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a b s t r a c t 

Electrophysiological source imaging (ESI) aims at reconstructing the precise origin of brain activity from mea- 

surements of the electric field on the scalp. Across laboratories/research centers/hospitals, ESI is performed with 

different methods, partly due to the ill-posedness of the underlying mathematical problem. However, it is difficult 

to find systematic comparisons involving a wide variety of methods. Further, existing comparisons rarely take 

into account the variability of the results with respect to the input parameters. Finally, comparisons are typically 

performed using either synthetic data, or in-vivo data where the ground-truth is only roughly known. We use an 

in-vivo high-density EEG dataset recorded during intracranial single pulse electrical stimulation, in which the true 

sources are substantially dipolar and their locations are precisely known. We compare ten different ESI meth- 

ods, using their implementation in the MNE-Python package: MNE, dSPM, LORETA, sLORETA, eLORETA, LCMV 

beamformers, irMxNE, Gamma Map, SESAME and dipole fitting. We perform comparisons under multiple choices 

of input parameters, to assess the accuracy of the best reconstruction, as well as the impact of such parameters 

on the localization performance. Best reconstructions often fall within 1 cm from the true source, with most 

accurate methods hitting an average localization error of 1.2 cm and outperforming least accurate ones erring 

by 2.5 cm. As expected, dipolar and sparsity-promoting methods tend to outperform distributed methods. For 

several distributed methods, the best regularization parameter turned out to be the one in principle associated 

with low SNR, despite the high SNR of the available dataset. Depth weighting played no role for two out of the 

six methods implementing it. Sensitivity to input parameters varied widely between methods. While one would 

expect high variability being associated with low localization error at the best solution, this is not always the case, 

with some methods producing highly variable results and high localization error, and other methods producing 

stable results with low localization error. In particular, recent dipolar and sparsity-promoting methods provide 

significantly better results than older distributed methods. As we repeated the tests with “conventional ” (32 chan- 

nels) and dense (64, 128, 256 channels) EEG recordings, we observed little impact of the number of channels 

on localization accuracy; however, for distributed methods denser montages provide smaller spatial dispersion. 

Overall findings confirm that EEG is a reliable technique for localization of point sources and therefore reinforce 

the importance that ESI may have in the clinical context, especially when applied to identify the surgical target 

in potential candidates for epilepsy surgery. 
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. Introduction 

Electrophysiological source imaging (ESI) is a procedure that al-

ows reconstructing the neural activity sources from recordings of the

lectric potential, usually obtained at the scalp. ESI is a key ele-

ent in multiple frameworks related to the analysis of EEG data, in-

luding the identification of brain regions involved in specific tasks

 Bidelman, 2018 ; Montani et al., 2019 ) and the estimation of connectiv-

ty in task-related or spontaneous activity ( He et al., 2019 ). Moreover,

ecent evidence ( Baroumand et al., 2022 ; Brodbeck et al., 2010, 2011 ;

aiboriboon et al., 2012 ) suggests that ESI could be considered a valu-

ble tool in the context of pre-surgical evaluation of epileptic patients

here its accuracy and reliability are of paramount importance. 

Despite being useful, the application of ESI is still not straightfor-

ard for the non-expert especially due to the need for subjective choices:

mong these, the choice of the ESI method among the many available

ptions as well as, the choice of the method’s parameters, which is of-

en overlooked despite its great importance. Overall, these choices have

 non-negligible impact on the resulting source estimate and therefore

eed to be carefully performed. 

Indeed, it is well known that the inverse problem is ill-posed

 Dassios and Hadjiloizi, 2009 ), mostly due to the non-uniqueness of the

olution; a priori information is needed to overcome such ill-posedness,

owever, different methods will incorporate different a priori informa-

ion/constraints on the solution, resulting in different source estimates:

or example, MNE ( Hämäläinen, and Ilmoniemi, 1994 ) is designed to

eep the overall 2-norm of the solution low, while linearly constrained

inimum variance (LCMV) beamformers ( Van Veen et al., 1997 ) are

esigned to filter the signal from a specific location while suppressing

nterference from other locations. As a consequence, different methods

ill produce different estimates. 

In addition, most ESI methods require the user to select one or more

arameters. For instance, many of them require to choose a regulariza-

ion parameter, typically but not necessarily related to the Signal-to-

oise Ratio (SNR) of the data. This choice typically impacts the spatial

pread of the estimated neural current, its peak location, as well as the

mearing of the time courses. Some methods also envisage a depth weigh-

ng parameter that should fight the well-known bias towards superficial

ources that affects, among others, MNE estimates ( Lin et al., 2006 ).

gain, by tuning this parameter one can typically tune the depth of the

stimated sources, however, what the correct value would be is not easy

o determine. 

Overall, selection of the most appropriate ESI method and of the op-

imal parameter(s) is really difficult for non–trained users. Indeed, even

f a few very recent methods can automatically set the regularization pa-

ameter ( Bertrand et al., 2019 ; Cai et al., 2021 ; Sun et al., 2022 ), most

sed methods still rely on subjective user choices. 

In this work we evaluate and compare the performances of ten differ-

nt ESI methods under multiple values of the input parameter(s), in the

ase of high-SNR focal sources whose locations are known exactly. Our

im is to characterize the accuracy of different methods, as well as their

obustness with respect to the choice of the input parameters. The major

trengths of this study consist in: (1) comparing a rather large number

f ESI methods applied over the same in-vivo open dataset [15]; (2) us-

ng a unique ground-truth consisting of known single dipolar millimetric

ources derived from the artifact created by the electrical stimulation of

wo adjacent intracranial electrodes (i.e., de facto, an in-vivo phantom

ead); (3) Applying ESI to high-density EEG scalp recordings (256 chan-

els), thus allowing the exploration of multiple spatial sub-samplings;

4) investigating the stability of the results with respect to the input pa-

ameters (regularization, etc.). Altogether, we took advantage of state-

f-the-art dataset and procedures to provide the most comprehensive

valuation and comparison among ESI methods to date. 

Evaluation and comparison of different ESI methods is often not

n easy task, as the true sources of experimental recordings are

ever known exactly. There are two typical workarounds to this
2 
roblem. One is to assess the reconstruction error of ESI using syn-

hetic data generated either via a synthetic forward model ( Becker

t al., 2015, 2016 ; Chowdhury et al., 2016 ; Grova et al., 2006 ;

amuelsson et al., 2021 ; Yao and Dewald, 2005 ) or using a hard-

are phantom ( Baillet et al., 2001 ; Leahy et al., 1998 ); this approach

an result in reasonable comparisons between different methods but

an hardly be used to give realistic estimates of localization accu-

acy in experimental scenarios, as the data generation process, partic-

larly the forward model, is necessarily simplified. The second possi-

ility, applied in a growing number of studies, is to evaluate the ac-

uracy of localization by using either intracranially-recorded interic-

al/ictal brain activity or post-surgical outcomes derived from epileptic

atients ( Brodbeck et al., 2011 ; Koessler et al., 2010 ; Luria et al., 2020 ;

égevand et al., 2014, 2014 ; Pellegrino et al., 2020 ); this approach

vercomes the limitations of synthetic data but has its own drawbacks,

ncluding the fact that resolution is limited to the size of the resected

rea and the limited spatial sampling of intracranial data, even though

etter resolution can be achieved combining both electrophysiological

nd surgical options ( Sohrabpour et al., 2020 ). 

In this study we overcome the limitations of both approaches by ex-

loiting a recently published EEG dataset of high-density (256 channels)

calp recordings combined with a ground truth single dipolar source

ystematically provided through a brief current injection between two

djacent intracranial electrodes whose position is known with millimet-

ic precision ( Mikulan et al., 2020 ). This procedure is capable of gen-

rating real data of scalp recorded electrical signals originating from

recisely known locations inside the human brain, thus representing

n ideal benchmarking scenario for validating and comparing differ-

nt ESI methods. Similar approaches have been previously reported

.g. in ( Cohen et al., 1990 ; Unnwongse et al., 2023 ), however, con-

idering only a much smaller number of electrodes and not compar-

ng different ESI methods. Specifically, the dataset used here consisted

n scalp EEG recordings collected during Single Pulse Electrical Stim-

lation (SPES), employed for brain mapping and for the identification

f abnormal cortical excitability in epileptic patients implanted with

tereo-EEG (SEEG) leads ( Cardinale et al., 2019 ; David et al., 2013 ;

atsumoto et al., 2004 ; Valentin et al., 2002 ). Data were originally col-

ected at Niguarda Hospital, Milan, Italy. During SPES, a brief current

ulse is injected between two adjacent leads, producing an electrical

urrent whose location can be accurately determined. Since this elec-

rical current is strong enough to produce a visible voltage signal on

calp hd-EEG, the procedure generates experimental data of scalp po-

entials originating from known locations inside the brain. The resulting

ataset is characterized by a very high signal-to-noise ratio and is ide-

lly suited to evaluate in vivo the performance of ESI in the case of focal

ctivity. 

Using the MNE-Python package, we evaluate and compare ten dif-

erent ESI methods, thus possibly providing the most extensive com-

arison thus far: we test dipole fitting, wMNE ( Hämäläinen and Il-

oniemi, 1994 ), sLORETA ( Pascual-Marqui et al., 2002 ), eLORETA

 Pascual-Marqui et al., 2006 ), dSPM ( Dale et al., 2000 ), LCMV

eamformer ( Van Veen et al., 1997 ), RAP-MUSIC ( Mosher and

eahy, 1999 ), Gamma Map ( Wipf and Nagarajan, 2009 ), irMxNE

 Strohmeier et al., 2014 ) and SESAME ( Viani et al., 2020 ). For each

ethod under consideration, we test several values for each input pa-

ameter, so as to verify (i) the optimal reconstruction attainable by an

xpert user who is capable of setting the parameter values correctly

nd (ii) to what extent the method is tolerant with respect to mis-

pecifications of these values. We consider the above questions under

ifferent subsampling of the High-Density configuration, starting from

he full 256 montage, down to 128, 64 and 32 channels. 

In summary, based on a unique open dataset in which the sources of

he EEG activity within the brain are known - i.e. a ground truth for the

nverse solution methods - we compared the performances of the most

ommonly used ESI methods and, for each method we optimized the

nput parameters. 



A. Pascarella, E. Mikulan, F. Sciacchitano et al. NeuroImage 277 (2023) 120219 

2

2

 

s  

s

2

 

u  

f  

f  

E  

e  

e  

t  

h  

t  

o  

 

i  

m  

o  

S  

W  

M  

f  

t  

d  

s  

(  

n

2

 

r  

g  

a  

C  

l  

a  

p

2

 

H  

t  

d  

v  

r

 

d  

d  

R  

d  

t  

2

 

m  

m  

p  

w  

a  

Fig. 1. An example of butterfly plot of averaged EEG data related to the stimu- 

lation artifact. 
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2 https://mne.tools 
. Methods 

.1. Description of the data 

The dataset used in this study is publicly available and has been de-

cribed in ( Mikulan et al., 2020 ); in the following subsections we briefly

ummarize the main relevant features. 

.1.1. Electrical stimulation 

Subjects had implanted intracranial shafts for the pre-surgical eval-

ation of drug–resistant focal epilepsy; electrode positions were there-

ore established based on clinical needs, and ranged for each subject

rom superficial to deep locations: the distance from the closest scalp

EG sensor ranged from 28 to 64 mm. Electrical currents were deliv-

red through platinum-iridium semi flexible multi-contact intracerebral

lectrodes (diameter: 0.8 mm; contact length: 2 mm, inter-contact dis-

ance: 1.5 mm; Dixi Medical, Besancon, France). Currents lasted 0.5 ms,

ad intensities ranging between 0.1 mA and 5 mA and were repeated ei-

her every 2 s (for 1 mA and 5 mA) or every 1 s (otherwise). The number

f recorded trials was either 40 (for 1 mA and 5 mA) or 60 (otherwise).

Electrode positions were measured by co-registering the post-

mplant CT (O-arm 1000 system, Medtronic) to the pre-implant MRI by

eans of the FLIRT software ( Jenkinson and Smith, 2001 ). The location

f every single lead was assessed using Freesurfer ( Dale et al., 1999 ), 3D

licer ( Fedorov et al., 2012 ) and SEEG assistant ( Narizzano et al., 2017 ).

hen the EEG digitization MRI was different from the pre-implant

RI, transformation of the SEEG space to the EEG space was per-

ormed using an affine transformation between MRIs calculated with

he ANTs software ( Avants et al., 2011 ). Normalized contacts’ coor-

inates were estimated through a non-linear registration between the

ubject’s skull-stripped MRI and the skull-stripped MNI152 template

 Fonov et al., 2009 ), using ANTs’ SyN algorithm. The accuracy of the

ormalization procedure was verified by visual inspection. 

.1.2. High density EEG recordings 

256 EEG channels (Geodesic Sensor Net; HydroCel CleanLeads) were

ecorded with an EGI NA-400 amplifier (Electrical Geodesics, Inc; Ore-

on, USA) at a sampling frequency of 8,000 Hz, using a custom-made

cquisition software, based on EGI’s AmpServerPro SDK and written in

++ and Matlab. No software filters were used during acquisition. The

ocation of EEG electrodes and anatomical fiducials were digitized with

 SofTaxicOptic system (EMS s.r.l., Bologna, Italy), coregistered with a

re-implant MRI (Achieva 1.5 T, Philips Healthcare). 

.1.3. Generation of evoked responses 

Raw data were high-pass filtered at 0.1 Hz (FIR filter; zero phase;

amming window; automatic selection of length and bandwidth); for

wo subjects, data were also notch filtered at 50, 100, 150 and 200 Hz

ue to the presence of line noise. After rejection of bad channels through

isual inspection, epochs were generated from -300 ms to 50 ms with

espect to the electrical stimulation. 

Evoked potentials were generated by averaging across all epochs pro-

uced by stimulation of the same contact pair. This resulted in very clear

ipolar patterns produced by a single source, with a high Signal-to-Noise

atio (SNR). In Fig. 1 we report an example of a butterfly plot of EEG

ata in the time window [-0.5; 1]ms. Overall, the dataset analyzed in

his study comprises 7 subjects for a total of 61 single-source potentials.

.2. Forward model 

The forward model is a BEM model with realistic geometry. The

odel comprises three compartments and was set up using the function

ake_bem_model with ico set to 4, corresponding to a downsam-

ling of the Freesurfer triangulations to 5120 triangles; conductivities

ere automatically set to 0.3, 0.006 and 0.3 S/m, for the brain, skull

nd scalp compartments, respectively. The source space was built using
3 
098 locations in each hemisphere, for a total of 8196 available sources,

ith an average spacing of 4.9 mm. 

.3. Montages 

We test inverse methods using four different sensor montages: the

ull montage contains 256 channels; then we repeatedly halve the num-

er of channels, using channels corresponding to EGI’s 128, 64, and 32

ontages. Note that in the case of 256 channels the effective number of

hannels is smaller than the nominal number, due to the removal of bad

hannels. On average the number of bad channels that were removed is

6 ± 23, mainly located over the neck and the cheeks of the subjects,

ut, in some cases, also in the areas where the external part of intracra-

ial electrodes were too dense to fit the hd-EEG net over the subject’s

ead. 

.4. Inverse methods 

Source localization was carried out using ten different inverse

ethods. Nine of them are available as open source code within the

NE-Python package 2 ( Gramfort et al., 2014 ): dipole fitting, dSPM

 Dale et al., 2000 ), eLORETA ( Pascual-Marqui et al., 2006 ), Gamma

ap ( Wipf and Nagarajan, 2009 ), Linearly Constrained beamformer

 Van Veen et al., 1997 ), Mixed Norm Estimate ( Gramfort et al., 2012 ),

NE ( Hämäläinen and Ilmoniemi, 1994 ), RAP-MUSIC ( Mosher and

eahy, 1999 ), sLORETA ( Pascual-Marqui et al., 2002 ). In addition to

hese nine inverse algorithms, we also used SESAME ( Sommariva and

orrentino, 2014 ; Viani et al., 2020 ), a Bayesian multi–dipole model-

ng algorithm currently listed as a plug-in of MNE-Python. Our choice

f working with MNE-Python was motivated by the following reasons:

t contains the most used ESI methods; it contains the largest set of

ethods; finally, it is written in Python, a freely available programming

anguage. Valid alternatives would have been represented by Fieldtrip

 Oostenveld et al., 2010 ) and Brainstorm ( Tadel et al., 2011 ). Along the

aper, we will refer to each inverse method with its short name as listed

n Table 1 . 

In the analysis below we split the inverse methods in three classes ac-

ording to the following classification: we call distributed methods those

ethods that are based on a distributed source model, and have no

parsity-promoting penalty terms, i.e. MNE, dSPM, LCMV, SLOR, ELOR;

e call dipolar methods those based on strictly dipolar models such

s DF, RAP and SSM we call sparsity-promoting methods those meth-

ds based on a distributed source model but with a sparsity-promoting

enalty term, i.e irMxNE and GM. This non-standard classification is

otivated by the fact that irMxNE and GM provide in output the esti-

https://mne.tools
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Table 1 

Short name of inverse methods used in the 

study. 

Method Short name 

Dipole Fitting DF 

dSPM DSPM 

eLORETA ELOR 

Gamma Map GM 

Linearly Constrained beamformer LCMV 

Minimum Norm Estimate MNE 

Mixed Norm Estimate irMxNE 

RAP–MUSIC RAP 

SESAME SSM 

sLORETA SLOR 
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Table 2 

Parameters used for each inverse method. 

Method Parameters 

Depth Other 

DF - - 

DSPM 0 , 1 , 2 , 3 , 4 , 5 𝜆= 0 . 04 , 0 . 0625 , 0 . 11 , 0 . 25 , 1 
ELOR - 𝜆= 0 . 04 , 0 . 0625 , 0 . 11 , 0 . 25 , 1 
GM 0 , 1 , 2 , 3 , 4 , 5 𝛼 = 0 . 25 , 0 . 5 , 0 . 75 , 1 , 1 . 25 
LCMV 0 , 1 , 2 , 3 , 4 , 5 𝜆 = 1 , 0 . 1 , 0 . 5 , 0 . 01 , 0 . 05 
MNE 0 , 1 , 2 , 3 , 4 , 5 𝜆= 0 . 04 , 0 . 0625 , 0 . 11 , 0 . 25 , 1 
irMxNE 0 , 1 , 2 , 3 , 4 , 5 𝛼 = 10 , 30 , 50 , 70 , 90 
RAP - - 

SSM - fs = 0 . 07 , 0 . 13 , 0 . 2 , 0 . 27 , 0 . 33 
SLOR 0 , 1 , 2 , 3 , 4 , 5 𝜆= 0 . 04 , 0 . 0625 , 0 . 11 , 0 . 25 , 1 
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ated number of sources and the source locations, like purely dipolar

ethods do. 

All methods, except DF and SSM, need a noise covariance ma-

rix that was estimated from the pre-stimulus interval between -

50 ms and -50 ms using the compute_covariance function in

uto mode, in which cross-validation is used ( Engemann and Gram-

ort, 2015 ). 

.4.1. Regularization parameters 

All ESI methods under analysis require the user to choose the value

f one or more input parameters. In the following, we evaluate the per-

ormances of the methods when different values of the parameters are

sed. Since performance evaluation also aims at quantifying the sensi-

ivity of the source estimate with respect to the input parameter, in order

o have a meaningful comparison across methods it is important to use

omparable values and interval ranges, as much as possible. Common

arameters vary in the same interval and with same values for each

ethod. For parameters that are specific to one method, we used the

ame relative range of variation. 

Both DF and RAP require the number of dipoles to be estimated as

nput parameters. For DF we use the a-priori information that the data

as generated by a single source, while for RAP this information comes

rom the inspection of the singular values of the data covariance matrix

 Mosher and Leahy, 1999 ). 

Four ESI methods (MNE, dSPM, sLORETA, eLORETA) require the

alue of the regularization parameter as input, denoted as 𝜆 in the fol-

owing. Typically, the value of the regularization parameter is chosen

ased on the SNR of the data: cleaner data correspond to smaller val-

es of the regularization parameter, while noisy data require larger val-

es. In this study we test five different values of 𝜆 ranging from 0.04,

hat corresponds to extremely clean data, up to 1, which has been re-

ently shown to be an upper limit guaranteeing good accuracy of the

econstructions ( Samuelsson et al., 2021 ). irMxNE requires to set 𝛼, a

alue between 0 and 100 for which we choose to use uniformly spaced

oints avoiding the extrema. SSM requires setting the noise variance,

s a fraction of the peak signal: here we used uniformly spaced val-

es between 0.07 (corresponding to low noise) and 0.33 (correspond-

ng to high noise). GM requires to set the noise variance 𝛼 of the

hitened data: while the theoretical noise variance of whitened data

s 1, there are some indications that a slightly larger values might per-

orm better; we chose to use uniformly spaced points between 0.25 and

.25. LCMV requires to set the regularization parameter 𝜆 for inver-

ion of the covariance matrix: here we test five values, logarithmically

paced. 

Finally, six methods also take in input a depth-weighting parameter,

hat aims to reduce the bias towards superficial sources: for this param-

ter we test five linearly spaced values between 0 (no weight) and 5

 Lin et al., 2006 ). 

The different parameters we use and the corresponding values are

eported in Table 2 . 
4 
.5. Performance evaluation 

To quantify the source localization accuracy, we employ the Dipole

ocalization Error (DLE), which is defined as the distance between the

stimated location and the putative dipole location, i.e. the medium

oint between the two electrodes in which current was fed. The esti-

ated location is defined as follows for distributed methods (DSPM,

LOR, LCMV, MNE, SLOR) and for dipolar and sparsity-promoting meth-

ds (DF, GM, irMxNE, RAP, SSM). The distributed methods treat each

ime point independently; when applied to a time-series, they provide a

potentially) different intensity map/dipole location at each time step.

or these methods we consider the solution at the peak latency and use

he location corresponding to the peak intensity. For DF we consider

he location of the equivalent dipole at the time point maximizing the

oodness of fit in all analyzed time windows. The remaining methods

ork natively with time–series, and provide one intensity map/dipole

ocation(s) for the whole analysis window. For these methods we use the

ocation of the dipole estimated by applying the method to the window

 −2 ; 2] ms; in case more than one dipole is estimated, we use the loca-

ion of the estimated dipole with larger dipole moment. For all methods

except DF and RAP), we compute the DLE for the different parame-

er value combinations. In addition, for each method, we consider the

ean solution, defined as the average of the estimated dipole location

ver all parameters combination; for this mean dipole we compute the

orresponding DLE with the putative dipole location. 

To quantify the spread of the estimate, we complement the DLE with

 second metric, which is defined differently for distributed methods and

or dipolar and sparsity-promoting methods: 

• for distributed methods, we use the Spatial Dispersion (SD), defined

as 

SD ∶= 

√ √ √ √ √ 

∑𝑁 𝑣 

𝑗=1 
(
𝑑 𝑗 |𝑆 𝑗 |)2 ∑𝑁 𝑣 

𝑗=1 |𝑆 𝑗 |2 
(1) 

where 𝑁 𝑣 is the number of voxels, 𝑑 𝑗 is the distance between the

𝑗–th voxel and the global peak, and 𝑆 𝑗 is the value of the cortical

map at the 𝑗–th voxel. 
• for dipolar and sparsity-promoting methods, we use the Estimated

Number of Dipoles (END), which can be considered as a “proxy ” of

the SD. 

Throughout the Results section, we will assess the differences be-

ween the performance of each pair of methods for each montage with

he use of the non-parametric Wilcoxon signed-rank test. The test is a

aired difference test like the paired Student’s t -test, with no assump-

ions on the distribution of the data. The test works by constructing the

igned differences between value pairs, and ranking them according to

heir absolute value; for a full explanation, please see ( Pestman, 2009 ),

age 253. We set the significance threshold at 0.05 and use Bonferroni

orrection for multiple comparisons. 
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Fig. 2. Example case: exact source location (light blue diamond) and a) intensity map and estimated source location (green square) as obtained by the distributed 

methods (MNE, dSPM, SLOR, ELOR and LCMV) for five different values of the input parameter and b) estimated source location (cyan square) as obtained by the 

dipolar (DF, RAP and SSM) and sparsity-promoting methods (irMxNE, GM). For irMxNE, GM and SSM the best solution is shown for five different values of the input 

parameter. The inverse methods are applied to a session with 256 channels. The plot was done using the Visbrain suite ( Combrisson et al., 2019 ). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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. Results 

We present the results obtained by applying the ten inverse meth-

ds to all 61 sessions of the dataset. Fig. 2 shows an example of lo-

alization provided by the different inverse methods applied with five

ifferent values of a given input parameter, together with the exact lo-

ation. We remark that, whenever multiple sources are estimated, only

he strongest source is considered in the analysis. 
5 
.1. Localization with the best combination of input parameters 

We start by considering the best accuracy attainable: for each

ethod, for each session we consider the best solution across param-

ters (for more information on parameter values see Table 2 ), i.e. the

ne with the smallest Dipole Localization Error (DLE). The first row of

ig. 3 contains the boxplots of such optimal DLE (in mm) computed for

ll methods and montages. Each method is coded by a specific color,
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Fig. 3. Top: For each method, boxplot of minimum Dipole Localization Errors (DLE); from left to right, we show the boxplot obtained with 32, 64, 128, and 256 

channels, with (below) the mean value. ESI methods are ordered based on the overall behaviour. Bottom: On the left boxplot of Spatial Dispersion for distributed 

methods (left); from left to right, we show the boxplot obtained with 32, 64, 128, and 256 channels, with (below) the mean value. On the right mean value of the 

Estimated Number of Dipoles for dipolar and sparsity-promoting methods for the four montages (32, 64, 128, 256). 
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nd for each algorithm, from left to right, we show the boxplots ob-

ained with 32, 64, 128, and 256 channels respectively. At the bottom

f each boxplot we report its corresponding mean value (in mm). The

econd row of Fig. 3 contains, on the left, the spatial dispersion (SD) for

istributed methods and, on the right, the average estimated number of

ipoles (END) for dipolar and sparsity-promoting methods; both SD and

ND were computed at the smallest DLE. 

The boxplots in Fig. 3 indicate that different methods feature quite

ifferent accuracy; in order to verify whether these differences are statis-

ically significant, we performed pairwise Wilcoxon signed–rank tests.

n Fig. 4 , we report the results of the test assessing the difference be-

ween the performances of each pair of methods when the best solution

cross parameters is considered. The results indicate that the statisti-

al difference between methods varies in the four different montages; in

articular the best performances are obtained by: irMxNE and SSM with

2 and 64 channels and DF, irMxNE and SSM with 128 and 256 chan-

els. Overall two methods, SSM and irMxNE, substantially outperform

he others. 

In Fig. 5 we report how many times (in percentage) each method

rovides a solution which is within a threshold 𝛿 of 5 mm from the best

olution obtained across methods; we notice that changing the threshold

oes not modify the picture substantially. The methods with the highest

ercentage for 256 and 128 channels are irMxNE and SSM, where the
6 
mallest DLE is obtained more than 60% . SSM performs well also when

4 and 32 channels are considered. The smallest DLE is reached for

lmost half of the sessions by irMxNE (32 and 64 channels), MNE (256

hannels) and DF (256 channels). 

We finally investigate whether a small variance between the best

ource estimates obtained by different methods is an indicator of a good

ocalization. In Fig. 6 we show a two-dimensional histogram counting

ow many times we observed a given average DLE (across methods)

nd a corresponding variability across methods (obtained by averaging

ll inter-method distances). We notice that a small variability does not

lways correspond to a small DLE, although there is a noticeable corre-

ation between the two. 

.2. Impact of input parameters on source localization 

To study the influence of input parameters on localization accuracy,

or each montage and method, given a session, we compute the solutions

orresponding to different combinations of parameter(s) values; we then

onsider the mean dipole and its DLE, as well as the standard deviation

ith respect to the mean dipole as: 

= 

√ √ √ √ 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝐷𝐿𝐸( 𝑟 𝑖 , ̄𝑟 ) 2 
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Fig. 4. Significance of pairwise Wilcoxon tests between the DLE of each and each other ESI method, for the four different montages: 32 (first row left), 64 (first row 

right), 128 (second row left), and 256 channels (second row right). A red square indicates that the method listed in the corresponding row is significantly worse than 

the one listed in the corresponding column, while a blue square indicates that the method listed in the corresponding row is significantly better than the one listed 

in the corresponding column. The asterisks are related to the corrected p-value: ∗ p < 0.05, ∗∗ p < 0.005, ∗∗∗ p < 0.0005. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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here 𝑁 is the number of parameters combination (see Table 2 ), 𝑟 𝑖 is the

ocation of the dipole estimated by the 𝑖 th set of parameters and �̄� is the

ocation of mean dipole computed across all 𝑁 parameters combination.

Fig. 7 shows the variability of the location of the estimated dipole

cross all parameters combinations. Among distributed methods, DSPM

as a very low standard deviation, while among the dipolar and sparsity-

romoting methods, SSM and GM are the ones with less spread around

he mean dipole. Conversely, LCMV presents a very high variability of

he solutions for the different input parameters at all montages. We re-

ark that for DF and RAP we use the a–priori information of focal source

o be detected. 

Fig. 8 displays the influence of parameters on the solution of the

ifferent inverse methods. For each method we report, for each combi-

ation of input parameter values, the percentage of times the estimated

ocation lies within 5 mm from the best solution obtained by the method
7 
cross all parameter combinations. The depth parameter seems to affect

ostly MNE and irMxNE, while having little impact on SLOR and GM.

SPM and LCMV give their best performance with a value of depth be-

ween 0 and 2. Overall, the most important parameter is the one related

o the noise variance: for distributed methods, 𝜆 = 1 leads to the best

erformance; for irMxNE a value of alpha between 30 and 70 together

ith a value for depth equal to 1 gives the best result; SSM shows bet-

er performances for smaller values of the parameter, corresponding to

igher SNR and GM seems to be not influenced by the setting of input

arameters. 

Novel extensions of irMxNE and Gamma-Map algorithms are

quipped with some adaptive data–driven techniques for optimally tun-

ng the regularization parameter ( Cai et al., 2021 ; Deledalle et al., 2014 ).

he current version of the MNE–python package allows to automatically

et the regularization parameter 𝛼 for irMxNE method exploiting the
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Fig. 5. Number of times ( % ) in which the minimum DLE for each montage is 

reached by each method by using a tolerance 𝛿 = 5 mm. 
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Fig. 6. Variability across methods and average DLE. The figure shows that con- 

cordance between methods is correlated with the average DLE, although there 

are cases of low variability and high DLE. 
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URE algorithm ( Deledalle et al., 2014 ). Here we compare the DLE ob-

ained by this automatic parameter setting with those obtained with the

ptimal choice of input parameters. Fig. 10 shows the minimum DLE ob-

ained in the four montages with or without the automatic setting of the

egularization parameter 𝛼. In both cases, for each session, we consider

he smallest DLE obtained by the best tuning of the depth weighting fac-

or. We also report the results of the pairwise Wilcoxon signed–rank test

ssessing the difference between the performance of irMxNE method

ith or without the automatic setting of the regularization parameter 𝛼.

e also investigate the impact of depth weighting factor when the SURE

lgorithm is used and find that the best performance is obtained by set-

ing the depth parameter equal to 1 or 2. Similar results are showed in

ig. 8 when no automatic setting of 𝛼 is performed. 
ig. 7. From left to right for each method and montage we show the standard deviatio

8 
.3. Impact of covariates on source localization 

We now proceed to investigate the impact on the accuracy of source

ocalization of various covariates, namely: the number of EEG channels,

he data SNR and the source depth. 

Fig. 9 shows, for each montage, the boxplot of the smallest DLE com-

uted across all methods for each session; the violet boxplot represents

he smallest DLE computed across all montages and methods with a

ean value of 5 mm; for more than half of the sessions we obtain a

LE < 5mm. The global mean value is 8 mm in the case of 32, 64 and

28 channels and 9 mm when 256 channels are considered. There is no

tatistical difference between the four montages. 

We tested pairwise the effect of using different montages on DLE and

D in each ESI method. As far as the DLE is concerned, we obtained sig-
n of DLE computed by using the mean dipole over all parameter combinations.. 
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Fig. 8. Percentage of times ( % ) a specific combination of parameter values reaches within 5 mm from the best solution obtained by the method across all parameter 

combinations. 

Fig. 9. Minimum DLE over all methods for each montage. The violet boxplot 

represents the minimum of DLE across all montages. 
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Table 3 

For each method, significance of pairwise Wilcoxon signed–

rank tests between the DLE and SD of each and each other 

montage. We report the corrected p-values. We remark that 

for RAP and GM there is no a corresponding SD value. 

SD 

Method Channels p-value Channels p-value 

MNE 128 > 64 2 . 9 × 10 −2 64 > 256 4 × 10 −2 

32 > 256 9 . 8 × 10 −3 32 > 256 1 . 5 × 10 −6 

32 > 128 9 . 8 × 10 −3 32 > 128 2 . 3 × 10 −5 

32 > 64 3 . 1 × 10 −4 32 > 64 4 × 10 −5 

DSPM 32 > 64 2 . 6 × 10 −2 32 > 64 9 . 9 × 10 −6 

32 > 128 5 . 9 × 10 −3 32 > 128 1 . 2 × 10 −8 

32 > 256 2 . 8 × 10 −9 

64 > 128 6 . 8 × 10 −5 

64 > 256 8 . 2 × 10 −7 

SLOR 256 > 64 8 . 3 × 10 −3 64 > 256 1 . 6 × 10 −5 

128 > 64 9 . 4 × 10 −3 64 > 128 4 . 6 × 10 −5 

32 > 256 1 . 5 × 10 −5 

32 > 128 1 . 8 × 10 −5 

ELOR 256 > 128 4 . 3 × 10 −2 128 > 256 8 × 10 −3 

256 > 64 7 × 10 −3 64 > 256 2 . 1 × 10 −6 

256 > 32 8 . 9 × 10 −7 64 > 128 4 . 1 × 10 −4 

128 > 64 1 . 5 × 10 −2 32 > 256 1 . 5 × 10 −5 

128 > 32 1 × 10 −5 32 > 128 1 . 8 × 10 −2 

64 > 32 2 . 8 × 10 −3 

RAP 256 > 64 6 . 4 × 10 −3 

256 > 32 4 . 4 × 10 −3 

256 > 128 8 . 2 × 10 −3 

256 > 64 4 . 7 × 10 −4 

GM 256 > 32 2 . 5 × 10 −5 

128 > 32 1 . 4 × 10 −3 

W  

o  

f  
ificantly different values for many of the distributed methods (dSPM,

LOR, MNE, SLOR) as well as for GM and RAP. We note a positive ef-

ect of the montage also on the SD for the same imaging methods. The

orrected significant p–values of these statistical tests are reported in

able 3 . 

In order to evaluate the performance of each method as a function

f the depth of the true source and the SNR of the recorded session, we

erformed a mixed-effects linear regression analysis using DLE as the

ependent variable, source depth and SNR as predictors, and subject as

andom factor (intercept). The mixed-effects approach was chosen due

o the nested nature of the data (i.e. stimulation sites within subjects).

he source depth was defined as the distance between the stimulation

ite and the closest hd–EEG electrode in the full montage. The SNR was

omputed as the ratio of the norm of the signal at peak and at baseline.
9 
e found that the depth of the stimulation site impacts the performances

f the following methods: MNE, sLORETA, eLORETA (p < 1 𝑒 − 07 , Bon-

erroni corrected), RAP (p < 0 . 05 , Bonferroni corrected); for all these
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Fig. 10. Boxplot of Dipole Localization Errors (DLE) obtained 

in the four different montages by irMxNE method by using or 

not the automatic setting of regularization parameter 𝛼. The 

asterisks are related to the corrected p-value: ∗ p < 0.05, ∗∗ p 
< 0.005, ∗∗∗ p < 0.0005. 
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ethods, as expected deeper sources tend to produce larger DLEs. On

he other hand we found no impact of the SNR on the performance of

he methods. In Fig. 11 we provide a pictorial view of the results by

howing the regression lines of DLE as a function of source depth and

s a function of SNR. 

. Discussion 

The aim of this work was to evaluate and compare in vivo the local-

zation accuracy of a relatively large set of ESI methods, as well as their

tability with respect to the input parameter(s), under the hypothesis

hat the neural generators are focal sources and substantially dipolar

ources. 

.1. Localization with the best combination of input parameters 

When using the best combination of input parameters the results are

ncouraging: the best solution across methods is within 1 cm from the

rue source with very high probability, and several methods provide

verage reconstruction errors around 1 cm, with about 75 % of cases

alling within 2 cm. It is important to remark that in this study the source

econstruction procedure was completely automated: after application

f the ESI method, only the stronger source was retained, sometimes

eading to large errors. While in routine analysis it may be difficult to

elect the optimal combination of parameters, the user may leverage

n prior knowledge and sometimes exclude some of the reconstructed

ources, thus effectively obtaining a lower localization error than the

ne estimated in our study. 

As expected, dipolar and sparsity-promoting methods provided bet-

er results than distributed methods, with irMxNE and SSM featuring the

owest DLE. In this respect, it may be worth recalling a substantial dif-

erence between the distributed and the dipolar and sparsity-promoting

ethods considered here: indeed SSM, RAP, GM and irMxNE compute a

ingle estimate of source activity from a whole time window, thus poten-

ially mitigating the impact of noise (albeit rather low in this dataset);

n the other hand MNE, SLOR, ELOR, dSPM and LCMV provide a possi-

ly different solution at each time point, and might be more affected by

oise. We also notice that the performances of RAP and LCMV might be

mpacted by the short duration of the stimulation artifact, which entails

hat the number of samples used to calculate the data covariance matrix

s smaller than the number of samples used in studies involving evoked

esponses. 
10 
We reckon the error we observe is most likely due to the combined

ffect of bias introduced by the ESI method, and forward modeling error.

n particular, in this study we used the publicly available BEM forward

odel that does not take into account the spatial variability of the elec-

rical conductivity in the brain. In addition, the BEM model ignores the

resence of the burr holes; while this should have an almost negligible

mpact on the results ( Lanfer et al., 2012 ), recent experimental evidence

uggests that some impact might be expected ( Unnwongse et al., 2023 );

uture work might be devoted to confirm this. Finally, we recall that

he single pulse stimulation is a squared wave lasting 1 millisecond,

nd therefore contains very high frequency components: future studies

ight be devoted to investigating whether the quasi-static approxima-

ion is still valid under these circumstances. 

.2. Impact of input parameters on source localization 

In some ESI methods input parameters impact localization accuracy

uite substantially, while in others their impact is much more contained.

e quantified this variability by computing the standard deviation of

he DLE across parameter combinations. Notice that, a priori, one would

xpect methods with high variability provide a more accurate best re-

ult, because more variability implies more chances of getting closer to

he true solution at least once. By comparing Fig. 7 and 3 we see that

his holds true for irMxNE and LCMV, that score quite well in terms of

est solution and relatively high in terms of variability. Of course, one

hould prefer methods that have low DLE and also low variability. For

nstance, SSM has the lower standard deviation while being the second

ost accurate in terms of the best solution; MNE, on the other hand,

as high variability but also high localization error, and is therefore the

east recommended method for this type of data. 

We also observed two unexpected results. First, for distributed meth-

ds we observed the best performances in correspondence of 𝜆 = 1, i.e.

he largest value of the regularization parameter: even though the re-

onstructions become more widespread, the peak gets closer to the true

ource. This result is puzzling because 𝜆 = 1 corresponds, in principle,

o very noisy signals, while the input data are quite clean; on the other

and, it finds partial confirmation in Krishnaswamy et al. (2017) where

uthors use 𝜆 = 

1 
9 for MEG data and 𝜆 = 1 for EEG data. We speculate

his fact might be due to forward modeling errors, related to the vol-

me conduction problem, that reduce the effective SNR of otherwise

lean EEG data; in any case, more investigations are needed to clarify

his point. Second, despite the presence of both deep and superficial
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Fig. 11. For each method, regression lines of DLE as a function of source depth (left) and as a function of SNR (right). 

11 
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ources in the dataset, the depth weighting parameter appears to have

ittle or no impact for SLOR and GM; for MNE, dSPM, irMxNE and LCMV

he best value is either zero or one. 

As a side note, it is interesting to compare the low standard deviation

f dSPM with the high standard deviation of MNE. Indeed, we recall

hat the dSPM solution is obtained from the MNE solution through a

noise normalization ” procedure. Apparently, such noise normalization

ontributes a little to reduce localization error but rather to reduce the

ependence on the input parameters. 

Overall, our results point out that some of the most largely used

ethods have a relatively strong dependence on the value of the input

arameters: as such, objective and reliable criteria for choosing their

alues would be advisable in the future. 

.3. Impact of covariates on source localization 

In our study, the best localization accuracy was often obtained with

2 channels, and we observed no major differences when using higher

ensity montages; in fact, for some methods we found significant differ-

nces in the DLE obtained with different montages, and the lower DLE

as almost systematically associated with lower density montage. On

he other hand, increasing the number of channels leads to a reduced

patial dispersion for distributed methods, and several methods show

educed variability with respect to the input parameter when higher

ensity montages are used: in this respect, higher density montages do

rovide better results in terms of increased stability. 

The fact that the DLE does not decrease when using more sensors

ay be unexpected, however few considerations can help clarify this

pparently counterintuitive facet. There are two specific features of the

nalyzed data set that make 32 channels sufficient: (i) the dipolar nature

f the source under scrutiny and (ii) the high SNR of the data. Indeed,

ocalizing a single current dipole amounts to estimating 6 parameters:

2 channels, corresponding to 32 equations or constraints, are more

han enough provided good quality data ( Michel and He, 2019 ). This

s the case for our dataset, since the uniform spatial distribution of the

2 channels covers the whole head, and because the SNR of the data

s very high. Therefore, given our specific experimental conditions, we

o not expect a substantial gain in localization accuracy when adding

ore channels. This result is in agreement with literature on the topic

 Baroumand et al., 2018 ; Sperli et al., 2006 ). From a mathematical per-

pective, higher density montages correspond to taller leadfield matri-

es featuring larger condition numbers, i.e. the problem becomes more

ll-conditioned and more regularization might be required. As a partial

onfirmation, significant differences between montages were observed

lmost exclusively for distributed methods that are expected to suffer

ore from an ill-conditioned leadfield; the best DLE of SSM, DF, irMxNE

nd LCMV showed no significant dependence on the montage. 

Overall, our results suggest that 32 channels are enough to recon-

truct a focal source from high-SNR data; this might include single time

oints with one strong source, but also single topographies obtained

y ICA, or specific frequencies. More complex configurations (or more

oisy data sets), on the other hand, are likely to benefit from additional

ensors. In this sense, the results of the present study do not general-

ze to experimental conditions such as those including multiple sources

nd/or sources with non-negligible spatial extent. 

Similar considerations may explain the absence of significant depen-

ence between localization accuracy and data SNR. Indeed, this result

ertainly does not hold in general, but it is a consequence of the high-

NR of the data (the minimum value here is 5dB) and of the focal nature

f the sources. 

Finally, for several distributed methods the localization accuracy is

ound worse for deeper sources; considering that this study was per-

ormed using the best solution across all parameters combination, our

esults suggest that depth weighing is not enough to remove the bias to-

ards superficial sources. On the other hand, for all dipolar and sparsity-

romoting methods except RAP no significant relationship between the
12 
LE and the source depth is found. In general, deeper sources are more

orrectly localized by dipolar and sparsity-promoting methods. 

.4. Comparison with previous works 

Several comparisons between ESI methods have been performed in

ecent years. 

First of all, the same dataset used here was used in

ikulan et al. (2020) , where an exemplar analysis with three ESI

ethods (MNE, ELOR and DSPM) was performed. Here, we consider-

bly extended the comparison to include also more recent methods:

oteworthy, we observed that recent methods such as SSM and ir-

xNE do outperform older ones, hereby confirming recent results

 Luria et al., 2020 ; Samuelsson et al., 2021 ). In addition, we studied

he impact of regularization and depth weighting parameters more

n detail, highlighting similarities and differences between different

ethods. 

Another study that relates quite directly to our current study is

 Luria et al., 2020 ), where the authors compared retrospectively SSM,

AP and wMNE with the results of an ECD analysis on epileptic subjects;

lso in this case the reference source was a point source (even though

t came from a former analysis and not a real signal source) and the

uthors find MNE to be the least accurate while SSM the most accurate.

There is also an increasing number of studies that find different

ethods have substantially similar, good performances. Beniczky et al.

2016) compared 5 ESI methods on ictal EEG data, and found a gen-

ral agreement between methods, with MNE being the least accurate;

lthough not statistically significant, this result represents a partial con-

rmation of our findings. In ( Pellegrino et al., 2020 ) the authors com-

ared DSPM, MNE, SLOR and cMEM ( Chowdhury et al., 2013 ) (not

ested here) in a clinical scenario, and found excellent performances for

ll of them. Their results showed sLOR was slightly but significantly bet-

er than dSPM, while in our findings SLOR was at times better than MNE

ut never better than dSPM. In ( Tenney et al., 2014 ) the authors studied

he accuracy of dipolar methods (ECD, MUSIC), imaging methods (MNE,

LORETA, SWARM) and different implementation of SAM beamformer

s compared to intracranial EEG (iEEG) and the resection areas in a large

ohort of pediatric patients with intractable epilepsy. The accuracy of

ll these methods was relatively similar when compared to the ground

ruth. The concordance or discordance of MUSIC with iEEG was the best

redictor of long-term seizure outcome. In ( de Gooijer-van de Groep

t al., 2013 ) the authors recently compared interictal MEG spikes using

USIC, SAM(g2), and sLORETA to interictal discharges recorded with

EEG. These three MEG methods showed similar concordance with iEEG

ut differed depending on the brain region in which the spike was lo-

ated. 

In other comparisons, the authors use datasets where more

idespread activations are present. In ( Koessler et al., 2010 ) the authors

nvestigated the best conditions for locating the epileptogenic zone with

d–EEG and compared five different methods; their results highlighted

hat distributed methods are more appropriate to localize a widespread

pileptogenic zone than a focal one, and that ictal spikes with focal scalp

lectric field are better localized by dipolar methods (ECD and MUSIC).

his last finding is in line with our results. In ( Mahjoory et al., 2017 ) the

uthors used MNE, eLOR and LCMV for source reconstruction and con-

ectivity estimation from resting state data, and found relative agree-

ent in source localizations, more than in connectivity estimation. 

Most of these studies feature three important differences with respect

o the one reported here. First, in previous studies the definition of true

ource was necessarily more vague and less accurate. Second, the data

ere analyzed by expert users who almost certainly had expectations,

nd could tune each method to provide a coherent picture; here, instead,

ach method was applied independently, and in an automated fashion.

inally, none of these studies makes explicit reference to the setting of

he input parameters. 
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. Conclusions 

In this study we investigated in vivo the spatial accuracy of ESI meth-

ds, and its dependence on the input parameter(s) in the case of focal

enerators. Our data show good levels of accuracy of ESI techniques,

ith the best solution across parameters and methods within 1 cm from

he true source. This is true also when ESI is applied to “conventional ”

32 channels) rather than dense (64, 128, 256 channels) EEG record-

ngs. We remark anyway that the absolute values of the localization

rror we report might be impacted by a number of factors, including

he presence of burr holes that were not modeled in this study; in this

ense, what is particularly interesting in our study is the comparative

erformance of different methods rather than their absolute one: recent

ipolar and sparsity-promoting methods, particularly SSM and irMxNE,

rovide significantly better results than older distributed methods such

s MNE, both in terms of a higher accuracy with the optimal parame-

er choice, and a lower sensitivity to the value of the input parameter;

otably, our results confirm a substantial progress in the field. We also

bserved negligible impact of depth weighting for SLOR and GM, and

 general preference for larger values of the regularization parameter

in all distributed methods, a result that finds partial support in the

iterature. 

Overall findings suggest that ESI methods can achieve very good lo-

alization accuracy with focal sources, and thus reinforce the impor-

ance that ESI may have in the clinical context, especially when applied

o identify the precise target in candidates for resective epilepsy surgery.
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