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Abstract
In its most restrictive definition, an octupolar tensor is a fully symmetric
traceless third-rank tensor in three space dimensions. So great a body of works
have been devoted to this specific class of tensors and their physical applica-
tions that a review would perhaps be welcome by a number of students. Here,
we endeavour to place octupolar tensors into a broader perspective, consider-
ing non-vanishing traces and non-fully symmetric tensors as well. A number
of general concepts are recalled and applied to either octupolar and higher-
rank tensors. As a tool to navigate the diversity of scenarios we envision, we
introduce the octupolar potential, a scalar-valued function which can easily
be given an instructive geometrical representation. Physical applications are
plenty; those to liquid crystal science play a major role here, as they were the
original motivation for our interest in the topic of this review.
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1. Introduction

An octupolar tensorA usually designates a fully symmetric traceless tensor of rank 3, possibly
in three space dimensions. One may well wonder why such a specific topic should deserve an
extended review. Granted that physical applications of such a class of tensors may indeed be
many, the question would remain as to whether one should invest time reading such a review.

We offer (what we think are) two good reasons to continue reading. Both concern the per-
spective adopted here.

First, our perspective is broader than the title suggests. We review properties of octupolar
tensors as pertaining to general tensors of higher ranks and dimensions. Second, our perspect-
ive is open to the many novel results that have been gathered in the last few decades, with an
eye to their physical motivation.

Here is how our material is organized. Section 2 contains all preliminary definitions and
basic results that should make our presentation nearly self-contained, thus sparing the reader
the hurdle of consulting respectable, but often opaque books on tensor algebra. The primary
physical motivation behind our interest in the topic of this review rests with liquid crystal
science and (especially) the new phases whose description calls for an octupolar tensor. This
motivation is also recalled in section 2, but not divorced from those arising from other fields
of physics.

In section 3, we present our geometric approach to octupolar tensors. It is based on the
octupolar potential Φ, a scalar-valued function on the unit sphere amenable to a geometric
representation that we find instructive.

The characterization of a generic octupolar tensor A afforded in section 3 is backed by
a different, fully algebraic approach presented in section 4, where a polynomial of degree
6 in a single variable embodies all properties of A. Section 4 also contains new results; its
development is meticulous since a few, not totally irrelevant details were missed in the original
literature. This section is finely articulated in minute computational items so as to ease the
reader decide which details to skip and which to dwell in.

Section 5 hosts our first extension: we consider the role of non-vanishing traces, mainly
phrased in the language of the octupolar potential.

Section 6 further widens our scope. We study third-rank non-symmetric tensors, trying to
adapt to this general context the octupolar-potential formalism.

In section 7, we briefly present a number of applications of the theory, ranging from gravit-
ation to liquid crystals, as exemplary fields that could further benefit from the unified approach
pursued here.

Finally, in section 8, we outline issues that even a cursory glance at the different perspectives
evoked in this review would suggest for future research.

2. Preliminaries

In this section we lay down the basis of our development. We start from a general decomposi-
tion of tensors of any rank and in any dimension, with the aim of providing a solidmathematical
justification for seeking special cases in our representations with a reduced number of paramet-
ers. Our primary interest lies in third-rank tensors in three dimensions. A noticeable subclass
of these are properly called octupolar tensors, but our terminology will be more flexible on
this account.
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2.1. Invariant tensor decomposition

The set T (r,V) of tensors of rank r in n-dimensional space V over the field F form a vector
space of dimension nr. If G is a group of linear transformations in V, then T (r,V) provide a
basis for a representation (in general, reducible) T of G, T⊆ GL(nr,F). By using, e.g., Young
diagrams (which give rise to Young patterns, or Young tableaux), one can decompose such a
representation of GL(n,F) into irreducible ones. This decomposition is based on the decom-
position of representation of the symmetry group Sn (the group of permutations of n symbols);
in turn, this decomposition can also be performed with the technique of Yamanouchi symbols.
There is a one-to-one correspondence betweenYoung diagrams andYamanouchi symbols; see,
for example, [51, p 221] (general references on tensor algebra and irreducible representations
are the classical books [14, 73, 124]).

A tensor A ∈ T (r,V) transforms (under maps in the base space V) as the tensor product
of r vectors, x1 ⊗ x2 ⊗ ·· ·xr. In studying the transformation properties of tensors in concrete
terms under a given group action G in V, it is often convenient to consider the basis in T (r,V)
built by taking the product of basis vectors in V,

A= Ai1i2...irei1 ⊗ ei2 ⊗ ·· ·⊗ eir , (1)

where (e1,e2, . . . ,en) is a basis for V. In (1), and routinely below, we employ the convention
of summing over repeated indices. Moreover, if the space V is endowed with an inner product,
the basis (e1,e2, . . . ,en) can be taken to be orthonormal, in which case the corresponding scalar
components Ai1i2...ir will also be referred to as Cartesian.

Covariance dictates that the matrix elements for the transformations of T (r,V) are homo-
geneous polynomials of degree r in the matrix elements for the action of the group G in V.

For second-rank tensors, any L ∈ T (2,V) can be decomposed as L= S+W, where ST = S,
WT =−W, and a superscript T denotes transposition3. A similar decomposition exists for
tensors A of arbitrary rank and can be described with the aid of Young diagrams. In terms
of the scalar components Ai1i2...ir , with which we shall also identify A, these are obtained by
arranging r boxes in all possible ways in a texture of rows and columns, with the constraint
that each row should not be longer than the preceding one. Boxes represent tensor indices, and
the corresponding tensor will be symmetric under permutations exchanging indices on differ-
ent columns on the same row, and antisymmetric under permutations exchanging indices on
different rows on the same column. The latter condition implies that there should not be more
than n rows, or the corresponding representation will be trivial (tensors fully antisymmetric
in r> n indices, having necessarily at least two equal indices, will automatically vanish). It
should be noted that the representations corresponding to Young diagrams obtained from each
other by an exchange of rows and columns are conjugated; thus, in particular, the maximal
number n is such for both rows and columns (see also section 7.4 of [51]).

Thus, e.g. for r= 2 we have

□⊗□= (□□) ⊕
(

□
□

)
, (2)

while for r= 3 we have

□⊗□⊗□= (□□□) ⊕
(

□ □
□

)
⊕

 □
□
□

 . (3)

Clearly, in the case n= 2, the last diagram will correspond to null tensors.

3 Here S stands for ‘symmetric’ andW for ‘skew-symmetric’, synonymous with ‘antisymmetric’.

3



J. Phys. A: Math. Theor. 56 (2023) 363001 Topical Review

Following [99], Weyl [123] initiated a fully general theory of decomposition of tensors into
irreducible symmetry parts, having especially in mind its application to quantum mechanics.
An early description of the role of both Young’s diagrams and tableaux can be retraced in
[119]; here we follow a more recent approach [54].

A Young tableau is obtained by filling the boxes of Young diagrams as in (2) or (3) with
indices. Each diagramΛ has a corresponding dimension, given by the following hook formula:

dimΛ =
r!∏

(α,β)∈Λ hook(α,β)
. (4)

Here (α,β) denotes the position of a cell in the diagram: α is the row index, while β is the
column index. For a cell (α,β) in the diagram Λ, the hook length hook(α,β) is the sum of the
number of boxes that are in the same row on the right of the cell and the number of boxes in
the same column below it plus 1 (to account for the cell itself).

Denoting by A(p) the tensorial component of A corresponding to the tableau generated by
a diagram Λp, its dimension dim A(p), that is, the number of independent parameters needed
to represent it, is given by

dim A(p) =
∏

(α,β)∈Λp

n+β−α

hook(α,β)
. (5)

2.1.1. Case of interest. In the case where r= 3, which will be of special interest to us, letting
Λ1, Λ2, and Λ3 denote orderly the Young diagrams on the right-hand side of (3), we easily see
that

dimΛ1 = 1, dimΛ2 = 2, dimΛ3 = 1, (6)

meaning that A can be decomposed into three different types of tensors A(p):

(i) A single A(1), which is fully symmetric;
(ii) Two independent components of A(2), A(2,1) and A(2,2), which are partly symmetric;
(iii) A single A(3), which is fully antisymmetric.

We shall denote by A a generic tensor of T (3,V) and by Aijk its scalar components in a
basis (e1,e2, . . . ,en) of V. We shall reserve the symbol A for the special, but important case
where n= 3.

The three types of tensors outlined above correspond to coefficients Aijk having three types
of symmetry under permutations. Specifically, case (i) is characterized by

A(1)
π (i,j,k) = A(1)

ijk , (7)

for any permutation π ∈ S3, and case (iii) is characterized by

A(3)
π (i,j,k) = sgn(π)A(3)

ijk , (8)

where sgn(π) is the sign (or index) of the permutation. Finally, tensors under case (ii) are
characterized by the following mixed symmetry relations (see also [54])

A(2,1)
ijk = A(2,1)

jik and A(2,2)
ijk = A(2,2)

kji . (9)
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Ageneral tensorA ∈ T (3,V) can thus be written as the following sum of irreducible tensors
with respect to GL(n3,F):

A= A(1) +A(2,1) +A(2,2) +A(3). (10)

The Cartesian components of these tensors can be expressed in terms of the components of A
as follows,

A(1)
ijk =

1
6
(Aijk+Ajki+Akij+Ajik+Akji+Aikj) , (11)

A(2,1)
ijk =

1
3
(Aijk+Ajik−Akji−Akij) , (12)

A(2,2)
ijk =

1
3
(Aijk−Ajik+Akji−Ajki) , (13)

A(3)
ijk =

1
6
(Aijk+Ajki+Akij−Ajik−Akji−Aikj) . (14)

Moreover, it follows from (5) that

dim A(1) =
1
6
n(n+ 1)(n+ 2), (15)

dim A(2,1) = dim A(2,2) =
1
3
n(n+ 1)(n− 1), (16)

dim A(3) =
1
6
n(n− 1)(n− 2), (17)

which together with (10) easily imply that

dim A= n3. (18)

While A(1) and A(3) are (uniquely identified) irreducible components of A, as pointed out in
[54], the decomposition A(2) = A(2,1) +A(2,2) is irreducible, but not unique. It is also worth
noting that by (12) and (13)

A(2)
ijk =

1
3
(2Aijk−Ajki−Akij) , (19)

which shows how both fully symmetric and fully antisymmetric parts ofA(2) (defined as in (11)
and (14), respectively) vanish, in agreement with (7) and (8).

With a tensor A we shall also associate the scalar field Φ : V→ F defined as

Φ := Aijkxixjxk, (20)

where xi are the components of a vector x ∈ V in the basis (e1,e2, . . . ,en).Φwill also be referred
to as the potential associated with A. It is clear from the foregoing discussion that Φ is only
determined by the fully symmetric part A(1) of A,4

Φ = A(1)
ijk xixjxk. (21)

We shall be especially interested in the case where F= R, V is endowed with an
inner product, and r= n= 3; this is the case that identifies a general octupolar tensor A.5

Correspondingly, the potential in (20) will be called the octupolar potential. In this special
case, equations (15)–(17) deliver

4 A further characterization of Φ for a fully symmetric tensor A will be given in section 2.3.1.
5 The reason for this name will become clearer shortly below, see section 2.4.
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dimA(1) = 10, dimA(2,1) = dimA(2,2) = 8, dimA(3) = 1 (22)

and Φ can be explicitly written as

Φ = A111x
3
1 + 3(A112x2 +A113x3)x

2
1

+ 3
(
A122x

2
2 + 2A123x2x3 +A133x

2
3

)
x1 +A222x

3
2 + 3A223x

2
2x3

+ 3A233x2x
2
3 +A333x

3
3, (23)

which displays the ten real parameters that represent A(1).
A recurrent case is that of an octupolar tensor symmetric in all indices and with all vanish-

ing partial traces. Strictly speaking, this is the case which the name octupolar tensor should
be reserved for, but here we shall adopt a more flexible terminology, occasionally denoting as
genuine the octupolar tensors in their strictest definition. Such tensors feature seven independ-
ent parameters; this is the simplest of all octupolar tensors with a physical relevance and can
be fully characterized by a variety of methods, elaborated upon in sections 3 and 4 below. The
more general case of a fully symmetric tensor will be analyzed in section 5.

The octupolar potential Φ is a homogeneous polynomial of degree 3 over V; its values are
thus completely determined by its restriction onto the unit sphere S2, where Φ can be properly
defined. Occasionally, to reflect this restriction, we shall pass to spherical coordinates

x1 = rcosθ cosϕ, x2 = rsinθ cosϕ, x3 = rsinϕ, (24)

where r ∈ (0,∞), θ ∈ (0,2π), ϕ ∈ [−π/2,π/2], or we shall explicitly represent one hemi-
sphere of S2, writing, for example,

x3 =±
√
1− x21 − x22. (25)

This, however, is not the only decomposition of S2 in halves that shall be considered in the
following.

2.2. Orthogonal irreducible decomposition

An alternative way to represent a tensor A ∈ T (r,V) is by decomposing it in orthogonal irre-
ducible tensors of rank r. It is known from the theory of group representation (see, for example,
[14]) that A can be expanded as a direct sum of traceless symmetric tensors. Following [132],
we can formally write

A= D(r) + J1D
(r−1) + J2D

(r−2) + · · ·+ Jr−1D
(1) + JrD

(0), (26)

where JrD
(0) collectively denotes the direct sum of Jr scalars D

(0), Jr−1D
(1) the direct sum of

Jr−1 vectors D
(1), and Jr−mD

(m) denotes the direct sum of Jr−m traceless symmetric (deviat-
oric) tensors D(m) of rank m.6 In particular,

where the brackets denote the irreducible, fully symmetric and completely traceless part of
the tensor they are applied to, a notation that we borrow from [52].7

6 Deviatoric also means deprived of all traces, made traceless.
7 We also learn from [52] (see p 34) that the symbol used to indicate the irreducible part of a tensor, was first
introduced in [121] for second-rank tensors and later extended to higher-rank tensors in [53].
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Ways for obtaining explicitly the decomposition in (26) for tensors of any given finite rank
can be found in [105, 128, 132]. A special case arises when A is fully symmetric, as (26)
simplifies into

meaning that there is a single deviatoric tensor for each rank r−m that takes part in the decom-
position of A.

Remark 1. The decompositions in (26) and (28) are especially instrumental to the search for
the representation formulae of isotropic tensor functions (either scalar- or tensor-valued). A
valuable review on this topic can be found in [127]. Although we are not especially concerned
here with tensor invariants, it is worth heeding the result proved in [103] to the effect that the
isotropic integrity basis of a third-rank traceless symmetric tensorA in three space dimensions
consists of 4 invariants. We shall see in section 6 how this result can also be given a simple
direct proof.

2.2.1. Case of interest. In the case where r= n= 3, which is where our main focus lies,
decomposition (26) has a classical explicit form [55, 56], which we now reproduce for com-
pleteness, although we shall mostly be concerned in the rest of this review with genuine octu-
polar tensors in three dimensions, for which (26) reduces to a single term.

LetAijk denote the Cartesian components of a generic third-rank tensorA in the orthonormal
basis (e1,e2,e3). Following [25], we introduce a scalar A defined as

A := ϵijkAijk, (29)

where ϵijk is Ricci’s alternator. Similarly, we define three vectors v(1), v(2), and v(3), whose

Cartesian components, denoted as v(1)i , v(2)i , and v(3)i , are given by

v(1)i := Aijj, v(2)i := Ajij, v(3)i := Ajji. (30)

Two symmetric traceless (deviatoric) second-rank tensors D(1) and D(2) are also identified,
whose Cartesian components are expressed as follows in terms of Aijk,

D(1)
ij :=

1
2
(ϵimlAmlj+ ϵjmlAmli)−

1
3
Aδij, (31)

D(2)
ij :=

1
2
(Aimlϵmlj+Ajmlϵmli)−

1
3
Aδij, , (32)

where δij is Kronecker’s symbol. The decomposition in (26) can then be written as

A= D(3) +D(2)
1 +D(2)

2 +D(1)
1 +D(1)

2 +D(1)
3 +D(0), (33)

where the Cartesian components of the third-rank tensors D( j)
i ar explicitly given by

D(0)
ijk =

1
6
Aϵijk, (34)

D(1)
1,ijk =

1
10

(
4v(1)i δjk− δikv

(1)
j − δijv

(1)
k

)
, (35)

D(1)
2,ijk =

1
10

(
−v(2)i δjk+ 4δikv

(2)
j − δijv

(2)
k

)
, (36)

D(1)
3,ijk =

1
10

(
−v(3)i δjk− δikv

(3)
j + 4δijv

(3)
k

)
, (37)

D(2)
1,ijk =

1
3

(
2ϵijlD

(1)
lk +D(1)

il ϵljk

)
, (38)
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D(2)
2,ijk =

1
3

(
2ϵijlD

(2)
lk +D(2)

il ϵljk

)
, (39)

Remark 2. It is clear from this explicit representation of the third-rank tensors D( j)
i how they

may fail to be symmetric, although they result from the direct sum of traceless symmetric
tensors of lower rank.

Remark 3. By letting

A(ijk) :=
1
6
(Aijk+Ajki+Akij+Akji+Ajik+Aikj) , (41)

Vi :=
1
3

(
v(1)i + v(2)i + v(3)i

)
, (42)

we can easily give D(3)
ijk in (40) the explicit form

D(3)
ijk = A(ijk) −

1
5
Vitijk (no sum on i), (43)

where the symbol tijk is defined as follows

tijk :=

 3 for i = j = k,
1 when two indices are equal,
0 otherwise.

(44)

Remark 4. It is easily seen that the representation of A in (33) depends on 27 independent
parameters, as it should: one is A, 9 come from the components of the vectors v’s and 10 from
the components of the symmetric traceless second-rank tensors D’s; finally, only 7 are hidden
in D(3).

Remark 5. Since D(0)
ijk is antisymmetric in the exchange of all indices, D(0)

ijk xixjxk = 0 for all

x ∈ S2, and similarly vanish both D(2)
1,ijkxixjxk and D

(2)
2,ijkxixjxk. Moreover,(

D(1)
1,ijk+D(1)

2,ijk+D(1)
3,ijk

)
xixjxk =

3
5
Vixi. (45)

Thus, building the potential Φ defined in (20) for the tensor A expressed as in (33) results in a
function depending only on ten independent parameters out of the 27 present in A, in accord
with (21): here 7 are needed for D(3) and 3 for V.

Remark 6. If Aijk enjoys the partial symmetry Aijk = Aikj, it follows from (29), (30),
and (32) that A= 0, v(2) = v(3), and D(2) = 0. The number of independent parameters in the
decomposition (33) then reduces to 18: 6 are the components of the v’s, 5 the components
of D(1), and 7 those of D(3). We can also write explicitly the Cartesian components of A as
follows:

where ui = Aikk and vi = Ajij = Ajji are the components of v(1) and v(2) = v(3), respectively,
and

Dij =
1
2
(ϵimlAmlj+ ϵjmlAmli) (47)
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are the components of D(1). Similar expressions for Aijk in this case can also be found in [131,
132].

Remark 7. In the fully symmetric case, where Aijk = Aikj = Ajik, A= 0, all vectors v(i) are one
and the same v, and both D(1) and D(2) vanish, so that (33) reduces to

A= D(3) +D(1). (48)

Here D(1) = D(1)
1 +D(1)

2 +D(1)
3 and, in explicit components,

where vi = Aijj are the components of v, in agreement with the general detracer operator intro-
duced in [3, 4].

2.3. Generalized eigenvectors and eigenvalues

For tensors of rank higher than 2, the very notion of eigenvectors and eigenvalues is not univer-
sally accepted and, what is worse for our purposes, for these tensors no analogue is known of
the Spectral Theorem, which characterizes symmetric second-rank tensors in terms of their
eigenvectors and eigenvalues. Different notions of generalized eigenvectors and eigenval-
ues have been proposed for not necessarily symmetric tensors of rank r> 2 in a general n-
dimensional space V. The one we adopt below has been put forward and studied in [80, 88,
89]; it has also been enriched by a theorem [19] that estimates the cardinality of eigenvalues8.

For definiteness, here we shall take V endowed with an inner product (denoted by the sym-
bol ·) over the field F= C. Letting x⊗r be the member of T (r,V) defined by the multiple tensor
product

x⊗r := x⊗ ·· ·⊗ x︸ ︷︷ ︸
r times

(50)

and following [88, 89], for a tensor A ∈ T (r,V), we define Axr−1 := A · x⊗(r−1), which is the
vector in V with Cartesian components(

Axr−1
)
i
:= Aii2...irxi2 . . .xir , (51)

where Ai1i2...ir are the Cartesian components of A relative to a prescribed, orthonormal basis
(e1,e2, . . . ,en) of V, as in (1). The solutions x ∈ V and λ ∈ C of the non-linear problem

Axr−1 = λx (52)

such that

x · x= 1 (53)

are a (generalized) eigenvector x of A and the associated (generalized) eigenvalue λ.9

A is said to be real if all its Cartesian components are real. A solution (λ, x̂) of (52) and (53)
is also collectively called a (generalized) eigenpair of A.10

8 An approach alternative to the one followed here has been pursued in [129].
9 In the traditional case, where r= 2 and equation (52) becomes linear, the normalization condition (53) is virtually
superfluous. It is far from being so in the present non-linear context.
10 Often the (generalized) eigenvectors defined above are also said to be normalized, as they are required to satisfy
the constraint (53). We do not consider here non-normalized eigenvectors, as others do, and so we need not that
appellation. Similarly, whenever no ambiguity can arise, we also omit the adjective ‘generalized’ in referring to the
solutions of (52) and (53) and we simply call them the eigenvectors and eigenvalues of A.

9
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A number of facts have been established about the eigenvectors of a generic tensor A.
Below, we recall from [19] those which are more relevant to our pursuit.

(1) It should be noted that eigenpairs (λ, x̂) come in equivalence classes. Letting x ′ = tx̂ and
λ ′ = tr−2λ with t2 = 1, it is readily seen that (λ ′,x ′) is an eigenpair whenever (λ, x̂) is so.
We shall consider both (λ, x̂) and (λ ′,x ′) as members of one and the same equivalence
class.

(2) The spectrum sp(A) of all eigenvalues of A is either finite or it consists of all complex
numbers in the complement of a finite set. If sp(A) is finite and r> 2, then the number d
of equivalence classes of eigenvalues in sp(A) (counted with their multiplicity) is given
by

d=
(r− 1)n− 1

r− 2
. (54)

(3) If A is real and either r or n is odd, then A has at least one real eigenpair.
(4) Every fully symmetric tensor A (as under case (i) above) has at most d distinct (equival-

ence classes of) eigenvalues. Moreover, this bound is indeed attained for generic fully
symmetric tensors A.11

2.3.1. Generalized potential. A potential Φ that generalizes (21) can be defined for a fully
symmetric tensor A ∈ T (r,V) as

Φ(x) := A · x⊗r = Ai1i2...irxi1xi2 . . .xir , (55)

which is a (complex) homogeneous polynomial of degree r. Differentiating Φ with respect to
x, we easily see from (51) that

∇Φ(x) = rAxr−1. (56)

If x̂ is a generalized eigenvector of A with eigenvalue λ, then it follows from (56) that

∇Φ(x̂) = rλx̂, (57)

which, by (53) and Euler’s theorem on homogeneous functions, implies that

Φ(x̂) = λ. (58)

Thus, the eigenvalues of A are the values taken by the potential Φ on the corresponding eigen-
vectors in the unit sphere Sn−1 of V. Conversely, the critical points of Φ in Sn−1 satisfy the
parallelism condition

∇Φ ‖ x, (59)

which by (56) is equivalent to (52). Thus, all the eigenvectors ofA are characterized as critical
points of Φ in Sn−1 and the corresponding eigenvalues are given by the values attained there
by Φ.

Remark 8. For F= R, if A is real and symmetric, then Φ is a real-valued polynomial. Its
critical values and critical points in Sn−1 are all the generalized real eigenpairs of A, whose
number can be far less than d given in (54).

11 Here as in [19], generic is meant in the sense of algebraic geometry, that is, ‘there exists a polynomial in the
components of A such that the asserted conclusion holds for all tensors A at which that polynomial does not vanish.’
This is a way of making precise expressions such as ‘in most cases’ or ‘nearly always.’ .
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Remark 9. Although a potential Φ can also be associated with a partly symmetric tensor A as
in (55), its critical points in Sn−1 can no longer be interpreted as generalized eigenvectors of
A according to definition (52), but just as those of the fully symmetric part A(1) of A defined
by extending (11). In the rest of this review, we shall lay special emphasis on fully symmetric
tensors, so that their eigenvectors can be identified with the critical points of Φ (and their
generalized eigenvalues with the corresponding critical values).

2.3.2. Case of interest. We shall tackle in detail the case where r= 3 and n= 3, so that
by (54) d= 7. If a tensor A ∈ T (3,V) with dimV= 3 is both real and symmetric, we are
assured that it possesses at most 7 distinct (equivalence classes of) complex eigenvalues, of
which at least 1 is real. The analysis performed in sections 3 and 4 will actually reveal more
than the general facts recalled above would lead us to expect. For example, we shall see that
the distinct real eigenvalues of A are never less than 5, but they can be less than 7 in a generic
fashion.

In the following section, we pause briefly to illustrate the physical meanings that a general
octupolar tensor A can have, both in the symmetric and non-symmetric cases.

2.4. Physical motivation

Octupolar order in soft matter physics is not just an exotic mathematical curiosity. Our main
physical motivation for this review lies in the theory of liquid crystals, especially in connection
with the recently discovered polar nematic phases [60, 72, 76, 100]. This is why we start from
liquid crystals to illustrate the physical background of the mathematical theory.

2.4.1. Generalized nematic phases. Liquid crystals provide a noticeable case of soft ordered
materials for which a quadrupolar order tensor may not suffice to capture the complexity of
the condensed phases they can exhibit.

After some earlier theoretical attempts to describe tetrahedratic nematic phases [40, 41], it
was established [17, 70, 92] that the phases observed experimentally in liquid crystals com-
posed of bent-core molecules [65, 81] could be described by means of an additional fully sym-
metric, completely traceless, third-rank order tensor A.12 Intuition was rooted in representing
A as the following ensemble average,

A=

〈
4∑

α=1

nα ⊗nα ⊗nα

〉
, (60)

where the tetrahedral vectors nα are the unit vectors directed from the centre of a (microscopic)
tetrahedron to its vertices, as shown in figure 1 [86, 87],{

n1 =− 1√
3
(e1 + e2 + e3), n2 = 1√

3
(e1 − e2 + e3),

n3 = 1√
3
(−e1 + e2 + e3), n4 = 1√

3
(e1 + e2 − e3),

(61)

where (e1,e2,e3) is a Cartesian frame.

12 An excluded-volume theory to this effect is presented in [12]. For the role played by octupolar tensors in repres-
enting steric interactions and ‘shape polarity’, the reader could also consult the works [83–85].
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Figure 1. The tetrahedral unit vectors nα defined in (61) and featuring in (60).

Remark 10. Since
∑4

α=1nα = 0, it is easy to see that A in (60) is a symmetric traceless octu-
polar tensor.

Remark 11. Alternatively, in a series of papers [67–69, 110, 111] on generalized nematic
phases (both achiral and chiral) the octupolar order tensor A was defined as

A=
1√
6

〈∑
π∈S3

eπ(1) ⊗ eπ(2) ⊗ eπ(3)

〉
, (62)

where the sum is extended to all permutations in S3. It is a simple exercise to show that, despite
appearances, the tensors in (62) and (60) are proportional to one another.

This would suggest that A should partly preserve the parent tetrahedral symmetry and be
somehow associated with four directions in space. Such a supposition would also be supported
by the analysis in [117], which showed that in two space dimensionsA is indeed geometrically
fully described by an equilateral triangle. We shall show in the following sections how this
expectation is indeed illusory.

An octupolar tensor arises as an order tensor in the description of the orientational distribu-
tion of a microscopic polar axis p. This is especially relevant to the study of generalized liquid
crystals, including polar nematic phases.

A probability density ϱ over the unit sphere S2 can be represented by Buckingham’s formula
[18] as

where, much in the spirit of [125], is the multipole average corresponding to the mul-

tiple tensor product p⊗k (see [114]). A combinatoric proof of (63) can be found in [44].
Collectively, the multipole averages are order tensors of increasing rank that decompose ϱ.

12
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In (63), ⊗ denotes (as above) tensor product, and 〈· · ·〉ϱ is the ensemble average associated
with ϱ,

〈· · ·〉ϱ :=
1
4π

ˆ
S2
(· · ·)ϱ(p)da(p). (64)

Especially, the first three multipole averages play a role in resolving the characteristic features
of ϱ: they are the dipolar, quadrupolar, and octupolar order tensors defined by

respectively13.
Here, we shall focus on the octupolar order tensor A. In accordance with (1), in a Cartesian

frame (e1,e2,e3), the tensor A is represented as

A= Aijk ei⊗ ej⊗ ek, (67)

where by (66) the coefficients Aijk fall under case (i) above and obey the following properties,
see (7):

Aijk = Ajik = Aikj, ∀ i, j,k, Aiik = Aiki = Akii = 0, ∀ k. (68)

As already remarked, combined together, these properties reduce to 7 the number of independ-
ent parameters needed to represent in a generic frame all possible octupolar order tensors A.
For definiteness, we shall adopt the following definitions: α0 := A123,

α1 := A111, α2 := A222, α3 := A333,
β1 := A122, β2 := A233, β3 := A311,

(69)

so that

A133 =−(α1 +β1), A211 =−(α2 +β2), A322 =−(α3 +β3). (70)

Given the number of scalar coefficients needed to represent A in a generic Cartesian frame,
one may think to absorb three by selecting a convenient orienting frame and let the remaining
four describe scalar order parameters with a direct physical meaning, in complete analogy with
what is customary for the second-rank, symmetric and traceless quadrupolar order tensor Q,
which is described by five scalar coefficients in a generic frame and characterized by only two
scalar order parameters. For Q, the reduction of the scalar coefficients to the essential scalar
order parameters is performed by representingQ in its eigenframe, where only two eigenvalues
suffice to characterize it.

Now the definition of generalized eigenvectors and eigenvalues forA recalled in section 2.3
above comes in handy. Here, we shall take the equivalent route of representing A through
the critical points of the octupolar potential Φ, the scalar-valued function defined on the unit
sphere S2 as in (55); in this setting,Φ is nothing but the octupolar component of Buckingham’s
formula (63). Thus, in particular, maxima and minima of Φ, with their relative values, would
designate the directions in space along which a microscopic polar axis p is more and less
likely to be retraced, respectively, according to the octupolar component of ϱ. We shall see in

13 Other computational definitions of scalar order parameters for both tetrahedral and cubatic symmetries can also be
found in [96, 97].
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section 2.5.1 how to employ the properties of the octupolar potential to reduce the number of
independent parameters that represent A in the orienting frame.

Remark 12. Such a reduction is meaningful as long as the octupolar component of the probab-
ility density ϱ can be isolated from the quadrupolar component, so as to be treated independ-
ently. Allegedly, this is seldom the case for ordinary liquid crystals, where the quadrupolar
component is expected to be dominant. If that is the case, the natural frame for A would be the
eigenframe of Q, which need not coincide with the orienting frame. In our applications of A
to liquid crystal science (which are not the only ones considered here), we shall consistently
presume that quadrupolar and octupolar effects are separable.

The physical motivation illustrated here will primarily guide our intuition below, to the point
that we shall often picture the maxima of the octupolar potential as designating an ordered
condensed phase on its own. Other interpretations are also possible, which do not require A
to be fully symmetric and traceless, and so cannot uniquely rely on the octupolar potential Φ
as defined in (20). They are briefly recalled for completeness in the following.

2.4.2. Non-linear optics. The optical properties of crystals are described by the constitutive
laws linking electromagnetic fields and induced polarizations. In the linear theory, for example,
the induced polarization P is related to the electric field E through the formula

P(ω) = χ(1)E(ω), (71)

where ω is the oscillation frequency of the fields and the linear susceptibilityχ(1) is in general
represented by a symmetric second-rank tensor.

The lower-order optical non-linearity, such as frequency mixing, arises when the polariza-
tion P(ω3) at frequency ω3 = ω1 +ω2 is related to the electric fields E(ω1) and E(ω2) oscillat-
ing at frequencies ω1 and ω2 through the following quadratic law (see, for example, [55] and
section 1.5 of [16]),

P(ω1 +ω2) = A(ω1,ω2)[E(ω1)⊗E(ω2)], (72)

where the generic third-rank tensor A represents a non-linear susceptibility. In Cartesian com-
ponents, (72) reads as

Pi(ω1 +ω2) = Aijk(ω1,ω2)Ej(ω1)Ek(ω2). (73)

In general, for ω1 6= ω2, Aijk need not enjoy any symmetry, as Ej(ω1) may differ from Ek(ω2).
However, for ω1 = ω2, which is the case of second harmonic generation, we may take Aijk =
Aikj in (73) with no loss of generality, and 18 parameters suffice to represent A.

Moreover, often non-linear optical interactions involve waves with frequency much smaller
than the lowest resonance frequency of the material. If this is the case, the non-linear suscept-
ibility A is virtually independent of frequency and we can permute all indices in Aijk leaving
the response of the material unaltered. This is often called the Kleinman symmetry condition
for the tensor A [59]. When it applies, A is represented by ten independent parameters.

2.4.3. Linear piezoelectricity. In a crystal, polarization can also arise in response to stresses;
this is called the piezoelectric effect and was discovered by the Curie brothers [29, 30]. In a
linear constitutive theory, the induced polarization P is related to the Cauchy stress tensor T
by

P= A[T], (74)
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where A is now the piezoelectric tensor. The component form of (74) is

Pi = AijkTjk. (75)

In classical elasticity, Tij = Tji, and so A enjoys the symmetry

Aijk = Aikj (76)

and is represented by 18 independent parameters.
The invariant decomposition of the piezoelectric tensor can help to classify piezoelectric

crystals; its algebraic properties have recently received a renewed interest (see, for example,
[90, chapter 7] and [46, 54, 61]). The decomposition of A as in (10) is affected by the extra
symmetry requirement (76). Clearly, A(3) vanishes, but neither A(2,1) nor A(2,2) does. These
two latter do not enjoy the symmetry (76), whereas A(2) = A(2,1) +A(2,2) does. Moreover, as
shown in [54],

A= A(1) +A(2) (77)

is the unique irreducible invariant decomposition of the piezoelectric tensor.

2.4.4. Couple-stresses. Cauchy’s stress tensor T is symmetric to guarantee the balance
of moments, but it has long been known that non-symmetric stress tensors may occur in
mechanics [112, section 98]. The symmetry of Cauchy’s stress tensor actually amounts to
the assumption that all torques come from moments of forces.

The presence of internal contact couples was already hypothesized in the early theory of the
Cosserat brothers [26, 27], although in the special context of rods and shells. Toupin [109] put
forward a non-linear theory of elastic materials with couple-stresses, which was soon found
to be equivalent to Grioli’s [49]. In Toupin’s theory, the contact couple c is represented by the
second-rank skew-symmetric tensor C that has c as its axial vector. The couple stress is then
the third-rank tensor A that delivers C when applied to the outer unit normal ν designating the
orientation of the contact surface,

C= A[ν]. (78)

In components, (78) reads as

Cij = Aijkνk (79)

and, since Cij =−Cji,

Aijk =−Ajik, (80)

which shows that there are only nine independent components of A.
The reader is referred to [34–37] for the connection between Toupin’s theory and the early

mechanical theories of Ericksen for liquid crystals.
In a way similar to that enacted in section 2.4.3, also the symmetry property (80) affects the

representation of a couple-stress tensor A (see [109] and [66], the latter also referring to A as
the Hall tensor for the role an octupolar tensor with the symmetry (80) plays in describing the
Hall effect in crystals). Clearly, in this caseA(1) = 0, whileA(2) enjoys the symmetry (80). As
shown in [54],

A= A(2) +A(3) (81)

is a unique irreducible invariant decomposition of A.
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2.5. Octupolar potential

For the octupolar order tensor A in (67), the octupolar potential Φ is given by (20), which we
reproduce here for the reader’s ease,

Φ(x) := A · x⊗ x⊗ x= Aijkxixjxk. (82)

Given the symmetries enjoyed byA, the octupolar potentialΦ identifies it uniquely. The critical
points x̂ of Φ constrained to S2 have Cartesian components (x̂1, x̂2, x̂3) that solve the equations

Aijkxjxk = λxi, i = 1,2,3, (83)

where λ is a Lagrange multiplier associated with the constraint

xixi = 1. (84)

Comparing (83) and (52), we readily realize that (λ, x̂) is a real eigenpair of A. Moreover, it
follows from (83) and (84) that

Φ(x̂1, x̂2, x̂3) = λ, (85)

which is a specialization of (58). Since each real eigenpair (λ, x̂) is accompanied by its opposite
(−λ,−x̂), we see that maxima and minima of Φ are conjugated by a parity transformation.

As A is real and symmetric, we know from the general results recalled in section 2.3 that,
modulo the parity conjugation, there are generically 7 distinct eigenvalues of A one of which
at least is real. However, we have no clue as to whether all other eigenvalues are real or not. We
are exclusively interested in the real eigenvalues of A, as, by (85), they are extrema attained
by Φ and so they possibly bear a statistical interpretation whenever A can be regarded as the
collective representation of the third moments of a probability density distribution over S2.

Since Φ is a polynomial, real-valued mapping on S2, its critical points are singularities for
the index field uΦ defined on S2 by

uΦ :=
∇sΦ

|∇sΦ|
, (86)

where ∇s denotes the surface gradient on S2. Each isolated singularity of uΦ can be assigned
an index, which is a signed integer ι [107, section VIII.10]. Assuming that uΦ possesses a finite
number N of isolated singularities, by a theorem of Poincaré and Hopf [107, pp 239–47], the
sum of all their indices must equal the Euler characteristic of the sphere, that is,

N∑
i=1

ιi = 2. (87)

Now, both maxima and minima of Φ are critical points with index ι=+1, whereas its non-
degenerate saddle points are critical points with ι=−114. Thus, were the eigenvalues of a
generic, symmetric traceless tensor A all real (so that according to (54) they occur in seven
distinct pairs), letting M be the number of eigenvalues corresponding to the maxima of Φ
(which equal in number the minima ofΦ) and S the number of eigenvalues of A corresponding
to saddle points of Φ (which equal in number the saddles with negative eigenvalues), if the
critical points of Φ have all either index ι=+1 or ι=−1, we easily obtain from (87) that

14 A non-degenerate critical point of Φ is one for which the product of the tangential (ordinary) eigenvalues of the
Hessian of Φ does not vanish.
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M− S= 1 and S+M= 7, (88)

whence it follows that M= 4 and S= 3.15

We shall see below that the complete picture is indeed far more complicated that this, for
two reasons: first, not all eigenvalues of A are real; second, not all critical points of Φ have
index ι=±1.

2.5.1. Oriented potential. Making use of (69) and (70) in (82), the octupolar potential can
be written in the following explicit form,

Φ(x1,x2,x3) = 6α0x1x2x3 +α1x1
(
x21 − 3x23

)
+α2x2

(
x22 − 3x21

)
+α3x3

(
x23 − 3x22

)
+ 3
[
β1x1

(
x22 − x23

)
+β2x2

(
x23 − x21

)
+β3x3

(
x21 − x22

)]
, (89)

which is described by 7 scalar parameters. To reduce these, we choose a special orienting
Cartesian frame (e1,e2,e3). The octupolar potentialΦ cannot be constant on S2, lest it trivially
vanishes. It will then have at least a local maximum (accompanied by its antipodal minimum).
For now, we choose e3 such thatΦ attains a critical point at the North pole (0,0,1) of S2, which
requires, see section 5.2 of [45],

α1 =−β1, β2 = 0. (90)

Later, we shall requireΦ to attain a local maximum at the North pole of S2, which will result in
an inequality to be obeyed by a conveniently chosen parameter, see (97). We can still choose
the orientation of the pair (e1,e2). Since Φ is odd on S2, and so is also on the unit disk S1 on
S2 orthogonal to e3, there must be a point on S1 where Φ vanishes. We further orient Φ by
requiring that Φ(1,0,0) = 0, which implies that

β1 = 0. (91)

Finally, the potential can be scaled with no prejudice to its critical points. By requiring that
Φ(0,0,1) = 1, we obtain that

α3 = 1. (92)

Combining equations (90)–(92), we then define the oriented octupolar potential as

Φo(x1,x2,x3) := 6α0x1x2x3 +α2(x
2
2 − 3x21)x2 +(x23 − 3x22)x3 + 3β3(x

2
1 − x22)x3, (93)

which features only 3 scalar parameters.
In sections 3 and 4, two alternative, concurring methods will be presented that afford a

complete characterization of the critical points of Φo.

3. Geometric approach

The oriented potential in (93) enjoys a number of symmetries, which are better explained
and represented if the parameter space is described by three new variables (ρ,χ,K) related to
(α0,α2,β3) through the equations

α0 =
1
2
ρcosχ, α2 = K, β3 =

1
2
(ρsinχ− 1), (94)

15 Under precisely these assumptions, equation (88) had already been established byMaxwell [78] in 1870, elaborating
on earlier qualitative considerations of Cayley [22].
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where

ρ≧ 0, χ ∈ [−π,π], K ∈ R. (95)

Accordingly, Φo in (93) is represented as

Φo = 3ρcosχx1x2x3 +K(x22 − 3x21)x2

+(x23 − 3x22)x3 +
3
2
(ρsinχ− 1)(x21 − x22)x3.

(96)

In the new parameters, the North pole of S2 is guaranteed to be a maximum for Φo if

0≦ ρ≦ 2, (97)

see [45]. This shows that the parameter space can be effectively reduced to a cylinder C with
axis along K.

The choice of freezing a maximum of Φo along the x3-axis preempts the action of rota-
tions other than those preserving that axis as possible symmetries of the octupolar potential.
However, a number of discrete symmetries survive; they are illustrated in detail in section 5.5
of [45], where it is shown in particular that changing χ into χ+ 2π/3 simply induces a rotation
by 2π/3 about the x3-axis in the graph of Φo over S2, a symmetry that establishes a rotation
covariance between parameter and physical spaces. Combining all discrete symmetries, one
finally learns that the study of Φo can be confined to a half-cylinder with K≧ 0 and any sector
delimited by the inequalities χ0 ≦ χ≦ χ0 +π/3, with any χ0 ∈ [−π,π]. Extending the para-
meter space outside one such sector would add noting to the octupolar potential landscape: the
graph of Φo over S2 would only be affected by rotations about the x3-axis and mirror symmet-
ries across planes through that axis, which leave all critical points unchanged [45].

For definiteness, we choose χ0 =−π/2 and proceed to identify the mirror symmetry
that involves both physical and parameter spaces. Subjecting Φo in (96) to the change of
variables

x1 = cosϑx ′1 − sinϑx ′2 x2 =−sinϑx ′1 − cosϑx ′2, x3 = x ′3, (98)

which represents a mirror reflection with fixed point x1 = x ′1, x2 = x ′2 along the plane

x2 =−x1 tan
ϑ

2
, (99)

one easily sees that Φo remains formally unchanged in the variables (x ′1,x
′
2,x

′
3), thus mak-

ing (98) a mirror symmetry for Φo, if ϑ= π/3 and χ is changed into χ ′ =−χ−π/3, which
has a fixed point for χ =−π/6. Thus, by (99), a reflection of the sector −π/2≦ χ≦−π/6
across the plane χ =−π/6 in parameter space (ρ,χ,K) induces a reflection of Φo across the
plane through the x3-axis that makes the angle −π/6 with the x1-axis in the physical space
(x1,x2,x3).

Thus, we shall hereafter confine attention to the sector of C that is represented in cylindrical
coordinates (ρ,χ,K) as

0≦ ρ≦ 2, −π

2
≦ χ≦−π

6
, K≧ 0. (100)

Special subsets in C (and their intersection with the relevant sector in (100)) makeΦo enjoy
special symmetries in physical space. The corresponding symmetry groups (in the Schoenflies
notation) are summarised in table 1; the special subsets are the centre C (ρ= K= 0), the disk
D (K= 0), the axis A (ρ= 0), and the tetrahedral pair of points T ∈ A ( ρ= 0, K± 1/

√
2).
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Table 1. Symmetry groups for the oriented octupolar potential (in the Schoenflies nota-
tion) corresponding to special sets in the reduced parameter space.

Group Parameters Subset

D∞h ρ= K= 0 centre C
D2h K= 0 disk D
D3h ρ= 0 axis A

Td ρ= 0, K=±1/
√
2 T ∈ A

To illustrate these special cases, we shall draw the polar plot of Φo and its contour plot in
the plane (x1,x3). The former is the surface in space spanned by the tip of the vector Φoer,
where er is the radial unit vector,

er :=
1
r
(x1e1 + x2e2 + x3e3), r :=

√
x21 + x22 + x23. (101)

SinceΦo is odd under reversal of the coordinates (x1,x2,x3), antipodal points on S2 are mapped
into the same point on the polar plot of Φo, so that minima of Φo are invaginated under its
maxima, and the latter are the only ones to be shown by the polar plot of Φo. To resolve this
ambiguity, we shall often supplement the polar plot ofΦo with the contour plot of the function

in (x1,x3) obtained by setting x2 =
√

1− x21 − x23 in (96). This gives a view of the octupolar
potential on a hemisphere based on a great circle passing through both North and South poles
and culminating at the point (0,1,0). If polar plots give a quite vivid representation of the
maxima (and minima) of Φo, the contour plots in the (x1,x3) plane give a side view of half its
critical points.

Before showing the illustrations for the symmetric cases in table 1, we must warn the reader
that whereas maxima, minima, and genuine saddles (either degenerate or not, but with index
ι 6= 0) are easily discerned from a contour plot, degenerate saddles with index ι= 0 may easily
go unnoticed.

We illustrate in the following subsections the special symmetries listed in table 1.

3.1. D∞h

Figure 2 shows the polar plot and the contour plot for Φo in the centre C in parameter space.
The former (see figure 2(a)) is symmetric about the x3-axis, while the latter (see figure 2(b))
exhibits the same D∞h symmetry, but seen from a different perspective: the level sets of Φo

are parallels and their colour, ranging from green to red, spans the range of values taken byΦo,
from its minimum (green) to its (opposite) maximum (red). In this specific instance, Φo van-
ishes on the equator. Alongside the maximum at the North pole (accompanied by its minimum
twin at the South pole), a full orbit of maxima (with their twin minima) exist on symmetric
parallels.

By construction, in our representation the North pole must be red, whereas the South pole
must be green, even if our pictures do not always show this very clearly.

3.2. D2h

Figure 3 shows a case exhibiting the D2h symmetry characteristic for the whole disk D in
parameter space (see table 1). The octupolar potential Φo has generically three maxima, three
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Figure 2. The octupolar potential Φo for ρ= K= 0.

Figure 3. The octupolar potential Φo for ρ= 1/2, χ =−π/3, K= 0.

minima, and four saddles, which indices ι=+1, ι=+1, ι=−1, respectively, so that the
global constraint (87) is satisfied. Two more maxima accompany in the Southern hemisphere
the maximum at the North pole (and so do the conjugated minima in the Northern hemisphere).
The four (non-degenerate) saddles are two on each hemisphere, for a total of ten critical points
(see also section 4.2.2).
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Figure 4. The octupolar potentialΦo for ρ= 0 andK= 1/2, representing the behaviour
on the whole axis A in parameter space.

3.3. D3h

Figure 4 shows the appearance of the octupolar potentialΦo on the axis A in parameter space.
It enjoys the D3h symmetry and possesses four maxima, four minima, and six saddles, for a
total of 14 isolated critical points.

3.4. Td

Finally, in figure 5 we see Φo at one special tetrahedral point T in parameter space. The
octupolar potential has four equal maxima at the vertices of a regular tetrahedron (with four
antipodal minima) and six saddles with equal values. The total number of critical points is 14,
as in figure 4, but here each maximum, minimum, or saddle cannot be distinguished from all
others; Φo enjoys the Td symmetry.

3.5. Summary

This survey of the symmetric cases has shown that Φo can have either 10 or 14 critical points,
apart from the highly degenerate case corresponding to the singular pointC in parameter space,
where it has infinitely many. We shall see from the following analysis that cases with either
8 or 12 critical points are also possible, thus revealing a more intricate landscape, which we
shall also endeavour to illustrate geometrically.

4. Algebraic approach

The (normalized) eigenvectors of the octupolar tensor A are identified with the critical points
of the octupolar potential Φo on the unit sphere S2, and the real eigenvalues of A are the
corresponding critical values. These latter are the only eigenvalues of A to bear a physical
meaning; as for their number, the general result of Cartwright and Sturmfels [19] only provides
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Figure 5. The octupolar potential Φo for ρ= 0 and K= 1/
√
2, representing one of the

two (symmetric) special points T ∈ A in parameter space.

an upper bound, which is 14 in the case of interest here. The number of real eigenvalues of
A depends on the parameters (ρ,χ,K) in a rather complicated and intriguing way, which is
explored and fully documented below.

In this pursuit, we found especially expedient a method applied by Walcher [120]; this
reduces the critical points of Φo on S2 to the roots of an appropriate polynomial in one real
variable. Here we adapt Walcher’s idea to our formalism and draw all our conclusions from the
polynomial he introduced. The fundamental algebraic tool at the basis of Walcher’s method
is Bezout’s theorem in projective spaces, for a full account on which we defer the reader to
chapter IV of Shafarevich’s book [102] (precursors of this method can also be retraced in the
works [94, 95]). The outcomes of our previous analysis [45] for the critical points of Φo are
confirmed, but an important detail is added.

Our first move is writing the equilibrium equations for Φo on S2, whose solutions are the
critical points we want to classify. We incorporate in Φo the constraint x · x= 1 by defining
the extended potential Φλ as

Φλ := Φo +Φc, (102)

where the constraint term Φc is defined by

Φc :=−3
2
λ(x21 + x22 + x23), (103)

and λ is a Lagrange multiplier to be determined by requiring that x ∈ S2. As shown in [45],
the scaling of Φc has been chosen so as to ensure that on a critical point λ would equal the
corresponding critical value of Φo, and hence be a real eigenvalue of A. In light of this, it
should also be recalled that whereas Φo changes sign upon central inversion, Φc (and so Φλ)
does so only under the simultaneous changes x 7→ −x and λ 7→ −λ.
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With the aid of (96), the equilibrium equations for Φλ are easily obtained,
ρcosχx2x3 − 2Kx1x2 +(ρsinχ− 1)x1x3 = λx1,
ρcosχx1x3 −K(x21 − x22)− (ρsinχ+ 1)x2x3 = λx2,
ρcosχx1x2 − (x22 − x23)+

1
2 (ρsinχ− 1)(x21 − x22) = λx3,

(104)

subject to

x21 + x22 + x23 = 1, (105)

where the parameters (ρ,χ,K) are chosen as specified in (100).
Here we split the quest for solutions of (104) and (105) in two steps. First, we seek solu-

tions with x2 = 0, and then all others. For the role they will play, the former are called the
background solutions, for lack of a better name. Clearly, both poles (0,0,±1) are solutions
of (104) and (105) by the way the potential has been oriented. To avoid double counting, these
solutions will be excluded from the background; they should always be added to the ones we
are seeking here.

4.1. Background solutions

By setting x2 = 0 in (104) and (105) and assuming that x1 6= 0, so as to exclude both poles, we
see that these equations reduce to

(ρsinχ− 1)x3 = λ, (106)

ρcosχx3 = Kx1, (107)

x23 +
1
2
(ρsinχ− 1)x21 = λx3, (108)

x21 + x23 = 1. (109)

A number of simple cases arise, which are conveniently described separately, for clarity.

4.1.1. Case ρ= K= 0. In this case, the background solutions are x1 =±2
√
5 and x3 =−λ=

±1/
√
5, where all choices of sign are possible, so that these roots amount to four critical points

of Φo on S2.

4.1.2. Case ρ > 0, χ ̸=−π/2, K=0. This case is the easiest, as (107) requires x1 = 0, which
is incompatible with (108) in the sector (100) we selected in parameter space. Thus, no back-
ground solution exists. As we shall see below, they do exist for χ =−π/2.

4.1.3. Case ρ= 0, K ̸= 0. This is another trivial case, as (107) again implies x1 = 0, which
is disallowed. Thus, once again no background solution exists for this choice of parameters.

4.1.4. Case ρ > 0, χ =−π/2, K>0. This is another case of non-existence, as (107) implies
once more that x1 = 0. Finally, we see now two cases where background solutions do actually
exist.

23



J. Phys. A: Math. Theor. 56 (2023) 363001 Topical Review

4.1.5. Case ρ > 0, χ =−π/2, K=0. For this choice of parameters, equation (107) is identic-
ally satisfied, while the remaining equations possess the solutions

x1 =±

√
2(ρ+ 2)
5+ 3ρ

, x2 = 0, x3 =±

√
ρ+ 1
5+ 3ρ

, λ=∓

√
(ρ+ 1)3

5+ 3ρ
, (110)

where signs can be chosen independently, provided that λx2 < 0. Thus, these roots correspond
to four critical points of Φo, all lying on a great circle of S2.

4.1.6. Case ρ > 0, χ ̸=−π/2, K>0. This is the generic case for the existence of back-
ground solutions. It easily follows from (106)–(109) that in the selected sector of parameter
space (100) the background solutions must satisfy the inequalities x1x3 > 0 and λx3 < 0.
Elementary calculations deliver

x1 =∓

√
2(2− ρsinχ)
5− 3ρsinχ

, x2 = 0, x3 =∓

√
1− ρsinχ
5− 3ρsinχ

, (111)

λ=±

√
(1− ρsinχ)3

5− 3ρsinχ
, (112)

where signs must be chosen so as to satisfy the above inequalities. However, these solutions
do not exist for all values of K> 0, but only for

K= κ(ρ,χ) :=

√
1− ρsinχ

2(2− ρsinχ)
ρcosχ. (113)

Whenever the latter is satisfied, the background solutions correspond to two critical points of
Φo on S2.

4.2. All other solutions

We now assume that x2 6= 0 and set

s :=
x1
x2
, t :=

x3
x2
, µ :=

λ

x2
. (114)

With the aid of these definitions, equations (104) become

ρcosχ t− 2Ks+(ρsinχ− 1)st= µs, (115)

ρcosχst−K(s2 − 1)− (ρsinχ+ 1)t= µ, (116)

ρcosχs− (1− t2)+
1
2
(ρsinχ− 1)(s2 − 1) = µt. (117)

While (116) is by itself an explicit expression for µ in the new variables (s, t), both (115)
and (117) can be made into polynomials in these latter upon insertion of (116). These are

Ks2t− ρcosχst2 +
1
2
(ρsinχ− 1)s2 +(ρsinχ+ 2)t2

+ ρcosχs−Kt− 1
2
(ρsinχ+ 1) = 0, (118)
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and

ρ(cosχs2 − 2sinχs− cosχ)t= Ks(s2 − 3), (119)

the latter of which has the remarkable feature of being linear in t.
The general strategy here will be to extract t from (119) and transform (118) into a polyno-

mial of degree 6 in the single variable s. However, in a number of selected case this strategy
is not viable and the solutions to the system (118) and (119) can be found by finding the roots
of polynomials of lower degree. These special cases will be treated first, as they are somehow
related to the symmetries studied above. Progressing further, we note that once a solution (s, t)
of (118) and (119) is known, by (114) we obtain the solutions (x1,x2,x3) of (104) and (105)
through the equations

x1 =± s√
1+ s2 + t2

, x2 =± 1√
1+ s2 + t2

, x3 =± t√
1+ s2 + t2

, (120)

λ=± µ√
1+ s2 + t2

, (121)

whereµ is given by (116). Thus, as expected, each solution (s, t) of (118) and (119) corresponds
to a conjugated pair of critical points of Φo.

4.2.1. Case ρ= K= 0. This point corresponds to the centre C in parameter space. For this
choice of parameters, equation (119) is identically satisfied and (118) delivers t2 = 1

4 (s
2 + 1),

which with the aid of (120) readily implies that

x1 =± 2s√
5(1+ s2)

, x2 =± 2√
5(1+ s2)

, x3 =± 1√
5
, λ=∓ 1√

5
, (122)

which for varying s represent the two orbits of critical points shown in figure 2. It is per-
haps worth noting that for ρ= K= 0 solution (122) reproduces the background solution of
section 4.1.1 in the limits as s→±∞, and so no other critical point of Φo is present in this
case, besides the poles and the orbits (122).

4.2.2. Case ρ > 0, χ ̸=−π/2, K=0. This is the plane where lies the disk D . The case χ =
−π/2 is again somewhat special and will be treated separately below. For the present choice
of parameters, equation (119) requires that either t= 0 or s= s1,2 = tanχ±

√
1+ tan2χ.

Inserting the former into (118), we readily arrive at

s= s3 =
−ρcosχ±

√
ρ2 − 1

ρsinχ− 1
, (123)

which in our admissible sector in parameter space (100) is valid only for 1≦ ρ≦ 2. Upon
insertion of s1 and s2, the roots of the equation (118) transform into

t1 =±

√
1− ρ

(2− ρ)(1− sinχ)
, t2 =±

√
ρ+ 1

(2+ ρ)(1+ sinχ)
, (124)

respectively, the former of which is valid only for 0< ρ≦ 1 while the latter is valid for all
admissible values of ρ. It should be noted that t1 vanishes for ρ= 1, while s3 = s2, so that
these two families of solutions have indeed a member in common. Thus, the total number of
critical points x̂ of Φo (including the poles) reduces to 8 from the 10 shown in figure 3. This
latter, special instance is now illustrated in figure 6, which shows that for ρ= 1 a saddle with
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Figure 6. Contour plots of Φo on the plane (x1,x3) for χ−π/3 and K= 0. For ρ= 1,
Φo has a saddle with index ι=−2 on the equator of S2. As ρ is either increased or
decreased, this saddle splits into two saddles with ι=−1 moving along a meridian or
sliding on the equator, respectively.

index ι=−2 lies on the equator of S2 and it splits into two saddles with ι=−1 as ρ is either
increased or decreased.

We close this case by recalling that no extra background solution exists for the present
choice of parameters, as shown in section 4.1.2.

4.2.3. Case ρ= 0, K ̸= 0. This is the axis A in parameter space (deprived of the centre
C ). For this choice of parameters, (119) requires that either s= s1 = 0 or s= s2,3 =±

√
3.

Inserting the former into (118), we obtain the roots

t1,2 =
K±

√
K2 + 4
4

, (125)

resulting in four critical points x. Similarly, the roots of (118) corresponding to s2,3 are

t3,4 =−K±
√
K2 + 1, (126)

which together amount to eight critical points x̂. Adding the poles, also in view of section 4.1.3,
we get the expected total of 14 critical points for Φo shown in figure 4.

To single out the special case of tetrahedral symmetry depicted in figure 5, we require
that Φo = 1 at the critical point associated with the roots s= 0 and negative t in (125) (as the
maxima other than the North pole live in the Southern hemisphere of S2). Thus, by (121), (116)
and (114), we must have

λ=
K− t2√
1+ t22

= 1, (127)

whose unique root is K= 1/
√
2, as expected.

Two more cases deserve a special treatment, as they can be resolved explicitly by finding
the roots of lower-degree polynomials. Geometrically, they are related to the special planes
delimiting the sector of interest in parameter space (100). We treat these cases below, before
addressing the generic, more complicated case.
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4.2.4. Case ρ > 0, χ =−π/2, K>0. For this choice of parameters, (119) has the trivial
solution s= 0, which inserted in (118) delivers

t= t1,2 =
K±

√
K2 − 2(2− ρ)(ρ− 1))

2(2− ρ)
. (128)

These are real for all K> 0, if 0< ρ≦ 1, but require K≧ K2 :=
√
2(2− ρ)(ρ− 1)) if 1≦ ρ <

2. The corresponding critical points of Φo are in general 4, but for K= K2 and 1≦ ρ < 2 they
reduce to 2.

The case ρ= 2 deserves a special notice, as for s= 0 there is a single root t= 1/2K and
this branch of solutions only brings in two critical points of Φo (instead of 4).

For s 6= 0, (119) is also solved by

t=
K
2ρ

(s2 − 3), (129)

which transforms (118) into a quadratic equation in σ := s2,

K2(ρ+ 2)σ2 − [K2(6+ ρ)+ 2ρ2(1+ ρ)]σ+ 3K2(6− ρ)+ 2ρ2(ρ− 1) = 0, (130)

whose roots we shall denote σ1 and σ2. Elementary analysis shows that for 1≦ ρ≦ 2 both σ1

and σ2 are positive, and so they correspond to eight critical points of Φo. For 0< ρ≦ 1, the
picture is more articulated and changes as K crosses the value

K1 :=

√
2ρ2(1− ρ)

3(6− ρ)
. (131)

For 0< K< K1, σ1 is negative whereas σ2 is positive; the number of corresponding critical
points is 4. ForK= K1, σ1 vanishes, and so it is not an acceptable root, for s 6= 0 on this branch;
it does not bring any extra critical point, whereas the root σ2 > 0 does bring in 4, for a total
of 10 (including the poles). Finally, for K> K1, both σ1 and σ2 are positive and the scene we
see is the same as for 1< ρ < 2, with 14 critical points in total. For ρ= 2, putting together all
roots, we obtain instead 12 critical points for Φo (see figure 7).

The situation is more effectively summarized with the aid of the continuous function

g(ρ) :=

{ √
2ρ2(1−ρ)
3(6−ρ) for 0⩽ ρ⩽ 1,√
2(2− ρ)(ρ− 1) for 1⩽ ρ⩽ 2

, (132)

whose graph is depicted in figure 7, which also shows the total number of critical points of Φo

on S2 associated with different regions in the χ =−π/2 plane in parameter space. For its role
in separating regions with different numbers of critical points, the curve that represents the
graph of g is called a separatrix. We shall see below how it extends to a surface in parameter
space.

Here we are mainly interested in the algebraic avenue opened by Walcher [120], which
may readily deliver the total number of critical points of Φo, and hence the real eigenvalues
and eigenvectors of A. The following summary supplements the algebraic approach; it relies
on stability and bifurcation analyses expounded in [45], to which the reader is referred for
further details.
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Figure 7. The graph of the function g in (132) against ρ. The numbers in different regions
of the plane χ =−π/2 indicate how many critical points Φo possesses there. For this
role, the graph of g is a separating curve, or more shortly, a separatrix.

(a) For K> g(ρ) there are eight generic critical points beside the two at the poles and four
on the special great circle x1 = 0, for a total of fourteen critical points. Four are maxima,
four minima, and the remaining six are saddles.

(b) For K< g(ρ), there are a total of ten critical points, of which three are maxima, three
minima, and the remaining four are saddles.

(c) ForK= g(ρ), two different scenarios present themselves, according to whether 0< ρ < 1
or 1< ρ < 2. In the former case, the critical points are ten, whereas in the latter case they
are twelve. In both cases, the total number of maxima is three, as many as the minima;
only the number of saddles differs: there are four for 0< ρ < 1 and six for 1< ρ < 2. In
the former case, two saddles are degenerate, but all four have index ι=−1. In the latter
case, two out of the six saddles are degenerate and have index ι= 0 (marked by a yellow
circle in figure 8), while the remaining four are not degenerate and have the usual index
ι=−1.

(d) The degenerate saddles with ι= 0 for 1< ρ < 2migrate towards the poles as ρ approaches
2 along the lineK= g(ρ) and towards the equator as ρ approaches 1. Correspondingly, the
North pole becomes a degenerate maximum (while the South pole becomes a degenerate
minimum) and the equator hosts two symmetric ‘monkey saddles’ [44].

Degenerate saddles with ι= 0 may be elusive and now we show why. Figure 9 illustrates
the sections of the graph of Φo with two orthogonal planes passing through such a saddle
(that marked with a yellow circle in figure 8(d)). While on one section the graph of Φo has an
inflection point, it has a maximum on the other section.

The singular case ρ= 2, which had escaped our analysis in [45], is further illuminated in
figure 10, which shows how the 12 critical points of Φo move on S2 with increasing K.

As seen in section 4.1.4, for χ =−π/2 and K> 0, Φo has no critical point with x2 = 0.
Those critical points will however play a role in the case that we now study.
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Figure 8. Contour plots of Φo on the plane (x1,x3) illustrating the critical points of Φo

along the line K= g(ρ) on the plane χ =−π/2 in parameter space. The centre of the
yellow circle in the last three panels designates the position of the degenerate saddle
with index ι= 0.

Figure 9. Sections of the graph of Φo for the choice of parameters in figure 8(d) on two
orthogonal planes through the point depicted as a yellow circle in figure 8(d). The two
planes of section have equations x1 = 0 and x3 = 1/

√
7, respectively.
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Figure 10. Contour plots of Φo on the plane (x1,x3) for ρ= 2, χ =−π/2, and increas-
ing values of K. The yellow circles designate the poles as degenerate saddles with ι= 0.

4.2.5. Case ρ > 0, χ =−π/2, K=0. In this case, (119) reduces to st= 0, and correspond-
ingly the solutions of (118) are

s= 0, t=±

√
1− ρ

2(2− ρ)
, (133)

valid for 0< ρ≦ 1, and

s=±

√
ρ− 1
ρ+ 1

, t= 0, (134)

valid for 1≦ ρ≦ 2. They provide four critical points x̂ of Φo for 0< ρ < 1 and 1< ρ≦ 2, to
which we must now add the four corresponding to the background solutions originated from
the case studied in section 4.1.5. Thus, the total number of critical points is generically 10
(once both poles are added). As made clear by comparing (133) and (134), the case ρ= 1 is
singular, as there the four critical points identified by (133) and (134) collapse to (0,±1,0),
and so the total number of critical points reduces to 8.

For ρ= 1, three maxima and three minima are accompanied by two degenerate saddles,
each with index ι=−2. By contrast, For ρ= 2, the same number of maxima and minima are
accompanied by four degenerate saddles, each with index ι=−1, for a total of ten critical
points (see figure 11).

4.2.6. Case ρ > 0, χ =−π/6, K>0. As remarked above, by the 2π/3 covariance enjoyed
by Φo, the plane in parameter space where χ =−π/6 can be identified with the the plane
where χ = π/2. Clearly, the graph of Φo would rotate around the x3- axis as a consequence of
the change in χ, but neither the number nor the nature of its critical points would change.

A glance at equation (107) for χ = π/2 and K> 0 suffices to show that there is no back-
ground solution in this case. As for the critical points of Φo with x2 6= 0, they are determined
by the roots (s, t) of (118) and (119), which now read as

(2+ ρ)t2 +K(s2 − 1)t+
1
2
(ρ− 1)s2 − 1

2
(ρ+ 1) = 0, (135)

2ρst= Ks(3− s2), (136)

respectively.
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Figure 11. Contour plots of Φo on the plane (x1,x3) in two special cases for χ =−π/2
and K= 0, with 8 and 10 critical points, respectively.

The latter is solved for either s= 0 or

t= t1 = K
3− s2

2ρ
if s 6= 0. (137)

Letting s= 0 in (135), we obtain a quadratic equation for t with roots

t2,3 =
K±

√
K2 + 2(ρ+ 1)(ρ+ 2)

2(ρ+ 2)
, (138)

which amount to 4 critical points x̂ of Φo on S2. Setting t= t1 in (135) reduces the latter to a
quadratic equation in σ := s2,

K2(ρ− 2)σ2 + 2[K2(6− ρ)+ ρ2(1− ρ)]σ− 3K2(6+ ρ)+ 2ρ2(1+ ρ) = 0. (139)

An elementary analysis shows that for 0< ρ < 2 the roots σ1,2 of this equation are both pos-
itives if K> f(ρ), where

f :=

√
2ρ2(1+ ρ)

3(6+ ρ)
, (140)

whereas σ1 = 0 and σ2 > 0 if K= f(ρ), and σ1 < 0 and σ2 > 0 if K< f(ρ). Correspondingly,
in complete analogy to our discussion in section 4.2.6, in the interval 0< ρ < 2, the critical
points x̂ of Φo on S2 are 10 for K≦ f(ρ) and 14 for K> f(ρ) (see figure 12).

The case ρ= 2 is once again exceptional, as equation (139) reduces to

(K2 − 1)(σ− 3) = 0. (141)

This shows that, for K 6= 1, s=±3 and t= 0 are the only solutions in one branch (to be accom-
panied by s= 0 and t= t2,3 in the other branch), which amounts to a total of ten critical points
forΦo. Furthermore, if K= 1, (141) is identically satisfied, and so (137) delivers a whole orbit
of solutions in this branch, to be again supplemented by s= 0 and t= t2,3 in the accompanying
branch. It is easily seen that here t2 =−1/2 and t3 = 3/4; the latter is subsumed in the orbit
of the first branch (for s= 0, of course), whereas the former is not. This special case, where
Φo has infinitely many critical points, is nothing but the one considered in section 4.2.1 above,
corresponding to the centre C in parameter space; only, the graph of Φo is rotated in space.

Figure 12 shows the graph of f in (140) marked with the total number of critical points of
Φo in different regions of the plane χ =−π/6.
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Figure 12. The graph of the function f defined in (140) is plotted against ρ in the interval
0≦ ρ≦ 2. It divides the plane χ =−π/6 in a number of regions with a different total
number of critical points of Φo on S2 (including the poles).

Figure 13. Contour plots of Φo on the plane (x1,x3) for ρ= 2, χ =−π/6, and values
of K on both sides of the singular value K= 1. The scenery is quite different in the two
adjoining cases, but the total number of critical points is still 10 for both.

The special case ρ= 2 is further illuminated in figure 13, which suggests a radical change
of scenery in the arrangement of the critical points ofΦo as K crosses the singular value K= 1.

Having completed the survey of all special cases where the critical points ofΦo are decided
by the roots of a low-degree polynomial, we are in a position to address the generic case, which
will require handling a polynomial of degree 6.

4.2.7. Generic case. This is the case where 0< ρ≦ 2, π/2< χ <−π/6, and K> 0.
Equation (119) can be solved for t, provided that s 6= s±, where

s± := tanχ±
√
1+ tan2χ (142)
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are the roots of the quadratic polynomial in s on the left hand side of (119). Whit t thus given
by

t=
Ks(s2 − 3)

ρ[(s2 − 1)cosχ− 2ssinχ]
. (143)

Equation (118) reduces to the polynomial

W(s) :=
6∑

i=0

Sis
i = 0, (144)

whose coefficients Si are given by

S0 :=−ρ2 cos2χ(1+ ρsinχ),
S1 :=−6K2ρcosχ+ 2ρ2 cosχ(3ρcos2χ− 2sinχ− 2ρ),
S2 := 6K2(ρsinχ+ 6)+ 5ρ2 cos2χ(3ρsinχ+ 1)− 4ρ2(1+ ρsinχ),
S3 := 4ρcosχ[ρ2(4− 5cos2χ)−K2],
S4 := 4K2(ρsinχ− 6)+ 5ρ2 cos2χ(1− ρsinχ)+ 4ρ2(ρsinχ− 1),
S5 := 2ρcosχ[K2 + ρ(3ρcos2χ+ 2sinχ− 2ρ)],
S6 := 2K2(2− ρsinχ)+ ρ2 cos2χ(ρsinχ− 1).

(145)

Every real root s 6= s± ofW, once combined with t as in (143), corresponds to two (antipodal)
critical points of Φo on S2. So, if all roots ofW are real and not coincident with either s±, and
if the case in section 4.1.6 for the existence of background solutions does not apply, then Φo

possesses 14 critical points (two of which are at the poles), thus reaching the allowedmaximum
number, according to the theorem of [19] applied to tensor A.

We see now that only s+ can be a spurious root of W (and must be suppressed) in the
selected sector of parameter space (100) where our analysis is confined. This follows from a
direct inspection, which yields

W(s±) = 4K2(2∓ ρ)
(sinχ± 1)(2sinχ∓ 1)2

cos2χ(sinχ∓ 3)± 4(1∓ sinχ)
, (146)

so that, for 0< ρ≦ 2 and−π/2< χ <−π/6, onlyW(s+) vanishes, for ρ= 2. This shows that
on the lateral boundary of the selected sector one root of W is inadmissible and two critical
points of Φo are lost. In particular, for ρ= 0, whenever W has 6 real roots, Φo possesses only
12 critical points, not 14.

Next we prove that W has indeed 6 real roots asymptotically for large K. It follows
from (144) and (145) that for K� 1

W(s) =−K2s(s2 − 3)w(s)+O(1), (147)

where

w(s) := (ρsinχ− 2)s3 − ρcosχs2 +(ρsinχ+ 6)s− ρcosχ. (148)

The algebraic discriminant ∆(w) of w is readily computed,

∆(w) = 4[432− ρ4 + 16sinχ(4cos2χ− 1)ρ3 − 72ρ2] (149)

and can be shown to be positive for 0< ρ≦ 2 and π/2< χ <−π/6 (it vanishes only along
a line in our selected sector, where ρ= 2 and χ =−π/6). Thus, for K sufficiently large, all
roots ofW are real, and since the function κ(ρ,χ) in (113) is bounded, we easily conclude that
Φo possesses 14 critical points on S2.
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It should be noted that S6 vanishes precisely for K= κ(ρ,χ). This means that when W
becomes a polynomial of degree 5, loosing at least one root (and Φo, correspondingly, two
critical points), the two critical points connected with the background solutions studied in
section 4.1.6 come into the picture, replacing the lost ones. Actually, it follows from (120) that
whenever a root of W flies to ±∞, the corresponding critical points of Φo approach the great
circle of S2 where x2 = 0, so that crossing the surface K= κ(ρ,χ) in parameter space does
not result in a discontinuity of the critical points of Φo, neither for their number nor for their
position. This suggests that the background solutions classified in section 4.1 could never play
a role for K> 0. There is, however, one singular instance where they can: ifW loses more than
one root. This is the case where S6 vanishes alongside with S0, S1, and S2, along the curve in
the space (ρ,χ,K) parameterized by

χ =−arcsin

(
1
ρ

)
, K= h(ρ) :=

√
ρ2 − 1

3
, for 1< ρ≦ 2, (150)

where W reduces to

W0(s) :=
8
3
(ρ2 − 4)s3

(√
ρ2 − 1s2 + s− 2

√
ρ2 − 1

)
. (151)

The polynomial W0 has clearly three distinct real roots that generate six critical points of Φo,
to which we must add the two associated with the background solutions and the two poles (as
usual), for a total of ten critical points.

We know from our analysis for K= 0 that the total number of real roots ofW must decrease
upon decreasingK. Since all coefficients ofW are real, this can only happen through the coales-
cence of two real roots. To identify the critical values of K, for given ρ and χ, where this takes
place, we need to find a common root for W(s) and its derivative W ′(s). The conventional
way is to compute the algebraic discriminant∆(W) ofW and look for its roots. Unfortunately,
∆(W) turns out to possess a very complicated expression (involving a polynomial of degree
20 in ρ).

Our strategy will be different. The system requiring that both W and W
′
vanish has the

following general structure

K2a11 + a12 = 0, (152)

K2a21 + a22 = 0, (153)

where aij = aij(ρ,χ) are the entries of a matrix A. This system is compatible only if detA= 0,
which turns out to be a polynomial in s of degree 10, whose complex roots can easily be
computed numerically. Among these, we are only interested in the real roots s∗ that deliver a
positive K2 through either (152) or (153); these are as well all possible double roots ofW. We
systematically found a single root s∗ for all 0< ρ≦ 2 and −π/2< χ <−π/6.

Figure 14(a) shows the critical value K∗ of K corresponding to s∗ for χ =−π/3 and
0≦ ρ≦ 2, along with the graph of the function κ defined in (113). The graph of K∗ has two
branches connected by a cusp at ρ= ρc; along the branch with ρ < ρc, s∗ < 0, whereas s∗ > 0
for ρ > ρc; for ρ= ρc, where K∗ and κ cross, s∗ = 0. Thus, on both branches of K∗ the 5 dis-
tinct real roots of W correspond to 12 critical points of Φo (including the poles), whereas on
the cusp the three distinct real roots of W and the two background solutions amount to ten
critical points of Φo. Figure 14(b) illustrates the branches of K∗ and their cusp for a sequence
of values χ in our selected sector (100). They play the same separating role that g and f play on
the planes χ =−π/2 and χ =−π/6, respectively. Together they form a two-vaulted surface,
which we call the separatrix, traversed by a groin represented by the line of cusps described
by (150).
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Figure 14. Representations of the separatrix K= K∗(ρ,χ) and the surface K= κ(ρ,χ)
described by (113).

Above the separatrix, Φo has 14 critical points, below and on each vault of the separatrix
Φo has 12 critical points, whereas it has only 10 on the groin (see figure 15).

The behaviour of K∗ around a cusp can be obtained from a standard asymptotic analysis.
For given χ, the value of K∗ at the cusp is delivered by setting ρ=−1/sinχ in h(ρ) as defined
by (150). For ρ close to this value, K∗ is expressed by

K∗ =− 1√
3

cosχ
sinχ

+
31/6

24/3

(
3− 4cos2χ

cosχsin2χ

)(
ρ+

1
sinχ

)2/3

+O

(
ρ+

1
sinχ

)
. (154)

Figure 16 shows how two critical points of Φo merge upon approaching the cusp from both
branches of the separatrix for a given value of χ: a degenerate saddle with ι= 0 and a standard
saddle with ι=−1 coalesce into a standard saddle.

As clearly emerges from combining figures 7, 12, and 15, the number of critical points of
Φo suffers discontinuities on the planes χ =−π/2 and χ =−π/6 that delimit the selected
sector. Figures 17 and 18 illustrate these transitions.

Finally, we show in figure 19 how the number of critical points of Φo changes on the lateral
boundary of the selected sector, where ρ= 2, upon approaching the plane χ =−π/6. Here
the poles are degenerate saddles with ι= 0 for all −/2≦ χ <−π/6; their nature changes as
a maximum (minimum) lands on the North (South) pole at χ =−π/6.
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Figure 15. Overview on the critical points ofΦo for 0≦ ρ≦ 2 and χ =−π/2+ jπ/30,
j = {1, . . . ,9} as in figure 14(b). The graph of g (thick blue solid line) and f (thin blue
solid line) are shown for comparison. The (blue dashed) line at ρ= 2 is where two
critical points are lost asW acquires the spurious root s+. The whole landscape of critical
points is obtained by combining this picture with figures 7 and 12.

Figure 16. Forχ =−π/3, the cusp in the separatrix is hit at ρ
.
= 1.15 (see figure 14(a)).

Here we show the contour plots of Φo on the plane (x1,x3) on the two branches of the
separatrix (panels (a) and (c)) and on the cusp (panel (b)). Φo has 12 critical points in
(a) and (c), two of which are degenerate saddles with ι= 0 (marked by yellow circles).
Φo has ten critical points in panel (b), none of which has index ι= 0.

4.3. Comparison with previous studies

In our previous studies [44, 45], we have taken a combined geometric-analytic approach for the
determination of the critical points of Φo (and the corresponding eigenvalues and eigenvectors
of the octupolar tensor A). Symmetry was at the basis of our geometric considerations, and
path continuation was at the basis of our analytic ones. In that approach, the special cases
for χ =−π/2 and χ =−π/6 were suggested by symmetry; they were handled directly by
solving explicitly the equilibrium equations (104) and (105) for Φo.

In the algebraic approach put forward byWalcher [120] and fully adopted here, the determ-
ination of the critical points of Φo on the symmetry planes in parameter space stems from the
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Figure 17. Comparison between the contour plots ofΦo on the plane (x1,x3) for different
points on the separatrix in parameter space, taken for the two values of χ corresponding
to the graph of g in figure 7 and to the graph with j= 1 in figure 15, respectively. Panels
(b) and (e) refer to the two cusps involved. The number of critical points of Φo changes
as follows: from 10 to 12 going from (a) to (d), from 8 to 10 going from (b) to (e); it is
the same in (c) and (f). Yellow circles mark degenerate saddles with index ι= 0.

study of the roots of low-degree polynomials, for which resolvent formulas are available. The
outcomes of this analysis, which has been detailed above, confirmed our previous findings and
are summarized in figures 7 and 12.

Things were different in the interior of the selected sector in parameter space, representative
of its whole. The algebraic approach, albeit perhaps more pedantic (as testified by the detailed
case distinction we had to work out not to loose solutions), revealed itself more accurate. The
major differences with our previous findings are summarized below.

(a) We found an explicit, analytic expression (150) for the line of cusps that traverses the
separatrix, acting as a groin joining two vaults.

(b) We showed that the total number of critical points of the octupolar potential is 10 along
the line of cusps, instead of the 8 we had found in [45].

(c) We showed that in the interior of the representative sector in parameter space the whole
separatrix (away from the line of cusps) bears 12 critical points for the octupolar potential,
instead of the 10 we had found in [45] on one component bordering on the line of cusps.

(d) We found another singular case with only eight critical points for the octupolar potential,
a whole circle in parameter space (corresponding to ρ= 1, K= 0 in our representation).
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Figure 18. Comparison between the contour plots of Φo on the plane (x1,x3) for differ-
ent points on the separatrix in parameter space, taken for the two values ofχ correspond-
ing to the graph of f in figure 12 and to the graph with j= 9 in figure 15, respectively.
Panels (e) and (b) refer to the cusp involved in one separatrix and to its cusp-free limit
in the other, respectively. The number of critical points of Φo changes as follows: from
10 to 12 going both from (a) to (d) and from (c) to (f), from ∞ to 10 going from in (b)
and (e). Yellow circles mark degenerate saddles with index ι= 0.

Figure 19. Contour plots ofΦo on the plane (x1,x3) for ρ= 2, K= 1/2. and two differ-
ent values of χ. The number of critical points of Φo is 12 in (a) and 10 in (b). In going
from (a) to (b), a maximum (minimum) lands on the North (South) pole changing its
singular nature of degenerate saddle with index ι= 0.
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What was predominantly responsible for the incompleteness of our previous analyses is a
type of potentially baffling critical point of the octupolar potential, whichwe had partlymissed.
This is a singular point of the index field uΦo in (86) that can be lifted by a local surgery of Φo.
More particularly, a degenerate saddle with index ι= 0, easily missed in a standard topological
analysis of the index field uΦo (usually visually associated with the features of a countour plot).
The algebraic method, on the other hand, clearly identifies these elusive critical points with the
real roots of even multiplicity of the polynomials involved. These are indeed the roots that a
slight, surgical perturbation of the polynomialmaymake either disappear or unfold in a number
of simple roots (with vanishing total topological index). Contrariwise, a non-simple root with
odd multiplicity cannot be associated with a critical point with index ι= 0, as perturbations of
the polynomial cannot remove it.

We have seen both thesemechanisms at work here: a critical point with index ι= 0 suddenly
appearing, disappearing, or splitting; three critical points coming together in a single one with
ι 6= 0. We have seen the first instance on the separatrix and the second on the line of cusps and
the circle with the least number of critical points (eight).

This also explains, for what is worth, why critical points weremissed in [45]. These were the
degenerate saddles with ι= 0 on the fold of the separatrix that borders the plane χ =−π/2 for
0≦ ρ≦ 1. No critical point with ι= 0 lives on this border, and so it could not be propagated to
the rest of the separatrix, as was instead the one that lives on the adjoining border for 1< ρ≦ 2.

5. Trace extensions

Our analysis so far has been confined to fully symmetric octupolar tensors A with vanishing
traces. Here, we broaden the scope of our study by allowing A to have non-vanishing traces,
while still retaining full symmetry. This will add three more parameters to an already crowded
scene. However, the octupolar potential will again prove a useful tool to describe this larger
class of tensors.

5.1. General symmetric and trace type tensors

Let us consider tensors which are fully symmetric, but not necessarily traceless. The most
general potential associated to a fully symmetric tensor is written in (23); there we now make
use of definitions (69) and

γ1 := A133, γ2 := A112, γ3 := A223. (155)

Traceless tensors are characterized by having

γi =−(αi+βi), i = 1,2,3. (156)

For later reference, we will write

γi =
1
3
Ai − (αi +βi ); (157)

thus the coefficients Ai will characterize the trace type part of tensors: traceless tensors are
characterized by having Ai = 0 for i = 1,2,3.

We will consider a general fully symmetric tensor as being the sum of a traceless tensor
and a trace type tensor; the latter are thus identified as having Ai arbitrary real constants, and
αi = βi = 0.
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Themost general octupolar potential associatedwith a fully symmetric tensor can bewritten
more compactly (understanding cyclic permutations in i, i.e. i= 4 means i= 1 and i= 0 means
i= 3) as

Φs = 6α0x1x2x3 +
3∑

i=1

αix
3
i + 3

3∑
i=1

βi xix
2
i+1 + 3

3∑
i=1

γixix
2
i−1. (158)

In the same formalism, the most general octupolar potential associated with a traceless fully
symmetric tensor in (89) can be rewritten as

Φ = 6α0x1x2x3 +
3∑

i=1

αixi
(
x2i − 3x2i−1

)
+

3∑
i=1

βi xi
(
x2i+1 − x2i−1

)
. (159)

The difference between these is the potential associated with trace type tensors, and turns out
to be

Φt := Φs −Φ = 3
3∑

i=1

(αi +βi + γi )xi x
2
i−1 =

3∑
i=1

Ai xi x
2
i−1. (160)

Remark 13. In the original notation introduced in (23), Φt can alternatively be written as

Φt = (A311 +A322 +A333)x
3
3 + 3(A111 +A122 +A133)x1x

2
3

+ 3(A211 +A222 +A233)x2x
2
3. (161)

Remark 14. Reasoning as in section 2.5.1, we can lower by 4 the number of independent
parameters appearing in Φs by orienting the potential in (158).

5.2. Trace type potential

Here our attention will be confined to the general trace type potential in (160), which we write
in expanded form as

Φt = A1x1x
2
3 +A2x2x

2
1 +A3x3x

2
2. (162)

This potential shares several of the remarkable properties of the potential Φ corresponding to
traceless tensors studied in sections 3 and 4. It is covariant under inversion of x, xi →−xi
(i = 1,2,3), and also under inversion of parameters Ai, collected in a vector A, Ai →−Ai
(i = 1,2,3). Formally, we write these properties as follows

Φt(−x,A) =−Φt (x,A) = Φt(x,−A), (163)

which implies that Φt is also invariant under a simultaneous inversion of x and A,

Φt(−x,−A) = Φt(x,A). (164)

It is likewise invariant under a simultaneous identical permutation of the xi and of the Ai,

Φt(π (x),π(A)) = Φt(x,A). (165)

By the inversion covariance of Φt, we can just study it on a hemisphere (e.g. for x3 ≧ 0) and
for non-negative values of one of the control parameters (e.g. for A2 ≧ 0); in the following, we
shall explore this possibility.

We restrict Φt to the unit sphere S2; the two standard ways of doing this (which we will use
alternatively according to convenience) are:
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(a) Consider the upper (Northern) and the lower (Southern) hemispheres separately; on these
we can just set

x3 =±
√
1− x21 − x22; (166)

we denote the potential thus obtained as Φ±
t .

(b) Pass to spherical coordinates:

x1 = cosθ cosϕ, x2 = sinθ cosϕ, x3 = sinϕ, (167)

where θ ∈ [−π,π] and ϕ ∈ [−π/2,π/2].

We will mostly consider the restriction to the unit sphere using Cartesian coordinates (that
is, (a) above); this will lead us to consider separately the potential in the two hemispheres.

5.2.1. Oriented potential on hemispheres. The potential in the Northern hemisphere is expli-
citly written as

Φ+
t = A1x1(1− x21 − x22)+A2x

2
1x2 +A3x

2
2

√
1− x21 − x22, (168)

and its gradient is immediately computed to be

∇Φ+
t =

 A1(1− 3x21 − x22)+ 2A2x1x2 −A3
x1x

2
2√

1−x21−x22

−2A1x1x2 +A2x21 +A3
(2−2x21−3x22)x2√

1−x21−x22

 . (169)

It should be stressed thatΦ+
t has no special invariance or covariance properties under reflec-

tions in the x1,x2 variables (together or one at a time), while it retains of course the covariance
under reflection in the Ai parameters. On the other hand, Φ+

t is invariant under either one of
the following transformations:

(A1,A2,A3;x1,x2,x3)→ (−A1,A2,A3;−x1,x2,x3),
(A1,A2,A3;x1,x2,x3)→ (A1,−A2,A3;x1,−x2,x3). (170)

We can orient the potential requiring that it has a critical point in the North pole (and hence
also in the South pole); the pole corresponds to x1 = 0, x2 = 0, and it is immediately seen from
the formula for∇Φ+

t above that this is a critical point if and only if

A1 = 0. (171)

We will assume this to be the case. However, there is no guarantee that the critical points at
the poles are either a maximum or a minimum.

In this way we are led to consider the oriented potential

Φ+
t = A2x

2
1x2 +A3x

2
2

√
1− x21 − x22. (172)

Looking at (170), we see that this retains the second of those invariance properties, while the
first is now reduced to the statement that the potential is even in x1.

The gradient of the oriented potential in (172) is

∇Φ+
t =

 2A2x1x2 −A3
x1x

2
2√

1−x21−x22

A2x21 +A3
(2−2x21−3x22)x2√

1−x21−x22

 . (173)
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Figure 20. Contour plot on the plane (x1,x2) of the potential Φ
+
t in (172) for A2 = 0,

A3 = 1.

Similarly, the potential in the Southern hemisphere is

Φ−
t = A1x1(1− x21 − x22)+A2x

2
1x2 −A3x

2
2

√
1− x21 − x22, (174)

and its gradient is immediately computed to be

∇Φ−
t =

 A1(1− 3x21 − x22)+ 2A2x1x2 −A3
x1x

2
2√

1−x21−x22

−2A1x1x2 +A2x21 −A3
(2−2x21−3x22)x2√

1−x21−x22

 . (175)

Again to guarantee having a critical point in the South pole we need A1 = 0; this reduces
Φ−

t to

Φ−
t = A2x

2
1x2 −A3x

2
2

√
1− x21 − x22. (176)

We are thus left with the two control parameters, A2 and A3. It is convenient to consider
separately the cases with A2 = 0 and with A2 6= 0.

5.2.2. The case A2 = 0. In this case (assuming A3 6= 0, lestΦt would identically vanish), the
potential on the Northern hemisphere reduces to

Φ+
t = A3x

2
2

√
1− x21 − x22. (177)

This has degenerate critical points on the whole set x2 = 0 (which corresponds to a meridian
on the hemisphere, and by symmetry there is a whole circle S1 ⊂ S2 of degenerate critical
points), including the pole, and two isolated critical points at(

0,±
√
2/3
)
. (178)

The meridian x2 = 0 (in the Northern hemisphere) is hyperbolically unstable for A3 > 0
and hyperbolically stable for A3 < 0. As for the two isolated critical points (178), these are
maxima (for A3 > 0). Finally, analyzing the situation on the equator, we detect two critical
points at (1,0) and (−1,0); these are degenerate saddles.

Figures 20 and 21 illustrate and confirm the analysis just performed.
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Figure 21. Polar plot of Φt in (162) for the case A1 = A2 = 0, A3 = 1. As customary
here, minima are invaginated under maxima since Φt is odd under central inversion.

5.2.3. The case A2 ̸= 0. In this case it is convenient to write

A3 = µA2, (179)

so that

Φ+
t = A2x2

(
x21 +µx2

√
1− x21 − x22

)
, (180)

and

∇Φ+
t = A2

 x1x2

(
2−µ x2√

1−x22−x23

)
x21 +µ

x2(2−2x21−3x22)√
1−x22−x23

 . (181)

It is clear from (179) that A2 is a multiplicative factor for the potential; thus, rescaling Φ+
t we

can just consider the cases A2 = 1, with no prejudice for our analysis.
Similar formulas hold for Φ−

t ; in view of the inversion symmetry of Φt, we can just work
with Φ+

t , which we will do from now on.
A change of sign in A2 (keeping µ unchanged, which means changing also the sign of A3)

would just flip the potential—in particular, minima would become maxima, and viceversa—so
we can as well consider just the case A2 = 1, which we do from now on16.

Note that for A2 > 0, we always have that

Φ+
t (x1, |x2|)≥ Φ+

t (x1,−|x2|); (182)

more precisely,

Φ+
t (x1, |x2|)−Φ+

t (x1,−|x2|) = 2A2x
2
1|x2|. (183)

Moreover, for x1 = 0 the potential is even in x2, i.e.

Φ+
t (0,x2) =−Φ+

t (0,−x2). (184)

Similar formulas hold, with changes of sign, forA2 < 0. (We recall that forA2 = 0we have a
degenerate situation, the meridian x2 = 0 being critical, see above; this corresponds to a global
bifurcation.)

16 We stress that this holds as far as we only consider the potential associated with trace type tensors per se; if we also
consider the potential associated with traceless tensors, the scales of the two potentials cannot be set independently.
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Summarizing, we are reduced to study

Φ+
t = x2

(
x21 +µx2

√
1− x21 − x22

)
(185)

and

∇Φ+
t =

 x1x2

(
2−µ x2√

1−x22−x23

)
x21 +µ

x2(2−2x21−3x22)√
1−x22−x23

 (186)

in the Northern hemisphere; while in the Southern one we have

Φ−
t = x2

(
x21 −µx2

√
1− x21 − x22

)
(187)

and

∇Φ−
t =

 x1x2

(
2−µ x2√

1−x22−x23

)
x21 − µ

x2(2−2x21−3x22)√
1−x22−x23

 . (188)

Note that the formulas for the Northern and Southern hemispheres are interchanged under a
change of sign in µ; that is, in an obvious notation, we have that

Φ−
t (x1,x2;µ) = Φ+

t (x1,x2;−µ). (189)

5.2.4. Critical points. Wewill now look at the critical points forΦ+
t ; first we determine their

location, and then we will study their nature.

5.2.5. The case µ=0. It is convenient to single out the case µ= 0; in this case, we simply
have that

Φ+
t = x21x2, (190)

which, being independent of x3, is the same as Φ−
t (and Φt itself).

Despite its simplicity, equation (190) is unfit to reveal the critical points ofΦt on the equator
of S2 at x3 = 0. For this purpose, we find it convenient to consider the representation in spher-
ical coordinates introduced in (167),

Φt = sinθ cos2 θ cos3ϕ. (191)

Hence

∇Φt =

(
−3sinθ sinϕ cos2 θ cos2ϕ

cos3 θ cos3ϕ − 2cos3ϕ sin2 θ cosθ

)
. (192)

The first component of the gradient vanishes for ϕ =±π/2 (these corresponds to North and
South poles respectively), for ϕ= 0 (the equator), and for θ = mπ/2. Looking also at the
second component, we get that the critical points on the equator are located at

θ =±π/2, θ =±arccos
(
±
√
2/3
)
. (193)

Looking instead at critical points on θ =±π, these reduce again to the poles; as for θ =±π/2,
the whole curve ϕ ∈ [−π/2,π/2] is critical; this is just the x1 = 0 meridian.
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Figure 22. The potential Φ+
t in (190) (which is the same as Φ−

t and Φt) exhibits five
critical points.

The stability of these critical points is also easily analyzed by considering the matrix of
second derivatives in the angular coordinates. It turns out that critical points at the poles
(ϕ =±π/2) and on the meridian x1 = 0 (θ =±π/2) have degenerate stability; as for the
other critical points on the equator (ϕ= 0), those at θ = arccos(

√
2/3) are maxima, those

at θ =−arccos(
√
2/3) are minima.

This completes the analysis of the µ= 0 case; figure 22 illustrates it.

5.2.6. The case µ ̸= 0. As noted above while discussing the case µ= 0, the restriction to
Northern (or Southern) hemisphere fails to detect critical points lying on the equator. It is
thus convenient to analyze first the equatorial region by considering the spherical coordinates
representation (24). This yields (also in view of (171) and (179) with A2 = 1)

Φt = cos2 θ sinθ cos3ϕ +µsinϕsin2 θ cos2ϕ. (194)

The gradient in the spherical coordinates reads as

∇Φt =

(
cos2ϕ cosθ

(
1
2 cosϕ(3cos2θ− 1)+ 2µsinϕ sinθ

)
cosϕ sinθ

(
µsinθ cos2ϕ− 3cos2 θ sinϕ cosϕ − 2µsin2ϕ sinθ

) ) . (195)

Since at this stage we onlywant to identify the critical points lying on the equator, we set ϕ= 0
in (195), which becomes

∇Φt|ϕ=0 =

( 1
2 cosθ (3cos2θ− 1)

µsin2 θ

)
. (196)

For µ 6= 0, vanishing of the second component requires θ= 0 or θ =±π; but at these points
the first component does not vanish. We conclude that for µ 6= 0 there are no critical points
lying exactly on the equator.

This analysis assures us that use of Cartesian coordinates and reduction to hemispheres will
detect all critical points in the case µ 6= 0. We shall thus consider Φ+

t and its gradient∇Φ+
t in

the coordinates (x1,x2).
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Figure 23. The critical points of Φ+
t in (180) for A2 = 1. Three of them, namely p1, p2,

and p3, are independent of µ; they are marked as black dots. The other critical points,
namely p4 and p5, exist only for 0< |µ| ≤

√
2 and are located within the unit circle

(equator of S2) either on the lower half of the ellipse (201) for µ< 0 (blue dots), or on
the upper half for µ> 0 (red dots). For µ=−

√
2, p4 and p5 coalesce on p2, while for

µ=
√
2 they coalesce on p3. At µ= 0, they reach the equator and jump from one side

to the other of the ellipse.

Some standard algebra shows that the equation∇Φ+
t = 0 has three roots independent of µ,

namely, 
p1 : x1 = 0, x2 = 0,
p2 : x1 = 0, x2 =−

√
2/3,

p3 : x1 = 0, x2 =
√
2/3,

(197)

and two roots depending on µ, which only exist for 0< |µ| ≤
√
2, namely,

p4 : x1 =− 2√
3
cosξ, x2 =

√
2
3
sinξ (198)

p5 : x1 =
2√
3
cosξ, x2 =

√
2
3
sinξ, (199)

where ξ is related to µ through the equation

ξ = arcsin

(
sgn(µ)

√
2

4−µ2

)
(200)

and ranges in the interval −π/2≦ ξ <−π/4 for −
√
2≦ µ < 0 and in the interval π/4< ξ ≦

π/2 for 0< µ≦
√
2.

All critical points p1-p5 are illustrated in figure 23. In particular, according to (198)
and (199), p4 and p5 run on the ellipse

3
4
x1 +

3
2
x22 = 1, (201)
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Figure 24. The critical values of the potential Φ+
t as a functions of µ ∈ [−

√
2,
√
2]. In

black, Φ+
t (p1) = 0; in blue, Φ+

t (p2) = Φ+
t (p3); in red, Φ

+
t (p4) = Φ+

t (p5).

which intersects the unit circle precisely for ξ =±π/4 and ξ =±3π/4. The critical points
p4 and p5 are symmetric with respect to the x2-axis; they are located on the lower half of the
ellipse (201) for µ< 0 and on the upper part for µ> 0. For µ=−

√
2, both p4 and p5 collapse

on p2; as µ increases, they separate and move symmetrically until tending to reach the unit
circle (equator of S2) as µ→ 0. There, they jump onto the upper part of the ellipse; as µ further
increases, p4 and p5 move symmetrically towards the x2-axis, which is reached for µ=

√
2,

when p4 and p5 coalesce on p3 (see figure 23).

Remark 15. As noted in section 5.2.5, for µ= 0 the potential Φt has more critical points than
those we retrieve from the preceding analysis in the limit as µ→ 0.

In terms of the original parameters Ai, we summarize our conclusions as follows:

Proposition 1. Let A1 be zero and A2 be nonzero. For 0< |A3|<
√
2|A2| all the critical points

listed above are real, and the potential has five critical points in the Northern hemisphere (and,
by symmetry, five critical points in the Southern hemisphere), hence ten critical points in total.
For |A3|>

√
2|A2| the potential has three critical points in the Northern hemisphere (and, by

symmetry, three critical points in the Southern hemisphere), hence six critical points in total.

In the limiting case where |A3|=
√
2|A2|, all critical points reduce to (197); one of them

becomes degenerate, thus hosting a local bifurcation. In summary,

Proposition 2. Let A1 be zero and A2 be nonzero. At the bifurcation, i.e. for |A3|=
√
2|A2|,

there are three critical points, p1, p2, and p3, in the Northern hemisphere (and three mirroring
critical points in the Southern one), hence a total of six critical points; either the point p2 or
the point p3 is degenerate, depending on the sign of A3/A2.

The values taken by the potential at these critical points are promptly computed:

Φ+
t (p1) = 0, (202)

Φ+
t (p2) = Φ+

t (p3) =
2µ

3
√
3
, (203)

Φ+
t (p4) = Φ+

t (p5) = sgn(µ)
4

3
√
3
√
4−µ2

. (204)

These critical values are plotted in figure 24 as functions of µ.

Remark 16. Note that Φ+
t (p2) = Φ+

t (p3), which corresponds to Φ+
t being even in x2 on the

x1 = 0 line; andΦ+
t (p4) = Φ+

t (p5), which corresponds to the invariance ofΦ
+
t under inversion

in x1.
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5.2.7. Nature of critical points. Having identified the critical points, we should enquire if
these are maxima, minima, or saddles. In order to ascertain the nature of the critical points, we
should consider the matrix of second derivatives

H :=∇2Φ+
t =

 ∂2Φ+
t

∂x21

∂2Φ+
t

∂x1∂x2

∂2Φ+
t

∂x1∂x2
∂2Φ+

t

∂x22

 , (205)

and compute its eigenvalues, or at least their sign, at the critical points pj identified in
section 5.2.6 above.

Wewill stick to our assumption thatA1 = 0 andA2 =+1 (withA3 = µ); the case of negative
A2 can be recovered recalling that a change of sign in A2 corresponds to a change of sign in the
potential, and that µ= A3/A2 (so a change of sign in A2 leaving A3 unchanged corresponds to
a change of sign in µ, while a change of sign in both A2 and A3 leaves µ unchanged).

For the first three critical points the eigenvalues are easily computed and provide simple
formulas: 

p1 : λ1 = 0, λ2 = 2µ,

p2 : λ1 =−4
√
3µ, λ2 =−

√
2/3

(
2+

√
2µ
)
,

p3 : λ1 =−4
√
3µ, λ2 =+

√
2/3

(
2−

√
2µ
)
.

(206)

Note that in the degenerate case where µ= 0 the first eigenvalue of all these critical points
vanishes, while for µ=±

√
2 the second eigenvalue vanishes in one.

Remark 17. This simple analysis is not conclusive for the critical point at the North pole.
Actually, the series expansion along x2 = 0 is flat to all orders, as clear from the explicit expres-
sion of Φt.

The stability of points p2 and p3 is promptly analyzed:

• The point p2 is a minimum for µ> 0, a saddle for −
√
2< µ < 0, and a maximum for µ <

−
√
2;

• The point p3 is a minimum for µ< 0, a saddle for 0< µ <
√
2, and a maximum for µ >

√
2.

For the other critical points, p4 and p5, we find it more convenient to characterize their nature by
computing the trace and determinant of the Hessian matrixH in (205) in terms of the parameter
ξ introduced in (200),

trH=
2
√
6(4cos4 ξ− 11cos2 ξ+ 12)
3sinξ(2cos2 ξ− 1)

, detH=
16cos2 ξ

1− 2cos2 ξ
, (207)

where use has also been made of the inverse of the function in (200),

µ=

√
2

sinξ

√
2sin2 ξ− 1. (208)

It is a simple matter to conclude from the study of the signs of trH and detH that

• For −
√
2< µ < 0 the points p4 and p5 are local minima;

• For 0< µ <
√
2 the points p4 and p5 are local maxima.

These results can be confirmed by computing numerically the index for the different critical
points; such computations are summarized in table 2, showing the index of critical points p2-p5
for different intervals of values of µ (recall that p4 and p5 only exist for 0< |µ| ≤

√
2).
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Table 2. Critical points of the potentialΦt in (180) for A2 = 1 and different values of µ.
For |µ|>

√
2, neither p4 nor p5 exists.

Point µ <−
√
2 −

√
2< µ < 0 0< µ <

√
2

√
2< µ

p2 1 −1 1 1
p3 1 1 −1 1
p4 — 1 1 —
p5 — 1 1 —

Remark 18. As for the degenerate critical point p1, we have not computed directly its index,
but the Poincaré–Hopf theorem requires p1 to be a saddle, as the total index of all critical points
must be ι=+2 on the whole sphere S2.

In figure 25 we present the contour plots of Φ+
t for different values of µ. They are accom-

panied in figure 26 by the corresponding polar plots.

5.3. Full potential

We want now to consider a general potential Φs, i.e. the superposition of a traceless potential
Φ, see equation (159), and of a trace type potential Φt, see equation (160).

The rich phenomenology displayed by the traceless part Φ can only be enriched by consid-
ering also a trace type part; a complete analysis would most likely lead to a rather complicate
discussion. Here our study will be confined to a simple, explanatory case.

The most striking feature arising from the analysis of traceless tensor potentials is maybe
the presence of an exactly tetrahedral phase [44]; we wonder if such a phase can also exist in
the presence of a pure trace type contribution. The general traceless potential Φ is written as
in (159). The situation in which it enjoys full tetrahedral symmetry is obtained in section 7.2
of [44] for

α0 = 0, α1 = 0, α2 =± 1√
2
, α3 = 1, β3 =−1

2
. (209)

In this way the oriented traceless potential Φ reads as

ΦT := x33 −
3
2

(
x21 + x22

)
x3 +

1√
2

(
x22 − 3x21

)
x2, (210)

where we have set α2 = 1/
√
2, for definiteness.

The four maxima of the potentialΦT are located at the vertices of a regular tetrahedron, and
more specifically at the points given in three-dimensional Cartesian coordinates by (see [44])

{
p1 = (0,0,1),

p2 =
(
0, 2

√
2

3 ,− 1
3

)
, p3 =

(
−
√

2
3 ,−

√
2
3 ,− 1

3

)
, p4 =

(√
2
3 ,−

√
2
3 ,− 1

3

)
.

(211)

5.3.1. Perturbation approach. Here we only consider an extreme case, i.e. that in which one
of the two parts (the traceless one) can be considered as dominant, and the other one (the pure
trace one) as a perturbation.
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Figure 25. Contour plots of the potential Φ+
t for A3 = µA2 and A2 = 1 on the (x1,x2)

plane, for different values of µ.
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Figure 26. Polar plots of the potentialΦt corresponding to the contour plots in figure 25.
Here the protruding lobes designate maxima (and invaginated minima). The origin is p1,
a degenerate saddle for all values of µ, accompanied by a non-degenerate saddle lying
on the x2-axis (either p2 or p3 in (197), depending on the sign of µ).
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It should be stressed that we cannot arbitrarily orient both the traceless and the trace type
part of the potential at the same time: we can only orient one of these (or their sum). We find it
more convenient to orient the traceless part, in particular when considering the trace type part
as a perturbation.

Asmentioned above, wewant to investigate if a potentialΦs including both the traceless and
the pure trace parts can have maxima at the same critical points (211), i.e. display a tetrahedral
symmetry for the physical states (identified by maxima; see [44]). It should be noted that we
only require the locations of the maxima to be mapped unto one another by the action of the
tetrahedral group Td: we are not requiring, in general, that the values of these maxima are the
same (as was the case in the tetrahedral potential). Thus, letting ΦT be as in (210), we shall
write Φs =ΦT +Φt as in (158) with coefficients given by

α0 = ε(δα0), α1 = ε(δα1), α2 =
1√
2
+ ε(δα2), α3 = 1+ ε(δα3),

β1 = ε(δβ1), β2 = ε(δβ2), β3 =− 1
2 + ε(δβ3),

A1 = ε(δA1), A2 = ε(δA2), A3 = ε(δA3).

(212)

Here ε is a small parameter, all the other newly introduced parameters are expected to be of
order one17.

We then look for critical points ofΦs at first order in ε, and require the points p1–p4 in (211)
to be still critical points (and, by a perturbation argument, hence necessarily maxima) for Φs.
Through some standard algebra, we find that this is the case, provided that

δα0 =
√
2
3 δα1,

δβ1 =
1
3δα1, δβ2 = 0,

δA1 = 4δα1, δA2 = 2δα2 +
1√
2
δα3 + 3

√
2δβ3, δA3 =−

√
2δα2 +

5
2δα3 + 3δβ3,

(213)

where δα1, δα2, δα3, and δβ3 are free parameters. We can afford being a bit more restrictive
and consider only perturbations of the traceless part that preserve the orientation of this latter
by keeping the constraints

α1 = β1 = β2 = 0. (214)

We thus arrive at the conditions
δA1 = 0,

δA2 = 2δα2 +
1√
2
δα3 + 3

√
2δβ3,

δA3 =−
√
2δα2 +

5
2δα3 + 3δβ3,

(215)

where δα2 , δα3, and δβ3 are arbitrary constants.

Remark 19. We have only required maxima to remain at the same points. If we extend this
requirement to all critical points, it turns out that Φs must be proportional to ΦT, thus neutral-
izing any contribution from a pure trace tensor.

Making use of (215), (214), and (212) in (158), we can easily express the symmetric poten-
tial Φs =ΦT +Φt in the form

17 In general, the prescription α1 = β1 = β2 = 0, which ensures the orientation of the traceless potential, can be
violated.

52



J. Phys. A: Math. Theor. 56 (2023) 363001 Topical Review

Φs =
1√
2
x2
(
x22 − 3x21

)
− 3

2

(
x21 − x22

)
x3 + x3

(
x23 − 3x22

)
+ ε

[(
2δα2 +

1√
2
δα3 + 3

√
2δβ3

)
x2x

2
1 + δα2x2

(
x22 − 3x21

)
+

(
−
√
2δα2 +

5
2
δα3 + 3δβ3

)
x22x3 + 3δβ3

(
x21 − x22

)
x3 + δα3x3

(
x23 − 3x22

)]
, (216)

which is not equivalent to ΦT. In cases where the (observable) physics is only described by
the location of the maxima (or the minima) of the octupolar potential, we thus have that a
perturbation of the tetrahedral potential ΦT by a combination of the potentials associated to a
traceless and to a trace type tensors can still describe the same physics.

Remark 20. Physics could also depend on the (relative or absolute) levels of the maxima of
the octupolar potential in (216); thus it matters if they are at the same level or not. A tedious,
but easy calculation shows that requiring all maxima of Φs in (216) to be equal reduces Φs to a
multiple of ΦT. In other words, the only way to have degenerate maxima at tetrahedral points
is with a pure tetrahedral potential.

Remark 21. Wemight ask for a smaller degeneration, i.e. require that the potentialΦs in (216)
takes the same value at the points p2, p3, and p4 in (211), albeit this is allowed to be different
from the value taken at the point p1. In this case we have to require

δβ3 =− 1√
6

(
2
√
2δα2 + δα3

)
. (217)

With this prescription, we get

Φs(p1) = 1+ εδα3, Φs(p2) = Φs(p3) = Φs(p4) = 1+ ε

(
8
9

√
2δα2 +

1
9
δα3

)
. (218)

We can further set δα3 = 0, so that the value of the potential at the orienting maximum (in the
North pole) is unchanged; in this case, setting also δα2 = 1, we get

Φs(p1) = 1, Φs(p2) = Φs(p3) = Φs(p4) = 1+ ε
8
9

√
2, (219)

and, more generally,

Φs =ΦT + ε

[
2
√
2x22

√
1− x21 − x22 +

(
x22 − 3x21

)
x2

+
√
2
(
x21 − x22

)√
1− x21 − x22

]
.

(220)

5.3.2. Non-perturbation approach. We can also proceed non-perturbatively. To this end, we
consider a general superposition Φs of a traceless potential Φ as in (159) and a trace type
potential Φt as in (160).

We then consider the gradient of Φs, evaluate it at the points p1-p4 in (211), and require it
vanishes there. Through standard computations we obtain that this is the case provided some
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relations hold between the different parameters characterizing the potential. These are as fol-
lows18 

α0 =
√
2β1, α1 = 3β1, β2 = 0,

A1 = 12β1,

A2 = 2α2 +
1√
2
α3 + 3

√
2β3,

A3 =−
√
2α2 +

5
2α3 + 3

√
2β3.

(221)

Here α2, α3, β1, and β3 are free parameters.

Remark 22. Equations (221) guarantee that the tetrahedral points are critical. If we also
require that p2-p4 in (211) are all on the same level set of Φs, we are led to the equations

α0 = α3 = β1 = 0, β3 =−1
6

(
2
√
2α2 +α3

)
, (222)

which still leave α2 and α3 as free parameters. By (221), the coefficients of the pure trace part
Φt then become19

A1 = 0, A2 = 0, A3 = 2
(
α3 −

√
2α2

)
. (223)

By use of both (222) and (223), we give Φs the special form

Φs =
1
2
α3x3

(
2x23 − x21 − x22

)
−α2

[(
3x2 +

√
2x3
)
x21 + x22

(√
2x3 − x2

)]
. (224)

Remark 23. If now we also require that Φs in (224) has in p1 the same value as in p2-p4, we
easily see that it must be

α3 =
√
2α2, (225)

which, by (223), makes A3 vanish as well, so that Φs is eventually proportional (through α3)
to ΦT.

Remark 24. Consider now the potential Φs in (224), without assuming (225). We have seen
that it has critical points at the tetrahedral points (211). It should be noted that while working
perturbatively we were guaranteed the critical points at p1-p4 were, for ε sufficiently small, still
maxima, in the present case this is not guaranteed. To this end, we compute as in section 5.2.7
the eigenvalues of the Hessian matrix H of Φs in (224): p1 : λ1 = λ2 =−2

(√
2α2 + 2α3

)
;

p2-p4 : λ1 =−6
√
2α2, λ2 =−6

(
5
√
2α2 + 4α3

)
.

(226)

These are all real, and we want all of them to be negative. It is easily seen that this is the case,
provided that

α2 > 0, α3 >− α2√
2
. (227)

Correspondingly, we obtain that Φs in (224) satisfies

Φs(p1) = α3, Φs(p2) = Φs(p3) = Φs(p4) =
1
9

(
8
√
2α2 +α3

)
. (228)

18 The similarity between the last two equations in (221) and (215) should be heeded.
19 Note that we are in the degenerate case A2 = 0.
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So the three degenerate maxima in the Southern hemisphere are higher than the maximum at
the North pole if

α3 <
√
2α2, (229)

and lower than the maximum at the North pole if in (229) the inequality is reversed.

5.3.3. Invariance of the combined potential. To illustrate the subtleties that may be hidden
in the fully symmetric potential Φs, we consider here an invariance property that determines
uniquely the traceless potentialΦ, but fails to determine the combined potential resulting from
adding to it a traceless component Φt. In [45], we studied the action of the tetrahedron group
Td on traceless type potentials Φ. Here, we discuss the action of the same on the particular
potential Φs given by (224).

We will use the notation of [45], in particular the representation of Td as a group of matrices
acting in R3. It was shown there that the maximal subgroup G of Td leaving the North pole
fixed is made of the matrices {M1,M2,M3,M13,M14,M15}, in the notation adopted there. Here
we will rename these as M1-M6, which read explicitly as

M1 =

 1 0 0
0 1 0
0 0 1

 , M2 =

 −1/2
√
3/2 0

−
√
3/2 −1/2 0
0 0 1

 ,

M3 =

 −1/2 −
√
3/2 0√

3/2 −1/2 0
0 0 1

 , M4 =

 −1 0 0
0 1 0
0 0 1

 ,

M5 =

 1/2 −
√
3/2 0

−
√
3/2 −1/2 0
0 0 1

 , M6 =

 1/2
√
3/2 0√

3/2 −1/2 0
0 0 1

 .

(230)

The commutation relation among these can be read from [45]; the only nontrivial subgroup is
G0 = {M1,M2,M3}.

It is a simple matter to check that for Φs in (224),

Φs(Mx) = Φs(x) ∀M ∈ G. (231)

That is,Φs isG-invariant. One might wonder if the converse is also true, i.e. if the requirement
of being G-invariant does uniquely select Φs in (224).

To discuss this matter, we start from the general expression for Φs in (158) and require

Φs(Mi x) = Φs(x), (232)

for i = 1, . . . ,6. Some elementary algebra shows that this amounts to enforcing the
conditions {

α0 = 0, α1 = 0, β1 = 0, β2 = 0,
A1 = 0, A2 = 0, A3 = 3(α3 + 2β3).

(233)

However, by direct computation we see that this choice of parameters does not make Φs

in (158) agree with (224), unless we set

β3 =−1
6

(
2
√
2α2 +α3

)
, (234)

which, incidentally, implies the third of (223). We thus conclude that the condition of G-
invariance does not determine Φs uniquely.
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Remark 25. The G-invariance condition determines uniquely the traceless potential Φ,
whereas the trace potential Φt is determined up to a multiplicative factor A3.

Remark 26. It could also be mentioned that the degeneration of values at the critical points p2-
p4 does not only apply to the whole potential Φs, but also to its traceless and trace components
separately, although these are not separately invariant.

6. Other approaches

So far we have privileged representations of an octupolar tensor A based upon the octupolar
potential Φ introduced in (20) and the several variants encountered above. Other approaches
have been proposed in the literature.We devote this section to some of these, trying to establish
connections with ours.

6.1. Maxwell multipoles

This approach to octupolar tensors in rooted inMaxwell’smultipole representation of spherical
harmonics [79, pp 179–214] (see also [28, pp 514–22]). Our account, phrased in a modern
language, follows [131] (see also [32] for a broader perspective). A theorem due to Sylvester
[108] (alternative proofs of which can also be found in [7] and [131]) put Maxwell’s method
on a solid mathematical ground.

There is a one-to-one correspondence between a completely symmetric tensor A ∈ T (r,V)
and a homogeneous polynomial Pr(x) of degree r in x ∈ with dimV= 3 as

Pr(x) =
3∑

i1i2...ir=1

Ai1i2...irxi1xi2 . . .xir . (235)

Sylvester’s theorem says that, given a real homogeneous polynomial Pr(x) of degree r≧ 2,
there are r vectors a1,a2, . . . ,ar ∈ V and a real homogeneous polynomial Pr−2(x) of degree
r− 2 such that

Pr(x) =
r∏

s=1

(as · x)+ (x · x)Pr−2(x). (236)

Building on classical results, Zou and Zheng [131] proved that every tensorD(m) in the decom-
position of a fully symmetric tensor A in (28) can be represented as

where, for m≦ r, Am > 0 is a scalar and a1,a2, . . .am are vectors on the unit sphere S2 in V
determined uniquely by D(m), to within a change of sign in an even number of them.

The poles designated on S2 by these vectors are called Maxwell’s multipoles. The con-
nection thus established between fully symmetric traceless tensors and spherical harmonics
justifies calling harmonic these tensors, as well as the decomposition in (26) for a generic
tensor. This connection is further explored in [4]. Harmonic tensors also play a role in recon-
structing the crystallite orientation function for poly-crystalline materials [1, 50, 93]; for
this topic the reader is referred to the comprehensive review of Man [75], in particular, to
chapter 17.

Remark 27. As shown in the early work of Backus [7], the multipole representation of A, by
its very geometric interpretation, can be effective in identifying the symmetries ofA. For more
recent contributions to the role played by harmonic decomposition of a tensorA in identifying
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all symmetry classes it may belong to, the reader is referred to the works [5, 6, 8, 9, 42, 43].
This is, however, a slippery terrain, as witnessed for example by the disagreement between [46]
and [130], which for the piezoelectric tensor (see section 2.4.3) found with different methods
14 and 15 symmetry classes, respectively.

When applied to the representation formula in (237) reads as

which easily identifies both the number N(r) of independent parameters needed to represent
and all the invariants allowed in an isotropic scalar-valued function of
Customarily, for r≧ 2 and dimV> 2, N(r) is given by a combinatoric argument as the

difference between two binomial coefficients (see, for example, [104, p 56]),

N(r) =

(
r+ 2
r

)
−
(

r
r− 2

)
, (239)

the first representing the number of symmetric arrangements (with repetitions) of r symbols
out of a pool of 3, and the second the number of symmetric arrangements (with repetitions)
of r− 2 symbols out of the same pool (these latter corresponding to the number of traces). A
simple calculation shows that N(r) = 2r+ 1. The same conclusion is reached far more easily
from (238) by remarking that 2r parameters are needed to represent the vectors a1,a2, . . .ar on
S2 and one more for Ar.

Remark 28. The case dimV= 2 is special. N(r) is no longer given by (239), but N(r) = 2 for
all r. Moreover, (238) is replaced by

where all vectors ai are the same vector e on the unit circle S1 (see [117] for an explicit con-
struction of e when r= 3).

Similarly, since is fully determined by Ar and the multipoles a1,a2, . . . ,ar, the classical
theorem of Cauchy [20] (see also [112, p 29]) for the representation of isotropic scalar-valued
functions depending on a finite number of vectors requires that the complete list of invariants
consists of Ar and the following r(r− 1)/2 scalars

αij := ai · aj 1≦ i < j≦ r. (241)

Then, in the special case where r= 3, the total number of scalar invariants of is immediately
seen to be 4, in agreement with [103] (see remark 1). Although the multipole representation
of in (238) can more easily determine the number of invariants, their explicit identification
may be more difficult.

Remark 29. The number of isotropic invariants for symmetric traceless tensorsD(3) andD(4),
of rank 3 and 4 in three space dimensions, were derived in [103] and [13] from the determ-
ination of the appropriate integrity bases, and found to be 4 and 9, respectively. As shown in
[131], the direct derivation of this number from the harmonic decomposition in (238) agrees
with that in [103] for D(3), but it does not with that in [13, 103] for D(4), as it would predict
seven invariants for the latter instead of 9. This suggests that the invariants in the integrity
bases for D(4) in [13, 103] are not independent. A table of other inconsistencies similar to this
can be found in [131]. A large number of studies are devoted to this issue (which is not central
to our review). Some, such as [2, 115], are especially relevant to the mechanics of composite
materials.
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Figure 27. Polar plot of the octupolar potential in (244). Its maxima and minima fall on
the tetrahedral vectors nα defined in (61) and shown in figure 1.

The octupolar potential Φ has played a special role in our review. We now wish to show
how Φ would be expressed for the harmonic representation in (238) for an octupolar tensor
in three space dimensions. A direct computation based on (49) shows that

Φ(x) = A3

{
(a1 · x)(a2 · x)(a3 · x)−

1
5
(x · x)

[
(a1 · x)(a2 · a3)

+ (a2 · x)(a3 · a1)+ (a3 · x)(a1 · a2)
]}

. (242)

It is instructive to see what becomes of Φ in (242) for special choices of the unit vectors
a1,a2,a3 and how these special forms of Φ relate to those described above in our analysis.

First, given a Cartesian frame (e1,e2,e3), we consider the case where a1 = a2 = a3 = e3. It
follows from (242) that Φ then reduces to

Φ(x) = x3

(
x23 −

3
2
x21 −

3
2
x22

)
, (243)

where we have set A3 = 5/2 so that Φ(e3) = 1. With this normalization, the polar plot of Φ is
just the same as the one in figure 2(a).

If we now take ai = ei, for i = 1,2,3, (242) delivers

Φ(x) = 3
√
3x1x2x3, (244)

where we have chosen A3 = 3
√
3 so that the maximum value of Φ on S2 be Φ = 1. Figure 27

illustrates the polar plot of the function in (244) in the conventional representation adopted
here: it only differs by a rigid rotation from the polar plot shown in figure 5(a) corresponding
to the tetrahedral symmetry Td studied in section 3.4.

The minima and maxima of Φ in (244) are attained at the unit vectors nα defined in (61)
and illustrated in figure 1. This can also be seen by considering the tetrahedral tensor

T := T
4∑

α=1

nα ⊗nα ⊗nα, (245)
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with T a normalizing scalar. Since
∑4

α=1nα = 0, T is a symmetric traceless octupolar tensor.
The octupolar potential ΦT associated with it is given by

ΦT(x) := T · (x⊗ x⊗ x) = T
[
(n1 · x)3 +(n2 · x)3 +(n3 · x)3 +(n4 · x)3

]
=− 8T√

3
x1x2x3, (246)

which reduces to (244) for T=−9/8. Comparing (244) and (210) would also be instructive.

6.2. Curie potential

We have often said that the octupolar potential Φ, which has been our major representation
tool in this review, identifies completely an octupolar tensor only if this is fully symmetric.
Thus, for example, the octupolar potential associated with a piezoelectric tensor A, as defined
in section 2.4.3, would fail to capture all its details. In particular, the definition of generalized
eigenvalues and eigenvectors of A given in section 2.3would bemissed. A strategy has recently
been developed in [24, 63, 64, 122] to overcome this difficulty and to attempt at providing a
similar treatment for both piezoelectric and fully symmetric octupolar tensors. Here, we briefly
present this strategy, following mainly [24].

We start by defining theCurie potentialΦC of a piezoelectric tensorA in three space dimen-
sions20,

ΦC(x,y) := A · x⊗ y⊗ y, (247)

which is a mappingΦC : S2 × S2 → R. In components relative to a Cartesian frame (e1,e2,e3),
equation (247) reads as

ΦC(x,y) = Aijkxiyjyk. (248)

Reasoning as in section 2.3 (see also equations (102) and (103)), the critical points of ΦC on
S2 × S2 can be viewed as critical points of the unconstrained potential

Φλ,µ(x,y) := ΦC(x,y)−
1
2
λ
(
x21 + x22 + x23

)
−µ

(
y21 + y22 + y23

)
, (249)

where λ and µ are independent Lagrange multipliers. Such unconstrained critical points are
solutions of the following system of equations,{

Aijkyjyk = λxi,
Aijkxiyj = µyk.

(250)

Multiplying by xi the first and by yk the second (summing over repeated indices), and enfor-
cing the constraints that require both x and y on S2, we easily conclude that λ= µ and their
common value is precisely the value of ΦC at the corresponding critical point. A pair (x,y)
that solves (250) is said to consist of a left and a right C-eigenvector of A, respectively, and
λ= µ is the corresponding C-eigenvalue (here the prefix C stands for Curie) [24].

A number of facts have been established for the C-eigenvalues of a piezoelectric octupolar
tensor A (see theorems 2.3 and 2.5 of [24]):

(I) C-eigenvalues and associated left and right C-eigenvectors of A do exist.

20 The theory summarized in [24] applies to a general piezoelectric tensor A ∈ T (3,V) with dimV= n. Here, we
present the simplified version for n= 3, as it is more germane to the rest of our analysis.
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(II) If λ is a C-eigenvalue of A and (x,y) are the corresponding left and right C-eigenvectors,
then

A · x⊗ y⊗ y= λ. (251)

Moreover, the triples (λ,x,−y), (−λ,−x,y), and (−λ,−x,−y) also designate C-
eigenvalues and corresponding C-eigenvectors of A.

(III) Let λ1 denote the largest C-eigenvalue of A and let (x1,y1) denote the corresponding left
and right C-eigenvectors. Then

λ1 =max{A · x⊗ y⊗ y : x,y ∈ S2}. (252)

Moreover, λ1x1 ⊗ y1 ⊗ y1 is the rank-one tensor that best approximatesA, that is, it solves
the following optimization problem,

min{‖A−λx⊗ y⊗ y‖2 : λ ∈ R, x,y ∈ S2}, (253)

where

‖A‖ :=
√
AijkAijk (254)

designates the Frobenius norm.
(IV) If a piezoelectric tensorA has finitely many classes of C-eigenvalues in the complex field

C, their number counted with multiplicity is 13.21

Property (III) establishes a connection between C-eigenvalues and the best one-rank
approximation of A. We can think of applying recursively this approximation algorithm,
as suggested in [126] (where it was called incremental rank-one approximation), so that
the second iterate would deliver the best one-rank approximation λ2x2 ⊗ y2 ⊗ y2 to A1 :=
A−λ1x1 ⊗ y1 ⊗ y2, and so on; the existence of C-eigenvalues established in (I) guarantees
that this task can be accomplished at each step, up to the p-th iterate, when Ap is itself
rank-one.

According to the definition given in [126], a piezoelectric tensorA is said to be orthogonally
decomposable if it can be written as the following finite sum,

A=

p∑
i=i

λixi⊗ yi⊗ yi, λi > 0, xi,yi ∈ S2

with xi · xj = yi · yj = 0 ∀i 6= j. (255)

It was proved in [126] that an orthogonally decomposable tensorA possesses a unique decom-
position (255) and this is correctly identified by the incremental rank-one approximation
algorithm (a different proof of this result can also be found in [62]).

Remark 30. The singular value decomposition of a second-rank tensor L ∈ T (2,V) with
dimV= n amounts to represent it in the form

L= USVT, (256)

where

S=
n∑

i=1

σiei⊗ ei with σi ≧ 0 and ei · ej = δij (257)

21 This applies toA ∈ T (3,V)with dimV= 3. In general, for dimV= n, this number is (3n − 1)/2, which is derived
in [23] by an extension of (54).
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and U, V are orthogonal tensors (such that UUT = VVT = I). This result has a long history
(neatly recounted in [106]) that started with the works of Beltrami [10] and Jordan [57, 58].
What makes it relevant to our topic is that (256) was also proved in [33] as resulting from a
rank-one approximation of L, much in the same spirit as (255), which could thus be seen as a
possible extension of (256).

Remark 31. The appropriate version of (255) valid for a generic orthogonally decomposable
octupolar tensor A is

A=

p∑
i=i

λixi⊗ yi⊗ zi, λi > 0, xi,yi,zi ∈ S2

with xi · xj = yi · yj = zi · zj = 0 ∀i 6= j.

(258)

The applicability of the incremental rank-one approximation algorithm to establish (258) was
also proved in [126].

Remark 32. Introducing for a general octupolar tensor A the generalized potential

ΦG(x,y,z) := A · x⊗ y⊗ z, (259)

one could easily justify the rank-one approximation algorithm delivering (258) as resulting
from the search for themaximum ofΦG over S2 ×S2 × S2, which entrains a further generalized
notion of eigenvalues and associated eigenvectors (λ,x,y,z) of A.

Remark 33. Even when the orthogonal decompositions in (255) and (258) do not apply, the
one-rank approximation algorithm is still meaningful. In that case, the orthogonality condi-
tions in both (255) and (258) fail to hold and the decompositions formally delivered by these
equations no longer represent A; they feature the best approximations to A provided by its
generalized eigenvalues and eigenvectors.

7. Selected applications

The applications of octupolar tensors in physics are countless. Apart from the specific fields
that in section 2.4 served as our motivation for this review, other fields have witnessed new
or renewed formulations of theories that use octupolar (as well as higher-rank tensors). Here
we give short accounts on just exemplary few of these fields, pausing longer on liquid crystal
science, which is where our interest on the topic of this review originated.

7.1. Gravitation

In this context, octupolar tensors appear in the description of cubic-order spin effects in the
dynamics of gravitational waves [77]. Also, they feature in computing invariants connected
with tidal interactions that influence the late dynamics of compact binary systems, which have
the potential of constituting the prime targets of a network of gravitational-wave detectors [11].

7.2. Spin states

Majorana [74] introduced a geometrical picture to represent quantum states. In this repres-
entation, a pure spin-j state is mapped onto 2j points on the unit sphere S2 (which is in this
context is also called the Bloch sphere). Recently, a generalization of this picture was pro-
posed in [47], which applies to both pure and mixed spin-j states; this extended representation
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employs a symmetric tensor of rank 2j in dimension 4 (which is thus an octupolar tensor for
fermions with j = 3/2). Along the same lines, the reader will find it useful to consult the works
[15, 48, 91].

7.3. Liquid crystals

In classical liquid crystal theory, the nematic director field n describes the average orientation
of themolecules that constitute themedium; the elastic distortions of n are locally measured by
its gradient ∇n, which may become singular where the director exhibits defects arising from
a degradation of molecular order. The orientation of n should be physically indistinguishable
from the orientation of −n; this notion of invariance embodies the nematic symmetry. In this
short account we follow [82], to which the reader is referred for any further details.

The two main descriptors, n and ∇n, can be combined into the third-rank octupolar
tensor

It is worth noticing that A defined in (260) is invariant under the change of orientation of n,
and so it duly enjoys the nematic symmetry, which makes it a good candidate for measuring
intrinsically the local distortions of a director field.

Selinger [101], extending earlier work [71], suggested a new interpretation of the elastic
modes for nematic liquid crystals described by the Oseen–Frank elastic free energy, which
penalizes in a quadratic fashion the distortions of n away from any uniform state. The Oseen–
Frank energy density WOF is defined as (see, e.g. [31, chapter 3] and [116, chapter 3])

WOF :=
1
2
K11(divn)2 +

1
2
K22(n · curln)2 +

1
2
K33|n× curln|2

+K24[tr(∇n)2 − (divn)2],
(261)

where K11, K22, K33, and K24 are the splay, twist, bend, and saddle-splay constants, respect-
ively, each associated with a corresponding elastic mode22.

The decomposition of WOF in independent elastic modes proposed in [101] is achieved
through a new decomposition of ∇n. If we denote by P(n) andW(n) the projection onto the
plane orthogonal to n and the skew-symmetric tensor with axial vector n, respectively, then

∇n=−b⊗n+
1
2
TW(n)+

1
2
SP(n)+D, (262)

where b :=−(∇n)n= n× curln is the bend vector, T := n · curln is the twist (a pseudo-
scalar), S := divn is the splay (a scalar), and D is a symmetric tensor such that Dn= 0 and
trD= 0. The properties of D guarantee that when D 6= 0 it can be represented as

D= q(n1 ⊗n1 −n2 ⊗n2) , (263)

where q is the positive eigenvalue of D. We shall call q the octupolar splay for a reason that
shall soon be clear. The choice of sign for q identifies (to within orientation) the eigenvectors
n1 and n2 of D orthogonal to n. Since trD2 = 2q2, we easily obtain from (262) that

2q2 = tr(∇n)2 + 1
2
T2 − 1

2
S2. (264)

22 The saddle-splay term is a null Lagrangian [38] and an integration over the bulk reduces it to a surface energy.
Here, however, the surface-like nature of K24 will not be exploited.
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WOF can then be given the form

WOF =
1
2
(K11 −K24)S

2 +
1
2
(K22 −K24)T

2 +
1
2
K33b

2 +K24(2q
2), (265)

where all quadratic contributions are independent from one another.
The first advantage of such an expression is that it explicitly shows when the free energy is

positive semi-definite; this is the case when the following inequalities, due to Ericksen [39],
are satisfied,

K11 ≧ K24 ≧ 0, K22 ≧ K24 ≧ 0, K33 ≧ 0. (266)

Whenever q> 0, the frame (n1,n2,n) is identified to within a change of sign in either n1
or n2; requiring that n= n1 ×n2, we reduce this ambiguity to a simultaneous change in the
orientation of n1 and n2. In this frame,

P(n) = I−n⊗n and W(n) = n2 ⊗n1 −n1 ⊗n2. (267)

Since b ·n≡ 0, we can represent b as b= b1n1 + b2n2. The frame (n1,n2,n) is called the
distortion frame and (S,T,b1,b2,q) the distortion characteristics of the director field n [118].
In terms of these, (262) can also be written as

∇n=

(
S
2
+ q

)
n1 ⊗n1 +

(
S
2
− q

)
n2 ⊗n2 − b1n1 ⊗n− b2n2 ⊗n

+
1
2
T(n2 ⊗n1 −n1 ⊗n2) .

(268)

Both (262) and (268) show an intrinsic decomposition of∇n into four genuine bulk contribu-
tions, namely, bend, splay, twist, and octupolar splay.

The octupolar tensor A defined in (260) revealed itself as a convenient tool to illustrate
director distortions [82]. Having, however, symmetrized A, we have implicitly renounced to
represent T, so no sign of twist will be revealed byA. This is the only piece of lost information.

Remark 34. T is a measure of chirality, and so it cannot be associated with a symmetric tensor.
By forming the completely skew-symmetric part of ∇n⊗n, one would obtain the tensor
− 1

6Tϵ, where ϵ is Ricci’s alternator, the most general skew-symmetric, third-rank tensor in
three dimensions.

Letting x= x1n1 + x2n2 + x3n be a point on the unit sphere S2 referred to the distortion
frame (n1,n2,n), with the aid of (268), the octupolar potentialΦ defined by (82) can be written
for A in (260) as follows

Φ(x) =
(
S
2
+ q

)
x21x3 +

(
S
2
− q

)
x22x3 − b1x1x

2
3 − b2x2x

2
3

+
1
5

(
x21 + x22 + x23

)(
b1x1 + b2x2 − Sx3

)
.

(269)

As expected, Φ does not depend on the twist T, but it does depend on the octupolar splay q.
A thorough analysis of Φ in (269) is performed in [82]. Here, we only describe the very

special cases where one and only one elastic mode is exhibited.

Splay. When splay is the only active mode, the choice of n1 and n2 in the plane orthogonal
to n is arbitrary. This fact reverberates in the symmetries of the octupolar potential and also in
its critical points. In this case,

Φ(x) =
1
10
S
(
3x21x3 + 3x22x3 − 2x33

)
. (270)
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Figure 28. Polar plots of the octupolar potential Φ in (269) for pure elastic modes.
Dashed lines are associated with maxima (and conjugated minima). Reprinted with per-
mission from [82] Copyright (2020) by the American Physical Society.

Graphically, Φ(x) is depicted in figure 28(a), which is nothing but figure 2(a) turned upside
down.

Octupolar splay. When both S= 0 and b= 0, but q> 0, the potential Φ reduces to

Φ(x) = q(x21 − x22)x3. (271)

Figure 28(b) shows that Φ(x) has four identical lobes, spatially distributed at the vertices of a
regular tetrahedron; this is just the same plot as in figures 5(a) and 27, but differently oriented
in the reference frame. Accordingly, its maxima are the four points

x1,2 =
1√
3

(
±
√
2n1 +n

)
and x3,4 =

1√
3

(
±
√
2n2 −n

)
, (272)

each with value 2q/(3
√
3).

Bend. For pure bend, we can choose n1 and n2 such that b= bn1 with b> 0. Then the
potential,

Φ(x) =
1
5
bx1
(
x21 + x22 − 4x23

)
=
b
5
x1
(
1− 5x23

)
, (273)

has three lobes: two larger, with equal height 16b/(15
√
15) at

x1,2 =
1√
15

(
−2n1 ±

√
11n
)
, (274)

and one smaller at x3 = n1 with height b/5. As shown in figure 28(c), the polar plot of Φ is
invariant under both a rotation by angle π around n1 and the mirror symmetry with respect to
the plane containing (n1,n).

Remark 35. In a phenomenological theory formodulated nematic liquid crystal phase recently
proposed in [98], octupolar order plays a central role, as molecules are envisioned as stretched
tetrahedra. Motivated in part by the properties of the distortion tensor D in (263), the authors
of this study describe octupolar order through a third-rank tensor, which in our formalism can
be written as

A=Ω⊗n, (275)
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where n is the nematic director and Ω is a second-rank symmetric traceless tensor that anni-
hilates n. The tensor A in (275) falls in yet another category of third-rank tensors, which we
have not explicitly considered, but can be treated with he methods outlined here. In three space
dimensions, this tensor is represented by four scalar parameters; it can be associated with the
following octupolar potential on S2 ×S2,

ΦO(x,y) := A · x⊗ x⊗ y= (x ·Ωx)(n · y). (276)

8. Conclusion

Strictly speaking, an octupolar tensor A is a third-rank symmetric traceless tensor, which
is also called a harmonic tensor in some literature. There is an impressive body of works
devoted to this special class of tensors and their application to diverse fields of physics. Here,
we endeavoured to review some of these works in an attempt to broaden the scope where this
specific mathematical tool can be placed.

Not only have we considered fully symmetric tensors, but also partly symmetric ones and
fully general tensors. Of course, the more general was the setting, the less simple were the
results.

In the diverse territories we have traversed we found guidance in the unifying concept of
octupolar potential Φ, which, being a scalar-valued function representable on the unit sphere,
added geometrical charm to a somewhat algid algebra.

Seeing diverse approaches displayed before us, a number of questions come naturally to
mind, none necessarily with an easy answer. Many—we are sure—have already been heeded
by the reader. Here, wemention just two of these, which have especially attracted our attention.

First, one wonders whether there is a systematic way to relate the generalized eigenvectors
of A to its multipoles. Second, one would like to explore further the geometric properties
enjoyed by the octupolar potential Φ defined for a non-symmetric A.

We hope that these and other issues may be addressed in the future as a result of our attempt
to put octupolar tensors within a unifying setting. We trust that practitioners from the diverse
fields touched upon in this review may take even a modest advantage from the perspectives
we have offered. Should this be the case, our effort would not have been completely in vain.
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