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ABSTRACT
The chase procedure is a fundamental algorithmic tool in databases

that allows us to reason with constraints, such as existential rules,

with a plethora of applications. It takes as input a database and a set

of constraints, and iteratively completes the database as dictated

by the constraints. A key challenge, though, is the fact that it may

not terminate, which leads to the problem of checking whether it

terminates given a database and a set of constraints. In this work,

we focus on the semi-oblivious version of the chase, which is well-

suited for practical implementations, and linear existential rules, a

central class of constraints with several applications. In this setting,

there is a mature body of theoretical work that provides syntactic

characterizations of when the chase terminates, algorithms for

checking chase termination, and precise complexity results. Our

main objective is to experimentally evaluate the existing chase

termination algorithms with the aim of understanding which input

parameters affect their performance, clarifying whether they can

be used in practice, and revealing their performance limitations.
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1 INTRODUCTION
The chase procedure (or simply chase) is a fundamental algorithmic

tool that has been successfully applied to several database problems

such as checking logical implication of constraints [3, 15], contain-

ment of queries under constraints [1], computing data exchange

solutions [10], and ontological query answering [7], to name a few.

The chase takes as input a database D and a set Σ of constraints,

which, for this work, are existential rules (a.k.a. tuple-generating de-
pendencies (TGDs)) of the form ∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ψ (x̄, z̄)), where
ϕ (the body) andψ (the head) are conjunctions of relational atoms,

and it produces an instance DΣ that is a universal model of D and

Σ, i.e., a model that can be homomorphically embedded into every
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other model of D and Σ. Somehow DΣ acts as a representative of

all the models of D and Σ. This is the reason for the ubiquity of

the chase in databases, as discussed in [9]. Indeed, many database

problems can be solved by simply exhibiting a universal model.

Roughly speaking, the chase adds new tuples to the database D
(possibly with null values that act as witnesses for the existentially

quantified variables), as dictated by the TGDs of Σ, and it keeps

doing this until all the TGDs of Σ are satisfied. There are, in principle,

two practically relevantways for formalizing this simple idea, which

lead to different versions of the chase: semi-oblivious and restricted.
The key difference between those two versions of the chase is when

a TGD is considered applicable. In a nutshell, the semi-oblivious

version applies a TGD whenever the body is satisfied, whereas the

restricted version applies a TGD if the body is satisfied but the

head is not. Here is a simple example that illustrates the differences

between the two versions of the chase procedure; for amore detailed

discussion, we refer the reader to [6].

Example 1.1. Consider the database D = {R(a,a)} and the TGD

∀x∀y(R(x,y) → ∃z R(z, x)). Although R(a,a) satisfies the body of

the TGD, the restricted chase will detect that the database already

satisfies the TGD, and thus, there is nothing to derive. On the other

hand, the semi-oblivious chase will produce the atom R(⊥1,a),
where ⊥1 is a (labelled) null value, despite the fact that the TGD

is already satisfied. Observe now that R(⊥1,a) satisfies the body
of the TGD, and the semi-oblivious chase will produce the atom

R(⊥2,⊥1), where ⊥2 is a null value. The semi-oblivious chase will

keep indefinitely applying the TGD, and eventually will build the

infinite instance {R(a,a),R(⊥1,a),R(⊥2,⊥1),R(⊥3,⊥2), . . .}.

The restricted version of the chase has a clear advantage over

the semi-oblivious one as it generally builds smaller instances. But,

of course, this advantage does not come for free: at each step, the

restricted chase has to check that there is no way to satisfy the

head of the TGD at hand, and this can be very costly in practice. It

has been recently observed that for RAM-based implementations

the restricted chase is the indicated approach since the benefit

from producing smaller instances justifies the additional effort

for checking whether a TGD is already satisfied; see, e.g., [4, 13].

However, as discussed in [4], an RDBMS-based implementation

of the restricted chase is quite challenging, whereas an efficient

implementation of the semi-oblivious chase is feasible. Hence, both

the semi-oblivious and restricted versions of the chase are relevant

tools for practical implementations.

Chase Termination and Linear TGDs. There are indeed effi-

cient implementations of the semi-oblivious and restricted chase

that allow us to solve important database problems by adopting

a materialization-based approach [4, 13, 17, 19]. Nevertheless, for
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this to be feasible in practice we need a guarantee that the chase

terminates. There are settings where the termination of the chase

is guaranteed by design. For example, in data exchange there is

an a priori assumption that the chase terminates as the adopted

languages (e.g., weakly-acyclic TGDs) are deliberately designed

to ensure the termination of the chase [10]. There are settings,

however, where such an a priori assumption cannot be realistically

made. Such a setting, which is of special interest for our work, is

that of ontological reasoning. Indeed, even lightweight TGD-based

ontology languages allow us to express non-acyclic statements with

value invention, a combination that may lead to an infinite chase;

see, e.g., [11]. This fact motivated a long line of research on the

chase termination problem, that is, given a databaseD and a set Σ of

TGDs, to devise sound and complete algorithms that check whether

the semi-oblivious or restricted chase of D with Σ terminates. It is

known that, in general, this is an undecidable problem. This has

been established in [9] for the restricted chase, and it was observed

a year later in [16] that the same proof shows undecidability also

for the semi-oblivious chase. The undecidability proof given in [9],

however, constructs a sophisticated set of TGDs that goes beyond

existing well-behaved classes of TGDs that enjoy certain syntactic

properties. This observation leads to the obvious question: is the

chase termination problem algorithmically solvable whenever we

focus on well-behaved classes of TGDs?

A well-behaved class of TGDs, which forms a central ontology

language that attracted a considerable attention due to its simplicity

and the fact that it strikes a good balance between expressiveness

and complexity, is that of linear TGDs proposed in [7]. A TGD is

linear if it has only one atom in its body, whereas the head can be an

arbitrary conjunction of atoms. Such a TGD is called simple-linear if
each variable in its body occurs only once, whereas variables in its

head can repeat without any restriction. Although, at first glance,

(simple-)linear TGDs may look very inexpressive, it turns out that

they are powerful enough for modelling ontologies. In particular,

the practically important ontology language DL-LiteR [8], which is

based on Description Logics and forms the logical underpinning

of OWL 2 QL, one of the popular profiles of the W3C committee’s

Web Ontology Language (OWL) standard for ontology languages,

can be easily embedded into the class of simple-linear TGDs.

The chase termination problem in the presence of (simple-)linear

TGDs has been extensively studied the last few years. Concerning

the semi-oblivious version of the chase, there is a mature body of

theoretical work that provides syntactic characterizations of when

the chase terminates based on suitable acyclicity notions, algo-

rithms for checking chase termination, precise complexity results,

and worst-case optimal bounds on the size of the chase instance

(whenever is finite) [5]. On the other hand, for the restricted version

of the chase, we only have a decidability result via an algorithm

that runs in at least triple-exponential time, under the assumption

that the head of the linear TGDs consists of a single atom; in fact,

this algorithm relies on an expensive reduction to the satisfiability

problem of Monadic Second Order Logic over infinite trees [14].

Needless to say that the syntactic characterizations of the termina-

tion of the semi-oblivious chase, as well as the existing algorithms

for checking the termination of the semi-oblivious chase, are far

from being applicable to the restricted chase, and there is no way to

be merely adapted in order to be applicable to the restricted chase.

This striking difference on the progress that has been achieved

should be attributed to the fact that the chase termination problem

is significantly more challenging in the case of the restricted chase.

Main Objective. Having a complete theoretical understanding of

the semi-oblivious chase termination problem in the presence of

(simple-)linear TGDs, the next step is to experimentally evaluate

the existing algorithms with the aim of understanding which input

parameters affect their performance, clarifying whether they can

be applied in a practical context, and revealing their performance

limitations. This is the main objective of this work. We do not

consider the restricted chase as this will be premature due to the

lack of a good theoretical understanding of the problem as discussed

above; in fact, this is the subject of an ongoing research activity.

From the chase termination literature, we can inherit two types

of algorithms for the semi-oblivious chase termination problem in

the presence of (simple-)linear TGDs, that is, materialization-based
and acyclicity-based [5], which can be described as follows.

The materialization-based algorithms exploit the existence

of worst-case optimal bounds on the size of the chase instance

(whenever is finite). In particular, given a database D and a set Σ
of (simple-)linear TGDs, we have an integer kD ,Σ such that the

chase of D with Σ terminates iff the size of the chase instance (i.e.,

the number of its atoms) is at most kD ,Σ. This immediately leads

to conceptually simple chase termination algorithms: simply run

the semi-oblivious chase of D with Σ and keep a counter for the

number of generated atoms, and if the count exceeds kD ,Σ, then

conclude that the chase does not terminate; otherwise, it does.

On the other hand, the acyclicity-based algorithms exploit the

syntactic characterizations of when the chase terminates via suit-

able acyclicity notions. In particular, given a database D and a set

Σ of (simple-)linear TGDs, we know that the chase of D with Σ
terminates iff the dependency graph of Σ (a standard way of rep-

resenting a set of TGDs as a graph, which is defined in Section 3)

does not contain a “bad” cycle, where a “bad” cycle witnesses the

fact that during the chase of D with Σ we eventually fall in a cyclic

chase derivation that leads to non-termination. This again leads to

conceptually simple chase termination algorithms: construct the

dependency graph of Σ, and if it has a “bad” cycle, then conclude

that the chase does not terminate; otherwise, it does.

We performed an exploratory analysis revealing that the algo-

rithms based on materialization are too expensive in practice; note

that our implementation of the materialization-based algorithms ex-

ploits VLog, a state-of-the-art chase engine [19]. We considered 483

pairs (D, Σ), whereD is a database and Σ a set of simple-linear TGDs,

obtained from the ontology repository of the Data and Knowledge

Group of the University of Oxford by keeping from the available

ontologies, which are actually modelled using Description Logics,

only the ontological axioms that can be expressed as simple-linear

TGDs. For each such pair, we checked whether the semi-oblivious

chase ofD with Σ terminates by using both the materialization- and

the acyclicity-based algorithms. We observed that for 28% of the

scenarios the materialization-based algorithm runs out of memory,

whereas the acyclicity-based algorithm provides an answer in 0.5

seconds in the worst-case. This is because the worst-case upper

bound on the size of the result of the chase from [5] is very large,

and thus, the materialization-based algorithm is forced, in general,
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to construct extremely large instances before being able to safely

recognize that the chase does not terminate. For the remaining 72%

of the scenarios, the acyclicity-based algorithm consistently outper-

forms the materialization-based algorithm. Overall, for 50% of the

considered scenarios, either the materialization-based algorithm

fails, or the acyclicity-based algorithm is at least 10 times faster.

Therefore, we concentrate on the acyclicity-based algorithms.

Main Outcome and Challenges. Our experimental analysis re-

vealed that for simple-linear TGDs the primary parameter impact-

ing the runtime of the acyclicity-based algorithm is the size of the

input set of TGDs, whereas the size of the input database does not

play any crucial role. Interestingly, the algorithm is very fast (in

the order of seconds) even for large sets of simple-linear TGDs

(with up to 200K TGDs). Now, concerning the more interesting

case of linear TGDs, our analysis showed that the acyclicity-based

algorithm consists of two components that are of different nature.

In particular, there is a database-dependent component, whose

performance is solely impacted by the size of the database, and

a database-independent component, whose runtime is primarily

affected by the size of the set of TGDs. Interestingly, the overall

runtime of the algorithm is quite reasonable, which is a strong evi-

dence that fast checking for the termination of the semi-oblivious

chase in the presence of linear TGDs is not an unrealistic goal. Note

that most of the total end-to-end runtime of the algorithm is taken

by the database-dependent component, which indicates that our

future efforts should be focused on improving that component.

Towards the above outcome concerning the acyclicity-based

algorithms, we had to overcome a couple of technical challenges

that led to results of independent interest:

▶ It would not be possible to obtain the above insightful conclu-

sions by naively implementing the algorithms in question as this

would lead to poor performance; this is further discussed in Sec-

tion 4. Hence, we had to revisit and refine the theoretical algorithms

from [5] in order to obtain novel algorithms that are amenable to

efficient implementations. The low-level implementation details of

the new refined algorithms are discussed in Section 5.

▶ In order to stress test the algorithms in question, we had to

synthetically generate databases and sets of TGDs. However, as

discussed in Section 6, existing data and TGD generators are not

suitable for our purposes as they do not allow us to tune certain

parameters that are crucial for evaluating our chase termination

algorithms. To this end, we developed our own data and TGD

generators, and used them to carefully generate the databases and

TGDs that have been employed in our experimental analysis.

2 PRELIMINARIES
We consider the disjoint countably infinite sets C, N, and V of

constants, (labeled) nulls, and variables, respectively. We refer to

constants, nulls and variables as terms. For an integer n > 0, we

write [n] for the set of integers {1, . . . ,n}.

Relational Databases. A schema S is a finite set of relation sym-

bols (or predicates) with associated arity. We write R/n to denote

that R has arity n > 0; we may also write ar(R) for the integer n. A
(predicate) position of S is a pair (R, i), where R/n ∈ S and i ∈ [n],
that essentially identifies the i-th argument ofR. Wewrite pos(S) for

the set of positions of S, that is, the set {(R, i) | R/n ∈ S and i ∈ [n]}.
An atom over S is an expression of the form R(t̄), where R/n ∈ S
and t̄ is an n-tuple of terms. A fact is an atom whose arguments

consist only of constants. For a variable x in t̄ = (t1, . . . , tn ), let
pos(R(t̄), x) = {(R, i) | ti = x}. We write var(R(t̄)) for the set of

variables in t̄ . The notations pos(·, x) and var(·) extend to sets of

atoms. An instance over S is a (possibly infinite) set of atoms over S
with constants and nulls. A database over S is a finite set of facts
over S. The active domain of an instance I , denoted dom(I ), is the
set of terms (constants and nulls) occurring in I .

Homomorphisms. A homomorphism from a set of atoms A to a

set of atoms B is a function h from the set of terms in A to the set

of terms in B such that h is the identity on C, and R(t1, . . . , tn ) ∈ A
implies h(R(t1, . . . , tn )) = R(h(t1), . . . ,h(tn )) ∈ B.

Tuple-GeneratingDependencies.A tuple-generating dependency
(TGD) σ is a (constant-free) sentence ∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ψ (x̄, z̄)) ,
where x̄, ȳ and z̄ are tuples of variables of V, and ϕ(x̄, ȳ) andψ (x̄, z̄)
are non-empty conjunctions of atoms that mention only variables

from x̄ ∪ ȳ and x̄ ∪ z̄, respectively. Note that, by abuse of notation,

we may treat a tuple of variables as a set of variables. We write

σ as ϕ(x̄, ȳ) → ∃z̄ψ (x̄, z̄), and use comma instead of ∧ for joining

atoms. We refer to ϕ(x̄, ȳ) and ψ (x̄, z̄) as the body and head of σ ,
denoted body(σ ) and head(σ ), respectively. The frontier of the TGD
σ , denoted fr(σ ), is the set of variables x̄ , i.e., the variables that

appear both in the body and the head of σ . The schema of a set

Σ of TGDs, denoted sch(Σ), is the set of predicates occurring in Σ.
An instance I satisfies a TGD σ as the one above, written I |= σ , if
whenever there exists a homomorphism h from ϕ(x̄, ȳ) to I , then
there is an extension of h that is a homomorphism fromψ (x̄, z̄) to I ;
we may treat a conjunction of atoms as a set of atoms. The instance

I satisfies a set Σ of TGDs, written I |= Σ, if I |= σ for each σ ∈ Σ.

Linearity. A TGD is called linear if it has only one body-atom,

and the corresponding class that collects all the finite sets of linear

TGDs is denoted L. We call a linear TGD simple if no variable occurs
more than once in its body, and the obtained class is denoted SL.

3 THE SEMI-OBLIVIOUS CHASE PROCEDURE
The semi-oblivious chase (or simply chase) takes as input a database

D and a set Σ of TGDs, and constructs an instance that contains D
and satisfies Σ. A central notion in this context is that of trigger.

Definition 3.1. Given a set Σ of TGDs and an instance I , a trigger
for Σ on I is a pair (σ ,h), where σ ∈ Σ and h is a homomorphism

from body(σ ) to I . The result of (σ ,h), denoted result(σ ,h), is the set
µ(head(σ )), where µ : var(head(σ )) → C ∪ N is defined as follows:

µ(x) = h(x) if x ∈ fr(σ ), and µ(x) = ⊥xσ ,h |fr(σ )
if x < fr(σ ), where

⊥xσ ,h |fr(σ )
is a null. Let T (Σ, I ) be the set of triggers for Σ on I .

Observe that in the definition of result(σ ,h), each existentially

quantified variable x of head(σ ) is mapped by µ to a null value of

N whose name is uniquely determined by the trigger (σ ,h) and
the variable x itself. This means that, given a trigger (σ ,h), we can
unambiguously construct the set of atoms result(σ ,h). The central
idea of the chase is, starting from a databaseD, to exhaustively apply
triggers for the given set Σ of TGDs on the instance constructed
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so far. More precisely, given a database D and a set Σ of TGDs, let

chase0(D, Σ) = D, and for each i > 0, let

chasei (D, Σ) = chasei−1(D, Σ) ∪
⋃
(σ ,h)∈S

result(σ ,h),

where S = T (Σ, chasei−1(D, Σ)). We finally define the result of the
chase of D w.r.t. Σ as the instance chase(D, Σ) =

⋃
i≥0

chasei (D, Σ).

Chase Termination. The result of the chase may be infinite even

for very simple settings: it is easy to see that for D = {R(a,b)} and
Σ = {R(x,y) → ∃z R(y, z)}, chase(D, Σ) is infinite. This leads to the
following problem, parameterized by a class C of TGDs:

INPUT : A database D and a set Σ of TGDs from C.
QUESTION : Is the instance chase(D, Σ) finite?

This problem has been recently studied in [5] for the classes of

simple-linear and linear TGDs. Interestingly, for both classes, the

finiteness of the result of the chase has been syntactically charac-

terized by exploiting the notion of non-uniform weak-acyclicity.

We proceed to recall this acyclicity notion, and then present the

characterizations established in [5], which in turn lead to simple

algorithms for checking the finiteness of the chase. Note that, for

clarity, in the rest of the paper we assume TGDs with a non-empty

frontier, i.e., we assume that in each TGD σ there is at least one

variable that occurs both in body(σ ) and head(σ ). This assumption

can be made without loss of generality since, given a database D
and a set Σ of TGDs, we can easily construct a set Σ′ of TGDs with
a non-empty frontier by slightly modifying Σ such that chase(D, Σ)
is finite iff chase(D, Σ′) is finite.

Non-UniformWeak-Acyclicity.Weak-acyclicity was introduced

in [10] as the main formalism for data exchange purposes, which

guarantees the finiteness of the result of the chase for every input

database. Non-uniform weak-acyclicity is the database-dependent

variant of weak-acyclicity introduced in [5]. We proceed to give the

formal definitions. We first need to recall the notion of the depen-
dency graph of a set Σ of TGDs, defined as a directed multigraph

dg(Σ) = (N , E), where N = pos(sch(Σ)) and E contains only the

following edges. For each TGD σ ∈ Σ with head(σ ) = {α1, . . . ,αk },
for each x ∈ fr(σ ), and for each position π ∈ pos(body(σ ), x):

• For each i ∈ [k] and for each π ′ ∈ pos(αi , x), there exists a
normal edge (π , π ′) ∈ E.
• For each existentially quantified variable z in σ , i ∈ [k], and
π ′ ∈ pos(αi , z), there is a special edge (π , π ′) ∈ E.

We further need to define when a predicate is reachable from an-

other predicate. Given predicates R, P ∈ sch(Σ), P is reachable from
R (w.r.t. Σ) if R = P , or there exists a path in dg(Σ) from a position

of the form (R, i) to a position of the form (P, j). Given a database

D, we say that a (not necessarily simple and possibly cyclic) pathC
in dg(Σ) is D-supported if there exists an atom R(t̄) ∈ D and a node

of the form (P, i) in C such that P is reachable from R. We are now

ready to recall (non-uniform) weak-acyclicity.

Definition 3.2. Consider a database D and a set Σ of TGDs. We

say that Σ is weakly-acyclic w.r.t. D, or D-weakly-acyclic, if there is
no D-supported cycle in dg(Σ) with a special edge. We say that Σ
is weakly-acyclic if there is no cycle in dg(Σ) with a special edge.

Characterizing the Finiteness of the Chase. It is not very diffi-

cult to show that whenever a set Σ of TGDs (not necessarily linear)

is D-weakly-acyclic, then the instance chase(D, Σ) is finite. In other

words, the D-weak-acyclicity of Σ is a sufficient condition for the

finiteness of chase(D, Σ). What is more interesting is that, assuming

that Σ is a set of simple-linear TGDs, the D-weak-acyclicity of Σ
is also a necessary condition for the finiteness of chase(D, Σ). This
leads to the following characterization established in [5]:

Theorem 3.3. Consider a database D and a set Σ ∈ SL of TGDs.
It holds that chase(D, Σ) is finite iff Σ is D-weakly-acyclic.

As shown in [5], non-uniform weak-acyclicity is not powerful

enough for characterizing the finiteness of the chase instance in

the case of linear TGDs. To obtain a characterization analogous to

Theorem 3.3, the authors of [5] used the technique of simplification
to convert linear TGDs into simple-linear TGDs, while preserving

the finiteness of the chase instance. We recall this technique. Let t̄ =
(t1, . . . , tn ) be a tuple of (not necessarily distinct) terms. We write

unique(t̄) for the tuple obtained from t̄ by keeping only the first

occurrence of each term in t̄ . For example, if t̄ = (x,y, x, z,y), then
unique(t̄) = (x,y, z). For each i ∈ [n], the identifier of ti in t̄ , denoted
idt̄ (ti ), is the integer that identifies the position of unique(t̄) at
which ti appears. We write id(t̄) for the tuple (idt̄ (t1), . . . , idt̄ (tn )).
For example, if t̄ = (x,y, x, z,y), then id(t̄) = (1, 2, 1, 3, 2). For an
atom α = R(t̄), the shape of α , denoted shape(α), is the predicate
Rid(t̄ ), whereas the simplification of α , denoted simple(α), is the
atom Rid(t̄ )(unique(t̄)). For example, assuming that α is R(x,y, x, z),
shape(α) is the predicate R(1,2,1,3), which essentially describes how

the terms occurring in α are related, that is, there are three distinct

terms, while the first and the third are the same. The simplification

of α is the atom R(1,2,1,3)(x,y, z), which fully describes the atom α
without repeating variables. Indeed, given R(1,2,1,3)(x,y, z), we can
unambiguously construct the atom of which R(1,2,1,3)(x,y, z) is the
simplification of, that is, the atomwith predicate R having at its first

and third position the first variable (i.e., x), at its second position

the second variable (i.e., y), and at its fourth position the third

variable (i.e., z). We can naturally refer to the simplification and the

shape of a set of atoms. For a tuple of variables x̄ = (x1, . . . , xn ), a
specialization of x̄ is a function f from x̄ to x̄ such that f (x1) = x1,

and f (xi ) ∈ { f (x1), . . . , f (xi−1), xi }, for each i ∈ {2, . . . ,n}. We

write f (x̄) for (f (x1), . . . , f (xn )). We are now ready to recall how

a set of linear TGDs is converted into a set of simple-linear TGDs.

Definition 3.4. Consider a linear TGD σ of the form R(x̄) →
∃z̄ψ (ȳ, z̄), where ȳ ⊆ x̄ , and a specialization f of x̄ . The simplifica-
tion of σ induced by f is the simple-linear TGD

simple(R(f (x̄))) → ∃z̄ simple(ψ (f (ȳ), z̄)).

We write simple(σ ) for the set of all simplifications of σ induced by

some specialization of x̄ . For a set Σ ∈ L of TGDs, the simplification
of Σ is defined as the set simple(Σ) =

⋃
σ ∈Σ simple(σ ).

We proceed to give a simple example that illustrates the notions

of specialization and simplification introduced above.

Example 3.5. Consider the set Σ consisting of the linear TGDs

σ1 : R(x,y, x, z) → ∃w Q(x,w) σ2 : Q(x,y) → R(x, x,y,y).
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For a database D, during the construction of chase(D, Σ), the TGD
σ1 can be triggered due to an atom α of the form R(t1, t2, t3, t4) as
long as t1 = t3. Hence, even if t1 = t2 = t3 or t1 = t2 = t3 = t4, the
atom α also triggers σ1. The goal of simplifying a linear TGD, for

example σ1, is to convert it into a set of linear TGDs that account for

all possible ways of triggering σ1, but without repeating variables

in their bodies, i.e., they are simple-linear. Each specialization f
of the body-variables of σ1 encodes one way of triggering σ1. For

example, the function f such that f (x) = f (y) = x and f (z) = z
induces the atom R(x, x, x, z), which represents a “more specific”

way of triggering σ1 w.r.t. the original body-atom R(x,y, x, z), since
it not only requires the first and third position of the atom to unify

to the same term, but the second position as well. Similarly, if f
is such that f (x) = f (y) = f (z) = x , then it encodes the atom

R(x, x, x, x) that is even more specific. Hence, the simplification

simple(σ1) of σ1 consists of the following simple-linear TGDs:

R(1,2,1,3)(x,y, z) → ∃w Q(1,2)(x,w)

R(1,1,1,2)(x, z) → ∃w Q(1,2)(x,w)

R(1,2,1,1)(x,y) → ∃w Q(1,2)(x,w)

R(1,2,1,2)(x,y) → ∃w Q(1,2)(x,w)

R(1,1,1,1)(x) → ∃w Q(1,2)(x,w).

The above simple-linear TGDs take into account all possible ways

σ1 can be triggered during the construction of the chase; the head

atoms are simplified accordingly. Similarly, simple(σ2), the simpli-

fication of σ2, consists of the following simple-linear TGDs:

Q(1,2)(x,y) → R(1,1,2,2)(x,y) Q(1,1)(x) → R(1,1,1,1)(x).

The chase of D w.r.t. Σ can be faithfully simulated via the chase of

simple(D) w.r.t. simple(Σ) = simple(σ1) ∪ simple(σ2).

We can now recall the characterization for the finiteness of the

chase instance for linear TGDs, established in [5], which is similar

to the one for simple-linear TGDs, with the key difference that first

we need to simplify both the database and the set of linear TGDs:

Theorem 3.6. Consider a database D and a set Σ ∈ L of TGDs.
Then, chase(D, Σ) is finite iff simple(Σ) is simple(D)-weakly-acyclic.

It is clear that Theorems 3.3 and 3.6 provide simple algorithms for

checking whether the chase instance is finite. Our goal is to experi-

mentally evaluate those algorithms with the aim of understanding

which input parameters affect their performance, clarifyingwhether

they can be applied in a practical context, and revealing their per-

formance limitations. Of course, a naive implementation of the

obtained algorithms, especially for linear TGDs where the expen-

sive simplification must be applied, will lead to poor performance,

and thus, will not be very useful towards our goal. Indeed, simplifi-

cation is expensive as, in general, it leads to a very large number of

simple-linear TGDs. Consider, for example, the TGD σ of the form

P(x, x,y1, . . . ,yn ) → T (x), for some n > 0. One can verify that the

number of TGDs in simple(σ ) coincides with the number of ways

one can partition a set of n elements. This is known as the n-th Bell

number, denoted Bn , where B0 = 1 and Bi+1 =
∑i
k=0

( i
k
)
Bk . Thus,

Bn = |simple(σ )| ≥ 2
n−1

, i.e., is at least exponential in n. Hence, we
need to convert the inherited theoretical algorithms into practical

algorithms that are amenable to efficient implementations.

Algorithm 1: IsChaseFinite[SL]
Input: A database D and a set Σ ∈ SL of TGDs

Output: true if chase(D, Σ) is finite and false otherwise

1 G ← BuildDepGraph(Σ);
2 S ← FindSpecialSCC(G);
3 P ←

⋃
C ∈S {vC };

4 if Supports(D, P,G) then return false;

5 return true

4 PRACTICAL TERMINATION ALGORITHMS
We first present the algorithm IsChaseFinite[SL] that accepts as
input a database D and a set Σ of simple-linear TGDs, and checks

whether Σ is D-weakly-acyclic, i.e., whether chase(D, Σ) is finite.
Note that a naive search for a “bad” cycle in a dependency graph

will be too costly since we may have to go through exponentially

many cycles. Thus, IsChaseFinite[SL] relies on a refined machin-

ery that searches for strongly connected components with a special

edge. We then proceed to give an analogous algorithm, dubbed

IsChaseFinite[L], for linear TGDs, which essentially simplifies the

given databaseD and set Σ of linear TGDs, and then checks whether

simple(Σ) is simple(D)-weakly-acyclic, which is equivalent to say

that chase(D, Σ) is finite. Note, however, that IsChaseFinite[L] re-
lies on a refined notion of simplification that dynamically simplifies
Σ by leveraging the given database D, instead of doing it statically

as in Definition 3.4. For instance, consider the set Σ of TGDs from

Example 3.5 and the database D = {R(a,b,a, c)}. We have that

simple(D) = {R(1,2,1,3)(a,b, c)}. It is clear that most of the TGDs of

simple(Σ) are not needed to construct chase(simple(D), simple(Σ))
as the only TGDs being triggered, starting from simple(D), are
R(1,2,1,3)(x,y) → ∃w Q(1,2)(x,w) andQ(1,2)(x,y) → R(1,1,2,2)(x,y).
The goal of dynamic simplification is to keep only TGDs from

simple(Σ) that are needed to construct chase(simple(D), simple(Σ)).
We present the above algorithms at a high-level, whereas their im-

plementation details are discussed in Section 5.

4.1 Simple-Linear TGDs
A strongly connected component (SCC) in a directed graph G is a

maximal subgraph of G in which there is a (directed) path between

every pair of nodes. A special SCC in a dependency graph is an SCC

with at least one special edge. IsChaseFinite[SL], which is depicted

in Algorithm 1, starts by building the dependency graph G of the

input set Σ of TGDs (line 1). It then collects the special SCCs ofG in

a set S (line 2), which can clearly form “bad” cycles that violate non-

uniform weak-acyclicity. Of course, for the latter to happen, some

nodes (i.e,., predicate positions) in a special SCC must be supported

by the given database D as defined in Section 2. To check this, the

algorithm first collects exactly one node vC from each special SCC

C of G in a set P (line 3); it is not important how vC is selected. It

then checks if D supports any of the nodes of P (line 4). If this is

the case, then there is a D-supported cycle inG with a special edge,

and thus the algorithm returns false; otherwise, it returns true.
The correctness of IsChaseFinite[SL] follows by Theorem 3.3:

Lemma 4.1. Consider a database D and a set Σ ∈ SL of TGDs. It
holds that IsChaseFinite[SL](D, Σ) = true iff chase(D, Σ) is finite.
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4.2 Linear TGDs
Although the algorithm IsChaseFinite[SL] together with the sim-

plification technique (see Definition 3.4) immediately give rise to a

simple algorithm for checking the finiteness of the chase instance

for linear TGDs, a naive implementation of the simplification tech-

nique leads to poor performance. Indeed, we performed exploratory

experiments on sets of linear TGDs coming from the literature and

observed that a naive implementation is not scalable as the algo-

rithm quickly runs out of memory when dealing with large sets of

TGDs. This is because by statically simplifying a set of linear TGDs

Σ, without taking into account the underlying database, leads to an
exponentially large set of simple-linear TGDs; in particular, the size

of the set simple(Σ) is exponential in the maximum arity of the pred-

icates in sch(Σ). Thus, the algorithm IsChaseFinite[SL] becomes

impractical due to the very large size of the dependency graph of

simple(Σ), which exceeds the capacity of the main memory.

Dynamic Simplification.We refine the notion of simplification

by taking into account the underlying database, which leads to the

technique of dynamic simplification. In particular, given a database

D and a set Σ of linear TGDs, the goal is to define a set simpleD (Σ),
which is a subset of simple(Σ), that enjoys two crucial properties:

(1) It holds that the instance chase(simple(D), simple(Σ)) is fi-
nite iff the instance chase(simple(D), simpleD (Σ)) is finite,
which essentially tells us that the technique of dynamic sim-

plification preserves the finiteness of the chase.

(2) The set simpleD (Σ) is, generally, orders of magnitude smaller

than the set simple(Σ) obtained by statically simplifying Σ.

Item (1) is established by Lemma 4.4 below. Item (2) cannot be

mathematically proved as there are cases where both static and

dynamic simplification build the same set of linear TGDs. However,

we have experimentally verified that for existing databases and sets

of TGDs coming from the literature (in fact, those used in Section 9),

the size of the dynamically simplified sets of TGDs is, on average, 5

times smaller than the size of the corresponding statically simplified

sets of TGDs. The absolute difference varies with the dynamically

simplified sets being up to 1000 times smaller in the best case.

The key idea of dynamic simplification is to exploit the shapes of

the atoms occurring in the given database to guide the simplification.

More precisely, given a database D and a set Σ of linear TGDs, we

first collect the shapes that can be derived from shape(D) using the
TGDs of Σ; we denote this set as Σ(shape(D)). Then, simpleD (Σ)
keeps from the set simple(Σ) only those simple-linear TGDs such

that the predicate of their body-atom belongs to Σ(shape(D)), as
these are the only TGDs that can be applied during the construction

of the instance chase(simple(D), simple(Σ)). All the other TGDs of
simple(Σ) are superfluous whenever the input database is D in the

sense that they will never be applied during the construction of

chase(simple(D), simple(Σ)). We proceed to formalize this idea. To

this end, we need to introduce some auxiliary notions.

For a schema S, we use shape(S) to denote the set of all shapes

mentioning a predicate of S. For a set of shapes S ⊆ shape(S),
the database induced by S , denoted DB[S], is the database of the
form {R(id(t̄)) | Rid(t̄ ) ∈ S}. For example, assuming that S =
{R(1,2), P(1,1,2)}, then DB[S] = {R(1, 2), P(1, 1, 2)}. Consider now a

linear TGD σ = R(x1, . . . , xn ) → ∃z̄ψ (ȳ, z̄) and leth be a homomor-

phism from {R(x1, . . . , xn )} to {R(i1, . . . , in )} ⊆ DB[shape({R})].

The h-specialization of the tuple (x1, . . . , xn ) is the (unique) special-
ization f of (x1, . . . , xn ) such that f (xi ) = f (x j ) iff h(xi ) = h(x j ),
for every i, j ∈ [n]. For example, if h is a homomorphism from

{R(x,y, x, z)} to {R(1, 1, 1, 2)}, the h-specialization of (x,y, x, z) is
the function f such that f (x) = x , f (y) = x , and f (z) = z. We can

now proceed with the formalization of dynamic simplification.

Consider a set Σ of linear TGDs and a set of shapes S ⊆ shape(Σ);
for brevity, we write shape(Σ) for shape(sch(Σ)). A shape Rid(t̄ ) ∈
shape(Σ) is an immediate consequence of S and Σ if:

(1) Rid(t̄ ) ∈ S , or
(2) there is a TGD P(x̄) → ∃z̄ψ (ȳ, z̄) in Σ and a homomorphism

h from {P(x̄)} to DB[S] such that Rid(t̄ ) occurs in the head of

the simplification of σ induced by the h-specialization of x̄ .

In simple words, item (2) tells us that there exists a TGD in simple(Σ)
of the form Pid(t̄ ′)(x̄) → ∃z̄ . . . ,Rid(t̄ )(ȳ), . . . with Pid(t̄ ′) ∈ S . The

immediate consequence operator of Σ is the function ΓΣ : 2
shape(Σ) →

2
shape(Σ)

(as usual, 2
X
denotes the powerset of a set X ) such that

ΓΣ(S) = {Rid(t̄ ) | Rid(t̄ ) is an immediate consequence of S and Σ}.

By iterative applications of the above operator, we can compute the

shapes that can be derived from S using the TGDs of Σ. Formally,

Γ0

Σ(S) = S and ΓiΣ(S) = ΓΣ(Γ
i−1

Σ (S)), for each i > 0, and we finally let

Σ(S) =
⋃
i≥0

ΓiΣ(S). At first glance, the construction of Σ(S) requires
infinitely many iterations. However, since Σ(S) ⊆ shape(Σ), in the

worst-case Σ(S) is obtained after |shape(Σ)| iterations. It is actually

easy to verify that Σ(S) = Γ
|simple(Σ) |
Σ (S). Therefore, since shape(Σ)

is finite, Σ(S) can be obtained after finitely many steps. We now

have all the ingredients to formally define dynamic simplification.

Definition 4.2. Consider a databaseD and a set Σ of linear TGDs.
1

The dynamic simplification of Σ relative to D (or D-simplification of
Σ), denoted simpleD (Σ), is defined as the set{

simple(R(f (x̄))) → ∃z̄ simple(ψ (f (ȳ), z̄)) |

R(x̄) → ∃z̄ψ (ȳ, z̄) ∈ Σ and f is the h-specialization of x̄

for some homomorphism h from {R(x̄)} to DB(Σ(shape(D)))
}

consisting only of simple-linear TGDs.

It is not difficult to verify that the D-simplification of Σ essen-

tially collects all the TGDs of simple(Σ) such that the predicate of

their body-atom belongs to Σ(shape(D)). A simple example that

illustrates the notion of dynamic simplification follows.

Example 4.3. Consider again the set Σ of TGDs from Example 3.5

and the database D = {R(a,b,a, c)}. We proceed to describe how

the dynamic simplification procedure operates on D and Σ. The
sets S and ∆S are initialized to the set of shapes of D, that is, S =
∆S = {R(1,2,1,3)}, and Σs = ∅. At the first iteration of the algorithm

we have that σ1 is “applicable” to ∆S , i.e., the body-atom of σ1

is “coherent” with the (only) shape present in ∆S , i.e., R(1,2,1,3).
No other TGDs of Σ are applicable, and thus, we conclude that

the TGD R(1,2,1,3)(x,y, z) → ∃w Q(1,2)(x,w), which is constructed

in line 5 and added to Σs in line 7, will be actually triggered by

the chase. We then have S = {R(1,2,1,3),Q(1,2)}, while the new

1
We assume, without loss of generality, that the atoms of D mention only predicates

of sch(Σ), and thus, shape(D) ⊆ shape(Σ). Indeed, the atoms of D with a predicate

not in sch(Σ) do not affect in any way the size of the instance chase(D , Σ).
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Algorithm 2: DynSimplification

Input: A database D and a set Σ ∈ L of TGDs

Output: The D-simplification of Σ

1 S ← FindShapes(D);
2 Σs ← ∅;

3 ∆S ← S ;

4 while ∆S , ∅ do
5 Σaux ← Applicable(∆S, Σ);
6 Saux ←

{
Rid(t̄ ) ∈ shape(Σ) | there exists a TGD σ ∈

Σaux such that Rid(t̄ ) occurs in head(σ )
}
;

7 Σs ← Σs ∪ Σaux ;

8 ∆S ← Saux \ S ;

9 S ← S ∪ ∆S ;

10 return Σs ;

shapes are ∆S = {Q(1,2)}. At the second iteration we have that σ2

is applicable to ∆S . Thus, the TGD Q(1,2)(x,y) → R(1,1,2,2)(x,y)
is added to Σs and we have S = {R(1,2,1,3),Q(1,2),R(1,1,2,2)} and
∆S = {R(1,1,2,2)}. Finally, at the third iteration, no TGDs of Σ are

applicable since there is no way to specialize the body-atom of σ1

in a way that it becomes coherent with the shape R(1,1,2,2) in ∆S .
The algorithm then terminates and Σs collects a subset of simple(Σ)
that is sufficient to construct chase(simple(D), simple(Σ)).

We now proceed to show that indeed dynamic simplification

preserves the finiteness of the chase.

Lemma 4.4. Consider a database D and a set Σ ∈ L of TGDs. The
following are equivalent:

(1) chase(simple(D), simple(Σ)) is finite.
(2) chase(simple(D), simpleD (Σ)) is finite.

Since, by definition, simpleD (Σ) ⊆ simple(Σ), it is clear that (1)
implies (2) holds trivially. The interesting direction is (2) implies (1),

which can be shown via an inductive argument. Another crucial

property of dynamic simplification, which will help us to further

improve the performance of the termination algorithm, is that the

simple(D)-weak-acyclicity of simpleD (Σ) coincides with the weak-

acyclicity of simpleD (Σ), which in turn leads to the following result:

Lemma 4.5. Consider a database D and a set Σ ∈ L of TGDs. The
following are equivalent:

(1) chase(simple(D), simpleD (Σ)) is finite.
(2) simpleD (Σ) is weakly-acyclic.

An Algorithm for Dynamic Simplification. We now provide a

concrete algorithm that performs the dynamic simplification of a

set of linear TGDs that is amenable to an efficient implementation.

To this end, we present the algorithm DynSimplification, depicted
in Algorithm 2. The algorithm starts by finding the shapes of the

atoms occurring in D, namely it computes the set shape(D) (line 1).
It then initializes the set of simplified TGDs Σs (line 2) and the set

of new shapes ∆S (line 3). Then, the algorithm iteratively generates

simplified TGDs and collects the new shapes that are added to ∆S ,
and continues this until a fixpoint is reached, i.e., ∆S = ∅ (line 4).
In particular, at each iteration, the algorithm computes simplified

Algorithm 3: IsChaseFinite[L]
Input: A database D and a set Σ ∈ L of TGDs

Output: true if chase(D, Σ) is finite and false otherwise

1 Σs ← DynSimplification(D, Σ);
2 G ← BuildDepGraph(Σs );
3 if FindSpecialSCC(G) , ∅ then return false;

4 return true

TGDs that are not superfluous, i.e., they can be applied during the

construction of chase(simple(D), simple(Σ)), that are added to Σs
(lines 5 and 7). This is done via Applicable, which takes as input a

set of shapes Ŝ and a set of linear TGDs Σ̂, and returns the set{
simple(R(f (x̄))) → ∃z̄ simple(ψ (f (ȳ), z̄)) |

R(x̄) → ∃z̄ψ (ȳ, z̄) ∈ Σ̂ and f is the h-specialization of x̄

for some homomorphism h from {R(x̄)} to DB[Ŝ]
}
.

In essence, the procedure Applicable computes the set of TGDs of

simple(Σ̂) such that the predicate of their body belongs to Ŝ . The
algorithm also collects the newly generated shapes, that is, the

predicates occurring in the head of the TGDs of Applicable(∆S, Σ),
that are added to ∆S (lines 6 and 8). Note that at each iteration, the

algorithm applies the TGDs on ∆S , not on S , with the exception of

the first iteration where S = ∆S . This works because there are no
new applicable TGDs on S after the first iteration since the TGDs

are linear and all the applicable TGDs on S are applied during the

first iteration. DynSimplification is correct by construction:

Lemma 4.6. Consider a database D and a set Σ ∈ L of TGDs. It
holds that DynSimplification(D, Σ) = simpleD (Σ).

Termination Algorithm. Having in place DynSimplification, it
is now straightforward to devise the algorithm IsChaseFinite[L],
depicted in Algorithm 3, that checks for the finiteness of the chase

in the case of linear TGDs. The correctness of DynSimplification,
Theorem 3.6, Lemma 4.4, and Lemma 4.5, imply the correctness of

the algorithm IsChaseFinite[L], and the next lemma follows:

Lemma 4.7. Given a database D and a set Σ ∈ L of TGDs, it holds
that IsChaseFinite[L](D, Σ) = true iff chase(D, Σ) is finite.

5 IMPLEMENTATION DETAILS
In this section, we give the essence of the key technical choices we

made during the implementation of the algorithms from Section 4.

BuildDependencyGraphs.The procedureBuildDepGraph takes
as input a set Σ of TGDs, and returns the dependency graph of Σ
in the form of an adjacency list, i.e., a list of lists, where each list

corresponds to a node v , and the members in such a list represent

the outgoing edges of v . Such an adjacency list is actually imple-

mented as a doubly linked list. To speed up the process of building

dependency graphs, the procedure also uses an index structure that

maps predicate positions to their corresponding elements in the

adjacency list. This index allows for fast access to the elements

(nodes) for adding new links (edges) while parsing new TGDs.

Find Special SCCs. To implement FindSpecialSCC we adapt Tar-
jan’s algorithm for finding SCCs in directed graphs [18]. Actually,
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FindSpecialSCC is a simple extension of Tarjan’s algorithm. Such

an extension is needed as we need a mechanism that allows us to

check whether a SCC obtained by Tarjan’s algorithm is special.

Check for Positions Support. The procedure Supports consists
of two steps: (1) query the database to find the positions of the

predicates in the database, and (2) traverse the dependency graph

starting from the positions in the special SCCs in the reverse order

to reach the positions computed in the first step. Step (1) has been

implemented via a single SQL query that returns the list of non-

empty relations, which we then use to create the set of positions of

the predicates occurring in the database, denoted PD . For step (2),

we start from the given set of positions P and traverse the graph

in the reverse order using the reverse links in the adjacency list of

the dependency graph. The procedure returns true if the graph

traversal in the second step reaches a node (i.e., a position) in PD ;
otherwise, it returns false.

Dynamic Simplification. DynSmplification is an iterative proce-

dure that uses FindShapes that computes the set of shapes S of

the atoms of D and Applicable that computes the simplified TGDs

using the shapes of S . We have two kinds of implementations for

the procedure FindShapes, that is, in-memory and in-database. For
the in-memory implementation, we run an SQL query for each

relation R of D to load all the tuples of R into the main memory and

then compute the shapes, whereas the in-database implementation

does not load the relations, but instead runs SQL queries to find

the shapes of the atoms in each relation. Concerning the procedure

Applicable, recall that it takes as input a set S of shapes and a set

Σ of linear TGDs, and returns the set of TGDs of simple(Σ) such
that the predicate of their body belongs to S . The iterative process
explained in Section 4 can be very costly with a large set of shapes

and a large set of TGDs. To improve the performance, the implemen-

tation uses an index structure that enables fast access to the TGDs.

Furthermore, for checking whether a relevant TGD is applicable,

we generate and store the shape of the body-atom of each TGD. We

also store an array of strings representing all possible identifiers

of tuples up to the maximum arity of the schema that allows us to

quickly find the shapes of the body-atoms in simplified TGDs.

6 EXPERIMENTAL INFRASTRUCTURE
Towards our goal, we are going to conduct extensive experiments

with synthetic data and sets of TGDs. Therefore, we need a way

to generate databases and sets of TGDs that are suitable for such

an experimental evaluation. Note that existing data generators

such as TPC-H and DataFiller, as well as TGD generators such

as those from [2, 4], are not suitable for our purposes since they

do not allow us to control the shape of atoms, which is crucial

for generating databases and sets of TGDs that are suitable for

our experiments. Thus, we had to implement our own data and

TGD generators that support this key feature. The data generator

takes as input a tuple of integer values for the tuning parameters

(preds,min,max, dsize, rsize), and randomly constructs a database

D such that, with S = {R | R(c̄) ∈ D}, |S| = preds, the predicates of
S have arity betweenmin andmax, |dom(D)| = dsize, and, for each
R ∈ S, |{c̄ | R(c̄) ∈ D}| = rsize. The TGD generator takes as input a

set S of predicates and a tuple of values for the tuning parameters

(ssize,min,max, tsize, tclass), and randomly constructs a set Σ of

TGDs such that sch(Σ) ⊆ S, |sch(Σ)| = ssize, the predicates of

sch(Σ) have arity between min and max, |Σ| = tsize, and Σ falls in

the class tclass. We are now ready to proceed with our experimental

evaluation. Note that for the experiments we used a server with

an Intel Core i5 3.00GHz CPU and 16GB RAM, all the databases in

our experiments are stored in a PostgreSQL 11.5 instance, and the

termination algorithms have been implemented in Java SE 11.

7 EVALUATION FOR SIMPLE-LINEAR TGDS
We start with the experimental evaluation of IsChaseFinite[SL],
which is depicted in Algorithm 1. Towards a refined analysis, we

are going to break down its end-to-end runtime, which we denote

by t-total, into the following three time parameters:

• t-parse: time to parse the TGDs from an input file,

• t-graph: time to build the dependency graphG of the input

set of TGDs, and

• t-comp: time to find the special SCCs in the graph G.

In the rest of the section, we explain how we generate the sets of

simple-linear TGDs that are used in our experimental evaluation,

and then present our experimental results and discuss the take-

home messages. But let us first give a clarification remark.

Remark. In our analysis, we neglect the time taken by the proce-

dure Supports, which, as explained in Section 5, consists of two

steps: (1) find the predicates occurring in the input database, and

(2) traverse the dependency graph starting from the positions in

the special SCCs in the reverse order to reach the positions of the

predicates computed in the first step. Step (1) is performed by run-

ning a fast query on the catalog of the DBMS storing the input

database, and can be safely ignored as it does not impact the rest

of the algorithm. Concerning step (2), the time to traverse the de-

pendency graph is negligible compared to the time needed to find

the special SCCs, which is already in the order of milliseconds.

Therefore, Supports takes insignificant time compared to the rest

of the algorithm. Hence, in our experiments, we assume that all

the predicates used by the set of simple-linear TGDs occur in the

database, and thus, all the positions in the special SCCs are triv-

ially supported. This also simplifies our experiments as they can be

conducted using a very simple database that can be induced by the

set Σ of simple-linear TGDs, denoted DΣ, without using our data

generator. In fact, DΣ has an atom R(c1, . . . , cn ), where c1, . . . , cn
are distinct constants, for each predicate R ∈ sch(Σ).

7.1 Generating Simple-Linear TGDs
We now discuss how the sets of simple-linear TGDs used in our

experiments are generated. To systematically generate a represen-

tative family of sets of TGDs, without favouring any of the two

key parameters, namely the size of the underlying schema and the

number of TGDs, we consider three predicate profiles consisting of

sets of TGDs that mention [5,200], [200,400], and [400,600] predi-

cates of arity between 1 and 5, and we further consider three TGD
profiles consisting of sets of TGDs with [1,333K], [333K,666K], and

[666K,1M] TGDs. Note that our choice to fix the arity of the predi-

cates between 1 and 5 is consistent with what we observe in real-life

ontologies, where the arity is typically small. The combination of

those predicate and TGD profiles gives rise to nine combined profiles
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(a) t-total (b) t-parse vs. t-graph +t-comp

(c) t-graph + t-comp (d) t-graph vs. t-comp

Figure 1: Runtime of IsChaseFinite[SL].

consisting of sets of TGDs with similar syntactic properties. For

example, the combined profile obtained from the predicate profile

[200,400] and the TGD profile [333K,666K] consists of sets of TGDs

Σ such that 200 ≤ |sch(Σ)| ≤ 400, each predicate of sch(Σ) has arity
between 1 and 5, and 333K ≤ |Σ| ≤ 666K. For our experiments, we

generated 100 sets of TGDs for each of the nine combined profiles

as follows. We have first constructed the underlying schema S by
generating 1000 predicates, while their arities were randomly se-

lected from [1,5]. Then, for the combined profile induced by the

predicate profile [x,y] and the TGD profile [z,w], we have gener-
ated 100 sets of simple-linear TGDs by repeatedly executing our

TGD generator with input the schema S and the tuple of values for

the tuning parameters (ssize, 1, 5, tsize, SL), where ssize and tsize
were randomly chosen from [x,y] and [z,w], respectively.

7.2 Experimental Evaluation
The algorithm IsChaseFinite[SL] was run for each one of the 900

sets of TGDs of the combined profiles discussed above. The scatter

plots in Figure 1 show the runtime of IsChaseFinite[SL](DΣ, Σ), for
each set Σ of TGDs from the combined profiles, i.e., each point in the

plots corresponds to one of the 900 sets of TGDs. Figure 1a shows

the total runtime (t-total) for sets of TGDs with various sizes

(n-rules). Figure 1b breaks down t-total into the time to parse

the TGDs (t-parse) and the time to build their dependency graph

and find the special SCCs (t-graph + t-comp). Figure 1c zooms in

t-graph + t-comp, which are shown separately in Figure 1d.

It is evident from the above scatter plots that the time parame-

ters t-parse and t-graph increase linearly as long as we increase

n-rules, whereas t-comp increases very slowly. Let us remark

that we have not observed such a linear relationship (in fact, we

have not observed any correlation) between the time parameters

t-parse and t-graph, and the number of predicates of the underly-

ing schema. The linear relationship between t-parse and n-rules

is because parsing each TGD takes constant time since the arity of

the predicates falls in the limited range [1,5], and each TGD has

one atom in its body and one atom in its head. Note that allowing

multi-heads will not change this since, as discussed in Section 6,

the number of head-atoms is negligible compared to the number

of TGDs. The linear relationship with t-graph (as shown in Fig-

ure 1d) is because the algorithm iterates over the TGDs and spends

constant time to process each TGD and update the graph by adding

new nodes and edges. Again, since the arity of the predicates falls

in [1,5], and each TGD has one atom in its body and one atom in

its head, the number of nodes and edges added in the dependency

graph due to a certain TGD is in a small fixed range, and thus, the

time to update the graph w.r.t. each TGD is constant. The fact that

t-comp increases very slowly is because finding the special SCCs

solely depends on the dependency graph, which is in general much

smaller than the set of TGDs, while Tarjan’s algorithm is quite

efficient that runs in linear time in the size of the underlying graph.

7.3 Take-home Messages
The main takeaway from the experimental results for simple-linear

TGDs is that the primary parameter impacting the runtime of

IsChaseFinite[SL] is the number of TGDs (n-rules), and we have

also observed that the algorithm is very fast even for extremely large

sets of TGDs. In fact, most of the end-to-end runtime is spent on

parsing (t-parse) and building the dependency graph (t-graph),
whereas the time to the find special SCCs (t-comp) is insignificant
compared to t-parse and t-graph. To be more precise, t-parse
is much larger than t-graph, and it actually takes most of the total

end-to-end runtime of the algorithm. This illustrates the effective-

ness of IsChaseFinite[SL] as the actual check for the finiteness of

the chase instance for large sets of TGDs is much faster than even

reading and parsing the TGDs from the input file.

8 EVALUATION FOR LINEAR TGDS
We now proceed with the evaluation of IsChaseFinite[L], depicted
in Algorithm 3. Differently from IsChaseFinite[SL], where the in-
put database did not play any crucial role, we now have a compo-

nent that heavily relies on the database, that is, the procedure that

computes the database shapes, which is part of dynamic simplifica-

tion. In other words, we have the database-dependent component of
IsChaseFinite[L], that is, find the database shapes, and the database-
independent component, that is, simplify the given set of linear TGDs

by using the database shapes, build the dependency graph of the

simplified set of TGDs, and find the special SCCs in this graph. We

claim that these two components, which from now on we call db-

dependent and db-independent, respectively, should be evaluated

separately as their runtime is impacted by different parameters.

Concerning the db-dependent component, it is obvious that it is

only affected by the database, whereas the set of TGDs plays no

role. On the other hand, although it is clear that the db-independent

component is affected by the set of TGDs, it is not straightforward

to see that it is not affected by the input database since it operates

on a dynamically simplified set of TGDs. Interestingly, we experi-

mentally confirm below that this is indeed the case. Consequently,

towards a refined analysis of the algorithm IsChaseFinite[L], we
are going to consider the following four time parameters:
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• t-shapes: time to find the database shapes,

• t-parse: time to parse the TGDs from an input file,

• t-graph: time to build the dependency graph G of the sim-

plified version of the input set of TGDs (including the time

for the simplification using the database shapes), and

• t-comp: time to find the special SCCs in the graph G.

Clearly, t-shapes refers to the runtime of the db-dependent com-

ponent, whereas t-parse + t-graph + t-comp, which we denote

by t-total, refers to the end-to-end runtime of the db-independent

component. We proceed to explain how we generate the databases

and the sets of linear TGDs that are used in our experimental eval-

uation, confirm that the db-independent component is not affected

by the database, present our experimental results for the two com-

ponents of IsChaseFinite[L], and discuss the take-home messages.

8.1 Generating Databases and Linear TGDs
The goal is to generate a family of pairs of the form (D, Σ), where D
is a database and Σ a set of linear TGDs, that will serve as the input

to IsChaseFinite[L] in the experimental evaluation. To this end, we

first constructed a very large database, which we dub D⋆
, by using

our data generator with input (1000, 1, 5, 500K, 500K). The database

D⋆
mentions 1000 predicates of arity between 1 and 5, and each

such predicate has 500K tuples, resulting in a very large database

with 500M tuples in total. We further devised views over D⋆
that

allow us to define on-demand virtual databases with 1K, 50K, 100K,

250K, and 500K tuples per predicate, resulting in databases with

1M, 50M, 100M, 250M, and 500M tuples in total, respectively. Those

views are actually implemented as a simple SQL query that simply

keeps the first 1K, 50K, 100K, 250K, and 500K tuples per predicate,

respectively. Note that the tuples inD⋆
are lexicographically sorted,

which means that the different shapes in a relation ofD⋆
are evenly

distributed. This is turn ensures that the virtual databases defined

via the views have a variety of shapes, which is crucial for our

purposes. Having the database D⋆
and the database views in place

the desired family of pairs was generated as described below.

For each one of the nine combined profiles used in the gener-

ation of simple-linear TGDs in Section 7, we generated 5 sets of

linear TGDs, totalling 45 sets. In particular, for the combined profile

induced by the predicate profile [x,y] and the TGD profile [z,w],
we have generated 5 sets of linear TGDs by repeatedly execut-

ing our TGD generator with input the schema {R | R(c̄) ∈ D⋆},

i.e., the 1000 predicates occurring in D⋆
, and the tuple of values

for the tuning parameters (ssize, 1, 5, tsize, L), where ssize and tsize
were randomly chosen from [x,y] and [z,w], respectively. Let Σ⋆

be the family that collects the 45 generated sets of linear TGDs.

Then, for each set Σ ∈ Σ⋆ of linear TGDs, by exploiting the database

views discussed above, we obtained five virtual databases of varying

size (1K, 50K, 100K, 250K, and 500K tuples per predicate), denoted

D1

Σ, D
50

Σ , D100

Σ , D250

Σ , and D500

Σ , respectively, leading to five pairs.

Summing up, we generated the family {(Ds
Σ, Σ) | Σ ∈ Σ⋆ and s ∈

{1, 50, 100, 250, 500}} consisting of 225 pairs.

8.2 Experimental Evaluation
Before delving into the evaluation of the two components of the

algorithm IsChaseFinite[L], let us first confirm that indeed the db-

independent component is not affected by the input database.

Separate the Two Components. The figure below depicts the

average time over all generated pairs, consisting of a database Ds
Σ

of a certain size s ∈ {1, 50, 100, 250, 500} and a set Σ of linear TGDs,

for building the dependency graph of the dynamically simplified

version of Σ using the shapes of Ds
Σ and finding the special SCCs:

Interestingly, it confirms that the database size does not impact the

time to build the dependency graph and find the special SCCs; thus,

it does not impact the end-to-end runtime of the db-independent

component, as claimed above. This can be explained by the fact

that the number of shapes in a database increases very slowly as

we increase the size of the database; this is illustrated in Figure 2.

In particular, the bar plots in Figure 2 show the average number

of shapes over all databases Ds
Σ of a certain size s , where each plot

corresponds to a certain predicate profile [x,y], i.e., Σ falls in the

predicate profile [x,y]. It is clear that the number of shapes increases

as we increase the size of the database, which was expected. The

interesting outcome, however, is the fact that this increase is very

slow, which should be attributed to the fact that many tuples are

likely to induce the same shape. Moreover, a new shape gives rise

to only a few simplified TGDs, and it does not significantly affect

the time for building and processing the dependency graph.

Let us finally observe that, by comparing the three bar plots, it is

clear that the number of predicates, reflected in the predicate profile,

impacts the number of shapes, which is rather expected as with

more predicates there would be more shapes. This means that the

number of predicates of the underlying schema is a parameter that

affects the number of shapes, which explains why in our analysis

above we had to separately consider the three predicate profiles.

Evaluation of the DB-dependent Component.We run the pro-

cedure FindShapes for each one of the databases Ds
Σ, where Σ ∈ Σ

⋆

and s ∈ {1, 50, 100, 250, 500}; 225 executions in total. Recall that we

have two kinds of implementations for the procedure FindShapes,
namely in-memory and in-database (see Section 5). The bar plots in

Figure 3 show the average runtime over all databasesDs
Σ of a certain

size s for finding the shapes in the case of the in-database implemen-

tation, where each plot corresponds to a certain predicate profile.

Due to space constraints, we do not report the analogous plots

for the in-memory implementation. Note, however, that for both

implementations we observed a similar trend, with the in-database

implementation outperforming the in-memory one.

It is evident from the bar plots in Figure 3 that the time to find

the shapes increases while the database size increases, which is not

surprising since, as discussed above, the number of shapes increases

while the database size increases. Observe, however, that the time to

find the shapes grows much faster than the actual number shapes,

which should be attributed to the fact that for finding the shapes we
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(a) [5,200] (b) [200,400] (c) [400,600]

Figure 2: Number of Shapes.

(a) [5,200] (b) [200,400] (c) [400,600]

Figure 3: Runtime of FindShapes (in-database implementation).

(a) t-total (b) t-parse vs. t-graph +t-comp

(c) t-graph vs. t-comp (d) t-comp

Figure 4: Runtime of the db-independent component.

actually need to scan the whole database. Let us finally observe that,

by comparing the three bar plots, it is apparent that the number

of predicates, reflected in the underlying predicate profile, also

impacts the time to find the shapes, which explains why we had to

analyze each predicate profile separately.

Evaluation of the DB-independent Component. The scatter

plots in Figure 4 show the runtime of the db-independent compo-

nent of the algorithm IsChaseFinite[L] when executed with input

(Ds
Σ, Σ), for each set Σ ∈ Σ

⋆
falling in the predicate profile [400,600]

and s ∈ {1, 50, 100, 250, 500}. In particular, each point in the plots

corresponds to a pair (Ds
Σ, Σ). Let us stress that, unlike the anal-

ogous Figure 1 for simple-linear TGDs, we focus on a particular

predicate profile since otherwise we do not obtain any trend of the

runtime w.r.t. the number of TGDs. In other words, the apparent lin-

ear trend observed in those plots only holds for sets of TGDs from

the same predicate profile. This is because the number of predicates

of the underlying schema impacts the number of shapes, which

in turn affects the process of dynamic simplification and the size

of the dependency graph, and thus, the time parameters t-graph
and t-comp are impacted. This explains why we had to analyze

each predicate profile separately. Due to space constraints, we omit

the analogous plots for the smaller predicate profiles [5,200] and

[200,400], which depict similar trends. Figure 4a shows the total

runtime (t-total) for sets of TGDs with various sizes (n-rules).
Figure 4b breaks down t-total into the time to parse the TGDs

(t-parse) and the time to build their dependency graph and find

the special SCCs (t-graph + t-comp), whereas Figure 4c shows

separately t-graph and t-comp. Figure 4d zooms in t-comp.
It is evident from the above scatter plots that the time parame-

ters t-parse and t-graph increase linearly as long as we increase

n-rules, whereas t-comp increases very slowly. This is essentially

what we have observed for simple-linear TGDs in Figure 1, with the

key difference that the time needed to parse the TGDs (t-parse) is
now much less compared to the time for building the dependency
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graph and finding the special SCCs (t-graph + t-comp). It should
not be forgotten, however, that for linear TGDs we need to focus

on a single predicate profile in order to get these linear trends;

otherwise, if we consider all the predicate profiles at once, there is

no trend that can be observed. Note also that the absolute running

time increases compared to the case of simple-linear TGDs.

8.3 Take-home Messages
The main takeaway is that the algorithm IsChaseFinite[L] consists
of two components that are of different nature in the sense that

their runtime is impacted by different parameters. On the one hand,

we have the db-dependent component that is only affected by the

size of the database. On the other hand, we have the db-independent

component whose runtime is primarily affected by the number of

TGDs (n-rules). Having said that, we have also observed that the

number of predicates also affects the runtime of the db-independent

component since it impacts the number of shapes, which in turn

affects the process of dynamic simplification and the size of the

dependency graph.We conclude by observing that the total runtime

of IsChaseFinite[L] is quite reasonable, which should be seen as a

strong evidence that fast checking for the finiteness of the chase

instance in the case of linear TGDs is not an unrealistic goal. Note

that most of the total end-to-end runtime of the algorithm is spent

on finding database shapes, which indicates that our future efforts

should be concentrated on improving the db-dependent component.

9 VALIDATION OF RESULTS
With the aim of validating the main outcome of the stress test anal-

ysis performed in Sections 7 and 8, we have also run experiments

using databases and sets of TGDs that are available in the literature.

Adopted Scenarios. We considered three families of databases

and sets of TGDs from the literature: (i) the family Deep from [4]

that collects sets of simple-linear TGDs that are at the same time

weakly-acyclic, which has been developed to test data exchange

scenarios, (ii) LUBM, which is a popular benchmark consisting of

an ontology modelled using the central Description Logic (DL) EL,

called Univ-Bench, and a data generator, called UBA, for generating

synthetic data over the vocabulary of Univ-Bench [12], and (iii)

iBench, which is a framework for generating TGDs with tuning

parameters that can control a wide range of properties [2].

Discussion.Concerning IsChaseFinite[SL] for simple-linear TGDs,

we observed that it runs in a few milliseconds for all the scenar-

ios discussed above. This is a confirmation that for simple-linear

TGDs, checking for the finiteness of the chase can be done very effi-

ciently. We have also seen that the validation analysis confirms the

main outcome of the analysis for the algorithm IsChaseFinite[L]
performed in Section 8. In particular, we observed that indeed the

costly task is finding the database shapes, whereas the time taken

by the db-independent component is negligible. Moreover, we have

seen that checking for the finiteness of the chase instance can be

done rather efficiently in practice. In particular, for sets consisting

of thousands of TGDs such as the Deep scenarios, and millions

of facts such as some members of LUBM, it takes less than a sec-

ond. Another interesting takeaway from the validation analysis

is that there is no clear way to go regarding the implementation

of FindShape among the in-memory and the in-database options.

In particular, the in-memory implementation is preferred when

there are a few tuples per relation in the database, whereas the

in-database implementation performs better when the underlying

schema has a few predicates of small arity. For schemas with many

predicates, each of which has many tuples in the input database,

both implementations require significant time, and an offline com-

putation of the database shapes might be preferred.

Feasibility in the Real World. We have also considered real-

world scenarios with the aim of analysing the feasibility of our

algorithms in a more realistic context. We considered 483 pairs

(D, Σ), where D is a database and Σ a set of simple-linear TGDs,

obtained from the ontology repository of the Data and Knowledge

Group of the University of Oxford by keeping from the available

ontologies only the ontological axioms that can be expressed as

simple-linear TGDs. Let us stress that these are real-world on-

tologies modelled using Description Logics, and include, among

others, a large subset of the Gardiner ontology corpus, several

Phenoscape ontologies, and a number of ontologies from two ver-

sions of the Open Biomedical Ontology (OBO) corpus [11]. Both

IsChaseFinite[SL] and IsChaseFinite[L] performed swiftly with the

maximum time taken to be 1.77 and 0.44 seconds, respectively.

On average, IsChaseFinite[SL] and IsChaseFinite[L] took approxi-

mately 0.85 and 0.22 seconds, respectively, across different scenar-

ios. A rather unexpected finding is that IsChaseFinite[L], which
employs dynamic simplification, outperformed IsChaseFinite[SL].
This should be attributed to two reasons: (i) the underlying schema

consists of only unary and binary predicates, which in turn allows

for a fast computation of shapes, and (ii) dynamic simplification

uses a small number of simple-linear TGDs for building the depen-

dency graph, which is a consequence of the fact that the databases

mention a small number of predicates from the underlying schema.

10 CONCLUSIONS AND FUTUREWORK
Our work provides the first systematic attempt to experimentally

evaluate termination algorithms for the semi-oblivious chase. Our

analysis revealed that for simple-linear TGDs, we can efficiently

check whether the chase terminates even for very large databases

and sets of TGDs. Concerning linear TGDs, the overall runtime

of the algorithm is quite reasonable, but there is still room for im-

provement. Interestingly, our analysis showed that the algorithm for

linear TGDs consists of two separate components, the db-dependent

and the db-independent ones. This modular nature of the algorithm

allows us to study and improve the two components separately.

In particular, we have observed that the heavy component is the

db-dependent one, and thus, we can focus our future efforts to im-

prove the performance of that component. Although our analysis

relied on an in-database and an in-memory implementation of the

procedure for finding the shapes, we could adopt other techniques

without affecting the db-independent component.
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