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Abstract
Fetal	Magnetic	Resonance	Imaging	(MRI)	is	an	important	noninvasive	diagnostic	tool	to	characterize	the	central	nervous	
system	 (CNS)	 development,	 significantly	 contributing	 to	 pregnancy	management.	 In	 clinical	 practice,	 fetal	MRI	 of	 the	
brain	includes	the	acquisition	of	fast	anatomical	sequences	over	different	planes	on	which	several	biometric	measurements	
are	manually	extracted.	Recently,	modern	toolkits	use	the	acquired	two-dimensional	(2D)	images	to	reconstruct	a	Super-
Resolution	(SR)	isotropic	volume	of	the	brain,	enabling	three-dimensional	(3D)	analysis	of	the	fetal	CNS.

We	analyzed	17	 fetal	MR	exams	performed	 in	 the	 second	 trimester,	 including	orthogonal	T2-weighted	 (T2w)	Turbo	
Spin	Echo	(TSE)	and	balanced	Fast	Field	Echo	(b-FFE)	sequences.	For	each	subject	and	type	of	sequence,	three	distinct	
high-resolution	volumes	were	reconstructed	via	NiftyMIC,	MIALSRTK,	and	SVRTK	toolkits.	Fifteen	biometric	measure-
ments	were	assessed	both	on	the	acquired	2D	images	and	SR	reconstructed	volumes,	and	compared	using	Passing-Bablok	
regression,	Bland-Altman	plot	analysis,	and	statistical	tests.

Results	 indicate	 that	 NiftyMIC	 and	MIALSRTK	 provide	 reliable	 SR	 reconstructed	 volumes,	 suitable	 for	 biometric	
assessments.	NiftyMIC	also	improves	the	operator	intraclass	correlation	coefficient	on	the	quantitative	biometric	measures	
with	respect	to	the	acquired	2D	images.	In	addition,	TSE	sequences	lead	to	more	robust	fetal	brain	reconstructions	against	
intensity	artifacts	compared	to	b-FFE	sequences,	despite	the	latter	exhibiting	more	defined	anatomical	details.

	Our	findings	strengthen	the	adoption	of	automatic	toolkits	for	fetal	brain	reconstructions	to	perform	biometry	evalu-
ations	of	fetal	brain	development	over	common	clinical	MR	at	an	early	pregnancy	stage.
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Abbreviations
b-FFE	 	balance	Fast	Field	Echo
cBPD  cerebral BiParietal Diameter
ccL	 	corpus	callosum	Length
cFOD	 	cerebral	Fronto-Occipital	Diameter
cLLD	 	cerebellar	Latero-Lateral	Diameter
csA	 	clivo-supraoccipital	Angle
FOV	 	Field	Of	View
GA	 	Gestational	Age
ICC	 	Intraclass	Correlation	Coefficient
lvAW	 	lateral	ventricles	Atrial	Width
mAPD	 	mesencephalic	Antero-Posterior	Diameter	
MRI	 	Magnetic	Resonance	Imaging
pAPD	 	pontine	Antero-Posterior	Diameter
pCCD	 	pontine	Cranio-Caudal	Diameter
pcfLLD	 	posterior	cranial	fossa	Latero-Lateral	Diameter
SR	 	Super-Resolution
SRR	 	Super-Resolution	Reconstruction
T2w	 	T2-weighted
tBPD  thecal BiParietal Diameter
tFOD	 	thecal	Fronto-Occipital	Diameter
TSE	 	Turbo	Spin	Echo
vAPD	 	vermian	Antero-Posterior	Diameter
vCCD	 	vermian	Cranio-Caudal	Diameter

Introduction

Fetal	Magnetic	Resonance	Imaging	(MRI)	or	in	utero	MRI	
is	an	 important	noninvasive	diagnostic	 tool	 in	 the	field	of	
prenatal	 diagnosis,	 and	 its	 use	 has	 widely	 spread	 during	
the	 last	 two	decades	 thanks	 to	a	combination	of	advances	
in	imaging	and	analysis	technology,	coupled	with	the	high	
availability	of	MRI	scanners.	Although	ultrasound	remains	
the	first	 imaging	modality	 in	 the	 examination	 of	 the	 fetal	
central	nervous	system,	some	abnormalities	cannot	be	ade-
quately	 characterized	 by	 ultrasound	 alone	 (Manganaro	 et	
al., 2017).	 In	 such	 cases,	MRI	may	play	 a	 crucial	 role	 in	
improving	the	diagnosis	thanks	to	its	superior	image	resolu-
tion	and	tissue	contrast	(Griffiths	et	al.,	2017),	thus	having	
a	significant	impact	on	pregnancy	management	(Moltoni	et	
al., 2021;	Weisstanner	et	al.,	2015).

Prenatal	 brain	MRI	 routine	 practice	 relies	 on	morpho-
logic	assessment	and	biometric	measurement	evaluation.	In	
clinical	 practice,	 fetal	 brain	MRI	 biometry	 is	 an	 effective	
indicator	of	neurodevelopment	and	is	performed	on	a	series	
of	 two-dimensional	 (2D)	 images	 acquired	 via	 anatomical	
sequences	(e.g.,	T2-weighted	(T2w)	Turbo	Spin	Echo	(TSE)	
or	balanced	Fast	Field	Echo	(b-FFE)	sequences)	(Conte	et	
al., 2018).	 In	particular,	 fast	2D	sequences,	 acquired	over	
different	 planes	 and	 with	 anisotropic	 voxels,	 are	 recom-
mended	with	respect	 to	 three-dimensional	 (3D)	sequences	

because	of	their	minor	susceptibility	to	the	fetal	movement	
(Glenn	et	al.,	2010).

Biometric	measurements	are	manually	extracted	in	each	
of	the	three	orthogonal	planes	(axial,	sagittal,	and	coronal)	
and	then	compared	to	reference	values	(Conte	et	al.,	2018; 
Kyriakopoulou	 et	 al.,	 2017).	Automated	 methods	 for	 the	
computation	of	biometric	measurements	 in	 a	highly	 com-
plex and rapidly changing brain morphology could improve 
the	diagnostic	and	decision-making	process.	However,	while	
several	automatic	approaches	for	the	computation	of	ultra-
sound-based	 biometric	 linear	 measurements	 are	 provided	
(Khan	et	al.,	2017;	van	den	Heuvel	et	al.,	2018;	Al-Bander	
et al., 2019),	 in	MRI	only	a	 few	algorithms	are	available,	
e.g. for the evaluation of the cerebral biparietal diameter, 
the	bone	biparietal	diameter,	and	the	transcerebellar	diam-
eter	 (Avisdris	 et	 al.,	2021a, b).	These	methods	mimic	 the	
radiologist’s	manual	annotation	workflow,	but	in	some	cases	
lack	accuracy	in	the	segmentation	of	the	fetal	brain	or	in	the	
selection	of	the	slice	to	be	used	for	the	measurements.

Novel	 advanced	 image	processing	 techniques	based	on	
super-resolution	 (SR)	algorithms	handle	multiple	2D	 fetal	
scans,	most	likely	corrupted	by	motion	artifacts,	and	recon-
struct	a	high-resolution	brain	volume	with	an	isotropic	voxel	
size.	This	approach	introduces	the	possibility	of	evaluating	
the	fetal	brain	biometry,	navigating	the	reconstructed	image	
over	any	plane,	not	only	the	acquired	ones.	Moreover,	SR	
reconstructed	 volumes	 enable	 true	 3D	 structures	 segmen-
tation,	which	 is	 arduous	 from	 conventional	 2D	 slice-wise	
imaging	protocols	 (Uus	et	al.,	2022).	Existing	 reconstruc-
tion	frameworks	(Rousseau	et	al.,	2006; Jiang et al., 2007; 
Kim	et	 al.,	2010;	Gholipour	 et	 al.,	2010;	Kuklisova-Mur-
gasova	et	al.,	2012;	Kainz	et	al.,	2015;	Alansary	et	al.,	2017; 
Hou	et	al.,	2018; Ni et al., 2021; Song et al., 2022)	generally	
rely	on	an	 iterative	approach	 that	operates	motion	correc-
tion	and	Super-Resolution	Reconstruction	(SRR)	(Ebner	et	
al., 2020).	These	techniques	usually	handle	only	part	of	the	
whole	processing	pipeline	(i.e.,	fetal	brain	localization,	seg-
mentation,	robust	reconstruction,	and	template-space	align-
ment)	and	 require	a	 laborious	and	 time-consuming	 tuning	
of	 multiple	 hyper-parameters.	 On	 the	 other	 hand,	 a	 fully	
automatic	tool	addressing	all	processing	steps	and	validated	
over	different	acquisition	protocols	is	highly	recommended	
to	 achieve	 efficacious	 and	accurate	 fetal	 brain	 reconstruc-
tions.	Nowadays,	only	 three	modern	 tools	 that	provide	all	
the	 functionality	 for	 fetal	 brain	 reconstruction	 from	 MR	
scans	are	available:	NiftyMIC	(Ebner	et	al.,	2020),	Medi-
cal	 Image	Analysis	 Laboratory	 Super-Resolution	 ToolKit	
(MIALSRTK)	(Tourbier	et	al.,	2015, 2020)	and	3D	UNet-
driven	 Slice	 to	Volume	Reconstruction	ToolKit	 (SVRTK)	
(Kuklisova-Murgasova	et	al.,	2012).

Previous	MRI	studies	have	been	conducted	to	compare	
qualitatively	and/or	quantitatively	2D	 images	with	3D	SR	
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reconstructions.	Kyriakopoulou	et	al.	(2017)	and	Khawam	
et	 al.	 (2021)	 conducted	 biometric	 assessments	 on	 both	
2D	 acquired	 images	 and	SR	 reconstructions	 generated	 by	
SVRTK	 and	MIALSRTK,	 respectively.	Their	 results	 sug-
gest	that	biometric	measurements	extracted	from	2D	images	
and	 3D	 reconstructions	 are	 highly	 correlated	without	 sig-
nificant	 differences.	 However,	 their	 analyses	 were	 per-
formed	 on	 a	 wide	 gestational	 age	 range	 (18–38	 weeks),	
with	very	few	samples	at	GA	lower	than	21	weeks	(6	and	
2	subjects,	for	Kyriakopoulou	et	al.,	2017	and	Khawam	et	
al., 2021,	respectively).	Uus	et	al.	(2022)	directly	compared,	
for	 the	 first	 time,	 the	 reconstructions	 generated	 by	 differ-
ent	SR	algorithms	(NiftyMIC,	MIALSRTK,	and	SVRTK),	
mainly	focusing	on	the	motion	artifacts	characterization	in	
the	acquired	images	and	their	impact	on	volume	reconstruc-
tions.	The	 comparison	among	 the	different	SR	algorithms	
was	primarily	based	on	the	computational	times	required	to	
reconstruct	the	fetal	brain,	while	only	a	qualitative	compari-
son	was	carried	out	on	the	reconstructed	images.

In	 this	 study,	 we	 characterized	 qualitatively	 and	 quan-
titatively	 the	 geometric	 reliability	 of	 the	 fetal	 brain	 SR	
reconstruction	 obtained	 via	 the	 three	 above-mentioned	
modern	 tools	 (i.e.,	NiftyMIC,	MIALSRTK,	and	SVRTK).	
We	specifically	focused	on	a	narrow	gestational	age	range	
of	20–21	weeks,	which	is	recognized	as	a	crucial	diagnostic	
period	in	the	course	of	pregnancy	(Prayer	et	al.,	2017).	In	
fact,	the	early	diagnosis	of	developmental	anomalies	during	
this	period	can	have	significant	implications	for	pregnancy	
management	(Conte	et	al.,	2018)	and	may	also	have	legal	
implications	in	some	countries	where	legal	pregnancy	ter-
mination	is	allowed	up	to	a	certain	gestational	age.	Despite	
being a challenging context due to the high level of motion 
(Uus	et	al.,	2022),	these	specific	GAs	are	often	underrepre-
sented	in	the	datasets	and	poorly	investigated	(as	in	Kyria-
kopoulou	et	al.,	2017;	Khawam	et	al.,	2021).	In	detail,	we	
assessed	 the	 geometric	 reliability	 of	 the	 brain	 SR	 recon-
structions	 by	 comparing	 the	 biometric	 measures	 derived	
from	the	acquired	2D	images	with	those	obtained	from	the	
SR	reconstructions	on	a	heterogeneous	dataset	of	fetal	MRI	
images.	 Furthermore,	we	 examined	 two	 different	 acquisi-
tion	sequences	(i.e.,	TSE	and	b-FFE)	to	evaluate	which	of	
them	 led	 to	 more	 reliable	 measures	 and	 high-resolution	
reconstructions.

Methods

Dataset

Population

17	fetal	brain	MR	imaging	examinations	of	singleton	preg-
nancies	 (GAs:	 20.24	±	0.44	 weeks)	 were	 collected	 at	 the	
Scientific	Institute	IRCCS	Fondazione	Ca’	Granda	Osped-
ale	Maggiore	Policlinico	(Milan,	Italy).

Exclusion	criteria	for	mothers	include	(1)	twin	pregnancy,	
(2)	history	of	perinatal	adverse	events,	(3)	infective	or	auto-
immune	diseases,	 (4)	use	of	 systemic	 corticosteroids,	 and	
(5)	congenital,	genetic,	or	neurological	disorders.	Exclusion	
criteria	 for	 the	 fetus	 include	 congenital,	 genetic	 disorders	
and	the	presence	of	brain	malformation	in	the	acquired	MR	
images.

The	procedures	were	approved	by	the	institutional	ethi-
cal	review	boards	of	the	hospital,	and	all	women	signed	an	
informed	consent	for	the	research	use	of	data.

MRI Data

Fetal	MR	data	were	acquired	with	an	Achieva	d-Stream	3T	
Philips	 scanner	 (Best,	 The	 Netherlands)	 using	 a	 phased-
array	abdominal	coil.	The	fetal	brain	MR	imaging	protocol	
included	 T2w	 TSE	 and/or	 b-FFE	 (i.e.,	 balanced	 gradient	
echo	 in	 Philips	 scanners)	 sequences	which	were	 acquired	
with	different	Fields	Of	View	 (FOV),	 i.e.	Reduced	 (R)	or	
Wide	(W),	due	to	the	clinical	contexts.	Some	subjects	were	
also	 acquired	with	multiple	 sequence	 setups	 and	 for	 each	
given	 setup	 at	 least	 one	 sequence	 was	 acquired	 for	 each	
orthogonal	orientation.	Details	on	 the	different	MR	image	
acquisition	parameters	and	acquired	subjects	can	be	found	
in	Table	1.

Super-Resolution Reconstruction

For	each	subject,	the	orthogonal	MR	sequences	of	the	fetal	
brain	were	reconstructed	into	SR	volumes	via	the	publicly	
available	toolkits	NiftyMIC1	(v0.8),	MIALSRTK2	(v2.03),	
SVRTK3	 (v0.2),	 following	 their	 recommended	 pipelines.	
Before	 the	 reconstruction,	 all	 the	 images	 acquired	 with	
different	 sequences	and	different	 setups	were	divided	 into	
subsets	 containing	 homogeneous	 images	 and	 then	 were	
visually	inspected	to	discard	sequences	with	high	levels	of	
motion	distortion	and/or	intensity	signal	dropout	(Khawam	
et al., 2021).	On	average,	3.35	sequences	per	subject	were	

1 https://github.com/gift-surg/NiftyMIC.
2 https://github.com/Medical-Image-Analysis-Laboratory/
mialsuperresolutiontoolkit.
3 https://github.com/SVRTK/svrtk-docker-gpu.
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overall	good	quality,	but	with	some	blurring	effects	still	rel-
evant; 4 indicate an excellent	quality	of	fetal	brain	volume	
reconstruction,	without	any	blurring	effects.

Biometric Measurements

The	biometric	measures	were	assessed	both	on	the	acquired	
2D	images	and	SR	reconstructions,	via	the	3D	Slicer	image	
computing	 platform	 (Fedorov	 et	 al.,	 2012).	 Biometric	
measurements	were	performed	 in	 each	 subject	 by	 at	 least	
one	expert	 in	MR	pediatric	 image	analysis.	The	Intraclass	
Correlation	 Coefficient	 (ICC)	 was	 computed	 on	 the	 sub-
jects	 analyzed	 by	 multiple	 operators	 to	 investigate	 pos-
sible	dependencies	in	the	acquired	measures.	The	one-way	
ANOVA	statistical	test	was	performed	to	explore	significant	
differences	 in	 the	 ICCs	measures	 according	 to	 the	 image	
type	(i.e.,	2D	image	and	SR	reconstructions).

In	accordance	with	the	guidelines	described	in	previous	
studies	 (Garel	 et	 al.,	2005; Parazzini et al., 2008;	Woitek	
et al., 2014;	Conte	et	al.,	2018)	we	selected	the	following	
biometric	measures	(Fig.	3):	for	axial	orientation	the	mes-
encephalic	Antero-Posterior	Diameter	(mAPD);	for	coronal	
orientation	 the	 lateral	 ventricles	Atrial	Width	 (lvAW),	 the	
cerebellar	 Latero-Lateral	 Diameter	 (cLLD),	 the	 posterior	
cranial	fossa	Latero-Lateral	Diameter	(pcfLLD),	the	cerebral	
BiParietal	Diameter	(cBPD),	the	thecal	BiParietal	Diameter	
(tBPD);	 for	sagittal	orientation	 the	cerebral	Fronto-Occip-
ital	 Diameter	 (cFOD),	 the	 thecal	 Fronto-Occipital	 Diam-
eter	(tFOD),	the	corpus	callosum	Length	(ccL),	the	pontine	
Antero-Posterior	 Diameter	 (pAPD),	 the	 pontine	 Cranio-
Caudal	 Diameter	 (pCCD),	 the	 vermian	 Antero-Posterior	
Diameter	 (vAPD),	 the	 vermian	 Cranio-Caudal	 Diameter	
(vCCD),	and	the	clivo-supraoccipital	Angle	(csA).	All	MR	
imaging	measures	were	expressed	in	millimeters,	with	the	

used	 for	 the	 reconstruction	 (Fig.	1).	The	high	 rate	of	 dis-
carded	images	is	mainly	due	to	fetal	motion,	which	tends	to	
increase	with	decreasing	fetal	age	(Uus	et	al.,	2022).

Qualitative Evaluation of the SR Brain Volumes

The	quality	of	the	brain	volume	reconstruction	was	judged	
in	a	blinded	protocol	by	 two	MR	pediatric	 image	experts.	
Reconstructed	brain	volumes	were	rated	with	a	Likert	scale	
(Likert	et	al.,	1932)	from	1	to	4	(Fig.	2)	where	a	rating	of	1	
indicates	a	bad	quality	of	fetal	brain	volume	reconstruction,	
unusable	 for	 biometric	 purposes	 due	 to	motion	 distortion	
and	blurring	effects;	2	indicate	a	poor	quality	of	fetal	brain	
volume	reconstruction,	that	can	be	used	at	least	for	one	reli-
able	biometric	measure	due	to	an	overall	not	good	quality	
with	 still	 some	 motion	 distortion	 and	 blurring	 effects;	 3	
indicate an acceptable	quality	of	fetal	brain	volume	recon-
struction,	that	can	be	used	for	biometric	purposes	due	to	an	

Table 1	 MRI	acquisition	parameters	of	different	 types	of	T2w	TSE	and	b-FFE	sequences.	The	table	reports	for	each	sequence	the	number	of	
exams,	GAs	in	weeks,	number	of	series,	in-plane	resolution	(mm),	slice	thickness	(mm),	slice	gap	(mm),	echo	time	(ms),	repetition	time	(ms).	
GAs,	echo	time	and	repetition	time	are	discussed	in	terms	of	minimum-maximum	value,	mean	and	standard	deviation	(SD).	The	subjects	were	
acquired	with	multiple	sequence	setups
Sequences Number

of
exams

GAs
(weeks)

Number
of
series

In-plane	
resolution
(mm)

Slice 
thickness
(mm)

Slice gap
(mm)

Echo time
(ms)

Repetition	time
(ms)

Mean
± SD

Min 
-	Max

Mean
± SD

Min 
-	Max

Mean
± SD

TSE
R-FOV

11 20.18
±
0.40

85 0.44 2.5 1 180 180 3500 3500

TSE
W-FOV

12 20.25
±
0.45

103 0.47 3 3 180 180 3500 3500

b-FFE
R-FOV

7 20.29
±
0.49

50 0.68 3 - 4.5–4.8 4.6 ± 0.1 9.0	-
10.0

9.3 ± 0.2

b-FFE
W-FOV

10 20.40
±
0.52

53 0.71 3 1 4.5–4.8 4.7 ± 0.1 9.0	-
10.0

9.3 ± 0.2

Fig. 1	 Distribution	of	the	acquired	sequences,	divided	on	the	basis	of	
the	fetus	GA	(20	and	21	weeks)	and	the	visual	inspection	results	(valid	
and	discarded	series).	Both	series	distributions	are	shown	in	terms	of	
mean	values	 and	 standard	deviation.	Valid	 series	were	 subsequently	
used	to	compute	the	SR	volumes
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Fig. 3	 Biometric	 measurements	 representation	 (marked	 in	 red)	 in	
each	orthogonal	orientation.	For	axial	orientation,	the	mesencephalic	
Antero-Posterior	Diameter	(mAPD);	for	coronal	orientation	the	lateral	
ventricles	Atrial	Width	(lvAW),	the	cerebellar	Latero-Lateral	Diameter	
(cLLD),	the	posterior	cranial	fossa	Latero-Lateral	Diameter	(pcfLLD),	
the	cerebral	BiParietal	Diameter	(cBPD),	the	thecal	BiParietal	Diam-
eter	 (tBPD);	 for	 sagittal	 orientation	 the	 cerebral	 Fronto-Occipital	

Diameter	 (cFOD),	 the	 thecal	Fronto-Occipital	Diameter	 (tFOD),	 the	
corpus	callosum	Length	(ccL),	the	pontine	Antero-Posterior	Diameter	
(pAPD),	 the	 pontine	Cranio-Caudal	Diameter	 (pCCD),	 the	 vermian	
Antero-Posterior	Diameter	(vAPD),	the	vermian	Cranio-Caudal	Diam-
eter	 (vCCD),	 and	 the	 clivo-supraoccipital	Angle	 (csA).	 For	 a	more	
detailed	description	of	how	to	perform	the	measurements	please	refer	
to	Conte	et	al.	(2018)

 

Fig. 2 Example of fetal brain 
Super-Resolution	Reconstructed	
(SRR)	quality.	The	reconstructed	
brains	were	rated	from	bad	to	
excellent
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AC1)	 and	 to	 qualify	 the	magnitude	 of	 this	 coefficient	 the	
Altman’s	 benchmarking	was	 adopted	 (Gwet	 et	 al.,	2014).	
Furthermore,	 the	 slope	 coefficients	 and	 the	 intercepts	 of	
the	Passing-Bablok	regression	line	were	compared	with	the	
paired	two-tailed	t-test	and	F-test.

Sequences Evaluation

The	analyses	 introduced	 in	 the	previous	 steps	 (i.e.,	 image	
visual	 inspection,	 percentage	 error	 calculation,	 Passing-
Bablok	 regression-related	 test,	 and	 further	 statistical	 anal-
ysis	 as	 t-	 and	F-test)	were	performed	 splitting	 the	dataset	
according	 to	 the	 two	acquisition	 sequences	 (i.e.,	TSE	and	
b-FFE)	to	investigate	differences	in	the	SR	images	associ-
ated	with	the	acquisition	sequence.

All	statistical	analyses	were	performed	with	R	software	
v4.0.5	(R	Core	Team	2021).

Results

Forty	 fetal	brain	volumes	were	 reconstructed	 for	each	SR	
algorithm	(Table	1).

The	 quality	 of	 the	 reconstructions	 was	 rated	 by	 two	
experts,	as	depicted	 in	Fig.	4.	The	estimated	GWet’s	AC1	
between	 the	 two	 raters	 was	 0.83.	According	 to	Altamn’s	
benchmarking	scale,	 the	magnitude	of	 the	estimated	coef-
ficient	is	considered	to	be	Good	with	a	probability	of	98.8%.	
For	each	score	value,	we	considered	 the	quality	of	 recon-
struction	as	the	average	consensus	between	the	two	raters’	
assessments.	 On	 average,	 the	 experts	 rated	 6	 NiftyMIC	
reconstructions,	 6	 MIALSRTK	 reconstructions	 and	 17.5	
SVRTK	 reconstructions	 as	bad;	 12	NiftyMIC	 reconstruc-
tions,	 14.5	 MIALSRTK	 reconstructions	 and	 16	 SVRTK	
reconstructions	as	poor;	16	NiftyMIC	reconstructions,	14.5	
MIALSRTK	reconstructions	and	4	SVRTK	reconstructions	

only	exception	being	the	csA	in	degrees.	Each	measure	was	
taken	two	to	three	times	on	each	acquired	2D	image	and	SR	
reconstruction,	and	then	averaged	on	the	subject.

Statistical Analysis

Tools Evaluation

An	agreement	analysis	between	the	biometric	measures	on	
each	 orthogonal	 2D	 acquisition	 (reference	 measure)	 and	
on	 the	 brain	 volume	 SR	 reconstructions	 (estimated	 mea-
sure)	was	 performed	 using	 the	 Passing-Bablok	 regression	
analysis	with	 the	Person’s	 correlation	 coefficient	 (Passing	
&	Bablok	et	al.,	1983)	and	the	Bland-Altman	plot	(Bland	&	
Altman et al., 1999)	as	in	Cardinale	et	al.	(2014).	Addition-
ally,	the	reliability	index	that	reflects	both	degrees	of	corre-
lation	and	agreement	between	measurements	obtained	in	the	
SR	reconstructions	and	those	obtained	in	the	2D	sequences	
was	 evaluated	using	 the	 ICC,	 and	 the	 criteria	outlined	by	
Koo	and	Li	(2016)	was	adopted	to	interpret	its	magnitude.	
Finally,	 some	 related	 statistical	 analyses	were	 performed.	
The	Shapiro-Wilk	method	(Shapiro	&	Wilk	et	al.,	1965)	has	
been	used	to	test	the	normality	of	the	distribution	of	the	bio-
metric	measures.	The	mean	values	and	the	Standard	Devia-
tions	(SD)	of	the	biometric	measures	were	compared	with	a	
paired	two-tailed	t-test	and	F-test.

Tools Comparison

A	 qualitative	 comparison	 between	 the	 SR	 reconstruc-
tions	 was	 performed	 using	 the	 visual	 inspection	 scores	
described	 above.	 Moreover,	 the	 measurement	 percentage	
error	 between	 the	 SR	 reconstructions	 and	 the	 acquired	
2D	images	was	estimated	and	analyzed	using	the	Passing-
Bablok	regression.	In	detail,	the	inter-rater	reliability	of	the	
brain	volume	reconstruction	quality	categorical	assessment	
was	evaluated	using	Gwet’s	agreement	coefficient	(Gwet’s	

Fig. 4	 NiftyMIC,	MIALSRTK	and	SVRTK	compari-
son	in	terms	of	fetal	brain	reconstructions	quality.	
Each	bar	and	whisker	represent	the	average	and	
standard	deviation	consensus	among	the	two	raters’	
assessments	for	each	quality	scale	(bad,	poor,	accept-
able,	and	excellent),	respectively
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Excellent,	demonstrating	the	high	reliability	of	the	measures	
among	operators.	The	detailed	ICC	results	obtained	for	each	
biometric	measure	are	reported	in	Table	2.

We	 performed	 a	 one-way	 ANOVA	 test	 to	 investigate	
whether	 the	 image	 source	 has	 an	 impact	 on	 the	 operator	
ICC.	Statistical	results	showed	a	significant	dependency	of	
the	operator	ICC	upon	the	different	 images	(p	=	0.027).	In	
particular,	the	post-hoc	analysis	indicated	that	the	operator	
ICC	on	NiftyMIC	reconstructions	is	significantly	larger	than	
those	on	the	MIALSRTK	ones	(p	=	0.025)	and	2D	images	
(p	=	0.014),	 while	 no	 difference	 was	 observed	 between	
MIALSRTK	reconstructions	and	2D	images.

Tools Evaluation

We	 compared	 the	 biometric	 measures	 derived	 from	 each	
acquired	2D	image	(reference	method)	with	 those	derived	
from	 the	 brain	 SR	 reconstruction.	 For	 this	 analysis,	 we	
combined	all	the	measures	obtained	from	each	acquisition	
sequence,	 i.e.	 independently	 from	 the	 acquired	 sequence	
and	setup.

It	was	not	possible	to	estimate	all	the	biometric	measure-
ments	on	each	subject	subset	(i.e.,	the	acquired	2D	images	
or	 the	SR	 reconstructions)	 due	 to	 a	 significant	 number	of	
motion-corrupted	 low-quality	 slices	 both	 in	 2D	 images	
and	 in	 SR	 reconstructions.	We	 evaluated	 78%	of	 all	 pos-
sible	measurements	on	the	2D	images,	65%	and	50%	of	the	
measurements	on	 the	SR	brain	volumes	 reconstructed	via	
NiftyMIC	 and	 MIALSRTK,	 respectively	 (Supplemental	
Fig. S1).

Measurement	means	and	their	SDs	are	reported	for	each	
sequence	subset	in	Table	3.	All	the	measures	performed	in	
2D	 images	and	SR	 reconstructions	were	normally	distrib-
uted	 (p	>	0.05).	 The	 statistical	 comparisons	 between	 the	
measurements	 performed	 on	 SR	 reconstructions	 and	 2D	
images	 identified	 a	 significant	 difference	 in	 the	 mean	 of	
the	cLLD	measures	for	NiftyMIC	and	MIASLRTK	recon-
structions	(p	= 0.01 and p <	0.001	for	NiftyMIC	and	MIAL-
SRTK,	respectively).	No	other	significant	differences	were	
found	for	the	other	mean	and	SD	values.

Figures	 5-6	 depict	 the	 scatter	 plots	 comparing	 the	 2D	
and	SR-derived	estimations	of	the	biometric	measurements,	
along	with	the	Passing-Bablok	regression	lines.	All	biomet-
ric	measurements	show	a	significant	correlation	coefficient	
(all	p	<	0.003,	Bonferroni	corrected)	between	the	estimates	
derived	from	the	acquired	2D	images	and	those	derived	from	
the	SR	reconstructions.	The	slope	and	the	intercept	values	
(with	 a	 95%	 confidence	 interval)	 of	 the	 Passing-Bablok	
regression	line	are	reported	in	Supplemental	Table	S1.

The	Bland-Altman	plots	of	biometric	measurements	per-
formed	on	2D	images	and	tools	SR	reconstructions	confirm	

as	acceptable;	6	NiftyMIC	reconstructions,	5	MIALSRTK	
reconstructions	and	2.5	SVRTK	reconstructions	as	excellent.

Reconstructed	volumes	scored	as	bad	are	not	usable	 to	
derive	any	quantitative	measures	for	the	subsequent	analy-
sis.	Therefore,	6	(15%),	6	(15%),	and	17.5	(44%)	volumes	
were	 discarded	 for	NiftyMIC,	MIALSRTK,	 and	 SVRTK,	
respectively.	In	addition,	due	to	the	large	difference	in	terms	
of	the	amount	of	measures	taken	between	SVRTK	and	the	
other	methods,	we	limited	the	subsequent	biometric	analy-
ses	only	to	NiftyMIC	and	MIALSRTK.	Thus,	34	fetal	brain	
SR	reconstructions	obtained	via	NiftyMIC	and	MIALSRTK	
were	considered.

ICC Analysis

In	order	to	investigate	the	possibility	of	the	measures	being	
influenced	by	the	operator,	we	calculated	the	ICC	between	3	
operators	on	the	measurements	performed	over	9	fetal	brain	
reconstructions	 obtained	 via	 NiftyMIC	 and	 MIALSRTK,	
and	their	corresponding	2D	images	adopted	for	the	recon-
struction.	The	operators’	ICC	average	between	the	derived	
biometric	 measures	 on	 the	 2D	 images	 was	 0.90	 with	 an	
averaged	95%	confidence	interval	of	[0.85–0.94].	Accord-
ing	to	the	criteria	outlined	by	Koo	and	Li	(2016),	the	opera-
tors’	derived	measures’	reliability	is	Good to Excellent.	The	
operators’	ICC	averaged	between	the	derived	measures	on	
the	 fetal	 brain	 SR	 reconstructions	 obtained	 via	NiftyMIC	
was	 0.93	 with	 an	 averaged	 95%	 confidence	 interval	 of	
[0.81–0.98],	 and	 via	MIALSRTK	was	 0.88	with	 an	 aver-
aged	95%	confidence	interval	of	[0.70–0.97].	According	to	
the	criteria	outlined	by	Koo	and	Li	 (2016),	 the	operators-
derived	measures’	reliability	on	NiftyMIC	is	Good to Excel-
lent	 and	 on	 MIALSRTK	 reconstructions	 is	 Moderate to 

Table 2	 Intraclass	Correlation	Coefficient	(ICC)	of	the	biometric	mea-
surements	 performed	by	 three	 different	 operators	 on	 the	 2D	 images	
and	SR	reconstructions
Orthogonal
Orientation

Biometric 
Measure

Operator	ICC
2D NiftyMIC MIALSRTK

AX mAPD 0.82 0.94 0.76
COR r-lvAW 0.83 0.91 0.90

l-lvAW 0.89 0.95 0.94
cLLD 0.85 0.92 0.91
pcfLLD 0.95 0.98 0.95
cBPD 0.95 0.95 0.94
tBPD 0.94 0.94 0.89

SAG cFOD 0.91 0.91 0.92
tFOD 0.84 0.91 0.88
ccL 0.90 0.94 0.95
pAPD 0.89 0.95 0.82
pCCD 0.96 0.92 0.91
vAPD 0.89 0.96 0.65
vCCD 0.89 0.84 0.76
csA 0.95 0.96 0.97
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Finally,	 the	 average	 ICC	 between	 the	 biometric	 mea-
sures	was	0.82	with	an	averaged	95%	confidence	interval	of	

the	results	obtained	with	 the	Passing-Bablok	 test	 (Supple-
mental Fig. S2-S3	and	Supplemental	Table	S2).

Table 3	 Biometric	measurements	derived	from	2D	image	and	reconstructed	fetal	brain.	All	the	measurements	are	expressed	in	millimeters	(mm),	
with	the	only	exception	for	csA	in	degrees	(°).	Each	biometric	measurement	is	discussed	in	terms	of	mean	and	standard	deviation	(SD).
Orthogonal	
Orientation

Bio-
metric 
Measure

2D SRR
NiftyMIC MIALSRTK
TSE
	W-FOV

TSE
R-FOV

b-FFE
W-FOV

b-FFE
R-FOV

TSE
W-FOV

TSE
R-FOV

b-FFE
W-FOV

b-FFE
R-FOV

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD
AX mAPD 

(mm)
4.5 ± 0.4 4.5 ± 0.3 4.7 ± 0.3 4.4 ± 0.3 4.5 ± 0.6 4.6 ± 0.5 4.5 ± 0.4 4.5 ± 0.4 4.4 ± 0.3

COR r-lvAW	
(mm)

6.2 ± 0.8 7 ± 0.9 6.2 ± 0.9 6.1 ± 0.7 5.6 ± 0.7 6.5 ± 0.9 6.1 ± 0.8 6.2 ± 0.7 5.9 ± 1

l-lvAW	
(mm)

6.3 ± 0.7 6.7 ± 0.7 5.9 ± 0.7 6.3 ± 0.9 6.3 ± 0.5 6.3 ± 0.9 6.3 ± 0.4 6.4 ± 0.9 6.5 ± 0.8

cLLD 
(mm)

19.6 ± 0.9 19 ± 0.9 19.5 ± 0.8 19.6 ± 1.1 19.3 ± 0.9 18.7 ± 1.3 19.1 ± 1.3 19.4 ± 1.4 19.3 ± 1

pcfLLD 
(mm)

27 ± 1.9 27.1 ± 2 27 ± 2.1 26.9 ± 2.1 25.4 ± 1.3 26.4 ± 2.1 27.4 ± 2.9 27.1 ± 2 26.5 ± 1.9

cBPD 
(mm)

37.5 ± 1.8 37.5 ± 2.9 37.8 ± 1.9 37.3 ± 2 38.8 ± 2.7 37.3 ± 1.7 36.6 ± 1.9 37.4 ± 2 37.5 ± 2

tBPD 
(mm)

44 ± 2.6 44.6 ± 4.1 44.2 ± 2.6 44 ± 2.7 45.7 ± 2.7 44.6 ± 2.7 42.9 ± 2.4 44.4 ± 1.8 44.4 ± 3.5

SAG cFOD	
(mm)

49.8 ± 2.5 49.8 ± 2 48.6 ± 2.9 48.8 ± 3 50.2 ± 2.8 50 ± 3.3 48.3 ± 4.5 49.9 ± 2.4 48.2 ± 2.5

tFOD	
(mm)

56.2 ± 2.5 56.6 ± 2.1 55.6 ± 2.9 56.4 ± 2.2 56.8 ± 3.1 56.6 ± 2.6 53.3 ± 4.9 57.5 ± 2 55.3 ± 2.2

ccL 
(mm)

15.9 ± 1.9 15.5 ± 1.9 15.5 ± 1.9 15.5 ± 1.8 15.2 ± 2.7 14.7 ± 1.8 15.7 ± 2.8 15.1 ± 1.5 14.8 ± 1.6

pAPD 
(mm)

6.3 ± 0.5 6.3 ± 0.7 6.4 ± 0.3 6.4 ± 0.5 5.7 ± 0.1 6.3 ± 0.3 6.4 ± 0.8 6.3 ± 0.6 6 ± 0.8

pCCD	
(mm)

6 ± 0.6 6.2 ± 0.3 5.9 ± 0.4 6.2 ± 0.7 6.1 ± 0.4 6 ± 0.2 6.1 ± 0.5 6.1 ± 0.6 6.4 ± 0.5

vAPD 
(mm)

5.4 ± 0.5 5.3 ± 0.4 5.5 ± 0.6 5.3 ± 0.4 5.5 ± 0.4 5.3 ± 0.6 5.6 ± 0.4 5.5 ± 0.5 5.8 ± 0.4

vCCD	
(mm)

7.3 ± 0.7 7 ± 0.9 8.1 ± 0.6 7.1 ± 0.9 7.2 ± 1.3 6.6 ± 0.8 7.3 ± 0.9 7.1 ± 1.1 7.4 ± 0.8

csA	(°) 71.7 ± 7.7 73.4 ± 8.8 70 ± 6.3 71.3 ± 5.8 74.6 ± 5.4 69.2 ± 2.6 73.2 ± 11.3 71.9 ± 8 68 ± 10.8

Fig. 5	 2D	and	NiftyMIC	SR	derived	
biometric	measurements	estimation	
agreement.	The	scatter	plots	with	
Passing-Bablok	regression	lines	are	
presented	for	each	biometric	mea-
surement.	Each	scatter	plot	shows	
a	significant	agreement	between	
2D	and	SR	reconstruction	estima-
tions	with	the	Person’s	correlation	
coefficient	(p	< 0.003, Bonferroni 
corrected).	The	reconstructed	fetal	
brain	is	obtained	via	NiftyMIC.
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We	 computed	 for	 each	 toolkit	 the	 percentage	 error	
(mean	±	SD)	of	the	biometric	measurements	performed	on	
the	SR	reconstructions	with	respect	to	those	derived	from	2D	
images	(Table	5).	Results	showed	an	overall	average	error	
rate	of	-0.1%	±	4.9%	and	−	0.7%	±	5.1%	for	NiftyMIC	and	
MIALSRTK,	 respectively.	 In	11	out	 of	 15	measurements,	
NiftyMIC	shows	a	smaller	magnitude	of	the	mean	percent-
age	error	with	 respect	 to	MIALSRTK,	and	 in	9	out	of	15	
measurements,	it	is	characterized	by	a	smaller	SD.

Furthermore,	we	compared	the	two	toolkits	on	the	Pass-
ing-Bablok	 regression	 estimates	 that	 are	 reported	 in	 Sup-
plemental	Table	S1.	No	significant	differences	were	found	
comparing	the	toolkits	slope	and	intercept	values	with	the	
paired	two-tailed	t-test.	Finally,	significant	differences	were	
found	comparing	the	toolkits	intercept	values	with	the	F-test	
(p	=	0.02).

Sequences Evaluation

We	investigated	which	MRI	sequence	(i.e.,	TSE	or	b-FFE)	
led	to	more	reliable	SR	brain	reconstructions.

From	 the	 visual	 quality	 assessment	 of	 the	 reconstruc-
tions,	the	estimated	GWet’s	AC1	between	the	two	raters	was	
0.89	and	0.64	for	TSE	and	b-FFE	reconstructions	achieved	
via	NiftyMIC,	respectively;	and	0.77	and	0.78	for	TSE	and	
b-FFE	 reconstructions	 achieved	 via	 MIALSRTK,	 respec-
tively.	 According	 to	 Altamn’s	 benchmarking	 scale,	 the	
estimated	coefficient	was	Very Good	with	a	probability	of	
99.9%	for	TSE	and	Moderate	with	a	probability	of	98.9%	
for	b-FFE	reconstructions	obtained	via	NiftyMIC.	The	esti-
mated	coefficient	was	Good	with	a	probability	of	93.6%	and	
93%	for	both	TSE	and	b-FFE	reconstructions	obtained	via	
MIALSRTK,	respectively.

[0.62–0.92]	for	NiftyMIC,	and	0.79	with	a	95%	confidence	
interval	 of	 [0.57–0.90]	 for	MIALSRTK.	According	 to	 the	
criteria	outlined	by	Koo	and	Li	(2016),	the	reliability	of	both	
tools	is	Moderate to Good.	The	ICC	results	are	reported	for	
each	biometric	measurement	in	Table	4.

Tools Comparison

From	the	visual	inspection	and	scoring	of	the	reconstructed	
images,	the	estimated	GWet’s	AC1	between	the	two	raters	
was	0.74	and	0.78	for	NiftyMIC	and	MIALSRTK,	respec-
tively.	According	to	Altamn’s	benchmarking	scale,	the	mag-
nitude	of	the	estimated	coefficient	is	considered	to	be	Good 
with	a	probability	of	95.1%	and	99.2%	for	NiftyMIC	and	
MIALSRTK,	respectively.

Table 4	 Intraclass	 Correlation	 Coefficient	 (ICC)	 between	 biometric	
measurements	derived	from	reconstructed	fetal	brains	and	2D	images
Orthogonal
Orientation

Biometric 
Measure

2D-SRR	ICC
NiftyMIC MIALSRTK

AX mAPD 0.85 0.86
COR r-lvAW 0.87 0.88

l-lvAW 0.87 0.84
cLLD 0.77 0.80
pcfLLD 0.84 0.85
cBPD 0.74 0.57
tBPD 0.84 0.78

SAG cFOD 0.75 0.70
tFOD 0.73 0.74
ccL 0.92 0.90
pAPD 0.64 0.50
pCCD 0.82 0.91
vAPD 0.87 0.89
vCCD 0.88 0.79
csA 0.87 0.79

Fig. 6	 2D	and	MIALSRTK	SR	
derived	biometric	measurements	
estimation	agreement.	The	scatter	
plots	with	Passing-Bablok	regres-
sion	lines	are	presented	for	each	
biometric	measurement.	Each	scatter	
plot	shows	a	significant	agreement	
between	2D	image	estimations	and	
SR	brain	reconstruction	estimations	
with	the	Person’s	correlation	coef-
ficient	(p	< 0.003, Bonferroni cor-
rected).	The	reconstructed	fetal	brain	
is	obtained	via	MIALSRTK
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We	estimated	the	percentage	error	of	the	biometric	mea-
surements	 derived	 from	 the	 SR	 reconstructions	 from	 the	
different	 sequences	with	 respect	 to	 the	 2D	 image-derived	
ones	(Table	6).	Results	showed	an	average	of	the	orthogonal	
orientations	 error	 rate	of	0.3%	±	 4.9%	and	−	0.4%	± 4.8 
for	TSE	and	b-FFE	reconstructions	via	NiftyMIC,	respec-
tively; and −	0.75%	±	5.37%	and	−	0.61%	±	4.8%	for	TSE	
and	 b-FFE	 reconstructions	 via	 MIALSRTK,	 respectively.	
The	statistical	analysis	showed	that	the	percentage	error	of	
the	different	measurements	was	significantly	different	from	
0	only	for	 the	ccL	measure	(p	=	0.03)	in	the	b-FFE	recon-
structions,	and	vCCD	measure	(p	=	0.03)	in	the	TSE	recon-
structions	via	NiftyMIC;	and	for	cLLD	measure	 in	b-FFE	
(p	=	0.01)	 and	 in	TSE	 (p	=	0.004)	 reconstructions,	 and	 for	
vCCD	 measure	 (p	=	0.044)	 in	 TSE	 reconstructions	 via	
MIALSRTK.

Furthermore,	we	compared	the	two	sequences	on	the	Pass-
ing-Bablok	regression	estimates	presented	in	Supplemental	

For	each	score	value,	we	considered	the	quality	of	recon-
struction	as	the	average	consensus	between	the	two	raters’	
assessments.	 On	 average,	 the	 experts	 rated	 5	 TSE	 and	 1	
b-FFE	 reconstructions	 via	 NiftyMIC	 and	MIALSRTK	 as	
bad;	8	TSE	and	1.5	b-FFE	reconstructions	via	NiftyMIC	and	
10	TSE	and	4.5	b-FFE	reconstructions	via	MIALSRTK	as	
poor;	7.5	TSE	and	9.5	b-FFE	reconstructions	via	NiftyMIC	
and	7	TSE	and	7.5	b-FFE	reconstructions	via	MIALSRTK	
as	 acceptable;	 and	 2.5	 TSE	 and	 5	 b-FFE	 reconstructions	
via	NiftyMIC	and	1	TSE	and	4	b-FFE	reconstructions	via	
MIALSRTK	as	excellent	(Fig.	7).

The	visual	inspection	pointed	out	that	b-FFE	sequences	
were	usually	characterized	by	the	presence	of	intensity	arti-
facts	 due	 to	 their	 susceptibility	 to	 field	 inhomogeneities	
(Gholipour	 et	 al.,	 2014)	 affecting	 both	 the	 acquired	 2D	
images	and	the	SR	reconstructions,	independently	from	the	
adopted	reconstruction	toolkit	(Fig.	8).

Fig. 7	 MRI	 sequences	 (T2w-	 TSE	 and	 b-FFE)	 quality	 comparison	
of	the	fetal	brain	reconstructions	obtained	via	NiftyMIC	and	MIAL-
SRTK.	Each	bar	and	whisker	report	the	quality	average	and	standard	

deviation	consensus	among	the	two	raters’	assessments	for	each	qual-
ity	scale	(bad,	poor,	acceptable,	and	excellent),	respectively

 

Orthogonal
Orientation

Biometric	Measure SRR
NiftyMIC MIALSRTK
Mean ± SD Mean ± SD

AX mAPD 0.53%	±	4.64% 0.12%	±	5.51%
COR r-lvAW -0.74%	±	7.51% 0.85%	±	4.76%

l-lvAW -0.9%	±	7.05% 1.36%	±	6.71%
cLLD -1.51%	±	2.86% -3.31%	±	3.05%
pcfLLD -1.32%	±	4.08% -1.53%	±	4.08%
cBPD 0.4%	±	3.92% -0.95%	±	3.92%
tBPD 0.91%	±	3.45% -0.01%	±	3.95%

SAG cFOD -1.12%	±	3.28% -1.46%	±	4.38%
tFOD 0.4%	±	3.22% -0.08%	±	3.92%
ccL 0.98%	±	5.45% -2.46%	±	5.7%
pAPD 0.5%	±	5.63% -0.54%	±	6.36%
pCCD -0.95%	±	4.59% -0.16%	±	4.45%
vAPD -0.36%	±	4.65% 0.66%	±	5.51%
vCCD 1.18%	±	7.74% -3.53%	±	7.66%
csA 0.2%	±	5.62% 0.68%	±	6.88%

Table 5	 Toolkits	(NiftyMIC	
and	MIALSRTK)	comparison	
in	terms	of	biometric	measure-
ments	percentage	error.	The	
error	is	calculated	between	the	
measurements	derived	from	the	
SR	reconstructions	and	those	
derived	from	the	2D	images.	The	
percentage	values	are	discussed	
in	terms	of	mean	and	standard	
deviation	(SD).
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(p	=	0.023)	of	the	TSE	reconstructions	obtained	via	MIAL-
SRTK.	No	significant	differences	were	found	comparing	the	
sequences	Passing-Bablok	regression	slope	coefficient	and	
intercept	 values	 with	 the	 paired	 two-tailed	 t-test.	 Finally,	

Table	 S3-S4.	 The	 one	 sample	 t-test	 applied	 on	 the	 TSE	
and	 b-FFE	 Passing-Bablok	 regression	 slope	 coefficient	
and	 intercept	 values	 showed	 significant	 differences	 with	
respect	 to	a	null	distribution	only	for	 the	slope	coefficient	

Table 6	 MRI	sequences	(T2w	TSE	and	b-FFE)	comparison	in	terms	of	biometric	measurements	percentage	error.	The	error	is	calculated	between	
the	measurements	derived	from	the	SR	reconstructions	and	those	derived	from	2D	images.	The	fetal	brain	reconstructions	are	obtained	via	both	
NiftyMIC	and	MIALSRTK.	The	percentage	values	are	discussed	in	terms	of	mean	and	standard	deviation	(SD)
Orthogonal
Orientation

Biometric 
Measure

NiftyMIC MIALSRTK
TSE b-FFE TSE b-FFE
Mean ± SD Mean ± SD Mean ± SD Mean ± SD

AX mAPD 1.42%	±	5.21% -0.08%	±	4.32% 0.65%	±	5.66% -0.17%	±	5.76%
COR r-lvAW 2.84%	±	7.26% -3.6%	±	6.61% 1.14%	±	6.36% 0.57%	±	2.88%

l-lvAW -2.16%	±	6.33% 0.11%	±	7.64% 0.05%	±	7.36% 2.56%	±	6.12%
cLLD -1.96%	±	3.06% -1.12%	±	2.72% -3.95%	±	3.29% -2.77%	±	2.86%
pcfLLD -1.43%	±	3.75% -1.24%	±	4.45% -2.25%	±	4.1% -0.82%	±	4.09%
cBPD -0.34%	±	4.2% 1.04%	±	3.66% -1.61%	±	4.57% -0.4%	±	3.34%
tBPD 0.4%	±	4.04% 1.35%	±	2.89% -0.73%	±	4.03% 0.6%	±	3.93%

SAG cFOD -1.42%	±	3.41% -0.79%	±	3.23% -2%	±	4.52% -1.01%	±	4.4%
tFOD -0.17%	±	3.3% 1%	±	3.15% -1.5%	±	4.03% 1.1%	±	3.57%
ccL 1.54%	±	5.32% 0.56%	±	5.74% -1.27%	±	6.14% -3.66%	±	5.28%
pAPD 0.82%	±	6.24% 0.21%	±	5.31% 1.16%	±	8.23% -1.91%	±	4.36%
pCCD -0.03%	±	5.13% -1.72%	±	4.14% 1.56%	±	4.11% -1.54%	±	4.43%
vAPD -0.49%	±	4.97% -0.24%	±	4.58% -0.6%	±	4.46% 1.79%	±	6.32%
vCCD 4.43%	±	5.55% -1.52%	±	8.46% -5.19%	±	6.5% -2.04%	±	8.63%
csA 0.93%	±	6.05% -0.6%	±	5.26% 3.31%	±	7.24% -1.46%	±	6.06%

Fig. 8	 Examples	 of	 b-FFE	 artifacts.	 The	 artifact	 is	 reported	 on	 2D	
images	(original	and	its	brain	mask)	and	SR	reconstructions	obtained	
via	NiftyMIC	and	MIALSRTK.	The	intensity	artifact,	pointed	out	by	

the	red	arrow,	is	shown	in	each	of	the	three	orthogonal	planes	(axial,	
sagittal,	and	coronal)
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via	NiftyMIC	and	MIALSRTK,	could	be	useful	for	biomet-
ric	measurements.	NiftyMIC	reconstructions	were	qualita-
tively	rated	higher	 than	MIALSRTK	reconstructions	since	
MIALSRTK	brain	 reconstructions	were	more	 blurred	 and	
less	 anatomically	 defined.	This	 is	 reflected	 in	 the	 amount	
of	measurements	 that	 could	 be	 derived	 from	 the	 SR	 vol-
umes,	 higher	 for	 the	 NiftyMIC	 ones	 with	 respect	 to	 the	
MIALSRTK	ones.	Nevertheless,	the	measurements	are	very	
similar	 between	 the	 two	methods,	 as	well	 as	 their	 errors,	
suggesting	a	good	agreement	between	them.

In	addition,	the	inter-operator	ICC	results	(Table	2)	indi-
cate	 a	 significant	 improvement	 in	 the	 level	 of	 agreement	
among	 the	 operators	when	 using	NiftyMIC	 reconstructed	
images,	 as	opposed	 to	 the	originally	acquired	2D	 images.	
We	ascribe	this	result	to	the	higher	spatial	in-plane	resolu-
tion	 in	 each	 direction	 (i.e.,	 the	 small	 slice	 thickness)	 and	
higher	SNR	due	to	the	contribution	of	the	multiple	acquired	
sequences.	The	normative	range	of	the	biometric	measures	
is	usually	small	-	especially	at	early	GAs	-	thus	even	small	
errors	 may	 cause	 a	 significant	 shift	 in	 the	 corresponding	
fetal	growth	centile,	eventually	leading	to	misdiagnosis	and	
misguided	pregnancy	management	(Warrander	et	al.,	2020).	
The	improvement	of	the	inter-operator	ICC	is	therefore	an	
important	 achievement	 supporting	 the	 use	 of	 SR	 images	
even in clinical practice.

Only	the	cLLD	measure	was	found	to	be	significantly	dif-
ferent	between	measurements	obtained	from	reconstructed	
volumes	and	2D	images.	Both	NiftyMIC	and	MIALSRTK	
usually	provide	larger	cLLD	values	than	the	corresponding	
2D	 images.	This	may	be	 due	 to	 the	 larger	 partial	 volume	
affecting	 the	 acquired	 2D	 images	 with	 respect	 to	 the	 SR	
reconstructions.	The	cerebellum	shape	rapidly	changes	over	
the	coronal	plane	and	the	2D	coronal	images	may	not	catch	
the	largest	section	due	to	the	wide	slice	thickness	(~ 3 mm 
in	our	data).

We	also	evaluated	the	reliability/robustness	of	NiftyMIC	
and	MIALSRTK	 employing	 two	 different	 sequence	 types	
(TSE	and	b-FFE).	To	the	best	of	our	knowledge,	this	is	the	
first	 time	that	SR	algorithms	were	 tested	and	validated	on	
b-FFE	images.	In	detail,	 in	both	sequences,	 the	mean	per-
centage	 error	 of	 the	 measurements	 performed	 on	 the	 SR	
reconstructions	is	very	small	(Table	6),	indicating	that	both	
tools	 provide	 geometrically	 reliable	 reconstructions	 even	
starting	from	a	sequence	they	were	not	developed	for.	From	
a	qualitative	point	of	view,	reconstructed	volumes	obtained	
via	 NiftyMIC	 and	 MIALSRTK	 from	 b-FFE	 sequences	
were	rated,	by	the	two	experts,	higher	than	reconstructions	
obtained	from	TSE	sequences.	This	 is	due	 to	 the	fact	 that	
b-FFE	 sequence	 reconstructions	 show	 more	 defined	 ana-
tomical	 details,	 because	 of	 their	 higher	 spatial	 in-plane	
resolution	 (Table	 1).	 However,	 inspecting	 the	 two	 differ-
ent	 types	 of	 T2w	 sequences,	 we	 detected	 some	 intensity	

the	F-test	showed	significant	differences	between	TSE	and	
b-FFE	reconstructions	obtained	via	NiftyMIC	only	for	the	
intercept	values	(p	=	0.03).

Discussion

Automatic	brain	reconstruction	methods	from	2D	fetal	MR	
fast	 scans	 are	 crucial	 to	 perform	 quantitative	 volumetric	
studies	of	brain	development	(Uus	et	al.,	2022).	The	publicly	
available	toolkits	that	provide	all	the	functionality	for	fetal	
brain	 reconstruction	 from	 2D	MR	 images	 are	 NiftyMIC,	
MIALSTRK,	 and	 SVRTK.	 These	 toolkits	 were	 proposed	
and	validated	on	T2w	spin	echo	sequences,	and	the	geomet-
ric	reliability	of	the	reconstructed	images	was	not	evaluated	
on	heterogeneous	datasets	(i.e.,	different	acquisition	setups	
and	MRI	sequences).	Moreover,	they	were	optimized	over	
a	wide	range	of	GAs,	ranging	from	20	to	37	weeks,	but	not	
specifically	tested	on	the	early	part	of	this	GAs	window	(as	
in	Kyriakopoulou	et	 al.,	2017;	Khawam	et	 al.,	2021;	Uus	
et al., 2022).	In	this	study,	we	successfully	addressed	these	
points.	We	first	validated	the	aforementioned	methods,	then	
we	 conducted	 a	 qualitative	 and	 quantitative	 comparison	
among	them	over	a	heterogeneous	dataset	including	differ-
ent	 acquisition	 sequences	 (i.e.,	T2w	TSE	and	b-FFE)	 and	
setups,	focusing	on	early	GAs.	We	showed	that	NiftyMIC	
and	MIALSTRK	provide	reliable	SR	volumes	even	in	this	
specific	context.

In 2022,	 Uus	 and	 colleagues	 qualitatively	 investigated	
the	fetal	brain	reconstructions	generated	via	SVRTK,	Nif-
tyMIC,	and	MIALSRTK	on	a	wide	fetal	MRI	dataset	rang-
ing	from	20	to	38	weeks.	The	similar	quality	of	the	obtained	
reconstructions	 suggested	 that	 the	 choice	 of	 the	 recon-
struction	toolbox	is	mainly	driven	by	personal	preferences	
towards	 a	 specific	 method	 and	 reconstruction	 time	 limit.	
In	particular,	SVRTK	provided	the	smallest	reconstruction	
computational	times	thanks	to	its	multi-parallel	C	+ + imple-
mentation.	Conversely,	on	our	dataset	acquired	in	the	20th	
and	21st	gestational	week,	we	found	that	SVRTK	provides	
unreliable	reconstructions	in	44%	of	the	cases,	i.e.	images	
in	which	biometric	measures	cannot	be	taken.	Thus,	we	lim-
ited	the	further	analysis	to	the	NiftyMIC	and	MIALSRTK	
reconstructions.	The	percentage	error	of	the	biometric	mea-
surements	 performed	 on	 the	 SR	 reconstructions	 obtained	
with	 NiftyMIC	 and	 MIALSRTK	 is	 very	 small	 (Table	 5)	
with	 respect	 to	 the	one	derived	 from	2D	 images	 and	 it	 is	
comparable	with	the	measured	population	range	(Table	3).	
Also,	the	2D-SR	reconstruction	ICC	results	(Table	4),	aver-
aged	between	the	biometric	measures,	report	high	scores	for	
NiftyMIC	 and	MIALSRTK,	 suggesting	 that	 reconstructed	
volumes	are	geometrically	reliable.	The	quality	assessment	
demonstrated	that	85%	of	reconstructed	volumes,	obtained	
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less	affected	by	 intensity	artifacts	 that	may	 impact	 further	
quantitative	analysis.
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