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Abstract
Fetal Magnetic Resonance Imaging (MRI) is an important noninvasive diagnostic tool to characterize the central nervous 
system (CNS) development, significantly contributing to pregnancy management. In clinical practice, fetal MRI of the 
brain includes the acquisition of fast anatomical sequences over different planes on which several biometric measurements 
are manually extracted. Recently, modern toolkits use the acquired two-dimensional (2D) images to reconstruct a Super-
Resolution (SR) isotropic volume of the brain, enabling three-dimensional (3D) analysis of the fetal CNS.

We analyzed 17 fetal MR exams performed in the second trimester, including orthogonal T2-weighted (T2w) Turbo 
Spin Echo (TSE) and balanced Fast Field Echo (b-FFE) sequences. For each subject and type of sequence, three distinct 
high-resolution volumes were reconstructed via NiftyMIC, MIALSRTK, and SVRTK toolkits. Fifteen biometric measure-
ments were assessed both on the acquired 2D images and SR reconstructed volumes, and compared using Passing-Bablok 
regression, Bland-Altman plot analysis, and statistical tests.

Results indicate that NiftyMIC and MIALSRTK provide reliable SR reconstructed volumes, suitable for biometric 
assessments. NiftyMIC also improves the operator intraclass correlation coefficient on the quantitative biometric measures 
with respect to the acquired 2D images. In addition, TSE sequences lead to more robust fetal brain reconstructions against 
intensity artifacts compared to b-FFE sequences, despite the latter exhibiting more defined anatomical details.

 Our findings strengthen the adoption of automatic toolkits for fetal brain reconstructions to perform biometry evalu-
ations of fetal brain development over common clinical MR at an early pregnancy stage.

Keywords  Fetal brain · Magnetic Resonance Imaging · Super-Resolution Algorithm · Fetal biometry · Pediatric 
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Abbreviations
b-FFE	 �balance Fast Field Echo
cBPD	� cerebral BiParietal Diameter
ccL	 �corpus callosum Length
cFOD	 �cerebral Fronto-Occipital Diameter
cLLD	 �cerebellar Latero-Lateral Diameter
csA	 �clivo-supraoccipital Angle
FOV	 �Field Of View
GA	 �Gestational Age
ICC	 �Intraclass Correlation Coefficient
lvAW	 �lateral ventricles Atrial Width
mAPD	 �mesencephalic Antero-Posterior Diameter 
MRI	 �Magnetic Resonance Imaging
pAPD	 �pontine Antero-Posterior Diameter
pCCD	 �pontine Cranio-Caudal Diameter
pcfLLD	 �posterior cranial fossa Latero-Lateral Diameter
SR	 �Super-Resolution
SRR	 �Super-Resolution Reconstruction
T2w	 �T2-weighted
tBPD	� thecal BiParietal Diameter
tFOD	 �thecal Fronto-Occipital Diameter
TSE	 �Turbo Spin Echo
vAPD	 �vermian Antero-Posterior Diameter
vCCD	 �vermian Cranio-Caudal Diameter

Introduction

Fetal Magnetic Resonance Imaging (MRI) or in utero MRI 
is an important noninvasive diagnostic tool in the field of 
prenatal diagnosis, and its use has widely spread during 
the last two decades thanks to a combination of advances 
in imaging and analysis technology, coupled with the high 
availability of MRI scanners. Although ultrasound remains 
the first imaging modality in the examination of the fetal 
central nervous system, some abnormalities cannot be ade-
quately characterized by ultrasound alone (Manganaro et 
al., 2017). In such cases, MRI may play a crucial role in 
improving the diagnosis thanks to its superior image resolu-
tion and tissue contrast (Griffiths et al., 2017), thus having 
a significant impact on pregnancy management (Moltoni et 
al., 2021; Weisstanner et al., 2015).

Prenatal brain MRI routine practice relies on morpho-
logic assessment and biometric measurement evaluation. In 
clinical practice, fetal brain MRI biometry is an effective 
indicator of neurodevelopment and is performed on a series 
of two-dimensional (2D) images acquired via anatomical 
sequences (e.g., T2-weighted (T2w) Turbo Spin Echo (TSE) 
or balanced Fast Field Echo (b-FFE) sequences) (Conte et 
al., 2018). In particular, fast 2D sequences, acquired over 
different planes and with anisotropic voxels, are recom-
mended with respect to three-dimensional (3D) sequences 

because of their minor susceptibility to the fetal movement 
(Glenn et al., 2010).

Biometric measurements are manually extracted in each 
of the three orthogonal planes (axial, sagittal, and coronal) 
and then compared to reference values (Conte et al., 2018; 
Kyriakopoulou et al., 2017). Automated methods for the 
computation of biometric measurements in a highly com-
plex and rapidly changing brain morphology could improve 
the diagnostic and decision-making process. However, while 
several automatic approaches for the computation of ultra-
sound-based biometric linear measurements are provided 
(Khan et al., 2017; van den Heuvel et al., 2018; Al-Bander 
et al., 2019), in MRI only a few algorithms are available, 
e.g. for the evaluation of the cerebral biparietal diameter, 
the bone biparietal diameter, and the transcerebellar diam-
eter (Avisdris et al., 2021a, b). These methods mimic the 
radiologist’s manual annotation workflow, but in some cases 
lack accuracy in the segmentation of the fetal brain or in the 
selection of the slice to be used for the measurements.

Novel advanced image processing techniques based on 
super-resolution (SR) algorithms handle multiple 2D fetal 
scans, most likely corrupted by motion artifacts, and recon-
struct a high-resolution brain volume with an isotropic voxel 
size. This approach introduces the possibility of evaluating 
the fetal brain biometry, navigating the reconstructed image 
over any plane, not only the acquired ones. Moreover, SR 
reconstructed volumes enable true 3D structures segmen-
tation, which is arduous from conventional 2D slice-wise 
imaging protocols (Uus et al., 2022). Existing reconstruc-
tion frameworks (Rousseau et al., 2006; Jiang et al., 2007; 
Kim et al., 2010; Gholipour et al., 2010; Kuklisova-Mur-
gasova et al., 2012; Kainz et al., 2015; Alansary et al., 2017; 
Hou et al., 2018; Ni et al., 2021; Song et al., 2022) generally 
rely on an iterative approach that operates motion correc-
tion and Super-Resolution Reconstruction (SRR) (Ebner et 
al., 2020). These techniques usually handle only part of the 
whole processing pipeline (i.e., fetal brain localization, seg-
mentation, robust reconstruction, and template-space align-
ment) and require a laborious and time-consuming tuning 
of multiple hyper-parameters. On the other hand, a fully 
automatic tool addressing all processing steps and validated 
over different acquisition protocols is highly recommended 
to achieve efficacious and accurate fetal brain reconstruc-
tions. Nowadays, only three modern tools that provide all 
the functionality for fetal brain reconstruction from MR 
scans are available: NiftyMIC (Ebner et al., 2020), Medi-
cal Image Analysis Laboratory Super-Resolution ToolKit 
(MIALSRTK) (Tourbier et al., 2015, 2020) and 3D UNet-
driven Slice to Volume Reconstruction ToolKit (SVRTK) 
(Kuklisova-Murgasova et al., 2012).

Previous MRI studies have been conducted to compare 
qualitatively and/or quantitatively 2D images with 3D SR 
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reconstructions. Kyriakopoulou et al. (2017) and Khawam 
et al. (2021) conducted biometric assessments on both 
2D acquired images and SR reconstructions generated by 
SVRTK and MIALSRTK, respectively. Their results sug-
gest that biometric measurements extracted from 2D images 
and 3D reconstructions are highly correlated without sig-
nificant differences. However, their analyses were per-
formed on a wide gestational age range (18–38 weeks), 
with very few samples at GA lower than 21 weeks (6 and 
2 subjects, for Kyriakopoulou et al., 2017 and Khawam et 
al., 2021, respectively). Uus et al. (2022) directly compared, 
for the first time, the reconstructions generated by differ-
ent SR algorithms (NiftyMIC, MIALSRTK, and SVRTK), 
mainly focusing on the motion artifacts characterization in 
the acquired images and their impact on volume reconstruc-
tions. The comparison among the different SR algorithms 
was primarily based on the computational times required to 
reconstruct the fetal brain, while only a qualitative compari-
son was carried out on the reconstructed images.

In this study, we characterized qualitatively and quan-
titatively the geometric reliability of the fetal brain SR 
reconstruction obtained via the three above-mentioned 
modern tools (i.e., NiftyMIC, MIALSRTK, and SVRTK). 
We specifically focused on a narrow gestational age range 
of 20–21 weeks, which is recognized as a crucial diagnostic 
period in the course of pregnancy (Prayer et al., 2017). In 
fact, the early diagnosis of developmental anomalies during 
this period can have significant implications for pregnancy 
management (Conte et al., 2018) and may also have legal 
implications in some countries where legal pregnancy ter-
mination is allowed up to a certain gestational age. Despite 
being a challenging context due to the high level of motion 
(Uus et al., 2022), these specific GAs are often underrepre-
sented in the datasets and poorly investigated (as in Kyria-
kopoulou et al., 2017; Khawam et al., 2021). In detail, we 
assessed the geometric reliability of the brain SR recon-
structions by comparing the biometric measures derived 
from the acquired 2D images with those obtained from the 
SR reconstructions on a heterogeneous dataset of fetal MRI 
images. Furthermore, we examined two different acquisi-
tion sequences (i.e., TSE and b-FFE) to evaluate which of 
them led to more reliable measures and high-resolution 
reconstructions.

Methods

Dataset

Population

17 fetal brain MR imaging examinations of singleton preg-
nancies (GAs: 20.24 ± 0.44 weeks) were collected at the 
Scientific Institute IRCCS Fondazione Ca’ Granda Osped-
ale Maggiore Policlinico (Milan, Italy).

Exclusion criteria for mothers include (1) twin pregnancy, 
(2) history of perinatal adverse events, (3) infective or auto-
immune diseases, (4) use of systemic corticosteroids, and 
(5) congenital, genetic, or neurological disorders. Exclusion 
criteria for the fetus include congenital, genetic disorders 
and the presence of brain malformation in the acquired MR 
images.

The procedures were approved by the institutional ethi-
cal review boards of the hospital, and all women signed an 
informed consent for the research use of data.

MRI Data

Fetal MR data were acquired with an Achieva d-Stream 3T 
Philips scanner (Best, The Netherlands) using a phased-
array abdominal coil. The fetal brain MR imaging protocol 
included T2w TSE and/or b-FFE (i.e., balanced gradient 
echo in Philips scanners) sequences which were acquired 
with different Fields Of View (FOV), i.e. Reduced (R) or 
Wide (W), due to the clinical contexts. Some subjects were 
also acquired with multiple sequence setups and for each 
given setup at least one sequence was acquired for each 
orthogonal orientation. Details on the different MR image 
acquisition parameters and acquired subjects can be found 
in Table 1.

Super-Resolution Reconstruction

For each subject, the orthogonal MR sequences of the fetal 
brain were reconstructed into SR volumes via the publicly 
available toolkits NiftyMIC1 (v0.8), MIALSRTK2 (v2.03), 
SVRTK3 (v0.2), following their recommended pipelines. 
Before the reconstruction, all the images acquired with 
different sequences and different setups were divided into 
subsets containing homogeneous images and then were 
visually inspected to discard sequences with high levels of 
motion distortion and/or intensity signal dropout (Khawam 
et al., 2021). On average, 3.35 sequences per subject were 

1  https://github.com/gift-surg/NiftyMIC.
2  https://github.com/Medical-Image-Analysis-Laboratory/
mialsuperresolutiontoolkit.
3  https://github.com/SVRTK/svrtk-docker-gpu.
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overall good quality, but with some blurring effects still rel-
evant; 4 indicate an excellent quality of fetal brain volume 
reconstruction, without any blurring effects.

Biometric Measurements

The biometric measures were assessed both on the acquired 
2D images and SR reconstructions, via the 3D Slicer image 
computing platform (Fedorov et al., 2012). Biometric 
measurements were performed in each subject by at least 
one expert in MR pediatric image analysis. The Intraclass 
Correlation Coefficient (ICC) was computed on the sub-
jects analyzed by multiple operators to investigate pos-
sible dependencies in the acquired measures. The one-way 
ANOVA statistical test was performed to explore significant 
differences in the ICCs measures according to the image 
type (i.e., 2D image and SR reconstructions).

In accordance with the guidelines described in previous 
studies (Garel et al., 2005; Parazzini et al., 2008; Woitek 
et al., 2014; Conte et al., 2018) we selected the following 
biometric measures (Fig. 3): for axial orientation the mes-
encephalic Antero-Posterior Diameter (mAPD); for coronal 
orientation the lateral ventricles Atrial Width (lvAW), the 
cerebellar Latero-Lateral Diameter (cLLD), the posterior 
cranial fossa Latero-Lateral Diameter (pcfLLD), the cerebral 
BiParietal Diameter (cBPD), the thecal BiParietal Diameter 
(tBPD); for sagittal orientation the cerebral Fronto-Occip-
ital Diameter (cFOD), the thecal Fronto-Occipital Diam-
eter (tFOD), the corpus callosum Length (ccL), the pontine 
Antero-Posterior Diameter (pAPD), the pontine Cranio-
Caudal Diameter (pCCD), the vermian Antero-Posterior 
Diameter (vAPD), the vermian Cranio-Caudal Diameter 
(vCCD), and the clivo-supraoccipital Angle (csA). All MR 
imaging measures were expressed in millimeters, with the 

used for the reconstruction (Fig. 1). The high rate of dis-
carded images is mainly due to fetal motion, which tends to 
increase with decreasing fetal age (Uus et al., 2022).

Qualitative Evaluation of the SR Brain Volumes

The quality of the brain volume reconstruction was judged 
in a blinded protocol by two MR pediatric image experts. 
Reconstructed brain volumes were rated with a Likert scale 
(Likert et al., 1932) from 1 to 4 (Fig. 2) where a rating of 1 
indicates a bad quality of fetal brain volume reconstruction, 
unusable for biometric purposes due to motion distortion 
and blurring effects; 2 indicate a poor quality of fetal brain 
volume reconstruction, that can be used at least for one reli-
able biometric measure due to an overall not good quality 
with still some motion distortion and blurring effects; 3 
indicate an acceptable quality of fetal brain volume recon-
struction, that can be used for biometric purposes due to an 

Table 1  MRI acquisition parameters of different types of T2w TSE and b-FFE sequences. The table reports for each sequence the number of 
exams, GAs in weeks, number of series, in-plane resolution (mm), slice thickness (mm), slice gap (mm), echo time (ms), repetition time (ms). 
GAs, echo time and repetition time are discussed in terms of minimum-maximum value, mean and standard deviation (SD). The subjects were 
acquired with multiple sequence setups
Sequences Number

of
exams

GAs
(weeks)

Number
of
series

In-plane 
resolution
(mm)

Slice 
thickness
(mm)

Slice gap
(mm)

Echo time
(ms)

Repetition time
(ms)

Mean
± SD

Min 
- Max

Mean
± SD

Min 
- Max

Mean
± SD

TSE
R-FOV

11 20.18
±
0.40

85 0.44 2.5 1 180 180 3500 3500

TSE
W-FOV

12 20.25
±
0.45

103 0.47 3 3 180 180 3500 3500

b-FFE
R-FOV

7 20.29
±
0.49

50 0.68 3 - 4.5–4.8 4.6 ± 0.1 9.0 -
10.0

9.3 ± 0.2

b-FFE
W-FOV

10 20.40
±
0.52

53 0.71 3 1 4.5–4.8 4.7 ± 0.1 9.0 -
10.0

9.3 ± 0.2

Fig. 1  Distribution of the acquired sequences, divided on the basis of 
the fetus GA (20 and 21 weeks) and the visual inspection results (valid 
and discarded series). Both series distributions are shown in terms of 
mean values and standard deviation. Valid series were subsequently 
used to compute the SR volumes
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Fig. 3  Biometric measurements representation (marked in red) in 
each orthogonal orientation. For axial orientation, the mesencephalic 
Antero-Posterior Diameter (mAPD); for coronal orientation the lateral 
ventricles Atrial Width (lvAW), the cerebellar Latero-Lateral Diameter 
(cLLD), the posterior cranial fossa Latero-Lateral Diameter (pcfLLD), 
the cerebral BiParietal Diameter (cBPD), the thecal BiParietal Diam-
eter (tBPD); for sagittal orientation the cerebral Fronto-Occipital 

Diameter (cFOD), the thecal Fronto-Occipital Diameter (tFOD), the 
corpus callosum Length (ccL), the pontine Antero-Posterior Diameter 
(pAPD), the pontine Cranio-Caudal Diameter (pCCD), the vermian 
Antero-Posterior Diameter (vAPD), the vermian Cranio-Caudal Diam-
eter (vCCD), and the clivo-supraoccipital Angle (csA). For a more 
detailed description of how to perform the measurements please refer 
to Conte et al. (2018)

 

Fig. 2  Example of fetal brain 
Super-Resolution Reconstructed 
(SRR) quality. The reconstructed 
brains were rated from bad to 
excellent
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AC1) and to qualify the magnitude of this coefficient the 
Altman’s benchmarking was adopted (Gwet et al., 2014). 
Furthermore, the slope coefficients and the intercepts of 
the Passing-Bablok regression line were compared with the 
paired two-tailed t-test and F-test.

Sequences Evaluation

The analyses introduced in the previous steps (i.e., image 
visual inspection, percentage error calculation, Passing-
Bablok regression-related test, and further statistical anal-
ysis as t- and F-test) were performed splitting the dataset 
according to the two acquisition sequences (i.e., TSE and 
b-FFE) to investigate differences in the SR images associ-
ated with the acquisition sequence.

All statistical analyses were performed with R software 
v4.0.5 (R Core Team 2021).

Results

Forty fetal brain volumes were reconstructed for each SR 
algorithm (Table 1).

The quality of the reconstructions was rated by two 
experts, as depicted in Fig. 4. The estimated GWet’s AC1 
between the two raters was 0.83. According to Altamn’s 
benchmarking scale, the magnitude of the estimated coef-
ficient is considered to be Good with a probability of 98.8%. 
For each score value, we considered the quality of recon-
struction as the average consensus between the two raters’ 
assessments. On average, the experts rated 6 NiftyMIC 
reconstructions, 6 MIALSRTK reconstructions and 17.5 
SVRTK reconstructions as bad; 12 NiftyMIC reconstruc-
tions, 14.5 MIALSRTK reconstructions and 16 SVRTK 
reconstructions as poor; 16 NiftyMIC reconstructions, 14.5 
MIALSRTK reconstructions and 4 SVRTK reconstructions 

only exception being the csA in degrees. Each measure was 
taken two to three times on each acquired 2D image and SR 
reconstruction, and then averaged on the subject.

Statistical Analysis

Tools Evaluation

An agreement analysis between the biometric measures on 
each orthogonal 2D acquisition (reference measure) and 
on the brain volume SR reconstructions (estimated mea-
sure) was performed using the Passing-Bablok regression 
analysis with the Person’s correlation coefficient (Passing 
& Bablok et al., 1983) and the Bland-Altman plot (Bland & 
Altman et al., 1999) as in Cardinale et al. (2014). Addition-
ally, the reliability index that reflects both degrees of corre-
lation and agreement between measurements obtained in the 
SR reconstructions and those obtained in the 2D sequences 
was evaluated using the ICC, and the criteria outlined by 
Koo and Li (2016) was adopted to interpret its magnitude. 
Finally, some related statistical analyses were performed. 
The Shapiro-Wilk method (Shapiro & Wilk et al., 1965) has 
been used to test the normality of the distribution of the bio-
metric measures. The mean values and the Standard Devia-
tions (SD) of the biometric measures were compared with a 
paired two-tailed t-test and F-test.

Tools Comparison

A qualitative comparison between the SR reconstruc-
tions was performed using the visual inspection scores 
described above. Moreover, the measurement percentage 
error between the SR reconstructions and the acquired 
2D images was estimated and analyzed using the Passing-
Bablok regression. In detail, the inter-rater reliability of the 
brain volume reconstruction quality categorical assessment 
was evaluated using Gwet’s agreement coefficient (Gwet’s 

Fig. 4  NiftyMIC, MIALSRTK and SVRTK compari-
son in terms of fetal brain reconstructions quality. 
Each bar and whisker represent the average and 
standard deviation consensus among the two raters’ 
assessments for each quality scale (bad, poor, accept-
able, and excellent), respectively
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Excellent, demonstrating the high reliability of the measures 
among operators. The detailed ICC results obtained for each 
biometric measure are reported in Table 2.

We performed a one-way ANOVA test to investigate 
whether the image source has an impact on the operator 
ICC. Statistical results showed a significant dependency of 
the operator ICC upon the different images (p = 0.027). In 
particular, the post-hoc analysis indicated that the operator 
ICC on NiftyMIC reconstructions is significantly larger than 
those on the MIALSRTK ones (p = 0.025) and 2D images 
(p = 0.014), while no difference was observed between 
MIALSRTK reconstructions and 2D images.

Tools Evaluation

We compared the biometric measures derived from each 
acquired 2D image (reference method) with those derived 
from the brain SR reconstruction. For this analysis, we 
combined all the measures obtained from each acquisition 
sequence, i.e. independently from the acquired sequence 
and setup.

It was not possible to estimate all the biometric measure-
ments on each subject subset (i.e., the acquired 2D images 
or the SR reconstructions) due to a significant number of 
motion-corrupted low-quality slices both in 2D images 
and in SR reconstructions. We evaluated 78% of all pos-
sible measurements on the 2D images, 65% and 50% of the 
measurements on the SR brain volumes reconstructed via 
NiftyMIC and MIALSRTK, respectively (Supplemental 
Fig. S1).

Measurement means and their SDs are reported for each 
sequence subset in Table 3. All the measures performed in 
2D images and SR reconstructions were normally distrib-
uted (p > 0.05). The statistical comparisons between the 
measurements performed on SR reconstructions and 2D 
images identified a significant difference in the mean of 
the cLLD measures for NiftyMIC and MIASLRTK recon-
structions (p = 0.01 and p < 0.001 for NiftyMIC and MIAL-
SRTK, respectively). No other significant differences were 
found for the other mean and SD values.

Figures 5-6 depict the scatter plots comparing the 2D 
and SR-derived estimations of the biometric measurements, 
along with the Passing-Bablok regression lines. All biomet-
ric measurements show a significant correlation coefficient 
(all p < 0.003, Bonferroni corrected) between the estimates 
derived from the acquired 2D images and those derived from 
the SR reconstructions. The slope and the intercept values 
(with a 95% confidence interval) of the Passing-Bablok 
regression line are reported in Supplemental Table S1.

The Bland-Altman plots of biometric measurements per-
formed on 2D images and tools SR reconstructions confirm 

as acceptable; 6 NiftyMIC reconstructions, 5 MIALSRTK 
reconstructions and 2.5 SVRTK reconstructions as excellent.

Reconstructed volumes scored as bad are not usable to 
derive any quantitative measures for the subsequent analy-
sis. Therefore, 6 (15%), 6 (15%), and 17.5 (44%) volumes 
were discarded for NiftyMIC, MIALSRTK, and SVRTK, 
respectively. In addition, due to the large difference in terms 
of the amount of measures taken between SVRTK and the 
other methods, we limited the subsequent biometric analy-
ses only to NiftyMIC and MIALSRTK. Thus, 34 fetal brain 
SR reconstructions obtained via NiftyMIC and MIALSRTK 
were considered.

ICC Analysis

In order to investigate the possibility of the measures being 
influenced by the operator, we calculated the ICC between 3 
operators on the measurements performed over 9 fetal brain 
reconstructions obtained via NiftyMIC and MIALSRTK, 
and their corresponding 2D images adopted for the recon-
struction. The operators’ ICC average between the derived 
biometric measures on the 2D images was 0.90 with an 
averaged 95% confidence interval of [0.85–0.94]. Accord-
ing to the criteria outlined by Koo and Li (2016), the opera-
tors’ derived measures’ reliability is Good to Excellent. The 
operators’ ICC averaged between the derived measures on 
the fetal brain SR reconstructions obtained via NiftyMIC 
was 0.93 with an averaged 95% confidence interval of 
[0.81–0.98], and via MIALSRTK was 0.88 with an aver-
aged 95% confidence interval of [0.70–0.97]. According to 
the criteria outlined by Koo and Li (2016), the operators-
derived measures’ reliability on NiftyMIC is Good to Excel-
lent and on MIALSRTK reconstructions is Moderate to 

Table 2  Intraclass Correlation Coefficient (ICC) of the biometric mea-
surements performed by three different operators on the 2D images 
and SR reconstructions
Orthogonal
Orientation

Biometric 
Measure

Operator ICC
2D NiftyMIC MIALSRTK

AX mAPD 0.82 0.94 0.76
COR r-lvAW 0.83 0.91 0.90

l-lvAW 0.89 0.95 0.94
cLLD 0.85 0.92 0.91
pcfLLD 0.95 0.98 0.95
cBPD 0.95 0.95 0.94
tBPD 0.94 0.94 0.89

SAG cFOD 0.91 0.91 0.92
tFOD 0.84 0.91 0.88
ccL 0.90 0.94 0.95
pAPD 0.89 0.95 0.82
pCCD 0.96 0.92 0.91
vAPD 0.89 0.96 0.65
vCCD 0.89 0.84 0.76
csA 0.95 0.96 0.97
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Finally, the average ICC between the biometric mea-
sures was 0.82 with an averaged 95% confidence interval of 

the results obtained with the Passing-Bablok test (Supple-
mental Fig. S2-S3 and Supplemental Table S2).

Table 3  Biometric measurements derived from 2D image and reconstructed fetal brain. All the measurements are expressed in millimeters (mm), 
with the only exception for csA in degrees (°). Each biometric measurement is discussed in terms of mean and standard deviation (SD).
Orthogonal 
Orientation

Bio-
metric 
Measure

2D SRR
NiftyMIC MIALSRTK
TSE
 W-FOV

TSE
R-FOV

b-FFE
W-FOV

b-FFE
R-FOV

TSE
W-FOV

TSE
R-FOV

b-FFE
W-FOV

b-FFE
R-FOV

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD
AX mAPD 

(mm)
4.5 ± 0.4 4.5 ± 0.3 4.7 ± 0.3 4.4 ± 0.3 4.5 ± 0.6 4.6 ± 0.5 4.5 ± 0.4 4.5 ± 0.4 4.4 ± 0.3

COR r-lvAW 
(mm)

6.2 ± 0.8 7 ± 0.9 6.2 ± 0.9 6.1 ± 0.7 5.6 ± 0.7 6.5 ± 0.9 6.1 ± 0.8 6.2 ± 0.7 5.9 ± 1

l-lvAW 
(mm)

6.3 ± 0.7 6.7 ± 0.7 5.9 ± 0.7 6.3 ± 0.9 6.3 ± 0.5 6.3 ± 0.9 6.3 ± 0.4 6.4 ± 0.9 6.5 ± 0.8

cLLD 
(mm)

19.6 ± 0.9 19 ± 0.9 19.5 ± 0.8 19.6 ± 1.1 19.3 ± 0.9 18.7 ± 1.3 19.1 ± 1.3 19.4 ± 1.4 19.3 ± 1

pcfLLD 
(mm)

27 ± 1.9 27.1 ± 2 27 ± 2.1 26.9 ± 2.1 25.4 ± 1.3 26.4 ± 2.1 27.4 ± 2.9 27.1 ± 2 26.5 ± 1.9

cBPD 
(mm)

37.5 ± 1.8 37.5 ± 2.9 37.8 ± 1.9 37.3 ± 2 38.8 ± 2.7 37.3 ± 1.7 36.6 ± 1.9 37.4 ± 2 37.5 ± 2

tBPD 
(mm)

44 ± 2.6 44.6 ± 4.1 44.2 ± 2.6 44 ± 2.7 45.7 ± 2.7 44.6 ± 2.7 42.9 ± 2.4 44.4 ± 1.8 44.4 ± 3.5

SAG cFOD 
(mm)

49.8 ± 2.5 49.8 ± 2 48.6 ± 2.9 48.8 ± 3 50.2 ± 2.8 50 ± 3.3 48.3 ± 4.5 49.9 ± 2.4 48.2 ± 2.5

tFOD 
(mm)

56.2 ± 2.5 56.6 ± 2.1 55.6 ± 2.9 56.4 ± 2.2 56.8 ± 3.1 56.6 ± 2.6 53.3 ± 4.9 57.5 ± 2 55.3 ± 2.2

ccL 
(mm)

15.9 ± 1.9 15.5 ± 1.9 15.5 ± 1.9 15.5 ± 1.8 15.2 ± 2.7 14.7 ± 1.8 15.7 ± 2.8 15.1 ± 1.5 14.8 ± 1.6

pAPD 
(mm)

6.3 ± 0.5 6.3 ± 0.7 6.4 ± 0.3 6.4 ± 0.5 5.7 ± 0.1 6.3 ± 0.3 6.4 ± 0.8 6.3 ± 0.6 6 ± 0.8

pCCD 
(mm)

6 ± 0.6 6.2 ± 0.3 5.9 ± 0.4 6.2 ± 0.7 6.1 ± 0.4 6 ± 0.2 6.1 ± 0.5 6.1 ± 0.6 6.4 ± 0.5

vAPD 
(mm)

5.4 ± 0.5 5.3 ± 0.4 5.5 ± 0.6 5.3 ± 0.4 5.5 ± 0.4 5.3 ± 0.6 5.6 ± 0.4 5.5 ± 0.5 5.8 ± 0.4

vCCD 
(mm)

7.3 ± 0.7 7 ± 0.9 8.1 ± 0.6 7.1 ± 0.9 7.2 ± 1.3 6.6 ± 0.8 7.3 ± 0.9 7.1 ± 1.1 7.4 ± 0.8

csA (°) 71.7 ± 7.7 73.4 ± 8.8 70 ± 6.3 71.3 ± 5.8 74.6 ± 5.4 69.2 ± 2.6 73.2 ± 11.3 71.9 ± 8 68 ± 10.8

Fig. 5  2D and NiftyMIC SR derived 
biometric measurements estimation 
agreement. The scatter plots with 
Passing-Bablok regression lines are 
presented for each biometric mea-
surement. Each scatter plot shows 
a significant agreement between 
2D and SR reconstruction estima-
tions with the Person’s correlation 
coefficient (p < 0.003, Bonferroni 
corrected). The reconstructed fetal 
brain is obtained via NiftyMIC.
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We computed for each toolkit the percentage error 
(mean ± SD) of the biometric measurements performed on 
the SR reconstructions with respect to those derived from 2D 
images (Table 5). Results showed an overall average error 
rate of -0.1% ± 4.9% and − 0.7% ± 5.1% for NiftyMIC and 
MIALSRTK, respectively. In 11 out of 15 measurements, 
NiftyMIC shows a smaller magnitude of the mean percent-
age error with respect to MIALSRTK, and in 9 out of 15 
measurements, it is characterized by a smaller SD.

Furthermore, we compared the two toolkits on the Pass-
ing-Bablok regression estimates that are reported in Sup-
plemental Table S1. No significant differences were found 
comparing the toolkits slope and intercept values with the 
paired two-tailed t-test. Finally, significant differences were 
found comparing the toolkits intercept values with the F-test 
(p = 0.02).

Sequences Evaluation

We investigated which MRI sequence (i.e., TSE or b-FFE) 
led to more reliable SR brain reconstructions.

From the visual quality assessment of the reconstruc-
tions, the estimated GWet’s AC1 between the two raters was 
0.89 and 0.64 for TSE and b-FFE reconstructions achieved 
via NiftyMIC, respectively; and 0.77 and 0.78 for TSE and 
b-FFE reconstructions achieved via MIALSRTK, respec-
tively. According to Altamn’s benchmarking scale, the 
estimated coefficient was Very Good with a probability of 
99.9% for TSE and Moderate with a probability of 98.9% 
for b-FFE reconstructions obtained via NiftyMIC. The esti-
mated coefficient was Good with a probability of 93.6% and 
93% for both TSE and b-FFE reconstructions obtained via 
MIALSRTK, respectively.

[0.62–0.92] for NiftyMIC, and 0.79 with a 95% confidence 
interval of [0.57–0.90] for MIALSRTK. According to the 
criteria outlined by Koo and Li (2016), the reliability of both 
tools is Moderate to Good. The ICC results are reported for 
each biometric measurement in Table 4.

Tools Comparison

From the visual inspection and scoring of the reconstructed 
images, the estimated GWet’s AC1 between the two raters 
was 0.74 and 0.78 for NiftyMIC and MIALSRTK, respec-
tively. According to Altamn’s benchmarking scale, the mag-
nitude of the estimated coefficient is considered to be Good 
with a probability of 95.1% and 99.2% for NiftyMIC and 
MIALSRTK, respectively.

Table 4  Intraclass Correlation Coefficient (ICC) between biometric 
measurements derived from reconstructed fetal brains and 2D images
Orthogonal
Orientation

Biometric 
Measure

2D-SRR ICC
NiftyMIC MIALSRTK

AX mAPD 0.85 0.86
COR r-lvAW 0.87 0.88

l-lvAW 0.87 0.84
cLLD 0.77 0.80
pcfLLD 0.84 0.85
cBPD 0.74 0.57
tBPD 0.84 0.78

SAG cFOD 0.75 0.70
tFOD 0.73 0.74
ccL 0.92 0.90
pAPD 0.64 0.50
pCCD 0.82 0.91
vAPD 0.87 0.89
vCCD 0.88 0.79
csA 0.87 0.79

Fig. 6  2D and MIALSRTK SR 
derived biometric measurements 
estimation agreement. The scatter 
plots with Passing-Bablok regres-
sion lines are presented for each 
biometric measurement. Each scatter 
plot shows a significant agreement 
between 2D image estimations and 
SR brain reconstruction estimations 
with the Person’s correlation coef-
ficient (p < 0.003, Bonferroni cor-
rected). The reconstructed fetal brain 
is obtained via MIALSRTK
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We estimated the percentage error of the biometric mea-
surements derived from the SR reconstructions from the 
different sequences with respect to the 2D image-derived 
ones (Table 6). Results showed an average of the orthogonal 
orientations error rate of 0.3% ± 4.9% and − 0.4% ± 4.8 
for TSE and b-FFE reconstructions via NiftyMIC, respec-
tively; and − 0.75% ± 5.37% and − 0.61% ± 4.8% for TSE 
and b-FFE reconstructions via MIALSRTK, respectively. 
The statistical analysis showed that the percentage error of 
the different measurements was significantly different from 
0 only for the ccL measure (p = 0.03) in the b-FFE recon-
structions, and vCCD measure (p = 0.03) in the TSE recon-
structions via NiftyMIC; and for cLLD measure in b-FFE 
(p = 0.01) and in TSE (p = 0.004) reconstructions, and for 
vCCD measure (p = 0.044) in TSE reconstructions via 
MIALSRTK.

Furthermore, we compared the two sequences on the Pass-
ing-Bablok regression estimates presented in Supplemental 

For each score value, we considered the quality of recon-
struction as the average consensus between the two raters’ 
assessments. On average, the experts rated 5 TSE and 1 
b-FFE reconstructions via NiftyMIC and MIALSRTK as 
bad; 8 TSE and 1.5 b-FFE reconstructions via NiftyMIC and 
10 TSE and 4.5 b-FFE reconstructions via MIALSRTK as 
poor; 7.5 TSE and 9.5 b-FFE reconstructions via NiftyMIC 
and 7 TSE and 7.5 b-FFE reconstructions via MIALSRTK 
as acceptable; and 2.5 TSE and 5 b-FFE reconstructions 
via NiftyMIC and 1 TSE and 4 b-FFE reconstructions via 
MIALSRTK as excellent (Fig. 7).

The visual inspection pointed out that b-FFE sequences 
were usually characterized by the presence of intensity arti-
facts due to their susceptibility to field inhomogeneities 
(Gholipour et al., 2014) affecting both the acquired 2D 
images and the SR reconstructions, independently from the 
adopted reconstruction toolkit (Fig. 8).

Fig. 7  MRI sequences (T2w- TSE and b-FFE) quality comparison 
of the fetal brain reconstructions obtained via NiftyMIC and MIAL-
SRTK. Each bar and whisker report the quality average and standard 

deviation consensus among the two raters’ assessments for each qual-
ity scale (bad, poor, acceptable, and excellent), respectively

 

Orthogonal
Orientation

Biometric Measure SRR
NiftyMIC MIALSRTK
Mean ± SD Mean ± SD

AX mAPD 0.53% ± 4.64% 0.12% ± 5.51%
COR r-lvAW -0.74% ± 7.51% 0.85% ± 4.76%

l-lvAW -0.9% ± 7.05% 1.36% ± 6.71%
cLLD -1.51% ± 2.86% -3.31% ± 3.05%
pcfLLD -1.32% ± 4.08% -1.53% ± 4.08%
cBPD 0.4% ± 3.92% -0.95% ± 3.92%
tBPD 0.91% ± 3.45% -0.01% ± 3.95%

SAG cFOD -1.12% ± 3.28% -1.46% ± 4.38%
tFOD 0.4% ± 3.22% -0.08% ± 3.92%
ccL 0.98% ± 5.45% -2.46% ± 5.7%
pAPD 0.5% ± 5.63% -0.54% ± 6.36%
pCCD -0.95% ± 4.59% -0.16% ± 4.45%
vAPD -0.36% ± 4.65% 0.66% ± 5.51%
vCCD 1.18% ± 7.74% -3.53% ± 7.66%
csA 0.2% ± 5.62% 0.68% ± 6.88%

Table 5  Toolkits (NiftyMIC 
and MIALSRTK) comparison 
in terms of biometric measure-
ments percentage error. The 
error is calculated between the 
measurements derived from the 
SR reconstructions and those 
derived from the 2D images. The 
percentage values are discussed 
in terms of mean and standard 
deviation (SD).
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(p = 0.023) of the TSE reconstructions obtained via MIAL-
SRTK. No significant differences were found comparing the 
sequences Passing-Bablok regression slope coefficient and 
intercept values with the paired two-tailed t-test. Finally, 

Table S3-S4. The one sample t-test applied on the TSE 
and b-FFE Passing-Bablok regression slope coefficient 
and intercept values showed significant differences with 
respect to a null distribution only for the slope coefficient 

Table 6  MRI sequences (T2w TSE and b-FFE) comparison in terms of biometric measurements percentage error. The error is calculated between 
the measurements derived from the SR reconstructions and those derived from 2D images. The fetal brain reconstructions are obtained via both 
NiftyMIC and MIALSRTK. The percentage values are discussed in terms of mean and standard deviation (SD)
Orthogonal
Orientation

Biometric 
Measure

NiftyMIC MIALSRTK
TSE b-FFE TSE b-FFE
Mean ± SD Mean ± SD Mean ± SD Mean ± SD

AX mAPD 1.42% ± 5.21% -0.08% ± 4.32% 0.65% ± 5.66% -0.17% ± 5.76%
COR r-lvAW 2.84% ± 7.26% -3.6% ± 6.61% 1.14% ± 6.36% 0.57% ± 2.88%

l-lvAW -2.16% ± 6.33% 0.11% ± 7.64% 0.05% ± 7.36% 2.56% ± 6.12%
cLLD -1.96% ± 3.06% -1.12% ± 2.72% -3.95% ± 3.29% -2.77% ± 2.86%
pcfLLD -1.43% ± 3.75% -1.24% ± 4.45% -2.25% ± 4.1% -0.82% ± 4.09%
cBPD -0.34% ± 4.2% 1.04% ± 3.66% -1.61% ± 4.57% -0.4% ± 3.34%
tBPD 0.4% ± 4.04% 1.35% ± 2.89% -0.73% ± 4.03% 0.6% ± 3.93%

SAG cFOD -1.42% ± 3.41% -0.79% ± 3.23% -2% ± 4.52% -1.01% ± 4.4%
tFOD -0.17% ± 3.3% 1% ± 3.15% -1.5% ± 4.03% 1.1% ± 3.57%
ccL 1.54% ± 5.32% 0.56% ± 5.74% -1.27% ± 6.14% -3.66% ± 5.28%
pAPD 0.82% ± 6.24% 0.21% ± 5.31% 1.16% ± 8.23% -1.91% ± 4.36%
pCCD -0.03% ± 5.13% -1.72% ± 4.14% 1.56% ± 4.11% -1.54% ± 4.43%
vAPD -0.49% ± 4.97% -0.24% ± 4.58% -0.6% ± 4.46% 1.79% ± 6.32%
vCCD 4.43% ± 5.55% -1.52% ± 8.46% -5.19% ± 6.5% -2.04% ± 8.63%
csA 0.93% ± 6.05% -0.6% ± 5.26% 3.31% ± 7.24% -1.46% ± 6.06%

Fig. 8  Examples of b-FFE artifacts. The artifact is reported on 2D 
images (original and its brain mask) and SR reconstructions obtained 
via NiftyMIC and MIALSRTK. The intensity artifact, pointed out by 

the red arrow, is shown in each of the three orthogonal planes (axial, 
sagittal, and coronal)
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via NiftyMIC and MIALSRTK, could be useful for biomet-
ric measurements. NiftyMIC reconstructions were qualita-
tively rated higher than MIALSRTK reconstructions since 
MIALSRTK brain reconstructions were more blurred and 
less anatomically defined. This is reflected in the amount 
of measurements that could be derived from the SR vol-
umes, higher for the NiftyMIC ones with respect to the 
MIALSRTK ones. Nevertheless, the measurements are very 
similar between the two methods, as well as their errors, 
suggesting a good agreement between them.

In addition, the inter-operator ICC results (Table 2) indi-
cate a significant improvement in the level of agreement 
among the operators when using NiftyMIC reconstructed 
images, as opposed to the originally acquired 2D images. 
We ascribe this result to the higher spatial in-plane resolu-
tion in each direction (i.e., the small slice thickness) and 
higher SNR due to the contribution of the multiple acquired 
sequences. The normative range of the biometric measures 
is usually small - especially at early GAs - thus even small 
errors may cause a significant shift in the corresponding 
fetal growth centile, eventually leading to misdiagnosis and 
misguided pregnancy management (Warrander et al., 2020). 
The improvement of the inter-operator ICC is therefore an 
important achievement supporting the use of SR images 
even in clinical practice.

Only the cLLD measure was found to be significantly dif-
ferent between measurements obtained from reconstructed 
volumes and 2D images. Both NiftyMIC and MIALSRTK 
usually provide larger cLLD values than the corresponding 
2D images. This may be due to the larger partial volume 
affecting the acquired 2D images with respect to the SR 
reconstructions. The cerebellum shape rapidly changes over 
the coronal plane and the 2D coronal images may not catch 
the largest section due to the wide slice thickness (~ 3 mm 
in our data).

We also evaluated the reliability/robustness of NiftyMIC 
and MIALSRTK employing two different sequence types 
(TSE and b-FFE). To the best of our knowledge, this is the 
first time that SR algorithms were tested and validated on 
b-FFE images. In detail, in both sequences, the mean per-
centage error of the measurements performed on the SR 
reconstructions is very small (Table 6), indicating that both 
tools provide geometrically reliable reconstructions even 
starting from a sequence they were not developed for. From 
a qualitative point of view, reconstructed volumes obtained 
via NiftyMIC and MIALSRTK from b-FFE sequences 
were rated, by the two experts, higher than reconstructions 
obtained from TSE sequences. This is due to the fact that 
b-FFE sequence reconstructions show more defined ana-
tomical details, because of their higher spatial in-plane 
resolution (Table  1). However, inspecting the two differ-
ent types of T2w sequences, we detected some intensity 

the F-test showed significant differences between TSE and 
b-FFE reconstructions obtained via NiftyMIC only for the 
intercept values (p = 0.03).

Discussion

Automatic brain reconstruction methods from 2D fetal MR 
fast scans are crucial to perform quantitative volumetric 
studies of brain development (Uus et al., 2022). The publicly 
available toolkits that provide all the functionality for fetal 
brain reconstruction from 2D MR images are NiftyMIC, 
MIALSTRK, and SVRTK. These toolkits were proposed 
and validated on T2w spin echo sequences, and the geomet-
ric reliability of the reconstructed images was not evaluated 
on heterogeneous datasets (i.e., different acquisition setups 
and MRI sequences). Moreover, they were optimized over 
a wide range of GAs, ranging from 20 to 37 weeks, but not 
specifically tested on the early part of this GAs window (as 
in Kyriakopoulou et al., 2017; Khawam et al., 2021; Uus 
et al., 2022). In this study, we successfully addressed these 
points. We first validated the aforementioned methods, then 
we conducted a qualitative and quantitative comparison 
among them over a heterogeneous dataset including differ-
ent acquisition sequences (i.e., T2w TSE and b-FFE) and 
setups, focusing on early GAs. We showed that NiftyMIC 
and MIALSTRK provide reliable SR volumes even in this 
specific context.

In 2022, Uus and colleagues qualitatively investigated 
the fetal brain reconstructions generated via SVRTK, Nif-
tyMIC, and MIALSRTK on a wide fetal MRI dataset rang-
ing from 20 to 38 weeks. The similar quality of the obtained 
reconstructions suggested that the choice of the recon-
struction toolbox is mainly driven by personal preferences 
towards a specific method and reconstruction time limit. 
In particular, SVRTK provided the smallest reconstruction 
computational times thanks to its multi-parallel C + + imple-
mentation. Conversely, on our dataset acquired in the 20th 
and 21st gestational week, we found that SVRTK provides 
unreliable reconstructions in 44% of the cases, i.e. images 
in which biometric measures cannot be taken. Thus, we lim-
ited the further analysis to the NiftyMIC and MIALSRTK 
reconstructions. The percentage error of the biometric mea-
surements performed on the SR reconstructions obtained 
with NiftyMIC and MIALSRTK is very small (Table  5) 
with respect to the one derived from 2D images and it is 
comparable with the measured population range (Table 3). 
Also, the 2D-SR reconstruction ICC results (Table 4), aver-
aged between the biometric measures, report high scores for 
NiftyMIC and MIALSRTK, suggesting that reconstructed 
volumes are geometrically reliable. The quality assessment 
demonstrated that 85% of reconstructed volumes, obtained 
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less affected by intensity artifacts that may impact further 
quantitative analysis.
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