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Abstract: A variety of biological active compounds can be classified as 2-substituted 1,4-benzodioxanes
bearing one or more substituents at the benzene. The synthesis of these important templates can
be approached by different strategies. The most straightforward ones generally lead to mixtures
of positional isomers, whose identification can be more problematic than separation. Here, we
unambiguously elucidate, by HSQC and HMBC NMR analyses, the structure of methyl 8- and
5-bromo-1,4-benzodioxane-2-carboxylate, two versatile synthetic intermediates that are one-step-
obtainable from commercial products and easily separable. As conceived, the identification procedure
is, in principle, generalizable to any pair of 2-substituted 1,4-benzodioxanes bearing an X substituent
at C(8) or C(5).
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1. Introduction

1,4-benzodioxane occurs as a key substructure in a variety of compounds, many of
which exert biological activity and have therapeutic potential. Its applications in drug de-
sign, which range from antibacterial agents to cancer chemotherapics, adrenergic, serotonin-
ergic and nicotinic receptor antagonists and agonists, and a variety of enzyme inhibitors,
have been recently reviewed [1]. Mostly, the interaction capabilities of these molecules with
biological targets are critically related to two structural features, namely the substitution at
the benzodioxane C(2) and the decoration of the benzene ring with different substitution
patterns (Figure 1), the former resulting in chirality and often in high eudismic ratios [2]
and the latter mainly translating into different selectivity profiles for receptor subtypes of
the same family [2–4].
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Figure 1. General formula of a chiral 2-substituted 1,4-benzodioxane bearing a substituent at the
benzene ring.

Many methods, based on different approaches, have been developed to prepare both
racemic and unichiral 2-substituted 1,4-benzodioxanes [5], while the decoration of the
benzene ring of the latter relies on two alternative strategies: the construction of the
bicycle by condensation of a C3 synthetic unit with benzene already bearing the desired
substituents (strategies A and A’, Scheme 1) or the benzene decoration of the preformed
2-substituted 1,4-benzodioxane (strategy B, Scheme 1) [6].
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here we report the unambiguous establishment of the 8- or 5-bromo substitution of methyl 

1,4-benzodioxane-2-carboxylate, 1 and 2, respectively, prepared according to approach A 

by HMBC NMR analyses (Figure 2). Among the polysubstituted benzodioxanes, we con-

sidered these two derivatives because of their versatility as synthetic intermediates, due 

to the exploitable reactivity of the ester function [6,10–12] and bromine [13,14], and their 
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Scheme 1. Synthetic strategies to construct 2-substituted 1,4-benzodioxanes decorated at the benzene
ring. Z: leaving EWG group in the nucleophilic attack by catechol; Y: any substituent, better if it
makes carbon more electrophilic; R: removable O-protecting group.

Common issues of the two strategies are the production of positional isomers [6].
When applying the former approach, this problem can be bypassed by using differentially
substituted desymmetrized catechols (strategy A’), such as ortho, meta and para substituted
catechol monoethers, whose preparation and analytical characterization, however, is often
laborious. A striking example is provided by the regioisomers of nitrocatechol monobenzyl
ether [7], mono O-MEM-protected 4-bromocatechol [8] and 4-chlorocatechol monobenzyl
ether [9], used to prepare 2-substituted 1,4-benzodioxane bearing -NO2, -NH2, -Br and -Cl
substituents at the aromatic ring as nicotinic ligands [3,8] and antibacterial agents [9]. Oth-
erwise, when using substituted undesymmetrized catechols (strategy A) or functionalizing
preformed 2-substituted 1,4-benzodioxane at the benzene ring (strategy B), two or more
positional isomers must be foreseen as products, whose unequivocal identification can be
more difficult than their separation. Nevertheless, such synthetic approaches (strategies A
and B) are attractive for a greater straightforwardness than strategy A’.

As we are interested in the preparation of 1,4-benzodioxane-based nicotinic ligands,
here we report the unambiguous establishment of the 8- or 5-bromo substitution of methyl
1,4-benzodioxane-2-carboxylate, 1 and 2, respectively, prepared according to approach A by
HMBC NMR analyses (Figure 2). Among the polysubstituted benzodioxanes, we consid-
ered these two derivatives because of their versatility as synthetic intermediates, due to the
exploitable reactivity of the ester function [6,10–12] and bromine [13,14], and their trivial
accessibility by the reaction between commercially available methyl 2,3-dibromopropionate
and 3-bromocatechol.
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2. Results and Discussion

Methyl 5-bromo- and 8-bromo-1,4-benzodioxane-2-carboxylate were easily prepared by a
combination of equimolar amounts of commercially available methyl 2,3-dibromopropionate
and 3-bromocatechol in acetone in the presence of three equivalents of potassium carbonate
at reflux temperature overnight. After a standard work-up, the crude product was purified
by chromatography on silica gel eluting with 80/20 petroleum ether/ethyl acetate isolating
two fractions. The first eluted product, 1, subsequently identified as methyl 8-bromo-1,4-
benzodioxane-2-carboxylate by HMBC NMR analysis, was obtained with a 25% yield, while
the second eluted product, 2, subsequently identified as methyl 5-bromo-1,4-benzodioxane-
2-carboxylate by HMBC NMR analysis, was obtained with a 40% yield.

As shown in Figure 3, 1H NMR and 13C NMR spectra of both 1 and 2 were consistent
with the structure of methyl 1,4-benzodioxane-2-carboxylate brominated at C(5) or C(8), as
expected on the basis of the used synthons. In the aliphatic region, two double doublets
were imputable to the dioxane CH2 and the triplet at the lower field to the dioxane CH,
while, in the aromatic region, the triplet and the two double doublets, from the high field
to low field, identified, respectively, the hydrogen meta to bromine and the two hydrogens
ortho and para to bromine. However, the assignment of the 1 and 2 structures to the first and
the second eluted products, respectively, or vice versa, was highly questionable because
identical patterns of signals and multiplicity with non-decisive chemical shift differences
were observed in the 1H NMR spectra, while the 13C NMR spectra were indistinguishable.
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Figure 3. (A) Aromatic region and (B) aliphatic region of the 1H NMR spectra of 1 and 2 and (C) 13C
NMR spectra of 1 and 2. (A) The three adjacent hydrogens of the benzene ring give an analogous
sequence of signals: dd, dd and t (from low field to high field). (B) The three hydrogens of the dioxane
portion give an analogous sequence of three dd. (C) The spectra are indistinguishable. All the spectra
were registered in C6D6.
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Additionally, HSQC NMR spectra were not conclusive. They allowed the certain
assignment of four of the benzene carbons: (a) the signal at 111 ppm to the brominated
carbon, (b) the signal at 122 ppm to the CH meta positioned to C-Br, (c) the signal at
126 ppm to the CH ortho positioned to C-Br, and, consequently, (d) the signal at 117 ppm to
that para positioned to C-Br (Figure 3C). The distinctive assignments of the peaks at 140 and
144 ppm to the two quaternary carbons shared between the two cycles, namely (C(9) and
C(10), remained instead unresolved (Figure 3C). Therefore, we reasoned that HMBC NMR
analysis could be resolutive for the identification of the signals imputable to C(9) and C(10)
and, consequently, for the unequivocal identification of the two regioisomers. In 1, an
important correlation with one or both methylene hydrogens of dioxane should identify
C(10), with which the aromatic H giving a triplet should also be correlated (Figure 4).
Otherwise, in 2, we should observe an important correlation with one or both methylene
hydrogens of dioxane by C(10) again, but no correlation or a weak one with the aromatic
H giving the triplet (Figure 4). The latter, in 2, should instead couple with C(9), in turn
recognizable for no coupling with methylene hydrogens of dioxane. The two different
patterns of three-bond C-H correlations, expected to distinguish 1 from 2, are depicted in
Figure 4.
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Figure 4. Expected important three-bond couplings of the dioxane geminal hydrogens with C(10) in
both 1 and 2 and of the aromatic hydrogen giving a triplet with C(10) or C(9) in 1 and 2.

Such expectations were confirmed by NMR experiments. In the HMBC spectrum of 1
(optimized for 8 Hz), both the aromatic proton meta positioned to bromine, unequivocally
identified by triplet multiplicity, and the methylene protons of the dioxane ring, unequiv-
ocally identified by two double doublets, showed a strong 3JH/C correlation to carbon
C(10) (Figure 5). In the HMBC spectrum of 2 (optimized for 8 Hz), one of the methylene
protons of the dioxane ring showed a strong 3JH/C correlation to carbon C(10), as observed
for 1, but the aromatic proton meta positioned to bromine was correlated to carbon C(9)
(Figure 6). These results unequivocally indicated that 1, the first eluted product, was the
isomer bearing bromine in the 8 position and that 2, the second eluted product, was the
5-brominated isomer.

As a consequence of the identification by HMBC NMR, the difference in chemical shift
of the proton para to bromine in the 1H NMR spectra (see Figure 3A) became diagnostic of
the bromine position on the 1,4-benzodioxane nucleus: high-field H-5 in 8-brominated 1,
low-field H-8 in 5-brominated 2.
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between C(10) and H(3).

3. Materials and Methods

The 1H and 13C NMR and two-dimensional (2D) (HSQC, and HMBC) spectra, which are
all reported as Supplementary Materials, were measured on a Varian Mercury 300 FT-NMR
spectrometer operating at 300 MHz for 1H and 75 MHz for 13C. NMR data were recorded
at 25 ◦C, with chemical shifts δ reported in parts per million and coupling constants J in
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Hertz. 1H NMR spectra were recorded in C6D6, while 13C NMR, HSQC and HMBC spectra
were recorded in C6D6. Spectra can also be recorded in DMSO-d6.

4. Conclusions

In summary, we have unambiguously identified methyl 8-bromo- and 5-bromo-1,4-
benzodioxane-2-carboxylate (1 and 2, respectively), two versatile synthons easily obtain-
able as a chromatographically resolvable mixture from 3-bromocatechol and methyl 2,3-
dibromopropionate, by HMBC NMR. Structure elucidation was achieved by the unambigu-
ous assignment of the two quaternary carbons shared between the two cycles in the HMBC
spectrum of the two compounds and by a different pattern of 3JH/C correlation with these
two carbons by the methylene hydrogens and the hydrogen meta to bromine. Since these
latter hydrogens are unequivocally assignable in the 1H NMR spectra, many other pairs
of 2-substituted 1,4-benzodioxane bearing an X substituent at the 8 or 5 position may be
unambiguously identified by the same comparison of 3JH/C data that we have here applied
to the regioisomers 1 and 2.

Supplementary Materials: The following supporting information can be downloaded online, Prepa-
ration of 1 and 2; 1H NMR spectra of 1 and 2 in C6D6; 13C NMR spectra of 1 and 2 in C6D6; HSQC
spectra of 1 and 2 in C6D6; HMBC spectra of 1 and 2 in C6D6.
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