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The interpretation of non-Markovian effects as due to the information exchange between an open quantum
system and its environment has been recently formulated in terms of properly regularized entropic quantities,
as their revivals in time can be upper bounded by means of quantities describing the storage of information
outside the open system [Phys. Rev. Lett. 127, 030401 (2021)]. Here, we elaborate on the wider mathematical
framework of the theory, specifying the key properties that allow us to associate distinguishability quantifiers
with the information flow from and towards the open system. We point to the Holevo quantity as a distinguished
quantum divergence to which the formalism can be applied, and we show how several distinct quantifiers of
non-Markovianity can be related to each other within this general framework. Finally, we apply our analysis to
two relevant physical models in which an exact evaluation of all quantities can be performed.

I. INTRODUCTION

The interaction of an open quantum system with its
surrounding environment will typically result in a non-
Markovian dynamics, in which memory effects occur, for
example, due to strong system-environment coupling or low
temperature and, more in general, when the evolution of the
environment takes place on similar time scales as compared to
the relaxation time of the open system [1, 2].

The physical picture behind non-Markovian dynamics is
that the interaction between the open system and the envi-
ronment establishes significant correlations among them, as
well as changes in the environment, which subsequently af-
fect the evolution of the open system, thus leading to memory
effects [3–5]. The first quantitative definition of memory ef-
fects in open quantum systems has been given in terms of the
trace distance [6, 7]. The latter quantifies the distinguisha-
bility of quantum states [8], so that its increase in time can
be read as due to some information flowing back to the open
system, leading to an enhanced capability of distinguishing
among pairs of open-system states. In addition, the trian-
gular inequality and the contractivity under completely pos-
itive trace preserving (CPTP) maps of the trace distance al-
lows us to link unambiguously memory effects, and thus the
non-Markovianity quantified by means of it, to the system-
environment correlations and the changes in the environment
during the dynamics [9–13]. Indeed, this notion of quan-
tum non-Markovianity is referred to open-system evolutions
where the initial system-environment correlations can be ne-
glected, as the latter would generally prevent from the exis-
tence of reduced dynamical maps in the first place [14–16].
Other approaches to non-Markovianity have also been con-
sidered, e.g. dealing with multi-time measurements [17–22].

The possibility to introduce alternative ways to define mem-
ory effects, based on different distinguishability quantifiers,
has been investigated from the very beginning [7]. Moving
from distances to quantum divergences, relative entropy rep-
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resents indeed a natural candidate, due to its informational
meaning associated with the optimal strategy to discriminate
over two probability distributions in an asymmetric hypothe-
sis testing when an arbitrarily large number of measurements
is allowed [23], as well as due to its contractivity under CPTP
maps. However, the relative entropy can easily diverge, also
for finite-dimensional systems, which would lead to singular-
ities in the corresponding measure of non-Markovianity [7].
Even though some entropic quantifiers have been used to de-
fine quantum non-Markovianity [24–26], only recently [27] it
has been proven that properly regularized versions of the rela-
tive entropy [28] can be equipped with a full interpretation as
quantifiers of information backflow, connecting their revivals
to the microscopic features of the evolution of the open system
and the environment.

Here, we further extend this approach, by showing that
it is part of a more general mathematical framework, which
encompasses several significant distinguishability quantifiers,
including both distances and divergences that are not nec-
essarily distances [23]. First, we present three key proper-
ties that guarantee a fully meaningful use of distinguishabil-
ity quantifiers to characterize the exchange of information be-
tween the open system and the environment. These properties
allow us to derive in full generality an upper bound to the re-
vivals of the distinguishability quantifier at hand, linking any
backflow of information toward the open system to some in-
formation stored within the system-environment correlations
or the environment; importantly, the information content both
within and outside the open system is defined by means of the
same quantifier. We then show that a normalized version of
the Holevo quantity provides us with a significant instance of
the general framework, in this way connecting the very notion
of quantum non-Markovianity as information backflow to a
quantity of primary importance in quantum information the-
ory [8]. Moreover, our approach relates distinct quantifiers of
non-Markovianity within a common framework, as we show
by taking into account a generalized version of the trace dis-
tance, which has been investigated extensively in the context
of quantum non-Markovianity [4, 29–31], and a symmetrized
version of the regularized relative entropy considered in [27].
Lastly, we evaluate explicitly the behavior in time of the dif-
ferent quantifiers of information in simple, but physically rel-
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evant examples, illustrating their similarities and differences.
The rest of the paper is organized as follows. In Sec.II,

we present the general framework in which the revivals of
any distinguishability quantifier satisfying three definite prop-
erties are associated with a backflow of information to the
open system, by means of a general upper bound to the distin-
guishability variations in terms of the information within the
system-environment correlations and environmental changes.
In Sec.III, we show that a normalized version of the Holevo
quantity falls within this framework, and we further pro-
vide a tighter upper bound to its variations, which still keeps
the same physical interpretation. The Helstrom norm of the
weighted difference of two quantum states, which includes
the trace distance as a special case, and a regularized and
symmetrized version of the relative entropy are considered in
Sec.IV, where it is also shown the connection to the Jensen-
Shannon divergence for a proper choice of the defining param-
eters. Sec.V presents the application of the general analysis to
the spin-star system and the Jaynes-Cummings model, while
the conclusions of our work are given in Sec.VI.

II. CRITERIA FOR NON-MARKOVIANITY
QUANTIFIERS

We start by introducing the general framework we use to
define the non-Markovianity of the dynamics of open quan-
tum systems in terms of information backflow. The main aim
of this construction is to clarify what are the properties a quan-
tifier of information needs, to capture the physical meaning of
information exchange between an open system and its envi-
ronment. Crucially, this can be done only taking into account,
besides the information content within the open system it-
self, the global system-environment degrees of freedom where
the information can be stored and accessed subsequently in
the course of the open-system evolution. We proceed in two
steps: in Sec.II A we introduce the properties fixing the class
of quantifiers of information we refer to, taking into account
their action on the pairs of open-system states and on their be-
havior under CPTP maps; the connection with a CPTP open-
system dynamics, under the assumption of an initial product
state, is then presented in Sec.II B, where the defining proper-
ties are linked to a precise characterization of the information
exchanges between the open system and the environment.

A. Defining properties

The basic idea is that the changes in the information content
of a physical system can be quantified by looking at how the
distinguishability among the states of the system varies in time
[4, 6, 7]. A decrease of the distinguishability indicates a leak
of information from the system at hand to some other degrees
of freedom. Conversely, an increase of the distinguishability
means that some information has been recovered by the sys-
tem, leading to those memory effects that are at the core of the
notion of non-Markovian quantum dynamics.

The picture now recalled can be formulated in a general and
consistent way by quantifying the distinguishability of any
couple of states ρ and σ via a quantity S(ρ, σ) that satisfies
the following properties.

I. Boundedness, normalization and indistinguishability of
identical states:

0 6 S(ρ, σ) 6 1 ∀ρ, σ, (1)

with

S(ρ, σ) = 1 ⇔ ρ ⊥supp σ, (2)

where ρ ⊥supp σ means that the two states have orthog-
onal support (e.g., they are orthogonal if they are pure),
and

S(ρ, σ) = 0 ⇔ ρ = σ. (3)

The information stored within a system or exchanged
between different degrees of freedom is finite and the
corresponding quantifier is normalized to one. Such a
normalization guarantees a fair comparison among dif-
ferent quantifiers, as we will see for the relevant exam-
ple of the Holevo quantity in the next section. In addi-
tion, the requirement that two identical states cannot be
distinguished, while all others can at least to a certain
extent, immediately translates into Eq. (3).

II. Contractivity under CPTP maps:

S(Λ[ρ],Λ[σ]) 6 S(ρ, σ) ∀ρ, σ, ∀CPTP Λ. (4)

The distinguishability between the states of a quantum
system cannot be increased by acting locally on the sys-
tem; as we will see, distinguishability can be instead
increased if the system is correlated with other degrees
of freedom. Indeed, this property is strictly related to
the quantum data-processing inequalities, stating that
the information content of a quantum system cannot be
enhanced via local data processing on that system [8].

III. Triangle-like inequalities:

S(ρ, σ) −S(ρ, τ) 6 φ(S(σ, τ)) ∀ρ, σ, τ (5)
S(σ, ρ) −S(τ, ρ) 6 φ(S(σ, τ)) ∀ρ, σ, τ, (6)

with φ a concave function that is strictly positive for a
positive argument, while φ(0) = 0.

This property generalizes the triangle inequality and it
allows us to take into account quantifiers of information
that are not necessarily distances. As we will show in
Sec.II B, the triangle-like inequalities are the key iden-
tities that relate the changes in the information about a
system to the information content within other degrees
of freedom.

Broadly speaking, we insist on two classes of objects that sat-
isfy the properties I.-III.: distances and entropic quantifiers;
to include both of them and to stress that we are referring to
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quantifiers of state distinguishability that are not necessarily
distances, releasing therefore symmetry and triangle inequal-
ity, we call any quantity satisfying I.-III. a quantum diver-
gence [23]. We stress that both properties I. and III. set non-
trivial constraints for the case of entropic quantifiers, as it is
immediately clear considering the unboundedness of the stan-
dard quantum relative entropy. On the contrary, while prop-
erty III. is satisfied by any distance (indeed, in the form of a
proper triangle inequality, with φ(x) = x), note that the same
is not true for properties I. and II., as can be seen considering
for example the Hilbert-Schmidt distance.

B. Information exchange between an open system and its
environment

We now show how any quantum divergence with the above-
mentioned properties leads to a consistent characterization of
the information flow from and toward an open quantum sys-
tem, i.e., a quantum system that is interacting with an envi-
ronment.

We assume that the open system S and the environment
E are uncorrelated at the initial time t0 = 0, i.e., ρS E(0) =

ρS (0) ⊗ ρE(0), with a fixed environmental state ρE(0). The
evolution of the open system is thus characterized by a family
of CPTP maps Λ(t), according to [1]

ρS (t) = Λ(t)[ρS (0)] = trE{U(t)(ρS (0) ⊗ ρE(0))U†(t)}, (7)

where trE is the partial trace over the environmental de-
grees of freedom and U(t) fixes the unitary global system-
environment dynamics. As said, we want to follow the evolu-
tion in time of the distinguishability for the different degrees
of freedom involved, both within and outside the open sys-
tem. To do so, we consider two different initial conditions,
ρS E(0) = ρS (0) ⊗ ρE(0) and σS E(0) = σS (0) ⊗ σE(0), with
ρE(0) = σE(0), so that the reduced dynamics is given in both
cases by the same family of CPTP maps, ρS (t) = Λ(t)[ρS (0)]
and σS (t) = Λ(t)[σS (0)]. Taking two instants of time s and
t ≥ s and using a generic quantum divergence S to quantify
distinguishability, the difference

∆SS(t, s) := S(ρS (t), σS (t)) −S(ρS (s), σS (s)) (8)

tells us the variation in the information content within the open
system from time s to time t. Furthermore, S can be used to
quantify the information within the environment, looking at
S(ρE(t), σE(t)) (where ρE(t) = trS {ρS E(t)} is the environmen-
tal state at time t), or the information that is shared by the sys-
tem and the environment, contained in their correlations and
expressed by S(ρS E(t), ρS (t) ⊗ ρE(t)) and S(σS E(t), σS (t) ⊗
σE(t)). The defining properties II. and III. of quantum di-
vergences imply that the information variation can always be
bounded by

∆SS(t, s) 6 φ ◦ φ(S(ρE(s), σE(s))) (9)
+φ(S(ρS E(s), ρS (s) ⊗ ρE(s)))
+φ(S(σS E(s), σS (s) ⊗ σE(s))),

where ◦ denotes the composition of functions. This relation
provides us with a complete physical interpretation of the
changes in the information flow from and toward the open
system, along with their microscopic origin. Any backflow
of information to the open system from time s to time t,
leading to the revival ∆SS(t, s) > 0, is due to some infor-
mation contained at time s within the environmental degrees
of freedom or the system-environment correlations. In fact,
since φ(0) = 0 and due to the indistinguishability of identi-
cal states in (3), the right hand side (r.h.s.) of Eq. (9) can
be different from zero only if at least one of the following
occurs: (i) ρE(s) , σE(s), (ii) ρS E(s) , ρS (s) ⊗ ρE(s), (iii)
σS E(s) , σS (s) ⊗ σE(s). The seemingly trivial fact that a
proper information-flow quantifierS(ρ, σ) takes the minimum
value equal to zero if and only if ρ = σ thus plays quite an
important role in our framework. In fact, this condition al-
lows us to conclude that a revival ∆SS(t, s) > 0 is necessarily
due to the presence at time s of system-environment correla-
tions or changes in the environmental state. Indeed, this gen-
eralizes the corresponding results for the trace distance [9–
12], recently extended to a proper entropic quantifier in [27]
(see also Sec.IV). By summing the revivals ∆SS (t, s) along
the whole time evolution (and possibly maximizing over the
couple of initial system states), we can define a quantifier of
the non-Markovianity of quantum dynamics for any quantum
divergence S exactly in the same spirit as the one based on
trace distance [6, 7]. By virtue of Eq.(9), memory effects are
thus traced back unambiguously to a two-fold exchange of in-
formation, from the open system to the environment and their
correlations: a finite amount of information is stored in exter-
nal physical degrees of freedom and later retrieved.

To prove Eq. (9), we first note that the contractivity of S
under CPTP maps implies its invariance under unitary maps,

S(UρU†,UσU†) = S(ρ, σ) ∀ρ, σ, ∀unitary U, (10)

as well as under the tensor product with a fixed state,

S(ρ, σ) = S(ρ ⊗ τ, σ ⊗ τ) ∀ρ, σ, τ; (11)

the former invariance holds since both U · U† and its inverse
U† · U are CPTP maps, while the latter since both the par-
tial trace and the tensor product with a fixed state are CPTP
maps [27]. We thus have

∆SS(t, s) 6 S(ρS E(t), σS E(t)) −S(ρS (s), σS (s)) (12)
= S(ρS E(s), σS E(s)) −S(ρS (s), σS (s)),

where in the first line we used Eq. (4) (with respect to the
CPTP map trE), and in the second line Eq. (10) (with respect
to the unitary map U(s)U†(t)). Now we sum and subtract
S(ρS (s) ⊗ ρE(s), σS E(s)), and replace S(ρS (s), σS (s)) with
S(ρS (s) ⊗ ρE(s), σS (s) ⊗ ρE(s)) by virtue of Eq. (11), thus
getting

∆SS(t, s) 6 S(ρS E(s), σS E(s)) (13)
−S(ρS (s) ⊗ ρE(s), σS E(s))
+S(ρS (s) ⊗ ρE(s), σS E(s))
−S(ρS (s) ⊗ ρE(s), σS (s) ⊗ ρE(s)).
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Applying the triangle-like inequalities, respectively, (6) to the
first two terms at the r.h.s. of the previous expression and (5)
to the last two terms, we get

∆SS(t, s) 6 φ(S(ρS E(s), ρS (s) ⊗ ρE(s)))
+φ(S(σS E(s), σS (s) ⊗ ρE(s))). (14)

Using once again Eq. (5), we have

S(σS E(s), σS (s) ⊗ ρE(s)) 6 S(σS E(s), σS (s) ⊗ σE(s)) (15)
+ φ(S(σS (s) ⊗ ρE(s), σS (s) ⊗ σE(s)))

= S(σS E(s), σS (s) ⊗ σE(s)) + φ(S(ρE(s), σE(s))),

where in the equality we used Eq. (11). The last step of the
proof follows from the fact that since φ is a concave non-
negative function on non-negative real numbers (S > 0 due
to property I.) such that φ(0) = 0, then φ is also monoton-
ically non-decreasing and subadditive [32], so that Eq. (15)
implies

φ(S(σS E(s), σS (s) ⊗ ρE(s))) (16)
6 φ(S(σS E(s), σS (s) ⊗ σE(s))) + φ ◦ φ(S(ρE(s), σE(s))),

which replaced in Eq. (14) directly leads us to the wanted
Eq. (9).

Note that Eq. (9) only depends on the defining properties
I.-III.; yet, it can be possible to derive alternative bounds to
∆SS (t, s) depending on specific choices ofS, as will be exem-
plified in the following. As we will see in the next sections, in
the considered cases the triangle-like inequalities build upon
the validity of inequalities of the form

D2(ρ, σ) 6 kS(ρ, σ) (17)

with k a positive coefficient and D(ρ, σ) the trace distance be-
tween ρ and σ, defined as

D(ρ, σ) =
1
2
‖ρ − σ‖1 =

1
2

∑
i

|`i|, (18)

where ‖ · ‖1 is the 1−norm, so that the `is are the eigenvalues
of the traceless operator ρ − σ.

In the remainder of the paper, we give significant exam-
ples of distinguishability quantifiers representing specific in-
stances of the general framework defined here.

III. HOLEVO SKEW DIVERGENCE

Let us first introduce a quantum divergence directly de-
rived from the Holevo quantity, thus establishing a clear link
between non-Markovianity in terms of information backflow
and a quantity of central interest in quantum information,
communication and computation [8]. The Holevo quantity
associated with an ensemble of quantum states, each pre-
pared with a certain probability, tells us how much the von-
Neumann entropy of the ensemble is reduced on average when
we know which state of the ensemble has been prepared. If
we now consider in particular an ensemble of two states, rep-
resenting two possible initial conditions of an open-system

dynamics, and we follow the evolution of the corresponding
Holevo quantity, any increase in a given time interval means
that the information gained, on average, by knowing which
initial state has been prepared would actually increase during
that time interval. Thus, the Holevo quantity is a natural can-
didate to identify non-Markovianity with the presence of time
intervals of the dynamics of the open system during which the
latter recovers some information that was previously flown to
the environment. As we are now going to show, this picture
can be put on a firm ground within the theoretical framework
described in Sec.II.

Given two states ρ and σ and a mixing parameter µ, with
0 < µ < 1, the Holevo quantity restricted to a two-state en-
semble {µ, ρ; 1 − µ, σ} takes the form

χµ(ρ, σ) = S (µρ + (1 − µ)σ) − µS (ρ) − (1 − µ)S (σ), (19)

with S (ρ) = −tr{ρ log ρ} the von-Neumann entropy (note that
we excluded the values µ = 0, 1 which would lead to the null
quantity). Now, since 0 6 χµ(ρ, σ) 6 h(µ), where

h(µ) = −µ log µ − (1 − µ) log(1 − µ) (20)

is the Shannon entropy of the probability distribution {µ, 1−µ},
we define the quantity

Kµ(ρ, σ) =
χµ(ρ, σ)

h(µ)
(21)

that is bounded between 0 and 1, and it is equal to 0 if and
only if ρ = σ, while it is equal to 1 if and only if ρ and σ have
orthogonal support.

Hence, Kµ(ρ, σ) satisfies the property I., and we will see
that it also satisfies properties II. and III., thus being a quan-
tum divergence according to our definition. We thus name
Kµ Holevo skew divergence, where the word skew refers to
the fact that µ can be seen as a skewing parameter that fixes
the mixing of the two states ρ and σ defining the divergence,
while the term divergence stresses the fact that the quantity
only depends on two states and can therefore be taken as a
distinguishability quantifier, though it is not a distance. Fi-
nally, we note that the factor (h(µ))−1 in the expression of
the Holevo skew divergence, besides ensuring normalization,
makes Kµ(ρ, σ) independent from the logarithm base used in
its definition.

A. Contractivity and Pinsker-like inequality

The Holevo skew divergence inherits several important
properties from its connection with the quantum relative en-
tropy. The quantum relative entropy is generally defined for a
pair of non-negative operators A, B as

S (A, B) = tr{A log A} − tr{A log B} + tr(B − A), (22)

that is a positive and finite quantity, provided that the sup-
port of B includes the support of A (where the convention



5

0 log(0) = 0 is used), while it is defined to be infinity oth-
erwise. For a pair of statistical operators it therefore takes the
more familiar form [23]

S (ρ, σ) = tr{ρ log ρ} − tr{ρ logσ}, (23)

so that we have in fact

Kµ(ρ, σ) =
µ

h(µ)
S (ρ, µρ + (1 − µ)σ)

+
1 − µ

h(1 − µ)
S (σ, (1 − µ)σ + µρ). (24)

Indeed, the quantum relative entropy diverges whenever ρ and
σ have orthogonal support; the Holevo skew divergence can
thus be seen as a way to regularize the quantum relative en-
tropy to ensure boundedness and obtain an entropic distin-
guishability quantifier. Importantly, in accordance with this
interpretation the Holevo skew divergence is symmetric under
permutation of the elements of the ensemble, as it immedi-
ately appears in Eq. (24), so that

Kµ(ρ, σ) = K1−µ(σ, ρ). (25)

In particular, the contractivity of the quantum rel-
ative entropy, S (Λ[ρ],Λ[σ]) 6 S (ρ, σ) for any
CPTP map, directly implies the contractivity of
the Holevo skew divergence for any parameter
µhttps://it.overleaf.com/project/61c21cb03cbd4fb3b7efc7ff

Kµ(Λ[ρ],Λ[σ]) 6 Kµ(ρ, σ), (26)

as can be readily seen by Eq. (24) and the linearity of the map
Λ; in other terms, Kµ satisfies also the property II. expressed
by Eq. (4). Actually, the quantum relative entropy, and thus
the Holevo skew divergence as well, is contractive under maps
that are simply positive and trace preserving, but not necessar-
ily CPTP [33].

A further property that the Holevo skew divergence inher-
its from the quantum relative entropy and that will be crucial
for our purposes is the possibility to lower bound it with the
square of the trace distance, by means of an inequality as in
Eq. (17). Starting from the Pinsker inequality for the quantum
relative entropy [23, 34, 35]

D2(ρ, σ) 6
1
2

S (ρ, σ) (27)

and using Eq. (24), along with

D(ρ, µρ + (1 − µ)σ) = (1 − µ)D(ρ, σ),
D(σ, (1 − µ)σ + µρ) = µD(ρ, σ), (28)

we find

D2(ρ, σ) 6
h(µ)

2µ(1 − µ)
Kµ(ρ, σ). (29)

This relation represents an application of the Pinsker inequal-
ity to a different entropic quantifier of state distinguishability
and we will thus refer to it as Pinsker-like inequality. Most
importantly, it allows us to show that the Holevo skew diver-
gence satisfies also the property III. and then to conclude that
it is a proper quantifier of the information exchange between
an open quantum system and its environment.

B. Quantifier of information flow

To prove the triangle-like inequalities in Eqs.(5) and (6) for
the Holevo skew divergence, we can exploit once again its
connection with the quantum relative entropy, along with the
following property of the latter. Given any three positive op-
erators W, X,Y , one has [36, 37]

0 6 S (W,W + X) − S (W,W + X + Y)

6 trW log
(
1 +

trY
trW

)
, (30)

0 6 S (X, X + W) − S (X + Y, X + Y + W)

6 trY log
(
1 +

trW
trY

)
. (31)

As shown in Appendix A, these inequalities imply that given
two quantum relative entropies, each involving one of the two
distinct states ρ1 and ρ2 together with the mixture with the
same state σ via the same mixing parameter µ, which takes
value in (0, 1), their difference is bounded by

S (σ, µσ + (1 − µ)ρ1) − S (σ, µσ + (1 − µ)ρ2)

6 log
(
1 +

1 − µ
µ

D(ρ1, ρ2)
)

; (32)

analogously, it also holds

S (ρ1, µρ1 + (1 − µ)σ) − S (ρ2, µρ2 + (1 − µ)σ)

6 D(ρ1, ρ2) log
(
1 +

1 − µ
µ

1
D(ρ1, ρ2)

)
. (33)

The terms at the left hand side (l.h.s.) of the previous in-
equalities are precisely of the form of the terms connecting
the Holevo skew divergence and the quantum relative entropy
in Eq. (24), so that we immediately get

Kµ(ρ, σ) − Kµ(ρ, τ) 6 gµ(D(σ, τ)), (34)

where we introduced the function

gµ(x) =
µ

h(µ)
log

(
1 +

1 − µ
µ

x
)

+
1 − µ
h(µ)

x log
(
1 +

µ

1 − µ
1
x

)
. (35)

Further using

gµ(x) 6

√
4µ(1 − µ)

h(µ)
√

x, (36)

which follows from the approximation log(1 + x) 6
√

x, and
the Pinsker-like inequality in Eq. (29), we finally get the in-
equality

Kµ(ρ, σ) − Kµ(ρ, τ) 6 κµ 4
√

Kµ(σ, τ) (37)

with

κµ =
4

√
8µ(1 − µ)

h3(µ)
. (38)
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This is indeed a triangle-like inequality as in Eq. (5), for the
concave function

φµ(x) = κµ
4√x (39)

satisfying φµ(x) > 0 for x > 0 and φ(0) = 0. In addition,
thanks to Eq. (25) and κµ = κ1−µ, we have that Eq. (34) implies
also

Kµ(σ, ρ) − Kµ(τ, ρ) 6 κµ 4
√

Kµ(σ, τ), (40)

which is the triangle-like inequality in Eq. (6) with respect to
the given concave function φµ(x).

We have thus shown that the Holevo skew divergence does
satisfy all the required properties I.-III. We can therefore apply
to it the general picture introduced in Sec.II B to characterize
the information flow in open quantum system dynamics. Ex-
plicitly, the changes of information within the open system
are quantified by the variation of the Holevo skew divergence
according to Eq. (9) with S → Kµ and φ given by Eq. (39).
As shown in the Appendix B, this result can be improved ex-
ploiting directly the triangle inequality for the trace distance
in Eq. (34) together with subadditivity of the square root ap-
proximation of gµ given by Eq. (39), thus coming to

∆S Kµ(t, s) 6 κµ
(

4
√

Kµ(ρE(s), σE(s)) (41)

+ 4
√

Kµ(ρS E(s), ρS (s) ⊗ ρE(s))

+ 4
√

Kµ(σS E(s), σS (s) ⊗ σE(s))
)
.

The information contained at time s within the environment
and in the system-environment correlations here quantified via
the Holevo skew divergence is thus responsible for any possi-
ble subsequent enhancement of the open-system state distin-
guishability, in turn quantified via ∆S Kµ(t, s). Interestingly, in
this expression all the contributions to the information content
within the environment and the system-environment correla-
tions are equally weighted by the same fourth root function
and the same constant factor κµ, which takes its mimimum
value for µ = 1/2.

IV. DISTANCES AND DIVERGENCES

Besides accounting for the Holevo skew divergence, our
approach connects within a common framework several dis-
tinct witnesses of quantum non-Markovianity, based on both
distance- and divergence-based quantifiers of state distin-
guishability.

A. Helstrom norm and trace distance

Given two quantum states ρ and σ, the Helstrom norm
Dµ(ρ, σ) is the ‖ · ‖1−norm of the Hermitian operator given
by the difference of the two states, weighted by µ and 1 − µ
respectively, i.e.,

Dµ(ρ, σ) = ‖µρ − (1 − µ)σ‖1; (42)

note that Dµ(ρ, σ) satisfies the symmetry property

Dµ(ρ, σ) = D1−µ(σ, ρ) (43)

as in Eq. (25). This quantity fixes the maximum success prob-
ability in discriminating among ρ andσ, if they have been pre-
pared with probability µ and 1 − µ [38]. Relying on this, the
Helstrom norm has been used to quantify the information flow
in open quantum system dynamics and to define accordingly
a measure of quantum non-Markovianity [4, 31, 39]. Quite
interestingly, the definition of quantum Markovian dynamics
expressed via the Helstrom norm under the assumption that
the dynamical maps are invertible turns out to be equivalent
to the P-divisibility of the dynamics [29, 31, 40, 41], i.e., the
possibility to decompose the dynamical maps Λ(t) as

Λ(t) = Λ(t, s)Λ(s) ∀ t > s > 0, (44)

where Λ(t, s) are positive (but not necessarily completely pos-
itive) maps. The trace distance, see Eq. (18), represents the
specific instance of the Helstrom norm for µ = 1/2, D(ρ, σ) =

D1/2(ρ, σ), which is associated with the unbiased discrimina-
tion scenario where the two states ρ and σ have been prepared
with equal probability. The trace-distance based definition of
quantum Markovianity [6, 7] is the prototypical definition re-
lying on the notion of information flow and, more in general,
the corresponding non-Markovianity measure is one of the
most significant quantifiers of quantum non-Markovianity [4].
The approach via this generalized trace distance, just thanks
to this relation to P-divisibility, further allows to make a con-
nection to classical Markovian stochastic processes [31]. It
moreover allows to overcome one of the criticism against the
trace distance approach, which is not sensitive to the action of
non-unital maps [42].

The trace norm immediately satisfies the properties I.-III.
defining a quantum divergence and allowing us to apply the
general framework introduced in Sec.II, since it is a distance
contractive under CPTP maps; actually, also the trace dis-
tance is contractive under the weaker assumption of positivity.
Moving to the general Helstrom norm in Eq. (42), it is conve-
nient to consider its corresponding symmetrized version, that
is,

Hµ(ρ, σ) =
1
2

(Dµ(ρ, σ) + Dµ(σ, ρ)). (45)

Clearly Hµ(ρ, σ) inherits the contractivity under (C)PTP maps
from the Helstrom norm [4, 31], while using the triangle in-
equality and its reverse for the ‖ · ‖1−norm, ‖A‖1 − ‖B‖1 6
‖A±B‖1 6 ‖A‖1 + ‖B‖1, it is easy to see that Hµ(ρ, σ) is lower
bounded by the trace-distance, D(ρ, σ) 6 Hµ(ρ, σ), while

Dµ(ρ, σ) − Dµ(ρ, τ) 6 2(1 − µ)D(σ, τ),
Dµ(σ, ρ) − Dµ(τ, ρ) 6 2µD(σ, τ), (46)

which combined together lead to the triangle inequality

Hµ(ρ, σ) − Hµ(ρ, τ) 6 Hµ(σ, τ), (47)
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and therefore to Eq. (9) with φ(x) = x. By direct inspection as
shown in [39] one also has the bound

∆S Dµ(t, s) 6 2 min{µ, 1 − µ}D(ρE(s), σE(s)) (48)
+2µD(ρS E(s), ρS (s) ⊗ ρE(s))
+2(1 − µ)D(σS E(s), σS (s) ⊗ σE(s)).

B. Quantum skew divergence

More recently [27], it has been shown that a full charac-
terization of quantum non-Markovianity in terms of a bidirec-
tional exchange of information between the open system and
the environment can be given in terms of entropic quantities,
which, in particular, do not satisfy the triangle inequality. We
now show that also these quantities are included into the gen-
eral framework here introduced.

Let us define the quantum skew divergence as follows

S µ(ρ, σ) =
µ

log(1/µ)
S (ρ, µρ + (1 − µ)σ)

+
1 − µ

log(1/(1 − µ))
S (σ, (1 − µ)σ + µρ), (49)

with skewing parameter µ ∈ (0, 1). Note that each term is fi-
nite for arbitrary µ and arbitrary pair of quantum states ρ and
σ, pure or mixed, at variance with the quantum relative en-
tropy. This quantity is based on the telescopic relative entropy
or quantum skew divergence introduced in [27, 28, 36], al-
beit with a symmetrization with respect to the simultaneous
exchange µ↔ 1 − µ and ρ↔ σ, so that

S µ(ρ, σ) = S 1−µ(σ, ρ), (50)

which makes it a natural distinguishability quantifier. In fact,
S µ(ρ, σ) provides us with a regularized and symmetrized ver-
sion of the relative entropy, that is a fundamental quantifier of
the distinguishability of quantum states and has been studied
as a possible identifier of memory effects since the very begin-
ning of the investigations on quantum non-Markovianity [7].
The general framework presented in Sec.II allows us to pro-
vide also the regularized and symmetrized relative entropy
with a complete interpretation in terms of a quantifier of the
information exchange between the open system and the envi-
ronment.

The quantum skew divergence defined in Eq.(49) satisfies
the property I. of quantum divergences, i.e., 0 6 S µ(ρ, σ) 6 1,
with the lower and upper bounds being saturated if and only
if ρ = σ and ρ ⊥supp σ, respectively; indeed, S µ(ρ, σ)
is independent from the logarithm base in its definition by
virtue of the normalizing prefactor inversely proportional to
the logarithm. In addition, the quantum skew divergence sat-
isfies a Pinsker-like inequality, see Eq. (17) and compare with
Eq. (29), that reads

D2(ρ, σ) 6
log(µ) log(1 − µ)

2µ(1 − µ)h(µ)
S µ(ρ, σ). (51)

Using this inequality, along with Eqs.(32) and (33) leading to

S µ(ρ, σ) − S µ(ρ, τ) 6 fµ(D(σ, τ)), (52)

where we introduced the function

fµ(x) =
µ

log(1/µ)
log

(
1 +

1 − µ
µ

x
)

+
1 − µ

log(1/(1 − µ))
x log

(
1 +

µ

1 − µ
1
x

)
, (53)

and using again the approximation log(1 + x) 6
√

x, we come
to

S µ(ρ, σ) − S µ(ρ, τ) 6 ςµ 4
√

S µ(σ, τ) (54)

S µ(σ, ρ) − S µ(τ, ρ) 6 ςµ 4
√

S µ(σ, τ) (55)

with

ςµ = log
(

1
µ(1 − µ)

)
4

√
µ(1 − µ)

2 h(µ) log3(µ) log3(1 − µ)
; (56)

these are indeed triangle-like inequalities as in Eqs.(5) and
(6) for the concave function ςµ

4
√

x. As for the Holevo skew
divergence, the inequalities are fixed by the concave function
given by the fourth root, which is however multiplied by a
different factor; compare with Eqs.(37), (38) and (40). Both
κµ and ςµ due to the symmetric choice reach their minimum

value for µ = 1/2, corresponding to 4
√

2/ log3(2) ≈ 1.565.
Finally, the quantum skew divergence inherits the contrac-

tivity under (C)PTP maps from the quantum relative entropy,
thus satisfying all the defining properties of quantum diver-
gences. Applying Eq. (9), we thus arrive at the upper bound
with the usual interpretation in terms of information flow
from and toward the open system, linked to the information
within the environment and the system-environment correla-
tions, now quantified via the quantum skew divergence. Also
in this case, a different and tighter bound can be derived by us-
ing the Pinsker-like inequality (51) at a different stage of the
derivation, in close analogy to the calculations in Appendix B,
thus obtaining

∆S S µ(t, s) 6 ςµ
(

4
√

S µ(ρE(s), σE(s)) (57)

+ 4
√

S µ(ρS E(s), ρS (s) ⊗ ρE(s))

+ 4
√

S µ(σS E(s), σS (s) ⊗ σE(s))
)
,

which confirms the result obtained in [27], albeit with a dif-
ferent symmetrization of the entropic distinguishability quan-
tifier as given by Eq. (49).

C. Jensen-Shannon divergence

As it immediately appears from the previous results, an-
other significant quantifier of state distinguishability and in-
formation flow is the Jensen-Shannon divergence, which is
defined starting from the quantum relative entropy as

J(ρ, σ) =
1

2 log 2

(
S

(
ρ,
ρ + σ

2

)
+ S

(
σ,
ρ + σ

2

))
, (58)
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where at variance with the usual definition [23] we have con-
sidered a normalization factor such that the expression is inde-
pendent from the chosen logarithm basis and moreover it lies
within the range 0 6 J(ρ, σ) 6 1. Quite interestingly, with the
considered normalization the Jensen-Shannon divergence can
be seen as the special instance of the Holevo skew divergence
as defined in Eq. (24) for µ = 1/2,

J(ρ, σ) = K1/2(ρ, σ). (59)

Equivalently, we can also recover the Jensen-Shannon di-
vergence from the quantum skew divergence as defined in
Eq. (49), again setting µ = 1/2

J(ρ, σ) = S 1/2(ρ, σ). (60)

As a consequence, we can directly see that the Jensen-
Shannon divergence is a quantum divergence according to our
definition, and a bound on ∆S J(t, s) can be readily derived
from Eq. (9) (or simply setting µ = 1/2 in either Eq. (41) or
Eq. (57)).

On the other hand, the square root of the Jensen-Shannon
divergence

√
J(ρ, σ) has been recently proven to be a distance

[43, 44], satisfying in particular the triangle inequalities, i..e.,
Eqs.(5) and (6) for φ(x) = x. The square root of the Jensen-
Shannon divergence indeed still satisfies boundedness, nor-
malization and indistinguishability of identical states, as well
as the contractivity under (C)PTP map, due to the monotonic-
ity of the square root, thus providing us with a further example
of quantum divergence. Besides inequality Eq. (9), the revival
of the square root of the Jensen-Shannon divergence can be
bounded by the tighter inequality [27]

∆S

√
J(t, s) 6

√
J(ρE(s), σE(s)) (61)

+
√

J(ρS E(s), ρS (s) ⊗ ρE(s))

+
√

J(σS E(s), σS (s) ⊗ σE(s)).

As shown in the following example, the evolution of the
square root of the Jensen-Shannon divergence typically fol-
lows the evolution of the trace distance, with respect to both
the revivals of the open-system distinguishability and the in-
formation content outside the open system, more closely than
the other quantifiers that are quantum divergences but not dis-
tances.

D. Role of skewing

In Secs.III and IV we have introduced different dis-
tinguishability quantifiers which further qualify as non-
Markovianity quantifiers according to the properties I.-III.
These properties allow for an interpretation of memory effects
as related to storage and retrival of information, in quantum
degrees of freedom not accessible by performing measure-
ments on the system alone. All these quantifiers are chara-
terized by a skewing parameter µ. For the case of entropic
quantifiers, the introduction of this skewing parameter is nec-
essary to introduce well-defined quantities and avoid the di-
vergences which plague the standard definition of quantum

relative entropy also in a finite dimensional setting. As shown
by the present analysis, different quantifiers can be introduced
that all point to a distinguished role of the value 1/2 for the
mixing parameter. This choice allows in particular to obtain
a distance from such entropic quantifiers, which however is
sensitive also to non-unital evolutions [27]. It remains open
the question whether for these quantifiers a connection with
P-divisibility can also be established. For the case of the gen-
eralized trace distance or Helstrom norm the value µ = 1/2 for
the skewing parameter still plays a distinguished role, lead-
ing to recover the trace distance, but it fails in dealing with
non-unital dynamics. Moreover it does not allow any more
to identify contractivity and P-divisibility for invertible time
evolutions.

V. EXAMPLES

A. Spin-star configuration

In order to exemplify the behavior of the different distin-
guishability quantifiers, suitable for the description of non-
Markovianity according to properties I.-III. of Sec.II, we first
consider a model of N qubits coupled to a reference qubit in
the so-called spin star configuration [45, 46], according to the
Hamiltonian

H = ωSσz +

N∑
k=1

gkσz ⊗ σ
k
z +

N∑
k=1

ωk
Eσ

k
z , (62)

which describes a pure dephasing interaction; such a model
characterizes for example the reduced evolution of an elec-
tronic spin qubit in a diamond nitrogen-vacancy center [47,
48]. Here ωS and ωk

E denote the frequencies of the system and
of the environmental qubits respectively, σz is the Pauli matrix
and the superscript k labels the environmental units coupled
with different strengths gk.

For the considered choice of environment which starts in
the maximally mixed state, corresponding to a high temper-
ature reservoir, the environment is left unchanged also for a
non-Markovian dynamics and the only relevant contribution
to the exchange of information between system and environ-
ment is to be traced back to the establishment of correlations.
For this model a natural choice of initial pair of states is given
by the orthogonal pure superposition states (|1〉+ |0〉)/

√
2 and

(|1〉 − |0〉)/
√

2, where {|1〉, |0〉} denote the eigenstates of the
σz operator, corresponding to the reduced density matrices ρ+

and ρ− respectively. For later times the reduced states take the
form

ρ±(t) =
1
2

(
1 ±

∏N
k=1 cos(2gkt)

±
∏N

k=1 cos(2gkt) 1

)
, (63)

where the index k is running over all environmental units.
Note, that such a special choice of the initial reduced and envi-
ronmental states does not influence the qualitative features of
the left and right hand sides of inequalities (41), (48), (57) and
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Figure 1. Revivals of distance and entropic distinguishability quantifiers versus their bounds for the two models considered in Sect.V, namely
the spin-star dephasing model with N = 5 environmental qubits and random coupling strengths (top panels) and the Jaynes-Cummings model
(bottom panels). Left: Behavior of Helstrom norm [D, orange (light gray) lines], square root of the Jensen-Shannon divergence [

√
J, green

(gray) lines], together with Holevo (K) and quantum (S ) skew divergence evaluated for µ = 1/2 [black (dark gray) lines], so that the latter
two coincide. The continuous lines represent the l.h.s. of Eq. (48), Eq. (61) as well as Eq. (41) and Eq. (57) evaluated for µ = 1/2 and t = T ,
respectively. The dotted lines denote the sum of the corresponding contributions at the r.h.s.. Right: Behavior of Holevo skew divergence [K,
green (gray) lines] and quantum [S , black (dark gray) lines] skew divergence for µ = 1/4. Again continuous lines correpond to the l.h.s. of
Eq. (41) and Eq. (57), respectively, while the dotted lines reproduce the r.h.s.. Despite the quite different nature of the two models, describing
for a two-level system respectively decoherence, and excitation exchanges with a bosonic mode, the overall behavior of distinguishability
quantifiers and related bounds is strikingly similar. In particular, it clearly appears that distance quantifiers provide tighter bounds. For the
spin-star model the reference time T is equal to 5 in inverse units of the average coupling strength, while for the Jaynes-Cummings model T is
8.9 in inverse units of the coupling strength g, while the detuning frequency ∆ is equal to 0.5 in units of g.

(61), depicted in Fig. 1, associated with the Holevo skew di-
vergence, symmetrized Helstrom norm, quantum skew diver-
gence and square root of Jensen-Shannon divergence, respec-
tively. On the top left panel, we have plotted the quantities for
a skewing parameter µ = 1/2, in which case the Holevo and
the quantum skew divergence coincide. We can strengthen the
findings from [27] and observe that though all of the quantities
provide the same qualitative picture, the two distances differ
also quantitatively very little from each others. Remarkably,
the two solid lines corresponding to the l.h.s. of the associ-
ated inequality almost overlap. On the other hand, the upper
bounds given by proper quantum divergences (i.e. not dis-
tances) are much looser. For completeness, we have plotted
on the top right panel of Fig. 1 the Holevo and the quantum
skew divergence for a skewing parameter µ = 1/4, where the
quantities, albeit now different, tightly follow each others; this
is especially visible for the variations of the reduced quanti-
ties (solid lines). Besides illustrating the different tightness of
the bounds for the distinct distinguishability quantifiers, Fig. 1
shows that the bounds follow qualitatively the evolution of the
corresponding quantifiers, reproducing in particular the subse-
quently enhanced and suppressed revivals of the information
that is accessed by the open system in the course of time.

B. Jaynes-Cummings model

As second case study, we consider a further model of physi-
cal interest, with ubiquitous applications for example in quan-
tum optical systems, i.e., the Jaynes-Cummings model [49].
Here, the open system is a two-level system with transition
frequency ωS , while the environment consists of a single
bosonic mode of frequency ωE, with corresponding annihi-
lation and creation operators denoted as b and b†. The global
Hamiltonian is

H = ωSσ+σ−⊗1E +ωE1S ⊗b†b+g
(
σ+ ⊗ b + σ− ⊗ b†

)
, (64)

with σ+ = |1〉 〈0| and σ− = |0〉 〈1| raising and lowering oper-
ators of the two-level system, so that the interaction between
the two-level system and the mode preserves the total number
of excitations. The global unitary operator can be obtained
exactly [50] and thus the reduced dynamics can be derived
explicitly for fully general initial conditions [51, 52]. Intro-
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ducing the functions of the number operator n̂ = b†b,

c (n̂, t) = ei∆t/2

cos
(

f (n̂)
t
2

)
− i∆

sin
(

f (n̂) t
2

)
f (n̂)

 ,
d (n̂, t) = −2iei∆t/2g

sin
(

f (n̂) t
2

)
f (n̂)

, (65)

with ∆ = ωS − ωE and

f (n̂) =

√
∆2 + 4g2n̂, (66)

the global unitary operator can be written in fact as

U(t) = |1〉 〈1| ⊗ c (n̂ + 1, t) + |1〉 〈0| ⊗ d (n̂ + 1, t) b
− |0〉 〈1| ⊗ b†d† (n̂ + 1, t) + |0〉 〈0| ⊗ c† (n̂, t) . (67)

In particular, for any initial product state ρS E(0) = ρS (0)⊗ρE(0)
with stationary initial environmental state (i.e., [ρE(0), n̂] = 0),
the open-system state at time t reads

ρS (t) =

(
ρ00 (1 − α(t)) + ρ11β (t) ρ10γ (t)

ρ01γ
∗(t) ρ00α (t) + ρ11 (1 − β(t))

)
(68)

where ρi j, i, j = 0, 1, denote indeed the initial reduced-
state elements ρi j = 〈i| ρS (0) | j〉, and we introduced the time-
dependent functions

α(t) = 〈c† (n̂, t) c (n̂, t)〉E ,
β(t) = 〈c† (n̂ + 1, t) c (n̂ + 1, t)〉E , (69)
γ(t) = 〈c (n̂, t) c (n̂ + 1, t)〉E ,

with 〈A〉E = tr {AρE(0)}. Then, Eq.(68) fully characterizes
the open two-level system evolution and, in particular, it de-
termines the degree of non-Markovianity of the reduced dy-
namics; Eq.(67), on the other hand, allows us to evaluate ex-
plicitly quantities referred to the global system, thus getting
a complete description of the information exchange between
the open system and the environment, via the quantifiers in-
troduced in Sec.IV. The behavior of distance and entropic dis-
tinguishability quantifiers for the Jaynes-Cummings model is
considered in the bottom panels of Fig.1, considering as ini-
tial states of the qubit the excited state and a balanced super-
position of excited and ground state, while the environment
starts in a thermal state with βωE = 1, and essentially the same
considerations made for the spin-star model apply. We stress
that again the distance quantifiers almost overlap and exhibit
tighter bounds with respect to the entropic quantifiers.

VI. CONCLUSIONS

In this paper, we have have provided a general framework
to relate distinguishability quantifiers with the information ex-

change between an open system and its environment. In par-
ticular, besides normalization, indistinguishability of identical
states and contractivity under the action of CPTP maps, one
needs triangle-like inequalities. Importantly, since the latter
are weaker than the standard triangle inequality, we could in-
clude in our analysis not only distances, but also quantum di-
vergences that are not necessarily distances. The mentioned
properties directly lead to an upper bound of the distinguisha-
bility variations, which traces non-Markovianity back to a
flow of information from the system-environment correlations
and the environment to the open system.

The general framework includes the Holevo skew diver-
gence, that is a normalized version of the Holevo quantity,
as a special instance. For this quantity we also derived a
tighter upper bound, while keeping the same physical inter-
pretation. Moreover, we have compared our approach with
the quantification of distinguishability via the Helstrom norm
of the weighted difference of two quantum states, and we have
shown that a regularized and symmetrized version of the rel-
ative entropy, i.e., the quantum skew divergence, satisfies the
defining properties of our general framework as well. Both
the Holevo skew divergence and the quantum skew divergence
reduce for the case of equal weights to the Jensen-Shannon
divergence, whose square root is a distance contractive un-
der CPTP maps, thus also being part of the formalism defined
here. All of these quantifiers are sensitive to non-unital dy-
namics for any value of the skewing parameter. On the other
hand, the Helstrom norm for the case of equal weights recov-
ers the trace distance, which is left unaltered by all non-unital
dynamics.

It remains to be clarified whether this approach can provide
further insight on the relationship between the notion of non-
Markovianity as due to information exchange, considered in
this paper, and P-divisibility of the time evolution map. In
addition, it will be worth investigating whether the class of
system-environment information quantifiers can be further ex-
tended, possibly leading to other upper bounds to the informa-
tion revivals. Finally, we expect that our work can shed some
light also on the investigations on the relevance of different
distinguishability quantifiers used in connection with the de-
tection of initial correlations as considered in [53, 54].
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[26] J. Kołodyński, S. Rana, and A. Streltsov, Entanglement negativ-
ity as a universal non-markovianity witness, Phys. Rev. A 101,
020303 (2020).

[27] N. Megier, A. Smirne, and B. Vacchini, Entropic bounds on
information backflow, Phys. Rev. Lett. 127, 030401 (2021).

[28] K. M. R. Audenaert, Quantum skew divergence, J. Math. Phys.
55, 112202 (2014).

[29] B. Vacchini, A. Smirne, E.-M. Laine, J. Piilo, and H.-P. Breuer,
Markovianity and non-Markovianity in quantum and classical
systems, New J. Phys. 13, 093004 (2011).
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Appendix A: Proof of the bounds in Eqs.(32) and (33)

To prove Eq. (32) let us express the difference of quantum
relative entropies of interest exploiting their definition as in
Eq. (23)

S (σ, µσ + (1 − µ)ρ1) − S (σ, µσ + (1 − µ)ρ2) (A1)
= tr{σ[log(µσ + (1 − µ)ρ2) − log(µσ + (1 − µ)ρ1)]}

= tr
{
σ

[
log

(
σ +

1 − µ
µ

ρ2

)
− log

(
σ +

1 − µ
µ

ρ1

)]}
.

Denoting with T+(T−) the positive (negative) part of a self-
adjoint operator T so that

T = T+ − T−, (A2)

we can consider the simple inequality

ρ2 = ρ1 + (ρ2 − ρ1) (A3)
= ρ1 + (ρ2 − ρ1)+ − (ρ2 − ρ1)−
6 ρ1 + (ρ2 − ρ1)+.

Exploiting Eq.(A3) together with the operator monotonicity
of the logarithm and the inequality Eq. (30) we obtain

S (σ, µσ + (1 − µ)ρ1) − S (σ, µσ + (1 − µ)ρ2) (A4)

6 tr
{
σ

[
log

(
σ +

1 − µ
µ

ρ1 +
1 − µ
µ

(ρ2 − ρ1)+

)
− log

(
σ +

1 − µ
µ

ρ1

)]}
6 log

(
1 +

1 − µ
µ

tr(ρ2 − ρ1)+

)
,

so that finally exploiting

D(ρ1, ρ2) =
1
2
‖ρ1 − ρ2‖ = tr(ρ2 − ρ1)+ = tr(ρ2 − ρ1)− (A5)

we have the desired bound Eq. (32).
In a similar way using Eq. (23) we have

S (ρ1, µρ1 + (1 − µ)σ) − S (ρ2, µρ2 + (1 − µ)σ) (A6)

= S
(
ρ1, ρ1 +

1 − µ
µ

σ

)
− S

(
ρ2, ρ2 +

1 − µ
µ

σ

)
so that making use of the fact that (ρ2 − ρ1)− is a positive
operator together with

S (ρ + w, σ + w) 6 S (ρ, σ) (A7)

for positive w we come to

S (ρ1, µρ1 + (1 − µ)σ) − S (ρ2, µρ2 + (1 − µ)σ) (A8)

6 S
(
ρ1, ρ1 +

1 − µ
µ

σ

)
−S

(
ρ2 + (ρ2 − ρ1)−, ρ2 + (ρ2 − ρ1)− +

1 − µ
µ

σ

)
and finally using Eq. (31) so that

S
(
ρ2 + (ρ2 − ρ1)−, ρ2 + (ρ2 − ρ1)− +

1 − µ
µ

σ

)
(A9)

> S
(
ρ1, ρ1 +

1 − µ
µ

σ

)
− tr{(ρ2 − ρ1)−} log

1 +
tr

{
1−µ
µ
σ
}

tr{(ρ2 − ρ1)−}


we obtain further exploiting Eq.(A5) the final result Eq. (33)

S (ρ1, µρ1 + (1 − µ)σ) − S (ρ2, µρ2 + (1 − µ)σ) (A10)

6 D(ρ1, ρ2) log
(
1 +

1 − µ
µ

1
D(ρ1, ρ2)

)
.

Appendix B: Proof of the bound in Eq.(41) on the information
flow via the Holevo skew divergence

As discussed in the main text, a direct application of the
general framework for the establishment of the connection be-
tween non-Markovianity and information exchange between
system and environment exposed in Sec.II would lead directly
to the bound

∆S Kµ(t, s) 6 κ2
µ

16
√

Kµ(ρE(s), σE(s)) (B1)

+κµ
4
√

Kµ(ρS E(s), ρS (s) ⊗ ρE(s))

+κµ
4
√

Kµ(σS E(s), σS (s) ⊗ σE(s)).

It is actually possible to derive a different tighter upper
bound to the variation of the Holevo skew divergence, namely
Eq.(41), for which the same physical interpretation as the one
above indeed applies. To this aim let us start from Eq. (34)
and combine it with the upper bound Eq. (36) so that we have

Kµ(ρ, σ) − Kµ(ρ, τ) 6

√
4µ(1 − µ)

h(µ)

√
D(σ, τ). (B2)
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Starting from this inequality adding and subtracting terms we
come as in Eq. (14) to

∆S Kµ(t, s) 6
√

4µ(1−µ)
h(µ)

( √
D(ρS E(s), ρS (s) ⊗ ρE(s)) +

+
√

D(σS E(s), σS (s) ⊗ ρE(s))
)
. (B3)

We can now exploit the fact that the trace distance obeys the
triangle inequality, so that

D(σS E(s), σS (s) ⊗ ρE(s)) 6D(σS E(s), σS (s) ⊗ σE(s))
+ D(σE(s), ρE(s)), (B4)

together with subadditivity of the square root, thus coming to

∆S Kµ(t, s) 6

√
4µ(1 − µ)

h(µ)

( √
D(ρS E(s), ρS (s) ⊗ ρE(s))+

+
√

D(σS E(s), σS (s) ⊗ σE(s)) +
√

D(σE(s), ρE(s))
)
. (B5)

At this stage we can apply the Pinsker-like inequality Eq. (29)
to finally obtain Eq. (41).
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