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“Leaving no one behind” is the fundamental objective of the 2030 Agenda for Sustainable 
Development. Latin America and the Caribbean is marked by social inequalities, whilst its total 
population is projected to increase to almost 760 million by 2050. In this context, contemporary 
and spatially detailed datasets that accurately capture the distribution of residential population are 
critical to appropriately inform and support environmental, health, and developmental applications 
at subnational levels. Existing datasets are under-utilised by governments due to the non-alignment 
with their own statistics. Therefore, official statistics at the finest level of administrative units available 
have been implemented to construct an open-access repository of high-resolution gridded population 
datasets for 40 countries in Latin American and the Caribbean. These datasets are detailed here, 
alongside the ‘top-down’ approach and methods to generate and validate them. Population distribution 
datasets for each country were created at a resolution of 3 arc-seconds (approximately 100 m at the 
equator), and are all available from the WorldPop Data Repository.

Background & Summary
The United Nations (UN) projects that the global human population will grow by 2 billion between 2019 and 
20501. Specifically, Latin America and the Caribbean has a total population of approximately 658 million, and is 
expected to increase by approximately 90 million by 20501.

The region has made important strides against infant and maternal mortality, communicable disease trans-
mission, and incidence of noncommunicable disease in the last 10 years2, largely due to economic development, 
and the improved capacity and flexibility of healthcare systems3,4. However, the challenge to overcome inequali-
ties of health outcomes derived from the intersection of determinants including socio-economic status, gender, 
and ethnicity at subnational levels is identified as a key step to universal health access, a key target of the UN 
Sustainable Development Goals (SDGs)1,2. Moreover, geographic access is a principal determinant of healthcare 
access, and is crucial to identifying inequities in subnational health status and access to healthcare5,6.

According to the UN Office for the Coordination of Humanitarian Affairs7, Latin America and the Caribbean 
is the second most disaster-prone region in the world, with 152 million people impacted by 1,205 disasters 
between 2000 and 2019. Hydrometeorological phenomena including flooding, storm surges, and hurricanes are 
the most common and destructive hazards in the region7, comprising 60% of all reported disasters during 2010–
2016, at an estimated cost of US$278 million dollars2. Climate change operates as a ‘risk magnifier’, increasing 
the volatility and frequency of hazard events, which disproportionately impacts the populations of low- and 
lower middle-income countries8,9. Small-island territories and major coastal settlements are particularly threat-
ened by sea-level rise8, with an estimated 30 million people living in low-lying areas (i.e. within the first 10 m 
of elevation) in the region10. Moreover, the region is exposed to significant seismic and volcanic activity11, due 
to its location along the ‘Ring of Fire’, a belt following the edge of the Pacific Ocean encountering 80% of the 
world’s volcanic and seismic events12. Between 2000 and 2019, 75 earthquakes occurred in the region, resulting 
in 226,000 deaths at a total damages cost of US$54 billion7.
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Consequently, efforts towards a fuller and clearer understanding of the spatial distribution of population 
is crucial to a whole swathe of developmental goals. Amongst natural and man-made disaster scenarios there 
is a demand for high-resolution population estimates to support the accurate assessment of the scale of an 
event and the required relief13–16. Since such hazard events are highly unlikely to impact areas conforming to 
administrative units, detailed WorldPop gridded data is already regularly used to more precisely assess the size 
and characteristics of potentially affected population, typically age and sex17,18. Moreover, accurate population 
estimations are fundamental to nearly all public health intervention and planning efforts19,20. Regularly updated 
estimates facilitate an enhanced understanding of population size and distribution, improving the efficiency and 
effectiveness of targeted vaccination planning and delivery programmes21.

Therefore, significant work has been undertaken since the early 1990s to develop high-resolution gridded 
population datasets at global or continental scales22. Advancements in the spatial resolution and availability 
of geospatial data, statistical analysis approaches, and processing power have enabled the generation of more 
accurate datasets that describe changes in human population scale, composition, and distribution over time23. 
These advancements have facilitated the development of a wide range of openly available, large-scale gridded 
population datasets22,24–32. However, these datasets have been of limited value to governments due to the lack of 
alignment with their own population figures. Therefore, seeking to overcome this limitation and encourage the 
uptake of gridded population data, this project represents the first endeavour to use official population figures 
and boundaries to create gridded population data across an entire continental region.

WorldPop is an interdisciplinary applied research program that develops peer-reviewed research and meth-
ods for the construction of open and high-resolution geospatial data on population distribution, demographics, 
and dynamics. Within this framework, an open-access repository of high-resolution gridded population data-
sets for the Latin America and the Caribbean region has been generated, using official, finest-available popu-
lation census-based figures and projections (Table 1) and national boundaries provided by National Statistic 
Offices (NSOs) from the region, alongside a suite of ancillary geospatial datasets relating to human population, 
including high-resolution settlement data. Using a Random Forest (RF) dasymetric modelling approach33, pop-
ulation count data and ancillary geospatial datasets for 40 countries (Tables 1, 2) were gathered, prepared, and 
processed to create gridded population datasets with a spatial resolution of 3 arc-seconds (approximately 100 m 
at the equator).

Methods
The methodology used to construct this data product, similarly to previous WorldPop products for the region28, 
implements a top-down approach to population disaggregation via a RF dasymetric modelling approach33. 
However, there are two marked differences underlying the data product presented herein: i) the use of official, 
finest-available census-based population figures and projections (Table 1) and administrative boundaries, and ii) 
the addition of high-resolution World Settlement Footprint 3D (WSF3D) data to the suite of RF-fitting covariates.

Random forest-based dasymetric population mapping approach.  A RF algorithm was imple-
mented to generate a gridded population density weighting layer at 3 arc-second resolution (approximately 100 m 
resolution at the equator); this prediction layer is then used to perform dasymetric disaggregation of popula-
tion counts from administrative units into target grid cells at country level33. RF is a predictive, non-linear, and 
non-parametric ensemble learning approach that generates a large set of decision tree models and aggregates 
their predictions34. Decision trees are independently generated by bagging (i.e., by sampling the entire dataset 
with replacement)35, typically two thirds of samples are used to train the trees (known as the ‘bagged’ sample). 
Each node of each decision tree is split according to an iterative method in which, at each node, the optimal 
splitting method is used34. After all regression trees have been constructed, the outputs of all tree predictions are 
aggregated by calculating either their mode or average, contingent on whether the trees are utilised for classifica-
tion or regression, to produce a final classification decision36. The remaining third of unsampled data, known as 
‘out-of-bag’ (OOB), are used to perform the internal cross-validation technique to accurately estimate the predic-
tion error of the RF model34; this is achieved by averaging all mean squared errors calculated using the OOB data. 
The RF approach is robust to overfitting34, and its predictive accuracy is not very sensitive to the three parameters 
to be specified for model fitting36, explicitly, (i) the number of observations in the terminal nodes of each tree, (ii) 
the number of trees in the forest, and (iii) the number of covariates to be randomly selected at each node.

The RF-based dasymetric population mapping approach developed by Stevens et al.33, has been used in this 
framework to produce gridded population distribution datasets for Latin American and Caribbean countries. 
This approach consists of using a RF algorithm to generate gridded population density estimates that are subse-
quently used, as a weighting layer, to dasymetrically disaggregate population counts from administrative units 
into grid cells37.

RF model fitting was undertaken by generating 500 trees, and assigning the number of observations in the 
terminal nodes equal to one. Following RF model fitting, population density was predicted using a reduced 
selection of covariates. For each target grid cell, the average of all decision tree predictions was designated to 
the cell as the estimated population density value. Where there were insufficient observations (i.e. insufficient 
administrative unit population counts) to fit a RF model for a given country, an additional country with similar 
characteristics was selected, and utilised to fit an appropriate RF model for predicting population density at the 
grid cell level38. Subsequently, in both scenarios, dasymetric disaggregation of the administrative unit-based 
population counts was undertaken using the population density weighting layer37, thereby generating two grid-
ded population datasets of estimated number of people per grid cell.

All tasks described above were performed using the popRF package in R39. The popRF package functionalises 
the RF-informed dasymetric population modelling procedure33 within a single programming language frame-
work, and is publicly available, open source, and environment agnostic39. This package has been parallelised 
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where possible to achieve efficient prediction and geoprocessing over large extents, supporting functions that 
have applied utility beyond simply performing disaggregative population modelling39.

Data collection.  For every country listed in Table 1, population counts were paired with their correspond-
ing administrative unit boundaries within a GIS interface. Official and best available subnational population 
census-based figures and projections, and at the finest administrative unit level possible, alongside matching 
official administrative unit boundaries were provided by NSOs of the region with support from the UNFPA and 
OCHA. These input data are technically assessed by the UNFPA and subject-matter country experts, and are 

ISO Area (km2) Total population No. of units Unit level ASR Modelled with Year Base-census year

ABW 177 112,683 55 2 0.24 2020 P 2010

AIA 76 13,572 9 0 0.97 Grouped Islands* 2011C 2011

ARG 2,779,164 45,808,456 525 2 3.18 2021 P 2010

ATG 414 84,816 8 1 2.54 Grouped Islands* 2019P 2017

BHS 11,859 391,476 32 1 3.40 Grouped Islands* 2019P 2010

BLZ 21,764 322,454 6 1 24.59 GTM 2020 P 2010

BMU 50 63,779 11 2 0.64 Grouped Islands* 2020 P 2016

BOL 1,081,700 11,841,955 9 1 115.56 PER, PRY 2021 P 2012

BRA 8,478,053 211,755,692 5,570 2 0.52 2020 P 2010

BRB 431 226,193 11 1 1.89 Grouped Islands* 2010C 2010

CHL 749,230 19,678,363 346 3 3.52 2021 P 2017

COL 1,136,979 50,372,424 1,122 2 0.95 2020 P 2018

CRI 51,061 5,163,021 478 3 0.47 2021 P 2011

CUB 109,272 11,193,470 168 2 1.97 2015P 2012

CUW 430 165,983 65 1 0.32 Grouped Islands* 2020 P 2015

CYM 257 69,914 6 1 2.67 Grouped Islands* 2019C 2016

DMA 747 69,325 10 1 2.73 Grouped Islands* 2011C 2011

DOM 47,914 10,448,499 155 3 1.41 2020 P 2015

ECU 254,784 17,510,643 25 1 20.19 COL 2020 P 2010

GRD 347 114,000 7 1 2.66 Grouped Islands* 2020 P 2011

GTM 108,193 17,109,746 340 2 0.97 2021 P 2018

GUY 210,000 756,237 10 1 45.83 SUR 2021 P 2012

HND 111,460 9,302,282 298 2 1.12 2020 P 2013

JAM 10,948 2,697,983 14 1 7.47 DOM 2019P 2011

KNA 261 46,325 14 1 1.15 Grouped Islands* 2020 P 2011

LCA 594 178,696 10 1 2.44 Grouped Islands* 2018P 2011

MEX 1,948,457 128,972,439 2,457 2 0.57 2021 P 2010

MSR 99 4,566 39 EA 0.26 Grouped Islands* 2021 P 2011

NIC 127,982 6,595,672 153 2 2.34 2020 P 2012

PAN 74,153 4,337,406 13 1 20.95 HND, SLV 2021 P 2010

PER 1,286,915 29,381,884 1,873 3 0.61 2021 P 2017

PRY 399,572 7,252,669 250 2 2.53 2020 P 2012

SLV 20,382 6,825,935 262 2 0.54 2021 P 2007

SUR 146,242 590,100 62 2 6.17 2018P 2011

TCA 943 31,458 6 1 5.12 Grouped Islands* 2021 P 2012

TTO 5,129 1,328,022 15 1 4.77 Grouped Islands* 2020 P 2005

URY 177,398 3,530,912 19 1 22.17 COL, PRY 2020 P 2011

VCT 383 110,696 13 2 1.51 Grouped Islands* 2018P 2012

VEN 912,709 32,605,423 25 1 38.21 PRY 2020 P 2011

VGB 150 32,670 25 0 0.49 Grouped Islands* 2017P 2010

Table 1.  Summary information of population count data and administrative boundary datasets used to 
produce the gridded population datasets. Each country is identified by its ISO-3 country code (https://www.
worlddata.info/countrycodes.php). The average spatial resolution (ASR) was calculated as the square root 
of each country’s surface area divided by the number of administrative units, and represents the effective 
resolution of the latter (i.e., the cell size of administrative units if all units were square of equal size)22. Countries 
with fewer than 25 administrative units were modelled with additional countries, selected based on similar 
characteristics; ‘Grouped Islands’ refers to a set of countries that were modelled simultaneously, including: BHS, 
TCA, CYM, VGB, KNA, ATG, MSR, DMA, LCA, BRB, GRD, TTO, BMU, VCT, AIA, MSR, VGB. Superscripts 
‘C’ or ‘P’ in the 8th column, indicate whether population statistics were obtained from either official census or 
census-based projections, respectively.
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adopted as common baseline population data for use in disaster preparedness and operational humanitarian 
response. Further summary information regarding the input population data, including base-census year, and 
corresponding administrative unit boundaries is provided in Table 1.

Human population density is known to be highly influenced and correlated with a variety of environmen-
tal and physical factors, each of which can be credibly associated with and influence the spatial distribution 
of population23,30,40. These factors are classified into two distinct categories; firstly, continuous variables such 
as topographic elevation and slope41,42, climate43, and intensity of night-time lights44,45. Secondly, categorical 
variables notably including land cover type46,47 and the presence or absence of settlements and urban areas48, 
roads48, waterbodies and waterways49, and protected areas50. Therefore, the 12 most up-to-date global raster and 
vector datasets available at the time of production, were identified, collected, and processed into a uniform set of 
default covariates used for model fitting and prediction (Table 2).

The spatial variation of factors related to population distribution, such as night-light intensity, was meas-
ured using nightly day/night band (DNB) low-light imaging data collected by the Visible Infrared Imaging 
Radiometer Suite (VIIRS) aboard the Suomi National Polar Partnership (SNPP) satellite51,52. HydroSHEDS 
data53,54, derived from NASA’s Shuttle Radar Topography Mission (SRTM) elevation data55, was used to generate 
elevation and slope covariates. Specifically, the 3-arc second, void-filled digital elevation model (DEM) product 
was implemented56.

Default dataset Default derived covariate
Temporal 
coverage Type Format Resolution Source

SNPP-VIIRS
2020 Continuous Raster 15 arc seconds EOG52

Night-light intensity 2020 Continuous Raster 3 arc seconds

HydroSHEDS (GRID: Void-filled DEM)

2006 Continuous Raster 3 arc seconds WWF53

Elevation 2006 Continuous Raster 3 arc seconds

Slope 2006 Continuous Raster 3 arc seconds

ESA-CCI Ocean/Inland/Land Waterbodies

2000–2012 Categorical Raster 150 m ESA-CCI58

Distance to inland water 2000–2012 Continuous Raster 3 arc seconds

Ocean watermask 2000–2012 Categorical Raster 3 arc seconds

Inland water/permanent ice mask 2000–2018 Categorical Raster 3 arc seconds

C3S Global Land Cover

2018 Categorical Raster 300 m ESA-CCI59

Distance to class # 2018 Continuous Raster 3 arc seconds

Inland water/permanent ice mask 2018 Categorical Raster 3 arc seconds

WSF3D Building Area

2021 Continuous Raster 90 m Esch et al68.

Building area footprint 2021 Categorical Raster 3 arc seconds

Building area 2021 Continuous Raster 3 arc seconds

Distance to urban area 2021 Continuous Raster 3 arc seconds

WSF3D Building Height

2021 Continuous Raster 450 m Esch et al68.

Building height 2021 Continuous Raster 3 arc seconds

Building volume 2021 Continuous Raster 3 arc seconds

Roads/road intersections features

2021 Categorical Vector / Geofabrik63; BBBike64

Distance to road classes 2021 Continuous Raster 3 arc seconds

Distance to intersection classes 2021 Continuous Raster 3 arc seconds

Road length 2021 Continuous Raster 3 arc seconds

Road density 2021 Continuous Raster 3 arc seconds

Road intensity (4 bandwidths) 2021 Continuous Raster 3 arc seconds

Distance to IUCN protected area edges
2017 Continuous Raster 3 arc seconds WorldPop66

Distance to wildlife protected areas 2017 Continuous Raster 3 arc seconds

Distance to OSM major waterways
2016 Continuous Raster 3 arc seconds WorldPop66

Distance to waterways 2017 Continuous Raster 3 arc seconds

Distance to open-water coastline per country
2020 Continuous Raster 3 arc seconds WorldPop66

Distance to coastline 2020 Continuous Raster 3 arc seconds

Grid cell surface areas
2020 Continuous Raster 3 arc seconds WorldPop66

Pixel area 2000–2020 Continuous Raster 3 arc seconds

Climate (Temp/Precipitation)

1970–2000 Continuous Raster Fick & Hijmans65

Temperature 1970–2000 Continuous Raster 3 arc seconds

Precipitation 1970–2000 Continuous Raster 3 arc seconds

Table 2.  Summary information of the default datasets and the derived default covariates used for RF model 
fitting and prediction. Continuous raster datasets were resampled for use as covariates, whilst both categorical 
and rasterized datasets were firstly resampled and then processed into ‘presence/absence’ or ‘distance to’ raster 
covariates.

https://doi.org/10.1038/s41597-023-02305-w


5Scientific Data |          (2023) 10:436  | https://doi.org/10.1038/s41597-023-02305-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

A global dataset of inland and ocean water was acquired from the European Space Agency’s (ESA) Climate 
Change Initiative (CCI) land cover project at a spatial resolution of 150m57,58. The data was built within the 
ESA-CCI project framework for the 2000–2012 period and enabled the generation of inland and ocean water 
masks. Global gridded land cover (LC) data for 2018 was obtained via the Copernicus Climate Change Service 
(C3S), using Intermediate Climate Data Records (ICDR) produced by the ESA-CCI project59–61. This data was 
used to identify different land cover types, and generate distance to land cover class covariates, whilst the per-
manent ice land cover class was incorporated with the ESA-CCI waterbodies dataset to generate a global mask 
of inland water and permanent ice. This global watermask was used to identify areas of non-human habitation 
due to the presence of waterbodies. The final stage of production for all covariates masked pixels identified as 
containing water, setting pixels to ‘No Data’ within these areas.

OpenStreetMap62 vector datasets were extracted for road and road intersection features via two distinct 
data repositories Geofabrik63 and BBBike64, respectively. Temperature and precipitation data, representa-
tive of the 1970–2000 period, were downloaded from WorldClim, version 2.1 climate data for 1970–200065. 
Moreover, a selection of pre-prepared covariates was extracted from the WorldPop open access gridded data 
archive to complete the set of covariates required for model fitting and prediction66. All data was available at 3 
arc-second resolution, and had been already fully harmonised to support population distribution prediction 
applications27,67. These datasets included time-invariant covariates: distance to waterways, protected areas, and 
coastlines (Table 2).

The DLR’s World Settlement Footprint 3D (WSF3D) product was used to identify, quantify, and calculate 
distance to settlement in this research. The processing methodology of the WSF3D product is based on work 
presented by Esch et al.68. The WSF3D production approach is dependent on two predominant input datasets: 
(i) the 12 m spatial resolution TDX_DEM, and (ii) an updated version of the WSF imperviousness (WSF-Imp) 
dataset displaying the percent of impervious surface at ~10 m spatial resolution69,70 within the built-up area 
defined by the WSF2019 human settlement mask71,72. The DLR provided layers for each of the 40 countries spe-
cific to this research. A short description of each layer’s production process is denoted below68,73:

Building height (BH).  The ~450 m BH layer represents a spatial aggregation of the standard 90 m WSF3D BH 
layer, which was derived by measuring the height variations of vertical edges most likely related to building 
edges (BE) in the 12 m TDX-DEM within the settlement areas defined by the WSF-Imp layer. The height is 
reported in metres (m) in the final product.

Building area (BA).  The ~90 m BA layer is derived by firstly generating the Building Fraction (BF) layer, which 
measures percentage building coverage per ~90 m cell in a range of 0–100. This is produced by quantifying the 
built-up coverage at 12 m spatial resolution, derived from the joint analysis of the WSF-IMP, TDX-amplitude 
images (TDX-AMP), and BE. The BF is subsequently multiplied by the area of each ~90 m grid cell (~8100 m2 at 
the equator), thereby producing the BA. This area is reported in square metres (m2) in the final product.

Data processing.  The population count data for each country was manually cleaned, processed, and harmo-
nised to match to its corresponding official vector administrative unit dataset. The administrative and population 
count data was recoded, adding a ‘GID’ primary key field through which each row in the two datasets could be 
joined.

For each country (Table 1), the vector dataset representing its administrative units, used to match to the 
population counts, was cleaned and projected using the WGS 1984 geographic coordinate system; this system 
was selected to ensure uniformity across all generated covariate datasets. These datasets were then buffered by 
100 km extent and rasterized at a resolution of 3 arc-seconds (approximately 100 m at the equator). These meas-
ures were taken to: (i) obtain a raster dataset of the study area to register and ensure uniformity across all raster 
covariates, (ii) produce a set of raster ‘distance to’ covariates that were unaffected by artificial boundary effects 
throughout spatial processing74, and (iii) conduct spatial processing on a buffered country-level basis, rather 
than on a global scale, to save processing time where necessary.

Default input covariates for the RF model were derived as follows. In most cases, raw datasets required 
specific cleaning and conversion methods to ensure format accessibility for further spatial processing. All ras-
ter variables representing continuous values (Table 2), were projected to WGS 1984 datum, resampled to 3 
arc-second resolution, and matched to the rasterized study area. ‘No Data’ grid cells overlapping the rasterized 
buffered study area extent were filled with values of the nearest neighbour (using the Nibble tool available in 
ArcGIS 2.7.1). Finally, each covariate variable was extracted to the rasterized study area extent, maintaining 
uniformity of spatial extent, and resolution. All vector and raster datasets representing categorical variables 
were projected, rasterized, or resampled to 3 arc-second resolution, and matched to each rasterized buffered 
study area. Rasterized categorical variables were then converted into binary raster covariates, and subsequently 
utilised to generate continuous ‘distance to’ raster covariates (Table 2).

Bespoke measures were taken to prepare the land cover covariate variables. Similarly, to the aforementioned 
raster datasets representing categorical variables, the obtained C3S Global Land Cover data was projected, res-
ampled to 3 arc-second resolution, and matched to the rasterized study area. The recoded global landcover 
dataset was then reclassified according to Sorichetta et al.28. Each land cover class was extracted and converted 
to a binary variable indicating presence/absence of the specified land cover class. Binary raster covariates were 
extracted to 100 km buffered study area raster datasets, and subsequently used to produce continuous ‘distance 
to’ raster covariates for each study area (Table 2). When a certain land cover class was completely absent, the 
covariate was disregarded for that specific country during RF model fitting and estimation, as on balance, the 
absence of the land cover type would not influence population distribution. The final land cover class (210) 
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representing water and permanent ice cover distribution was disregarded in RF model fitting. Instead, the ESA’s 
waterbodies dataset was implemented as the ‘distance to’ water covariate variable, due to the improved spatial 
resolution it offers compared to the C3S Global Land Cover dataset (Table 2). Moreover, where available, water-
bodies from the administrative unit boundary shapefiles were identified, rasterized, and incorporated into the 
waterbodies dataset, which was then processed using similar steps to the other raster datasets representing cat-
egorical variables, producing ‘distance to’ water covariate data for each country.

The distance to settlement covariate was prepared in the same way, generating a binary layer of build-
ing presence/absence from the WSF3D building area datasets; subsequently, ‘distance to’ settlement covari-
ates were generated. The WSF3D building height data was prepared using a slightly differing methodology 
to the other continuous covariates; the settlement height data was extracted to the binary layer of WSF3D 
building presence/absence, instead of the official administrative boundaries. This measure ensures uniformity 
of building footprint delineation across all settlement covariates. ‘No Data’ grid cells in the building height 
layer overlapping the rasterized study area extent were filled with 0 values of the nearest neighbouring pixels. 
These building area and height datasets were multiplied using raster calculator to generate a building volume 
covariate.

Moreover, a bespoke road classification system was established and applied to the raw OpenStreetMap 
data, using the ‘fclass’ field. This classification system comprised three distinct classes: (i) Pedestrian access, (ii) 
Motor-vehicle access, and (iii) residential roads (Table 3). The application of this custom classification system 
aims to aid the improvement of population estimations, by providing enhanced covariate detail. Furthermore, 
vector point data representing road intersections was generated for each road class using ArcGIS’s Intersect tool. 
These vector data were used to generate ‘distance to’ covariates for road and road intersection features for all 
countries, matching the corresponding spatial resolution of 3 arc seconds Figure 1.

Vector road data were also used to produce road density covariate of corresponding spatial resolution raster. 
Road density is defined as the ratio of the length of the roads in the pixel to the land area of the pixel. Therefore, 
vector data of roads was intersected with a raster grid at a resolution of 3 arc seconds (approximately 100 m at 
the equator) to ensure that each pixel has exact information for the roads within this pixel. Figure 2 shows the 
example of road density in Colombia.

Furthermore, in order to estimate the road density within a grid cell/pixel neighbourhood, a non-parametric 
‘kernel’ method was used. Using the kernel approximation, one can achieve a smoother density estimate, com-
pared to that of a coarser distribution. Therefore, to investigate the effect of road density at different spatial 
scales, 4 bandwidths (500 m, 1000 m, 2000 m and 5000 m) were used for the kernel density estimations. Road 

OSM fclass value Reclassified Roads value

bus_guideway bus_stop

motor vehicle access

busway construction

emergency_access emergency_access_point

emergency_bay escape

mini_roundabout motorway

motorway_junction motorway_link

planned primary

primary_link proposed

raceway rest_area

road secondary

secondary_link service

services tertiary

tertiary_link track

track_grade1 track_grade2

track_grade3 track_grade4

track_grade5 trunk

trunk_link

bridleway corridor

pedestrian access

crossing cycleway

elevator footway

living_street path

pedestrian platform

steps

residential residential

abandoned disused

omitted
dummy no

unclassified unknown

yes

Table 3.  Reclassification of OSM roads and road intersection data.
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intensity was calculated using Epanechnikov kernel function75. Figure 3 shows the example of road intensity in 
Colombia.

Random forest modelling scenarios.  A set of modelling scenarios were devised to define the impor-
tance of covariate parameters for model fitting and prediction, as well as to enable the undertaking of a technical 
validation (Table 4). Specifically, the utility of WSF3D datasets when integrated into the RF modelling approach 
were to be assessed to assist the identification of the best final dataset for each country. Additionally, a simple 
areal-weighting (SAW) approach was generated as a comparison to assess the accuracy of RF-based dasymetric 
population modelling. These scenarios are detailed below (Table 4).

Fig. 1  Schematic overview of the approach to generate gridded population estimates using the random forest 
(RF) model. For illustrative purposes, only a reduced set of considered covariates are shown here.

Fig. 2  Road density in Bogotá, Colombia (3 arc second resolution).
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Data Records
The high-resolution gridded population datasets detailed in this paper referring to the 40 countries listed in 
Table 1, are publicly and freely available through the WorldPop Data Repository76. The datasets can be down-
loaded as WinRAR Zip archives (win-rar.com) containing the population distribution datasets of the associated 
country for each of the five different RF modelling scenarios (Table 5).

Technical Validation
A technical validation framework was incorporated into the RF-modelling package, to ensure that the modelled 
population distribution outputs for each country and its administrative units were matching their population 
data input counterparts. However, as demonstrated by prior studies a ‘true-validation’ of gridded population 
datasets remains a significantly complex challenge due to the lack of high-resolution ground-truth data (i.e. 
population counts at the pixel level) required for an independent accuracy assessment of large-scale population 
models73.

Firstly, the technical validation framework calculates zonal sums in the RF-output population distribution 
Figure 4, and checks the total population per administrative unit for the RF-output distribution against the 
input population data (e.g. Figure 5). This ensures that the population total within each administrative unit 
for RF-model outputs, matches the population total within corresponding administrative units for population 
inputs data prior to the RF-modelling.

In addition to this primary technical check, the existing research in the field of large-scale population mod-
elling has utilised a validation method that quantifies the internal accuracy of population distribution method, 
in terms of “how well and plausibly populations are distributed”77. This framework performs a selection of 
statistical analyses using the differences between population counts extracted from distributions modelled 
using a coarser level of administrative units (‘levelled-up’), and the population counts of the finest available 
administrative units (‘finest-available’), here, the official population count data69,73,78. To generate this coarser 
administrative level, population counts were aggregated for each country by merging together pairs of contig-
uous administrative units characterised by similar population density values; this method was chosen with the 
aim to merge pairs of low population density units together and pairs of high population density units together 
(Figure 6).

A subset of countries (Table 6), located in different parts of the LAC region, were selected to assess the 
increased accuracy of the RF-based dasymetric mapping approach with respect to a SAW approach assum-
ing that the population of each administrative unit is evenly distributed within it; this subset is defined as 
countries with sufficient administrative units following aggregation (minimum of 25) to fit the RF model. 

Fig. 3  Road intensity (5 km bandwidth) in Bogotá, Colombia (3 arc second resolution).
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Although it is possible to fit the RF model for a given country with fewer than 25 administrative units by pairing 
it with an additional country with similar characteristics, it was deemed that the influence of the additional, 
finer-resolution country object would distort the validation of the modelling approach. Therefore, these coun-
tries were omitted from the subset.

Model validation.  The OOB error estimate (Table 6) is calculated during RF model fitting, and serves a 
robust and unbiased metric of the model’s internal prediction accuracy34. However, the OOB error esti-
mate cannot be understood as the prediction error at the grid cell level, given that the RF model is fitted at 
the finest-available administrative level but predicts at the grid cell level. Furthermore, it should not be consid-
ered as the prediction error at the administrative unit level, via totalling of all final grid cell values within each 
administrative unit, and comparing it to the observed population count of the equivalent administrative unit. 
Nevertheless, it is expected that a higher accuracy of predicted values at the administrative level, should be asso-
ciated with higher accuracy of the final gridded population distribution datasets33.

Between ‘finest-available’ and ‘levelled-up’ modelling scenarios, the OOB error increased and the percentage 
of variance explained decreased for 10 countries amongst the subset: ABW, ARG, CHL, COL, CUB, DOM, 
GTM, NIC, PRY and SUR (Table 6). The most significant difference is noted for ABW in which the OOB error 
more than doubled, whilst percentage of variance explained reduced by almost 10% (Table 6). However, the 
degree of differences in OOB error and percentage of variance explained were much less significant for the 
remaining countries within the subset (Table 6). There are some examples of countries in which the ‘levelled-up’ 
scenario exhibited reduced OOB error values and higher percentage of variance explained, compared to the 
‘finest-available’ modelling output; most notable amongst these are MEX and SLV (Table 6). The OOB error 
value for both MEX and SLV decreased by 0.03, whilst the percentage of variance explained increased by 1.7% 
and 2.8%, respectively (Table 6).

WSF3D quantitative assessment.  For each country within this subset, a selection of spatial error metrics 
were identified and calculated to assess the accuracy and reported differences between the actual and the esti-
mated values for each country’s ‘finest-available’ administrative unit; in this case the actual values are obtained 
from the input population count data at the ‘finest-available’ administrative unit level, whilst the estimated values 
are derived from Zonal Statistics sum calculations of each resultant RF modelling scenario output (Table 4) at the 

Fig. 4  Estimated people per grid cell for 40 countries in Latin America and the Caribbean. Fitted using all base 
covariates including built area layers (for specific years see Table 1).
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same ‘finest-available’ administrative level. For each country (Table 6) and each modelled RF-scenario (Table 4), 
the following error metrics are derived in Table 7.

For each country, four accuracy metrics were used to assess how well each RF modelling scenario distrib-
uted the population. Both the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) measure the 
absolute differences between the actual (popa) and estimated population (pope) counts of the L1-base units73,79. 
However, MAE is known to be more robust to outliers80, since RMSE penalises significant errors by squaring 

Fig. 5  Population distribution in Dominican Republic, 2020. (a) input count data at ‘finest-available’ 
administrative unit level, (b) modelling outputs following random forest fitting at 3 arc second resolution 
(approximately 100 m at the equator), RF model fitted according to Scenario 6 (Table 4).

RF Scenario No. Scenario Name Scenario Description

1 Base RF ‘Finest-available’ units, fitted with all base covariates (i.e. all covariates excluding WSF3D-
derived data).

2 Base RF & BA ‘Levelled-up’ units, fitted with all base covariates including building area.

3 Base RF & BH ‘Levelled-up’ units, fitted with all base covariates including building height.

4 Base RF & BABH ‘Levelled-up’ units, fitted with all base covariates including building area and building height.

5 Base RF & BABHBV ‘Levelled-up’ units, fitted with all base covariates including building area, building height, and 
building volume.

SAW/Equal ‘Levelled-up’ units, simple areal-weighting approach.

Table 4.  Descriptions of modelled population distribution scenarios. ‘Finest-available’ units refers to 
administrative units at their lowest available level, whilst ‘Levelled-up’ units refers to bespoke administrative 
units, generated via aggregating contiguous administrative units at the ‘finest-available’ level.
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differences, compared to MAE which weights each error equally73. Conversely, the Mean Absolute Percentage 
Error (MAPE)  is the MAE adjusted to each level of analysis, calculated as MAE divided by the average popula-
tion of each country78. Similarly, the RMSE is also expressed as a percentage of the mean population size of the 
administrative unit level via the root mean square percentage error (RMSPE). These metrics enable comparison 
across countries by omitting the bias caused by different population totals and number of administrative units; 
furthermore, ‘percentage error’ metrics help to determine if errors generated by different modelling layers are 
similar and systematic, or if different behaviours are observable across countries73.

Name Description Format

ppp_ISO_RF1_v1.tif Estimated people per grid cell for random forest covariate modelling scenario 1 (3 arc seconds) GeoTIFF

ppp_ISO_RF2_v1.tif Estimated people per grid cell for random forest covariate modelling scenario 2 (3 arc seconds) GeoTIFF

ppp_ISO_RF3_v1.tif Estimated people per grid cell for random forest covariate modelling scenario 3 (3 arc seconds) GeoTIFF

ppp_ISO_RF4_v1.tif Estimated people per grid cell for random forest covariate modelling scenario 4 (3 arc seconds) GeoTIFF

ppp_ISO_RF5_v1.tif Estimated people per grid cell for random forest covariate modelling scenario 5 (3 arc seconds) GeoTIFF

Table 5.  Name, description, and format of all files contained in each WinRAR zip archive related to the 40 
countries listed in Table 1. In first column, ISO and RF represents the country ISO-3 code and RF covariate 
modelling scenario number respectively. All available data records were modelled using ‘finest-available’ units.

Fig. 6  Comparison of ‘finest-available’, and the ‘levelled-up’ administrative units for Dominican Republic, 2020. 
‘Finest-available’ units generated via aggregation of contiguous units.
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Results, summarised in Figure 7, indicate that the high-resolution gridded population datasets pro-
duced under this project’s framework outperform their corresponding SAW-based outputs across almost all 
cross-sections of metrics, countries, and modelling scenarios. The first exception to this finding is El Salvador 
(SLV), in which the calculated RMSE value increases from 8159 to a maximum of 8779 between the SAW and 
Scenario 6 (Table 4) modelling approaches, respectively (Figure 7). The second exception is Guatemala (GTM), 
in which the calculated MAPE value of 17.05% for the SAW modelling approach is lower than Scenarios 1 and 3 
(Table 4); nevertheless the remaining modelling scenarios for Guatemala (Scenarios 2, 4, and 5) are an improve-
ment on the SAW-based outputs according to calculated MAPE values of 16.64, 17.00, and 16.96, respectively 
(Figure 7).

Beyond these exceptions, according to the calculated accuracy assessment metrics (Figure 7), Scenario 6 
(Table 4) is the best performing modelling method for 31 of the 68 country-accuracy metric combinations. 
Moreover, Scenarios 3 and 5 are the next best performing modelling methods, registering the best accuracy 
metric result for 14 and 13 of the 68 country-accuracy metric combinations, respectively; as discussed above, 
the SAW-based modelling approach was found to be the best performing modelling scenario in only one 
case (SLV-MAE). These findings highlight a number of concepts, including (i) the importance of the build-
ing area covariate to RF-model fitting, (ii) the value of integrating all building covariates to RF-model fit-
ting, and (iii) the increased accuracy of the RF dasymetric disaggregation approach compared to a SAW-based 
disaggregation.

ISO

Finest-Available Levelled-Up

No. of units OOB error
% of variance 
explained No. of units OOB error

% of variance 
explained

ABW 55 0.61 57.9 29 1.29 48.5

ARG 525 0.18 97.2 282 0.19 97.0

BRA 5,570 0.08 95.9 3020 0.08 96.1

CHL 246 0.27 96.0 190 0.38 94.1

COL 1,122 0.14 93.8 594 0.16 92.9

CRI 478 0.14 96.7 252 0.14 96.7

CUB 168 0.24 86.7 91 0.29 84.3

CUW 65 0.68 78.2 35 0.60 78.4

DOM 155 0.15 90.0 83 0.19 87.3

GTM 340 0.20 82.4 183 0.22 80.9

HND 298 0.11 83.6 160 0.11 84.0

MEX 2,457 0.15 94.0 1317 0.12 95.7

NIC 153 0.17 89.0 81 0.24 84.9

PER 1,873 0.20 94.4 995 0.19 94.6

PRY 250 0.16 95.1 135 0.21 93.6

SLV 262 0.21 81.0 142 0.18 83.8

SUR 62 0.63 94.1 33 0.72 93.2

Grouped Islands* 216 0.44 88.4 — — —

Table 6.  Prediction accuracy of the RF model used to generate dasymetric weighting layers compared to the 
‘levelled-up’ mapping approach. The OOB error and percentage variance explained are provided for 17 countries 
in addition to the ‘Grouped Islands’ set of countries. A mapping approach using ‘levelled-up’ administrative units 
for these ‘Grouped Islands’ was not possible; the aggregating approach is not yet robust enough to handle the 
correct aggregation of contiguous administrative units for a collection of small, distinct islands.

Metric Description
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RMSE is the root mean square error at each level of analysis (i), calculated as the square root 
of the total square error, i.e. the average of the sum of squared errors (popa – pope) at each 
validation unit.
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RMSPE is the root mean square percentage error at each level of analysis (i), calculated as the 
square root of the mean of the sum of total errors divided by actual population squared, at each 
validation unit.

Table 7.  Descriptive metrics for accuracy assessment at the validation unit level for modelling scenarios 
(Table 4). For metrics capturing ‘percentage error’, the respective measures are multiplied by 100 to convert them 
to percentages.
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Usage Notes
In particular, the presented gridded datasets provide improved spatial detail of the residential population dis-
tribution at sub-administrative unit level comparatively to most publicly-available (i) administrative unit-level 
official and non-official estimates or projections, which implicitly rely on the assumption that the population 
is homogeneously distributed within each units, and (ii) gridded population datasets, which are based on 
non-official estimates or projections. This is achieved via the disaggregation of the most recent and finest admin-
istrative unit-level official population projections, produced by 40 NSOs and processed with support by the 
UNFPA Regional Office for Latin America and the Caribbean, UNFPA’s Population and Development Branch 
and the Information Management Branch of the UN Office for the Coordination of Humanitarian Affairs 
(OCHA).

Furthermore, these gridded population distribution datasets represent a consistent and comparable format, 
as well as a scalable framework, providing flexibility in (i) summarisation to any spatial area of interest (e.g., 
areas impacted by natural and/or man-made hazards which may not correspond to predefined artificial admin-
istrative boundaries), and (ii) analysis and data integration (e.g., GIS and remote sensing data, such as locations 
of healthcare facilities and CO2 emissions, respectively). Thereby, they can be effectively considered for  plan-
ning and supporting interventions and applications (e.g., planning for elections, assessing exposure to natural 
hazards, and measuring demand for services), measuring progress (e.g., measuring and monitoring the SDGs 
and their indicators), and performing analyses (e.g., predicting response variables intrinsically dependent on the 
population distribution, and modelling epidemic spreads).

However, it is important to note that there are also a number of limitations, caveats, and assumptions inher-
ent in the modelling approach used to produce the gridded population datasets, that should be considered 
before using them. For consistency, all datasets were produced using a fixed number of ancillary covariates 
available for all countries, and thus only a limited number of factors, potentially related to population presence 
and densities in each country, have been considered overall. For this reason, which represents a trade-off in the 
production of generalizable models, the accuracy of the gridded population datasets for some of the countries 
could be improved by considering additional, locally-specific factors that could help to increase the percentage 
of variance explained by the corresponding RF model.

Other limitations are represented by (i) the fact that the spatial detail of the administrative unit-level popu-
lation projections was not the same for all countries (refer to the “Unit level” column in Table 1), with the use of 

Fig. 7  Accuracy assessment results for modelling population density of all scenarios (Table 4) for each country 
(ISO-3).
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smaller administrative units for a given countries translating into higher accuracy of the corresponding gridded 
population dataset, and (ii) the fact that, because of the lack of enough administrative units to fit a country spe-
cific RF model, the gridded population datasets for a number of countries and islands have been produced using 
RF models referring to another country or a set of countries, and “Grouped Islands”, respectively (refer to the 
“Modelled with” column in Table 1)38.

Additionally, it may be worth to reflect on the fact that the official administrative unit-level population 
census-based figures and projections, used as inputs to the RF model, may or may not have captured effects of 
potential rapid onset events responsible for abrupt fluctuations of population numbers at the administrative unit 
level (e.g., forced displacements due to natural disasters). Similarly, the gridded population datasets produced 
using them do not account for seasonal or intra-annual population mobility between administrative units.

Upon aggregation, gridded population datasets constructed using this disaggregation methodology are 
proved to be more accurate at representing human population distribution compared to those produced using 
an equal-area approach28,33. The reliability of the data product is unknown at the grid-cell level, therefore it is 
recommended that population datasets be aggregated before use instead of at the grid-cell level77. Furthermore, 
it is important to highlight that gridded population datasets give end-users the flexibility to aggregate population 
according to different boundaries and/or areas (i.e. boundaries and/or areas that do not align with the adminis-
trative unit boundaries of the input population data).

Furthermore, it is critical to consider that these gridded population datasets represent modelling outputs 
generated using a number of ancillary covariates and thus, to avoid circularity, they should not be used to make 
predictions about, or explore relationships with, any of the factors included in the model (e.g., correlating pop-
ulation distribution with settlement distribution). If there is such need, ideally, the modelling process should 
be re-run using the publicly and freely available WorldPop-RF code (https://github.com/wpgp/popRF) with the 
covariate of interest being removed to avoid issues relating to endogeneity.

Finally, it is also important to note that most of the considered ancillary covariates are derived from model-
ling outputs themselves, and thus they have a degree of uncertainty that carries over into the gridded population 
datasets.

Code availability
The WorldPop-RF code, used to produce these high-resolution gridded population datasets, is publicly and freely 
available via: https://github.com/wpgp/popRF.
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