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CombTransformers: Statement-Wise Transformers
for Statement-Wise Representations

Francesco Bertolotti and Walter Cazzola

Abstract—This study presents a novel category of Transformer
architectures known as comb transformers, which effectively
reduce the space complexity of the self-attention layer from a
quadratic to a subquadratic level. This is achieved by processing
sequence segments independently and incorporating X -word em-
beddings to merge cross-segment information. The reduction in
attention memory requirements enables the deployment of deeper
architectures, potentially leading to more competitive outcomes.
Furthermore, we design an abstract syntax tree (AST)-based code
representation to effectively exploit comb transformer properties.
To explore the potential of our approach, we develop nine
specific instances based on three popular architectural concepts:
funnel, hourglass, and encoder-decoder. These architectures are
subsequently trained on three code-related tasks: method name
generation, code search, and code summarization. These tasks
encompass a range of capabilities: short/long sequence generation
and classification. In addition to the proposed comb transformers,
we also evaluate several baseline architectures for comparative
analysis. Our findings demonstrate that the comb transform-
ers match the performance of the baselines and frequently
perform better.

Index Terms—Programming languages, machine learning,
learning representations, code search and summarization, method
name Gen.

I. INTRODUCTION

OVERVIEW. Effective code representations and effective
neural architectures for programming language process-

ing are becoming more and more relevant for developing tools
that leverage the potential of deep learning on code. Such rep-
resentations and architectures have the potential to improve the
current state-of-the-art on a variety of tasks, which include:
automatic code generation [1], [2], [3], automatic code com-
pletion [4], [5], [6], extreme code summarization [7], [8], [9],
automatic test generation [10], [11], automatic bug detection
[12], [13], [14], code ranking [15], [16] and many others. For
some of these tasks, we can leverage the availability of massive
datasets to train neural networks (NN).

In this work, we focus on three tasks: method name genera-
tion, code ranking, and code summarization.

Method Name Generation. Given a method body, the
model is required to generate a string representing its name
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Fig. 1. Three code-related task.

(see Fig. 1(a)). Good method names provide a natural language
summary of the method body. Such a model can be used to
automatically inspect codebases without human intervention.
Moreover, the design of good method names is shown to be a
critical issue [17], [18], [19] by itself. Fig. 1(a) shows a method.
Given these snippets as input, the model is expected to output
a relevant method name. In this case, the model is required to
output the name isPalindrome. Codetovec [9] and Codetoseq
[8] introduced two architectures for this task. Both architectures
exploit a specific representation of source code—leaf-to-leaf
abstract syntax tree paths. Differently, Fold2vec [20] focuses on
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encoding statements independently from each other to obtain a
compressed representation of the method.

Code Ranking. Given a natural language query and a set
of methods, the model is required to match the query with the
most relevant method. A significant portion of the software
development is devoted to adapt already existing code to new
use cases. Therefore, to effectively suggest source code snip-
pets, given a natural language query, has the potential to boost
productivity. Fig. 1(b) shows three methods correctly associated
with the respective queries. Gu et al. [21] represent methods as
triplets of: tokenized method name, tokenized API calls, and set
of body tokens. This representation is used to train a recurrent
neural architecture. Husain et al. [15] represent the method as
a sequence of tokens. It has been used to train several types
of architecture.

Code Summarization. The goal of the task is to generate
a concise natural language description for a given code snip-
pet (Fig. 1(c)). Understanding pre-existing code snippets is a
challenging task even for experienced programmers, and the
process of manually writing documentation is often considered
tedious. Consequently, the automation of this task is highly de-
sirable. Neural networks have been employed to tackle the code
summarization task. One notable example is CodeBERT [22]
a Transformer-based architecture pretrained with masked lan-
guage modeling [23]. During pretraining CodeBERT learns to
generate documentation. A more advanced approach is applied
in [24], [25] which introduces more self-supervised objectives
during pretraining.

In this work, to make a fair comparison between architec-
tures, we focus on end-to-end training: every architecture is
trained on the same data, with the same objectives for the same
amount of time. We believe that this setting allows for a fair
comparison between neural architectures, which is our goal. On
the other hand, the reader should note that pretraining with self-
supervised tasks and fine-tuning for downstream tasks is one of
the most effective ways to achieve state-of-the-art performance
in neural networks.

Instead of designing a code representation that describes
the method globally, we argue that a code representation that
describes methods as sequence of statements can have few
advantages:

1. it can be used to reduce the space complexity mechanism
of the self-attention layers;

2. allowing to process longer methods, with;
3. deeper architectures.
The main contributions of this work are:
– a class of Transformers architecture, dubbed CombTrans-

formers. These architectures have subquadratic memory
requirements whereas traditional Transformer architecture
has quadratic scaling laws; and

– a novel statement-based code representation, that com-
bined with the CombTransformer architectures, achieves
state-of-the-art results on the evaluated tasks.

The rest of the paper is organized as follows. Section II
presents recurrent concepts used in this work. Section III gives
a detailed overview of the employed statement-based repre-
sentation. Section IV describes the CombTransformer neural

architecture. Section V discusses the results achieved by com-
bining the new representation with the new neural architectures.
Finally, Sections VIII and IX give an overview of the related
works and present our conclusions respectively.

II. BACKGROUND

In this section, we will go through some of the terminology
and concepts that are recurrent in this work.

Abstract Syntax Tree (AST). Following the definition
used by Alon et al. [8], an AST is a tree-shaped representa-
tion of a program. It can be formally defined as a quintuple
(N,T,X, s, δ, ψ) where:

– N is the set of non-terminal nodes of the AST. Addi-
tionally split N into NS and NE . Where, NS contains
statement like nodes. While, NE contains expression like
nodes.

– T is the set of terminal nodes of the AST.
– X is the set of values that terminal nodes can assume.
– s ∈N is the root of the AST.
– δ :N → (N ∪ T )+ is the parent function that maps each

non-terminal to its children.
– ψ : T →X is the value function that maps each terminal

to its value.
Feed Forward Network. A Feed Forward Network (FFN) is

one of the most common layer in any neural architecture. With
this term, we intend a linear layer followed by an activation unit:
y = g(xAT + b)Where, x ∈ R

1×d is a input feature vector. A ∈
R

d′×d is a matrix of learnable parameters (weights). b ∈ R
1×d′

is another vector of learnable parameters (bias). Lastly, g is an
activation function.

Embedding Layer. An embedding layer is a map E : IN →
R

d. Where IN = {i ∈ N : i < N}. We can simply represent the
embedding layer with the matrix E = R

N×d. The embedding
layer is often used to map tokens (such as «image» or «dog») to
a vector of trainable parameters. During training, the NN learns
to represent tokens in relation to the others [26].

Global Attention. Global Attention [27] (GA) is an attention
mechanism that combines feature vectors through a weighted
sum. Let x1, x2, . . . , xn ∈ R

d×1 be the input vectors. We de-
fine a vector of trainable parameters a ∈ R

d×1. We obtain the
combined feature vector x̂ ∈ R

d×1 as:

x̂=

n∑

i=1

αixi

αi = softmax(si) =
esi∑n
j=1 e

sj
si = a · xT

i

where, si can be see an attention score of xi, that is, how much
attention the NN wants to pay to xi. αi are the normalized
attention scores, so that,

∑
i αi = 1. Finally, x̂ is the resulting

vector from the GA. We often say that the vector a attends to
vectors x0, . . . , xn.

Self Attention. Self Attention [28] (SA) is another attention
mechanism. Let x1, x2, . . . , xn ∈ R

d×1 be the input vectors.
Here, each input vector xi plays the role of the vector a in
GA. Intuitively, each xi is scored (through dot product) against
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the whole input sequence (i.e. each vector xi attends to each
vector xj). Scores are used, once again, in a weighted sum to
produce one of the resulting vectors zi. Formally, SA plays out
as follows.

Q=X ·WQ K =X ·WK V =X ·WV .

Z =Attention(Q,K, V )

Attention (Q,K, V ) = softmax

(
Q ·KT

d

)
· V

Where, X is the matrix obtained by concatenating the input
sequence. Z is the matrix obtained by concatenating the output
sequence. WQ,WK ,WV are matrices of trainable parameters.
The vector sequences denoted by Q, K, and V are also known
as query vectors, keys vectors, and value vectors. For the sake
of simplicity, we have intentionally left out some details. Please
refer to the original paper [28] for more details. Notice that Q ·
KT computes the attention scores by multiplying each query
vector against each key vector. Instead, the softmax function
normalizes the scores. The last matrix multiplication implicitly
applies the weighted sum of the normalized scores to the value
matrix V . The score matrix (given by Q ·KT ) has size O

(
n2

)
.

Multi Head Self Attention (MHSA). MHSA [28] is an ex-
tension of SA. Intuitively MHSA repeat the SA process multiple
times. Let h be an hyper-parameter of choice controlling the
number of heads. Let WQ

i ,WK
i ,WV

i ∈ R
d×(d/h),WO ∈ R

d×d

with 1≤ i≤ h be matrices of trainable parameters. MHSA
plays out as follows:

MultiHead(Q,K, V ) = Concat(hd1, hd2, . . . , hdh) ·WO

hdi =Attention(Q ·WQ
i ,K ·WK

i , V ·WV
i )

Intuitively, MHSA repeats the SA layer h times with embed-
dings of size d/h instead of d. Each query/key/value is projected
by the Wi linear transformation in lower dimensional space of
size d/h. Next, the attention function is applied across all heads,
obtaining hdi. Finally, we concatenate all the heads (hdi). The
application of the WO linear transformation yields the output
of MHSA mechanism.

Transformer. The Transformer neural architecture [28] is a
successful and popular auto-regressive NN that is mostly used
in the field of natural language processing (NLP) [22], [23],
[29]. The Transformer heavily relies on repeating the layers of
MHSA. Despite being a powerful architecture, one of its princi-
pal drawbacks is the intense need of memory O

(
n2

)
for the SA

layers, where n is the sequence length. Such a limitation bounds
the Transformer to process only short sequences. Finally, we
consider as the Transformer the model proposed by Vaswani
et al. [28].

Efficient Transformer. The space complexity of the SA
mechanism (O

(
n2

)
) and the success of the Transformer archi-

tecture has led many efforts to design less costly architectures.
Some important advancements are:

– Strided attention [30]. Here, each token can attend only to
its close neighborhood.

Fig. 2. A Java method (Panel ➊), its AST (Panel ➋), its three CUs
(Panel ➌). Colors highlight the process through which statements go.

– Strided-Dilated attention [31]. Again, each token can at-
tend only to its close neighborhood. However, some close
tokens are skipped.

– Globally-attending tokens [31]. Here, few tokens are al-
lowed to attend to all other tokens.

III. REPRESENTATION

This section introduces the process to obtain the statement-
wise representation from AST. Relying on the AST makes the
process independent from the underlying programming lan-
guage as long as a parser for the language is available.

Tree Unfolding (TU). A TU is the serialization of a given
tree obtained by applying a serialization function

f : (N ∪ T )
+ → (N ∪X)

∗

to the tree. For example, possible TUs are shown in Fig. 3 where
f denotes the serialization operation.

Contextual Unfolding (CU). A CU is a specific kind of TU
designed to deal with the AST representation of a code snippet.
Fig. 2 shows an example. Let us consider the code snippet in
panel ①. The AST shown in panel ② is obtained by parsing.
The function fe is applied to the root node of the AST, i.e., node
BlockStmt. fe visits the whole AST in a pre-order manner.
Every time fe discovers the root node of a statement tree (e.g.,
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Fig. 3. Two TUs: f applies a pre-order visit, f ′ returns only leaves.

ReturnStmt and IfStmt) it applies fv to the discovered
node. The formal definition for fe is:

fe : (N ∪ T )
+ → (N∗ ×X∗)+

fe(x) =

⎧
⎪⎨

⎪⎩

ε if x ∈ T

concat{fe(c)|∀c ∈ δ(x)} if x ∈NE

[fv(x)] · concat{fe(c)|∀c ∈ δ(x)} otherwise

Similarly to fe, fv does a pre-order visit. However, fv does
not visit any tree associated to another statement. Each node
visited by fv becomes a token in the CU. There are as many
CUs as statements in the code snippet and each CU is produced
by applying fv . Formally fv is defined as:

fv(x) =

{
ψ(x) if x ∈ T

x · concat{fv(c)|∀c ∈ δ(x) \NS} otherwise.

Finally, it is worth mentioning that some additional process-
ing is done to terminal values. Numbers are removed (e.g., in
Fig. 2 ‘1’ does not appear in the second CU despite it appears
in the AST). Every terminal value is split into sub-tokens (e.g.,
the token ‘isPalindrome’ is split into two tokens: ‘is’
and ‘palindrome’). These choices permit to limit the vo-
cabulary’s size. We employed spiral [32] as token splitter, but
possibilities are available [33], [34]. Instead, as a parser, we
have employed JavaParser [35]. Lastly, an additional CU
representing the method declaration stripped off the method
name is stacked on top of the others.

IV. NEURAL ARCHITECTURES

One of the most impactful architectures is the Transformer
[28]. One of the most discussed points of the Transformer is the
SA layer as it heavily impacts memory and computation wrt.
the sequence length. The simplest way to lighten the memory
impact is to reduce the sequence length which may remove
useful information. A workaround is to split the sequence into
segments and process the segments separately. To merge seg-
ment information, either the X -word embedding mechanism
or specific attention patterns as those in Fig. 4 can be used.
Depending on the choice of segment length s and the number
of segments k, one can prove sub-quadratic memory scaling
laws (notice that, if n is the sequence length, it must hold that
n= sk). In general, a small s stresses the merging mechanism.
Instead, a large s stresses the required memory. A reasonable
trade-off is using k =

√
n segments each of s=

√
n tokens.

Thus requiring O
(
ks2

)
=O(n

√
n) memory. We present nine

architectures that combine these ideas in different ways.

Notation. Let us define some common notation.
– S denotes the full input sequence. S ∈ R

n×d. Where, n is
the sequence length, and d is the embedding dimension.
S is obtained from an embedding layer applied to a token
sequence as in [23].

– To split matrices, we will use a Python inspired slicing
notation. E.g., S[:c,−b:] denotes the first c vector embed-
dings in the matrix S with only the last b elements.

– S1,...Sk∈ R
s×d denote the k segments of S, each of size

s (when n= sk). Thus Si = S[is:(i+ 1)s].
– X ∈ R

t×d denotes the set of tX -word embeddings. X -
words are obtained from an embedding layer applied to
special tokens as in [36]. The value of t is assumed to be
constant and t << n.

– VEl
p denotes the application of a Transformer encoder

layer l times with attention pattern p (see Fig. 4). E.g., VE3
2

represents the application of a Transformer encoder layer
3 times with attention pattern from Fig. 4(c). When p= 0,
the attention pattern is equivalent to the one used in the
original Transformer architecture [28].

– VDl denotes the application of a vanilla decoder layer l
times as in [28]. Each application of VD(A,B) internally
applies a MHSA(A,A) and a MHSA(A,B) layer.

– X -word embeddings are extra embeddings added to each
segment, often denoted as X s.

Attention Patterns. Fig. 4 depicts four potential attention
patterns. Fig. 4(a) illustrates the traditional Self-Attention (SA)
layer, where each embedding attends to all other embeddings,
resulting in a quadratic complexity due to its pairwise na-
ture. However, it is often observed that embeddings primarily
focus on their immediate neighbors for attention [31], sug-
gesting an opportunity for memory optimization. Additionally,
exploiting the inherent structure of source code being or-
ganized into statements allows us to naturally divide the
sequence into segments. Consequently, an embedding can
attend to another embedding only if they belong to the same
statement in the patterns shown as Fig. 4(b), 4(c), and 4(d)
(orange tiles). Cross-segment attention, represented by gray
tiles, is prohibited, leading to memory efficiency. Notably,
in pattern Fig. 4(b), inter-segment information flow is con-
strained. Conversely, pattern Fig. 4(c) permits information ex-
change through X -word embeddings between segments. Here,
X s within a segment can attend to all X s across the se-
quence, and they can also attend to embeddings within their
own segment (depicted in purple). Extending from the pre-
vious pattern, pattern Fig. 4(d) allows embeddings to attend
to all X s as well, facilitating accelerated cross-segment in-
formation propagation. The memory requirements for patterns
Fig. 4(b), 4(c), and 4(d) are determined by the segment size
(s) and the number of segments (k), resulting in a complexity
of O(ks2).

Funnel Architecture. Funnel architectures and layers are
used to compress large dimensional inputs into a lower di-
mensional space. The main intuition behind the funnel archi-
tecture is that often inputs have redundant information. By
eliminating the redundancy, we can boost the performance of
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Fig. 4. Three possible attention patterns involving X -word embeddings compared to the full attention mechanism (pattern 0). A colored square in position
(i, j) means that token i is allowed to attend to token j. Vice versa, a gray token in position (i, j) means that the token i cannot attend to token j. Magenta
squares are attention involving a X s. Instead, orange squares are attentions involving only tokens in the original sequence.

Fig. 5. Input embedding and X -word embedding feed an encoder architec-
ture. The encoder applies several attention layer. Attention layer uses one of
the attention pattern in Fig. 4. This layer is followed by an MHSA layer using
X -word embeddings to reduce the sequence length. Finally, a Transformer
encoder layer is applied to the reduced sequence.

the architecture without compromising the quality of the results
[37]. Fig. 5 depicts the architecture.

To use token segmenting and X -word embeddings to imple-
ment a funnel architecture, firstly, we have to concatenate the
X -word embeddings with the segments:

M1 = concat(X,S1), . . . ,Mk = concat(X,Sk)

Now, each Mi ∈ R
(s+t)×d. Next, we apply an encoder layer:

M l
1 = VEl

0(M1), . . . ,M
l
k = VEl

0(Mk)

Each application of VE1
0(Mi) has a space complexity for the

SA mechanism of O
(
(s+ t)2

)
. Since VEl

0(Mi) is applied k
times per layer, we have a space complexity of O

(
k(s+ t)2

)
.

In practice, the application of VE1
0 on all segments produces

an attention pattern equivalent to the one shown in Fig. 4(b).
However, also patterns Fig. 4(c) and 4(d) have the same memory
requirement of O

(
k(s+ t)2

)
(as in Fig. 5-➊). Next, we apply

a MHSA layer between X -words and sequence tokens (the
funnelling layer, Fig. 5-➋):

G0 = MHSA(M l
0[: t],M

l
0[t :])

...

Gk = MHSA(M l
k[: t],M

l
k[t :])

Again, since M l
i [:t] has length t and M l

i [t:] has length s, this
operation has an attention space complexity of O(kts). Now,
each Gi block is composed of t embeddings, each of size d. By
concatenating all Gi blocks:

G= concat(G0, . . . , Gk)

Fig. 6. Input embedding and X -word embedding feed an encoder layer. The
encoder applies several attention layer with one of the presented patterns (see
Fig. 4). A MHSA layer is used to reduce the sequence length. A Transformer
encoder is applied to the reduced sequence. An upscaled version of the reduced
sequence is obtained by applying another MHSA. Finally, we introduce a skip
connection.

As a result, G is composed of kt embeddings. Finally, we
apply additional VEl

0 layer to G (Fig. 5-➌), obtaining: Gl =
VEl

0(G). Since G has length of kt, the space complexity of
the SA is O

(
(kt)2

)
. Here, Gl is a compressed version of the

original sequence. Gl can be fed to a decoder architecture as in
[28], or directly used to make predictions as in [15].

Hourglass Architecture. Hourglass architecture and layers
are used in variety of applications [38], [39]. They compress
the input dimension into a lower one. Next, they upscale the
lower dimension into the original input dimension. This struc-
ture allows for a residual connection [40] which usually leads
to better generalizations [41]. In this section, we will discuss
the implementation of an hourglass layer using the concepts
of segmenting and X -word embeddings. A depiction of the
architecture is shown in Fig. 6.

Our hourglass architecture builds upon the previously defined
funnel architecture. Let us start from the previously defined Gl

(Fig. 5-➋). To restore the input dimension, we apply a MHSA
layer between S and G (Fig. 6-➍):

S′ = MHSA(S,G)

Recall that the length of Gl was kt, while the length of S was
n. Then, the space complexity of the attention mechanism of
this layer is O(nkt). As S′ has the same dimension of S, we
can add a residual connection between S and S′ (Fig. 6-➎):

S′′ = S + S′

Finally, we can stack this layer to get a deeper architecture.
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Fig. 7. Input and X -word embeddings feed an encoder. The encoder applies
several attention layer that use the attention patterns in Fig. 4. The resulting
sequence is fed to Transformer decoder layer.

Encoder-Decoder Architecture. We propose architectures
for autoregressive (Fig. 7(b)) and non-autoregressive scenarios
(Fig. 7(a)) inspired by decoder architecture [28].

Let us start from M l
1,…, M l

k resulting from the segment-wise
application of VEl

0 (Fig. 5-➊). As discussed, this step has space
complexity of O

(
k(s+ t)2

)
for the SA mechanism. Recall that

each M l
i [:t] corresponds to the X -word embeddings. Instead,

each M l
i [t:] corresponds to token embeddings. Let us rename

these sequences:

X l
i =M l

i [:t], S
l
i =M l

i [t:]

X l = concat(X l
0, . . . , X

l
k), S

l = concat(Sl
0, . . . , S

l
k)

1. In a non-autoregressive scenario. We apply VDl between X -
word (X l) and sequence embeddings Sl (Fig 7a-➋):

VDl(Xl, Sl)

which has space complexity for the first MHSA layer of
O(ktn).
2. Instead, in an autoregressive scenario. Let T ∈ R

m×d be the
target sequence of length m. We apply VDl between T and Sl

(Fig. 7b-➋):

VDl(T, Sl)

which has space complexity O
(
m2

)
for the first MHSA layer,

and O(nm) for the next one. Note that, If m<< n the decoder
layers do not have a big impact on the memory. One can still
resort to the attention patterns in Fig. 4 if m� n.

Space-Time Analysis. To show the sub-quadratic scal-
ing laws for the previous architecture, we need to show that
the terms O

(
k(s+ t)2

)
and O(kst) are sub-quadratic. For

simplicity, let us drop the term t as it is constant, so that
O
(
k(s+ t)2

)
=O

(
ks2

)
and O(kst) =O(ks). Notice that,

ks= n, thus O(ks) =O(n). Ultimately, the scaling laws de-
pend on how the terms k and s relate to sequence length n. For
example, if k = s=

√
n, then O

(
ks2

)
=O(n

√
n). Thus prov-

ing the sub-quadratic scaling laws. However, other choices of

k and s can further reduce memory requirements. For example,
s= log n and k = n/s gives O

(
ks2

)
=O(n log n). Instead,

when s= n1/a and k = n/s, we have O
(
ks2

)
=O(n a

√
n).

Also, we have O
(
ks2

)
=O

(
n2

)
if s= n (thus k = 1) restoring

the original quadratic law. In this scenario, the CombTrans-
former architectures collapse to the Transformer architecture
with memory embedding [42]. If one also removes X -word
embeddings, by setting t= 0, then the CombTransformer ar-
chitectures collapse to the traditional Transformer architecture.
On the other hand, if we set s= 1 (thus k = n) then we have
O
(
ks2

)
=O(n) and O(ks) =O(n).

Similar considerations also apply to time analysis. For in-
stance, consider the time complexity of the SA layer, which
is O

(
n2 + n2d

)
(where d is the embedding size). The Comb-

Transformer architectures involve the repetitive application of
the SA mechanism on segments, with k segments of size s.
This results in a time complexity of O

(
ks2 + s2d

)
. Just like

in the space case, the time complexity is influenced by the
relationship between k and s. For example, if s is constant,
the time complexity becomes O(nd). If k = s=

√
n, the time

complexity becomes O(n
√
n+ dn

√
n).

In essence, the selections of k and s are contingent on the spe-
cific task and the permissible memory allocation for attention.
Depending on the situation, there are advantageous scenarios.
For instance, processing a few lengthy segments (with a small
k and large s) might be favorable in certain cases. Conversely,
processing numerous short segments (with a large k and small
s) might be more effective in other situations. It is worth not-
ing that as s increases, the scaling laws tend to become more
significant. In our assessment, we opted to set s= k =

√
n in

order to strike a harmonious equilibrium between the number
of segments and their individual lengths, all while maintaining
a sub-quadratic memory requirement.

Nevertheless, the selection of both the model variant and the
values for k and s can be approached by treating attention pat-
terns (1, 2, and 3) and architectures (FCT, EDCT, and HCT) as
hyperparameters. These hyperparameters could be determined
through an initial step of hyperparameter optimization.

V. EVALUATION

In this section, we will evaluate the CombTransformer com-
pared to other baselines with different datasets.

Hardware setup. All models have been trained on a single
NVIDIA RTX 3090 GPU with a 12th Gen. Intel CPU i9-
12900KF, and 128Gb of available RAM.

Hyper-parameters. To fairly evaluate all baselines, we fine-
tuned all baselines separately on the dataset java-small using
ASHAScheduler [41], and tree-structured Parzen estimators
[43] algorithms. We used the implementation provided by the
raytune1 package. Each baseline was fine-tuned for two epochs
on the train split of java-small and for ten trials. The opti-
mized hyper-parameters include dropout, learning rate, Adam
beta1 and beta2 [44], activation function, and architecture-
specific hyper-parameters such as window size (Longformer),
chi-word embedding (CombTransformer), relative attention n.

1https://www.ray.io/

https://www.ray.io/
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buckets(T5), relative attention max distance.2 Apart from
fine-tuned hyper-parameters, others are chosen using popular
values. E.g., all architectures share the embedding size (128),
the number of SA heads (4), and the training batch size (100).
Finally, we trained all architectures with Adam optimizer [44].

A. Method Name Generation

Introduction. To summarize code snippets is one of the
first steps in code-understanding systems. Such systems can be
useful to automatically produce documentation or to categorize
code bases. The availability of big data renders these tasks also
good benchmarks for neural architectures.

Task. Given a method with its name redacted, the model is
asked to generate a token sequence representing the redacted
name.

Metrics. We adopt the same metrics used in [8] and [9]:
– true-positives (TP). The number of sub-tokens predicted

that are present in the original name.
– false-positives (FP). The number of sub-tokens predicted

that are not present in the original name.
– false-negatives (FN). The number of sub-tokens in the

original name that are not present in the prediction.
Using TP, FP, and FN, one can compute:

TP

TP + FP

TP

TP + FN

2 ∗ precision ∗ recall
precision+ recall

precision recall f1-score

Both precision, recall, and f1-score are normalized scores
ranging from 0 to 1; the best score is 1.

Dataset. The dataset (java-large3) is the same used in [8],
[9]. It consists of 9, 550 Java projects for around 16M Java
methods. Training, validation and test splits are made of 9, 000,
250 and 350 projects respectively. We parsed java-large with
JavaParser (v3.25.2) [35]. We obtained five views of java-
large from five different processing pipelines:

– c2v view: it is composed of leaf-to-leaf paths extracted
from the method AST as in [8].

– c2s view: it is composed of leaf-to-leaf paths extracted
from the method AST as in [9].

– f2v view: it is composed of a list of statement-level features
as in [20].

– raw view: it is composed of tokenized plain text. We used
a Byte-Pair Encodings [45] tokenizer trained using the
HuggingFace tokenizers4 library.

– f2s view: it is a code representation obtained from the
unfolding of statement as discussed in Section III.

Models. Beyond the CombTransformer architectures, we
trained three non-Transformer and four Transformer-based
architectures from the literature as baselines:

– Code2vec [8]. It uses bags of leaf-to-leaf AST paths to
represent methods. It uses a GA mechanism to encode
bag of paths into fixed-size embedding which. Code2vec
is trained on the c2v view of java-large.

2https://huggingface.co/docs/transformers/v4.29.1/en/model_doc/t5#
transformers.T5Config

3https://s3.amazonaws.com/code2seq/datasets/java-large.tar.gz
4https://huggingface.co/docs/tokenizers/index

– Fold2vec [20]. It uses TUs as code representation. The ar-
chitecture uses both LSTM and GA to encode statements.
Statement encodings are processed using an SA. Fold2vec
is trained on the f2v view of java-large.

– Code2seq [9]. It uses bags of leaf-to-leaf AST paths to
represent methods. The architecture is an enhancement of
Code2vec. It is trained on the c2s view of java-large.

– Transformer [28]. It is a popular all-attention architecture.
It uses SA, fully connected and normalization layers. It is
trained on the raw view of java-large.

– Roberta [22]. It is a SA-based architecture. It successfully
applied to code-related tasks with CodeBERT [46]. Its
architecture is trained on the raw view of java-large.

– Longformer [31]. It is a variant of the Transformer ar-
chitecture with a reduced memory cost of O(ln). Where
tokens can only attend to tokens inside a sliding window
of size l. It is trained on the raw view of java-large.

– T5 [47]. It is a SA-based architecture trained on multiple
tasks simultaneously, here, limited to the name generation
task. T5 is trained on the raw view of java-large.

– Funnel CombTransformer (FCT). It is discussed in
Section IV. It is evaluated with all proposed attention
patterns: FCT-1 (Fig. 4(b)), FCT-2 (Fig. 4(c)), and FCT-3
(Fig. 4(d)). FCTs are trained on the f2s view of java-large.

– Hourglass CombTransformer (HCT). It is discussed in
Section IV. It is evaluated with all proposed attention
patterns: HCT-1 (Fig. 4(b)), HCT-2 (Fig. 4(c)), and HCT-3
(Fig. 4(d)). HCTs are trained on the f2s view of java-large.

– Encoder-Decoder CombTransformer (EDCT). It is dis-
cussed in Section IV. It is evaluated with all the proposed
attention patterns: EDCT-1 (Fig. 4(b)), EDCT-2 (Fig. 4(c)),
and EDCT-3 (Fig. 4(d)). EDCTs are trained on the f2s view
of java-large.

Apart from Code2vec and Fold2vec, all other architectures
are autoregressive. All baselines are trained using the cross-
entropy loss with a batch size of 100 and a maximum sequence
length of 512. All autoregressive architectures use three encoder
and three decoder layers. This allows for lean architectures that
can be trained in a few hours (circa 9 hours). We trained all
architectures from scratch for 5 epochs (without pretraining) to
have a fair comparison between architectures. However, pre-
training with goals as masked language modeling may give
better results [23].

Results. Table I summarizes the results. The best perfor-
mance is achieved by the HCT-1 architecture, followed by HCT-
3 and HCT-2. These architectures achieve similar results to each
other (around 0.60 of f1-score). Slightly worse performances
are achieved by FCT and EDCT architectures which respec-
tively obtain around 0.57 and 0.58 of f1-score. The best baseline
among the Transformer-like architecture is the Longformer,
achieving 0.54 f1-score. During inference, the fastest architec-
ture is Code2vec. Being shallow architectures, both Code2vec,
Code2seq, and Fold2vec are able to process thousands of
samples per second on GPU. Note that, FCT-1 architecture is
able to achieve a considerable inference speed. Firstly, notice
that the scaling laws of the SA suggest that it is more efficient
(in terms of memory and time) to process many short sequences

https://huggingface.co/docs/transformers/v4.29.1/en/model_doc/t5#transformers.T5Config
https://huggingface.co/docs/transformers/v4.29.1/en/model_doc/t5#transformers.T5Config
https://s3.amazonaws.com/code2seq/datasets/java-large.tar.gz
https://huggingface.co/docs/tokenizers/index
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TABLE I
BASELINES RESULTS FOR METHOD NAME GENERATION TASK. THE

SMALLER THE BETTER FOR PARAMS., THE HIGHER THE BETTER FOR THE

REMAINING METRICS

Model Params. (M) pr. re. f1 CPU (samples/s) GPU (samples/s)

code2seq 41 0.576 0.459 0.511 66.456 2313.591
code2vec 311 0.429 0.332 0.374 124.345 2950.531
fold2vec 40 0.599 0.495 0.542 63.227 1277.409

EDCT-1 22 0.625 0.539 0.579 40.656 1168.793
EDCT-2 22 0.64 0.537 0.584 19.896 586.101
EDCT-3 22 0.636 0.537 0.582 19.911 587.57

FCT-1 22 0.605 0.551 0.577 104.321 1848.53
FCT-2 22 0.597 0.536 0.565 31.713 822.703
FCT-3 22 0.604 0.537 0.569 25.942 717.938

HCT-1 23 0.637 0.574 0.603 22.605 642.438
HCT-2 23 0.633 0.562 0.595 11.972 363.933
HCT-3 23 0.636 0.561 0.596 11.041 332.251

longformer 21 0.595 0.505 0.546 23.965 866.517
roberta 21 0.533 0.416 0.467 16.606 563.757
t5 34 0.56 0.456 0.503 15.035 571.25
transformer 22 0.583 0.476 0.524 15.401 481.122

than a few long ones. FCT-1 exploits this fact, by processing
many segments rather than entire sequences. Compared to FCT-
1, other architecture add complexity by either using more com-
plex attention patterns or by introducing more complex layers.
For this reason, they achieve slower inference speeds. In terms
of parameters, apart from Code2vec, all architectures have less
than 50M trainable parameters. Code2vec maintains a very
large embedding table that accounts for the majority of leaf-
to-leaf path hashes. While the elevated number of parameters
and its shallow nature allow for fast inference times.

B. Code Search

Introduction. The programming activity involves several
tasks. Among them, the ability to efficiently search for useful
and relevant code snippets is essential. Search engines capable
of proposing relevant code snippets, given natural language
queries, are tools capable of boosting the programmer produc-
tivity. To fairly evaluate our proposal, we follow the procedure
described in [15].

Task. Given a natural language query, the model looks a
codebase for relevant snippets. To learn this task, the model
is trained to match documentation snippets with their imple-
mentation. In practice, the model is presented with a batch of
several methods and their corresponding documentation strings.
The model is trained to match code snippets to the associated
natural language query.

Metrics. We evaluate the proposed architecture on:
– Top-1 accuracy (top-1). This represents the number of

correct associations over the total number of queries.
– Mean Reciprocal Rank (MRR). It is the mean of the re-

ciprocal rank of all queries:

MRR=
1

N

N∑

i=1

1

ranki

where, N is the number of all queries, ranki is the rank
of the correct answer wrt. the query qi.

Dataset. To train our models, we used the Java portion of
the CodeSearchNet dataset [15]. The training split contains

TABLE II
BASELINES RESULTS FOR CODE SEARCH TASK. THE SMALLER THE BETTER

FOR PARAMS., THE HIGHER THE BETTER FOR THE REMAINING METRICS

Model Params. (M) Top-1 MRR CPU (samples/s) GPU (samples/s)

code2seq 28 0.468 0.519 157.257 7120.265
code2vec 298 0.264 0.322 279.786 10099.636
fold2vec 27 0.56 0.601 140.394 5123.235

EDCT-1 29 0.538 0.623 188.36 6242.339
EDCT-2 29 0.564 0.647 120.097 3818.302
EDCT-3 29 0.563 0.642 106.525 3405.643

FCT-1 28 0.567 0.657 395.496 13006.912
FCT-2 28 0.489 0.579 185.722 6054.496
FCT-3 28 0.463 0.557 162.429 5355.325

HCT-1 30 0.533 0.621 111.129 3778.538
HCT-2 31 0.536 0.621 72.813 2350.49
HCT-3 31 0.528 0.621 67.299 2184.446

longformer 27 0.554 0.618 149.832 4918.995
roberta 27 0.52 0.555 176.49 6222.663
t5 53 0.55 0.62 153.297 5410.793
transformer 27 0.542 0.584 172.478 6227.57

454, 450 samples. The validation splits contain 15, 327 sam-
ples. Lastly, the test split of CodeSearchNet contains 26, 908
samples. Every sample of CodeSearchNet is composed of
1. a Java method and 2. the documentation string attached to
the method.

As before the dataset is used to generate several views de-
pending on the processing required by the different architec-
tures: c2v/c2s/f2v/f2s/raw views.

Models. We adapted and retrained the previously presented
16 architectures for the code search task. All models are trained
with a sequence of 256 tokens (both for query sequences and
code sequences). All models are trained with the same batch
size of 100 for 50 epochs. Apart from Code2vec, Code2seq,
and Fold2vec, all models have the same vocabulary of 100, 000
query tokens and 100, 000 for code tokens. Instead, Code2vec,
Code2seq, and Fold2vec retain their original vocabulary size.
Again, apart from Code2vec, Code2seq, and Fold2vec, all ar-
chitectures are composed of 3 encoder layers for method snip-
pets and 3 encoder layers for documentation. Additionally, all
the models are trained with the same attention loss:

L(Q) =− 1

N

∑

i

log
exp(Ec(ci)

TEq(qi))∑
j exp(Ec(cj)TEq(qi))

where qi represents the i-th natural language query, ci represents
the correct associated method body, Q is the set of all samples
in a batch. Ec and Eq represent the code encoder and the query
encoder respectively. When j 
= i, cj is an incorrect answer for
the query qi (also called distractors). By minimizing the loss,
we maximize the inner product between qi and ci. Instead, when
i 
= j, the loss minimizes the inner product between qi and cj .

Results. Table II summarizes the results. The best-
performing model is FCT-1 (achieving an MRR of 0.657).
Most notably, other FCT architectures achieve considerably
lower results. This is probably caused by the fact that cross-
segment attention introduces complexity to the information
flow of the SA layers, which in turn produces a code embedding
that is drastically more difficult to align with the documentation
embedding. The contrary happens when considering EDCT
architectures. EDCT architectures, being endowed with an
internal decoder layer, have the capacity to align code X -word
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TABLE III
BASELINES RESULTS FOR THE SUMMARIZATION TASK. THE SMALLER

THE BETTER FOR PARAMS. THE HIGHER THE BETTER FOR ALL THE

REMAINING METRICS

Model Params. (M) f1 bleu CPU (samples/s) GPU (samples/s)

code2seq 41 0.557 0.102 1.943 96.345
code2vec 311 0.516 0.108 2.655 112.671
fold2vec 40 0.565 0.098 2.032 74.43

EDCT-1 41 0.56 0.129 1.959 81.597
EDCT-2 41 0.562 0.149 1.668 68.937
EDCT-3 41 0.564 0.144 1.576 64.954

FCT-1 40 0.558 0.114 2.332 89.983
FCT-2 40 0.563 0.124 1.944 78.002
FCT-3 40 0.564 0.129 1.846 74.56

HCT-1 42 0.572 0.141 1.599 60.437
HCT-2 42 0.572 0.144 1.282 50.216
HCT-3 42 0.571 0.152 1.246 48.04

longformer 40 0.569 0.142 1.676 73.429
roberta 40 0.563 0.131 1.738 73.323
t5 53 0.556 0.134 1.782 75.964
transformer 40 0.568 0.128 1.549 63.317

embedding with their documentation counterparts when
cross-segment attention is allowed. Instead, HCT architectures
are unaffected by the issue. As the HCT layer uses skip
connections to incrementally modify the input embeddings,
the resulting architecture is able to align the resulting code
embedding and the documentation embedding regardless of the
attention pattern used. Among Transformer-like architectures,
the best-performing model is T5 achieving an MRR of 0.62.
Regarding inference speeds, Code2vec, and Code2seq, due to
their shallow nature, are able to process 10, 000 samples per
second. This kind of speed is matched only by FCT-1. Overall,
all models are several times faster compared to the previous
task. This behavior can be explained by the fact that wrt. the
previous task, models were required to make eight prediction
(one for each target token) to complete a batch.

C. Code Summarization

Introduction. Code summarization represents one of the
main applications for deep learning architectures, as it can speed
up the generation of documentation. Compared to the previous
task, code summarization is more difficult as it requires a deeper
understanding of the code snippets and the ability to generate
coherent natural language descriptions.

Task. Given a code snippet, the model generates a code
description. To learn this task, the model is trained in an au-
toregressive manner to match a given description.

Metrics. Since architectures must generate long sequences,
the previous metrics (precision, recall, and f1) cannot capture
the quality of the generated output. We use the BLEU score
[48]. It is a quality metric based on the co-occurrences of n-
grams between the target and the predicted sequence. We use
the implementation by the TorchMetrics5 Python package with
4-grams and with smoothing.

Dataset. We used the Funcom dataset proposed in [49]. Fun-
com was applied to recent studies [24], [50]. Funcom is com-
posed of 2M of Java methods alongside their documentation.
We applied a training, validation, and test split of 70%, 10%,

5https://torchmetrics.readthedocs.io/en/stable/text/bleu_score.html

20% respectively. As before, Funcom is used to generate several
views (c2v, c2s, f2v, f2s, and raw) depending on the processing
required by the different architectures.

Models. We adapted and trained all the previously mentioned
architectures. All the models can process a sequence of length
up to 256 tokens and can generate documentation of length
up to 64 tokens (same settings of [46]). All architectures are
trained with an embedding size of 128 and a vocabulary size
of 100, 000. Additionally, all architectures are composed of 3
encoder layers and 3 decoder layers for the token generation. All
architectures are trained with Adam optimizer [44] and hyper-
parameter obtained from the previous fine-tuning for 10 epochs.
Finally, all architectures are trained with cross-entropy loss as
in Section V-A.

Results. HCT-3 is the architecture that achieves the best re-
sults (0.152 BLEU). For the summarization task, being the most
difficult, allowing cross-segment attention produces improve-
ment in all the proposed architectures. Among the proposed
models, the FCT groups perform slightly worse. Meaning that
compressing all the embeddings in a few ones does not allow
the necessary information to pass through the last layers of the
architecture. Similarly, all the Transformer-based architectures
perform achieve around 0.13 of BLEU score with the exception
of the Longformer that achieves BLEU score of 0.142. Instead,
Code2seq, Code2vec, and Fold2vec fall slightly behind (BLEU
score of around 0.1). Their shallow nature does not allow them
to get results on par with deeper models. As to inference speed,
the fact that each prediction, to be completed, needs 64 evalu-
ation of the model (one per token) causes considerably slower
models. Even shallower architectures are not particularly faster
wrt. others as the inference time are dominated by the last
decoder layers performing the generation.

VI. DISCUSSION

X -word embedding In this section, we discuss a few of the
interesting behaviors for X -words embeddings. The following
experiments are performed on a FCT-1.

A X can be seen as a vector having an attention budget to
spend between all input tokens. This budget is used to combine
input tokens into a summary embedding through a weighted
sum. This vector is forced to put its budget into relevant em-
beddings in order to have relevant information in successive
layers. If we use tX -word embeddings, we will have t summary
embeddings for each segment.

Fig. 8 ② shows a parsed representation of the code snippet
in ① - 1 circle. Here, all the tokens that take the maximum
attention budget from at least one X are highlighted. Note that
less than 7 tokens are often highlighted. Fig. 8 (➊ and ➋)
shows how all 7X s spend their attention budget among the
tokens of the third and fifth statements. Note that, Different
X s spend their budgets differently. This highlights that each
X specializes to match a specific type of token. Although X s
spend their budget differently, they often also attend to the
same tokens. This fact shows that not all tokens are considered
equally important. Those tokens that attend the most wrt. at least
one X s can be seen as keywords for the respective statement.

https://torchmetrics.readthedocs.io/en/stable/text/bleu_score.html
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Fig. 8. Distribution of X s attention between tokens. Panel ① shows a Java method, panel ② the parsed code, as discussed in Section III. Colored tokens
received max attention from at least one X s. Panels ➊ and ➋ show how X s attend to tokens from the first and second statement respectively.

Fig. 9. Attention budget given to tokens appearing in FCT-1 prediction.

We argue that forcing the network to compress a sequence into a
few embeddings forces the network to pick the most informative
tokens, like keywords for a natural language sentence. Mean-
while, tokens that receive a low attention budget are dropped
and not further processed. This concept of compressing infor-
mation is used in several types of architecture across several
fields. For example, the funnel layer in [37] for NLP, or resnet
architectures [40] in computer vision.

Next, we investigate how X s spend their budget. Fig. 9 shows
how each X s attend to tokens that appear also in the prediction.
For example, when predicted tokens appear in a statement, X0

spends 38.30% of his attention budged on these tokens (these

statistics are computed from the test set). Since the network is
trained to predict target tokens, this highlights how much target
tokens become relevant for the CombTransformer. This should
be even more evident when one considers that 61.45% of target
tokens (from the test set) also appear in the method body. Thus,
it should not surprise that X s put a lot of their attention into
these tokens.

These last considerations are based on crude approximations.
We discussed the attention given to tokens. However, to be
truly precise, X -word embeddings attention is not given di-
rectly to tokens but rather to their embeddings after a certain
number of encoding steps (see Fig. 5-➌). Thus, attention that
is given to a certain token depends also on other tokens from the
same statement.

Following the work of previous studies [42], [51], we are
going to show the main differences between the CombTrans-
former attention and the Transformer attention. In particular,
we are going to compare the mean between different attention
heads for each encoder layer of a FCT-1 and a Transformer
model. Fig. 10(a) displays 5 heatmaps, one for each encoder of
the funnel Transformer. The first three are layers in the teeth.
The last two are layers in the backbone. In the backbone, X s
of different teeth attend to each other. Similarly, Fig. 10(b) dis-
plays 5 heatmaps, one for each encoder layer of the Transformer
model. The first encoder in Fig. 10(b) shows a predominant
diagonal pattern which is substituted by column patterns in
later layers. A diagonal pattern almost identical arises in the
second encoder of Fig. 10(a). This behavior indicates that the
FCT-1 is somewhat successfully approximating the behavior of
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Fig. 10. Attention heatmaps for a FCT-1 model (left) and the Transformer
model (right). All heatmaps are obtained from the same sample. Each heatmap
represents the mean between heads of the MHSA matrices (softmax(Q ·
KT /d) in Section II).

the Transformer model while using less space. Interestingly,
the last two encoders in Fig. 10(a) present patterns which are
completely different from those of the Transformer. Not only,
but these patterns are different from those found in [51]. This
suggests that computation diverges drastically. This shows that
X s interact with each other in a unique way, different from
normal token embeddings.

A. Representation

The CombTransformer baselines are not bounded by the pro-
posed representation. In this section, we investigate the effects
of the proposed code representation. Table IV summarizes the
results. For both architecture, using the proposed representation

TABLE IV
PERFORMANCE FOR THE TRANSFORMER AND THE HCT-1 ARCHITECTURE

UNDER DIFFERENCE DATA REPRESENTATION

Model Data view Params.(M) pr. re. f1

HCT-1 raw 23 0.57 0.473 0.517
HCT-1 f2s 23 0.636 0.561 0.596

transformer raw 22 0.583 0.476 0.524
transformer f2s 22 0.615 0.534 0.572

Fig. 11. f1 scores during validation after each 1, 000 training batches (1M
data points) for 10 epochs.

has beneficial effects. In particular, for the HCT-1 architecture
there is noticeable improvement of the 8 in terms of f1-score.
Similarly, the Transformer architecture improves of 5. This
shows that using parsed representation of source code can have
beneficial effects regardless of the network architecture. Fig. 11
shows the f1-score obtained during validation for the HCT-1 and
the Transformer architectures. In both scenarios, the effect of
the new representation is noticeably positive.

B. Memory Scaling

As mentioned earlier, the memory scaling laws of SA are
quadratic (O

(
n2

)
) in the sequence length (n). Meanwhile,

the scaling laws of the CombTransformer architecture depend
on the relation between the number of segments (k) and the
segment lengths (s). In this section, we compare the scaling
laws with the GPU memory used to process samples. Firstly,
consider Fig. 12(a), here we compare the theoretical mem-
ory requirements of the single-head SA mechanism wrt. a
Pytorch implementation of single-head SA. Most notably, the
memory requirements grow rapidly beyond the classical sin-
gle GPU requirements (16GB). As shown in Fig. 12(a) the
orange lines are stopped early as the required memory grows
past the available memory. Moreover, if one accounts also for
embedding size, multiple attention heads, multiple layers, batch
size, and gradient buffers the maximum sequence that can be
processed on a single GPU with 16GB is much smaller. Instead,
by processing sequence segments separately, it is possible to
shrink the memory requirements of the SA layer (shown in
Fig. 12(b) and (c)). This effectively frees GPU memory that
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Fig. 12. Memory scaling for the SA mechanism wrt. their theoretical Memory requirements. Fig. 12(a) shows the classical SA mechanism. Fig. 12(b) shows
the SA mechanism with segments when k =

√
n, and s=

√
n. Fig. 12(c) shows the SA mechanism with segments when k = n/ logn and s= logn.

can be used to either process longer sequences or stack
more layers. E.g., when k =

√
n and s=

√
n, as shown in

Fig. 12(b), the SA mechanism can be applied on much longer
sequences.

VII. THREATS TO VALIDITY

Now, we discuss threats that may have affected our results.
Conclusion validity. We claimed that the CombTransform-

ers brings an improvement over the Transformer. However,
the improvement wrt. the Transformer is marginal. One could
question whether the improvement is effective or it has come
by chance. To mitigate this issue, we evaluated few variants
of the comb Transformers (FCT, HCT, and EDCT each with
different attention patterns). We also compare other popular
efficient Transformer, Longformer. While it is not feasible to
train several models for each architecture due to training time,
we are confident that the quantity of used baselines are enough
to minimize any bias.

Internal validity. Several methods proposed in the literature
compress the SA mechanism. Such as [52], [53], [54], [55], [56]
and many others. Unfortunately, evaluating all these approaches
with our current resources is infeasible. In this respect, we
chose to compare our architecture with the Longformer on the
same tasks. Longformer architecture is one among the best
performing architectures in Tay et al.’s study [57]. We used a
third-party implementation for Longformer (both freely acces-
sible [58], [59]) to limit any bias we could have introduced by
implementing them ourselves. During the development of the
CombTransformers, there were a lot of architectural changes
and manual parameter tuning. However, the same process was
not applied for the Transformer and Longformer to keep the
baselines fair to the originals. We cannot exclude that this has
affected the results. To mitigate this issue, we have included
among other baselines, models that were specifically designed
for this task (Code2seq and Code2vec).

External validity. We claimed that the shown improve-
ments wrt. Code2seq come from the representation and the
model. However, Code2seq and CombTransformer employ
different preprocessing procedures yielding slightly different
datasets. However, we kept the preprocessing as close as

possible to those of the previous works while using a different
tokenizer and an updated parser.

VIII. RELATED WORKS

Let us overview some approaches that shares either goals,
technique or application domain with CombTransformer.

Memory Efficient Transformer. A lot of work is spent
trying to reduce the memory footprint of Transformers similarly
to what the CombTransformer is trying. In Roy et al. [52] a
k-means clustering algorithm is used to cluster queries and keys.
Then, the attention mechanism is performed only on queries and
keys from the same cluster. A similar approach using locality
sensitive hashing is used in Kitaev et al. [55]. In Beltagy et al.
[31] tokens can only attend to other close tokens. The same con-
cept is then expanded in [53] with random attention. Instead an
approximation for softmax attention is applied in Choromanski
et al. [60]. A similar technique to ours is applied in Dai et al.
[37] where inner Transformer layers compress the sequence size
using pooling. A similar segmenting approach of statements
is used by Yang et al. [61] in the NLP domain, however the
sequence size reduction uses always the same special token.

Model Compression. These techniques aim to reduce the
size of trained models without compromising the model per-
formance. Compressed models are leaner and run faster than
the original versions. Li et al. [62] presents a weight pruning
techniques to reduce the number of weights in convolutional
NN, whole layers are pruned [63] providing leaner models.
A different approach lies in knowledge distillation. Here a
pretrained model—teacher—is used to transfer the knowledge
to a usually smaller model—student. Huang et al. [64] pro-
poses to align inter-class relation between the teacher model
and the student model predictions. Another popular technique
is the model quantization. Here, the number of bit available
for each weight are reduced. Jacob et al. [65] proposes a
quantization scheme that allows NN to be run using only
integer arithmetic.

Machine Learning on Code. Allamanis et al. [19] proposed
the extreme source code summarization task. Allamanis et al.
[66] proposed a convolutional NN to predict method names
from source code. More successful approaches were applied by
Alon et al. [7], [8], [9] which we have already discussed. Xu
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et al. [67] proposed an approach based on hierarchical attention.
For the task of code summarization, Movshovitz-Attias et al.
[68] proposed to use comment to summarize code. Once again,
an attention based NN was proposed by Iyer et al. [69]. A
more successful and recent approach, based on Transformers
architecture, was proposed by Feng et al. [46]. Automatic bug
detection may be an application for the CombTransformer;
notable examples: Shi et al. [70] and Dam et al. [13]. The
former applies an approach close to Code2seq, the latter uses to
Tree-LSTM from the AST. Similarly, Tufano et al. [71] ap-
plies a NMT architecture to automatically generate patches for
buggy code.

IX. CONCLUSION

In this work, we designed some novel architectures (Comb-
Transformers) based on the Transformer. The comb Transform-
ers are all designed to deal with long sequences, specifically
when these sequences can be seen as a sequence of sentences
(e.g., methods are a sequence of statements). Comb Transform-
ers effectively reduce the memory requirements enabling the
training on longer sequences. They also achieve comparable
results wrt. established architectures as the Longformer and the
Transformer. There is no reason to prevent a CombTransformer
architecture to be used in code-unrelated tasks. Different do-
mains could benefit from this kind of architectures. This will
be our future investigation.

Lastly, we provide a package to reproduce our experiments
which is available at the following address:

https://cazzola.di.unimi.it/comb-transformer.html
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