 1429 1492 1461 1487 1507 1503 1498 1500 1492 1503
15 1531 1463 1533 1497 1516 1539 1530 1524 1530 1521 1531
16 3001 2878 2994 2960 2985 3030 2994 2978 2995 3000 2993
17 3036 2909 3032 2998 3024 3060 3025 3005 3028 3032 3028
18 3042 2980 3051 3025 3026 3079 3029 3031 3036 3058 3032
19 3122 3073 3141 3115 3109 3149 3110 3098 3120 3142 3115
20 3127 3077 3144 3116 3113 3153 3116 3105 3126 3144 3120
21 3853 3720 3865 3924 3852 3915 3849 3843 3862 3913 3856
MAE 54 9 23 9 16 6 11 4 11 6
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torsional barrier height for the trans isomer evaluated from the
microwave spectroscopy is 1174 cm−1.57,58 Similarly, another
experimental analysis of the infrared and Raman spectra
determined the methyl torsional barriers to be 1185 cm−1.59

To conclude this subsection we comment on the additional
cost to evaluate ΔVCC−LL relative to the cost to evaluate VLL.
As noted above, the PIPs bases for these two PESs contain 208
and 14,752 terms, respectively. So adding the two potentials
results in a negligible 1% increase in cost relative to evaluating
VLL.

Δ-ML for Force Field. To calculate the Δ-corrected force
field potential, we first calculated the force field potential
energy using eq 3. Next, we train the Δ-correction PES on the
difference between the CCSD(T) and FF energies of 2069
geometries and test the obtained surface on the remaining 250
geometries.49 To fit the corrected PES, a maximum polynomial
order of 2 is used with permutationally symmetry 321111 for
the training data set. A plot of VFF→CC versus corresponding
direct CCSD(T) energies for the training and test sets
calculated using the harmonic approximation for the MP2
corrected force field, along with the fitting error, is shown in
Figure 7. A huge fitting error for both the training and test sets
is found, with RMSE values of 1436 and 2097 cm−1,

respectively. The substantial RMSE observed in the Δ-ML
corrected force field PES indicates the imprecise fitting.

The harmonic approximation works well for the small
oscillation around the equilibrium position but its accuracy
decreases for larger amplitude vibrations where anharmonicity
becomes significant. Hence, we use a Morse potential as Vbond
to provide a more realistic representation to the higher bond
stretching.

=V D e(1 )r r
bond e

( ) 2e (7)

Here, the value of α is equal to k D/bond e for all bond types,
with the dissociation energy De provided in Table 8.

A plot of VFF→CC versus corresponding direct CCSD(T)
energies for the training and test sets, calculated using the
Morse potential along with the fitting error, is shown in Figure
8. The fitting error decreases slightly for both the training and
test sets compared to Figure 7, with reduced RMSE values of
1089 and 1529 cm−1, respectively. However, these RMSE
values are still large enough to produce inaccurate results for
the entire data set. Therefore, we attempt to improve the fitting
by implementing energy cut-offs across the entire data set. For
this purpose, we select two energy cut-offs at 10,000 and 5000
cm−1 above the global minimum. For the 10,000 cm−1 energy
cut off case, the correction PES is trained on the difference

Figure 4. Differences of the CCSD(T) and DFT frequencies (in red) and Δ-corrected frequencies (in blue) for trans-ethanol for indicated
functionals.
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between the CCSD(T) and FF absolute energies of 1124
geometries and tested on the remaining 125 geometries. For
the 5000 cm−1 energy cut off case, the number of training and
test geometries are 702 and 65, respectively.

Table 9 presents the RMS errors in Δ-corrected PES
computed using the force field for both the training and test
data sets. The RMSE values decrease by a factor of 5 for the
energy cutoff set at 10,000 cm−1 and by a factor of 15 for the
data set at 5000 cm−1, compared to the RMSE of the Δ-
corrected PES computed using the force field with the
harmonic approximation. Since direct CCSD(T) energies of
the ethanol isomers and their saddle point transition states are
quite small in comparison to the RMSE values, their energy
optimization results are random. Note that the time taken to

calculate 100,000 data points using the force field is 2.04 and
2.09 s for the harmonic and Morse potentials, respectively.
Even after adding the Δ-correction, the time taken to calculate
100,000 data points is 2.15 s. Hence, the force field Δ-ML PES
is much faster than the one using the DFT functional; to be
precise, it has almost doubled the evaluation speed.

Next, we performed normal-mode analyses for trans-ethanol
to examine the vibrational frequency predictions of these PESs.
The comparisons of harmonic frequencies with the corre-
sponding ab initio frequencies for the trans-ethanol are shown
in Table 10. As seen in the table, the original FF produces poor
results except for the two lowest frequencies. The sets of
corrected FFs all show significant improvement at these
frequencies. The corrections to the original FF, denoted as the

Figure 5. Plot of mean absolute gradient magnitude difference (left panel) and cos θ (right panel), where θ is angle between the direct CCSD(T)
and indicated DFT gradients as well as corresponding VLL→CC PES gradients for randomly selected 10 ethanol geometries. See the text for details.
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“Harmonic FF”, and those where the harmonic stretch modes
were replaced by Morse potentials, denoted as the “Morse FF”,
were evaluated. Overall, the corrected Morse FF results are

superior to those of the corrected harmonic FF. Notably, there
are interesting dependencies to the extent of the training data
set. Limiting the maximum energy to 5000 cm−1 produces the
best correction, and this is for the Morse FF. This is probably
due to the higher precision for the correction PES for this
limited energy range, as shown in Table 9. However, the results
using the full range still show a significant improvement over
the uncorrected FF, with the mean absolute error (MAE)
being approximately five times less than that of the uncorrected
FF. The reason for this can be deduced from Figures 7 and 8.
As seen, the fitting errors are relatively small for energies up to
10,000 cm−1 and then grow rapidly above that energy.
Therefore, for properties that are largely determined by
energies up to 10,000 cm−1, such as harmonic frequencies
and torsional barriers the correction PES trained on this energy
range performs well.

Lastly, we analyzed the torsional barrier for the methyl rotor
calculated by Δ-ML PES using the force field. The results of
the methyl torsional barrier height for the trans isomer,
calculated from the various PESs of the force field, are listed in
Table 11. As shown in Figure 9, the torsional barrier height for
the harmonic force field is much lower than the direct
CCSD(T) value. For all the corrected PESs, the barrier height

Figure 6. Comparison of torsional potential (not fully relaxed) of the
methyl rotor of trans ethanol between direct CCSD(T) and Δ-
corrected PES computed using indicated DFT functionals.

Table 7. Barrier Height of the Methyl Rotor Torsional
Potential for the Trans Isomera

direct-
CCSD(T)

Δ-
PBE

Δ-
M06 Δ-M06-2X

Δ-
B3LYP Δ-PBE0 + MBD

1194 1272 1195 1232 1208 1121
aEnergies are in cm−1.

Figure 7. Two upper panels show energies of ethanol from VFF→CC vs direct CCSD(T) ones for the indicated data sets calculated using the
Harmonic approximation for the MP2 corrected force field. Corresponding fitting errors relative to the minimum energy are given in Table 9.

Table 8. Intramolecular Potential Parameters of Ethanol
Taken from Ref 41

bond type re (Å) kbond (kcal/mol Å2) De (kcal/mol)

C−C 1.5204 551.9110 82.69
O−H 0.9609 1056.6764 110.66
C−O 1.4396 577.2346 85.56
C−H 1.0937 742.5561 98.71
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improves. The barrier height matches to the direct CCSD(T)
value for the Morse FF when the full data set is considered.

Overall, the correction to this classical FF has been
successful. And, it is reasonable to ask how the approach
taken could be used for general classical FFs, especially for
molecules much larger than ethanol. There is not a simple
answer to this question, but clearly this is a fruitful area for
future work. One preliminary thought is to make use of the
simple form of FFs, which is just the generalization of eqs 4−6,
and to correct groups of terms instead of the entire FF.

We end this section with some remarks about the history of
dual-level (broadly defined) approaches to developing ab
initio-based PESs. Perhaps one of the earliest examples dates to
1985, where we would consider a low-level ab initio quartic
force field for formaldehyde was reported. In this instance, the
harmonic force constants were adjusted to improve and agree
with the experiment using vibrational configuration interaction
calculations, with all other force constants unchanged.60 This
early approach evolved into a more sophisticated one using the
N-mode representation of the potential.61 By using this

Figure 8. Two upper panels show energies of ethanol from VFF→CC vs direct CCSD(T) ones for the indicated data sets calculated using the Morse
potential for the MP2 corrected force field. Corresponding fitting errors relative to the minimum energy are given in Table 9.

Table 9. RMS Error in Δ-Corrected Energies (in cm−1)
Computed Using the Force Field with the Original
Harmonic Stretch and Present Morse Potential Modified
Stretch Potentials for Train and Test Data Setsa

RMS error Harmonic FFb Morse FFb Morse FFc Morse FFd

train 1436 1089 294 98
test 2097 1529 462 233

aThese calculations use the fitting basis of 208 terms described in the
text. bFit using all CCSD(T) data to roughly 32,000 cm−1. cFit using
data at 10,000 cm−1. dFit using data at 5000 cm−1.

Table 10. Comparison of Harmonic Frequencies (in cm−1)
between VFF→CC PES Computed at Indicated Force Field
and Corresponding Ab Initio Ones (CCSD(T)-F12a/aug-
cc-pVDZ) for Trans-ethanol

mode

CCSD(T) force field Harmonic FF Morse FF

direct harmonic ΔMLa ΔMLa ΔMLb ΔMLc

1 222 234 258 381 245 234
2 274 261 276 385 277 240
3 413 606 400 507 351 402
4 813 1131 631 747 748 779
5 907 1148 829 875 917 960
6 1049 1300 835 992 1087 1083
7 1115 1421 1135 1055 1148 1144
8 1180 1443 1320 1090 1165 1191
9 1274 1753 1322 1158 1224 1298
10 1300 1816 1453 1190 1314 1325
11 1402 1960 1481 1195 1347 1413
12 1456 1994 1564 1266 1390 1454
13 1484 2019 1585 1421 1423 1530
14 1501 2049 1600 1480 1427 1539
15 1531 2142 1786 1484 1508 1657
16 3001 4247 1933 3353 3035 3112
17 3036 4300 2200 3442 3224 3135
18 3042 4398 2256 3468 3295 3173
19 3122 4409 2420 3476 3316 3263
20 3127 4410 2674 3502 3322 3304
21 3853 5129 3524 4099 4145 3930
MAE 624 272 116 111 171
aFit using full data points up to 35,000 cm−1. bFit using data points
up to 10,000 cm−1. cFit using data points up to 5000 cm−1.
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representation, different levels of electronic structure theory
are used for the different n-mode coupling terms.62−65

For global potentials, the Shepard interpolation method of
Collins66 was extended for chemical reactions using a dual-
level method.67 Specifically, high-level data points are placed
along the reaction path, whereas the rest of the configuration
space is described by a low-level method.

More recent work using machine learning to correct PESs
uses Transfer Learning (TL)68,69 and the Δ-ML described
above. In TL the nonlinear parameters of a model, typically a
neural network, trained on low-level data are retrained on
sparse high-level data. This approach has been used
successfully and extensively by Meuwly and co-workers for a
number of applications, including anharmonic vibrational
analyses, chemical reaction dynamics, and tunneling split-
tings.70−73

For the present approach, i.e., eq 1, we note that expression
has been used to develop reaction PIP-NN PESs.74,75 In this
approach the correction potential ΔVCC−LL is fit using the PIP-
NN method,76 and then used to generate data at the
configurations where the low-level calculations were done.
Then the sum of the low-level energies and those from
ΔVCC−LL are fit, again using the PIP-NN method. This results
in a single Δ-corrected PES in contrast to the approach used
here where the ΔVCC−LL and the low-level PES are added
together. We examined these two approaches for a PIP
potential for the formic acid-ammonia dimer.33 As expected,
they yield virtually identical results. As already noted, the
additional overhead in using the two-PES approach is small or,
as in the present case, negligible compared to the one-PES. So,
based on this alone, there is not a strong reason to prefer one

approach over the other. However, we do suggest reporting the
correction PES ΔVCC−LL whichever approach is used. This will
be useful in the event that holes are found in VLL→CC or the
single PES, say in high energy dynamics calculations.

■ SUMMARY AND CONCLUSIONS
The generality of the single-step Δ-ML method we proposed
and applied using B3LYP to a number of PIP PESs has been
demonstrated here for ethanol using other popular DFT
functionals. In each case, the Δ-ML method produces a
substantial improvement in accuracy compared to the
CCSD(T) benchmark results. The most dramatic improve-
ment is observed in the harmonic frequencies, where the DFT
PIP PESs produce both significant underestimates and
overestimates of the CH and OH-stretch frequencies. Addi-
tionally, we achieved significant improvement over DFT
gradients without using CC gradient data to correct the PES.
An exploratory application of this Δ-ML method to a recent
force field (FF) for ethanol was given. Notably, the inaccurate
harmonic frequencies at the global minimum from the force
field are significantly corrected. The torsional barrier from the
FF is also improved using the Δ-ML method. Additionally, the
computational cost for the correction is about the same as the
cost to evaluate the simple FF.

The new DFT Δ-ML potentials are expected to perform as
well for Diffusion Monte Carlo and VSCF/VCI calculations as
the original B3LYP Δ-ML one.49,77 (We remind the interested
reader that this corrected PES is available in Supporting
Information in ref 77.) However, the performance of the Δ-
ML corrected Force Field will need to be investigated for such
calculations. In addition, it will also be of interest to test the
new Quantum-Monte Carlo based sGDML potential78 for
such calculations.

Finally, this one-step Δ-ML method is very straightforward
and can be easily implemented into other ML methods or
descriptors. While ethanol molecule is used here as a prototype
example, this approach is also applicable to large molecular
systems for developing machine-learned force fields as accurate
as the CC level.
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