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The combination of chain-mapping and tensor-network techniques provides a powerful tool for the numerically exact
simulation of open quantum systems interacting with structured environments. However, these methods suffer from a
quadratic scaling with the physical simulation time, and therefore they become challenging in the presence of multiple
environments. This is particularly true when fermionic environments, well-known to be highly correlated, are consid-
ered. In this work we first illustrate how a thermo-chemical modulation of the spectral density allows replacing the
original fermionic environments with equivalent, but simpler, ones. Moreover, we show how this procedure reduces the
number of chains needed to model multiple environments. We then provide a derivation of the fermionic Markovian
closure construction, consisting of a small collection of damped fermionic modes undergoing a Lindblad-type dynam-
ics and mimicking a continuum of bath modes. We describe, in particular, how the use of the Markovian closure allows
for a polynomial reduction of the time complexity of chain-mapping based algorithms when long-time dynamics are
needed.
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I. INTRODUCTION

The theory of open quantum systems (OQS) provides
a framework to study quantum systems when their inter-
action with the surrounding environment—be it desired or
undesired—is not negligible and leads to the emergence of
irreversible and noisy processes1–3. In certain situations,
it is possible to model such an interaction as resulting in
white noise, amenable to an effective description in terms of
a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master
equation4,5. In general, however, the system and the environ-
ment mutually influence each other’s evolution on timescales
relevant to the process under study; this gives rise to non-
Markovian effects that cannot be captured by the GKSL mas-
ter equation: details on the past state of the system, on its
many body environment and on the correlations between them
must be retained. Solid state implementations of qubits, such
as quantum dots6,7, molecular transistors8, unconventional su-
perconductors9, and molecular magnets10, quantum thermal
machines11,12, quantum sensing and metrology protocols13,14 ,
energy-charge conversion and exciton transport in solid-state
devices15,16, or synthetic or biological light-harvesting com-
plexes17,18 are typical instances in which deviations from a
Markovian evolution can play a significant role.

Due to the large number of environmental degrees of free-
dom affecting the reduced dynamics of the OQS under in-

vestigation, the simulation of even simple OQSs represents a
most challenging computational task. Beside exploiting meth-
ods originally developed for the simulation of strongly corre-
lated quantum systems, such as the numerical renormalization
group in the basis of scattering states19,20, flow equations21,22,
the time-dependent density-matrix renormalization group23,24,
multilayer multiconfiguration time-dependent Hartree (ML-
MCTDH)25, and continuous-time quantum Monte Carlo26–28,
a number of algorithms specifically designed for the simula-
tion of OQSs dynamics have been proposed in recent years.
Hierarchical Equation of Motion (HEOM)29, Dissipation-
Assisted Matrix Product Factorization (DAMPF)30,31, Time
Evolving Matrix Product Operators (TEMPO)32 and Auto-
mated Compressed Environment (ACE)33 are representative
of this class of OQS simulation methods.

Chain-mapping techniques combined with matrix-product
representations of quantum states represent a powerful tool
for the non-perturbative simulation of open quantum systems
interacting with structured environments. Chain-mapping con-
sists in a reshaping of the environment into a one dimensional
lattice of modes with nearest-neighbor interactions, a struc-
ture that is, in general, very well suited for DMRG-related
techniques34. While different chain mappings have been intro-
duced, the Time Evolving Density Operator with Orthogonal
Polynomials (TEDOPA)35–37 provides the most accurate dis-
cretization of continuous spectral densities38. The TEDOPA
algorithm has found application to the study of a variety of
open quantum systems strongly interacting with highly struc-
tured environments39–41. After the mapping, TEDOPA deter-
mines the evolution of both the OQS and the environmental
degrees of freedom on the same footing. This is a most re-
markable feature of the algorithm paving the way to the inves-
tigation of fundamental OQS phenomena, such as the mech-
anism at the origin of polaron formation in spin-boson mod-
els42. The 1-dimensional topology, moreover, implicitly de-
fines a light-cone structure that allows systematically deter-
mining the effective reduced environment which is relevant
to the system dynamics within any assigned evolution time,
leading to a further major reduction of the computational com-
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plexity and allowing for the simulation of more complex open
quantum systems43.

One of the main limitations of the original TEDOPA formu-
lation is its quadratic scaling,O(t2), with the physical simula-
tion time t44. As a matter of fact, actual computer simulations
require a truncation of the semi-infinite chain resulting from
the TEDOPA mapping after a finite number of sites. Such a
truncation must be suitably chosen so as not to introduce finite
size effects45,46.

Longer simulation times, therefore, will require longer
chains. A solution to this problem has been put forward, for
the case of bosonic environments, in Ref. 47 with the Marko-
vian Closure (MC) construct, namely a small collection of
damped harmonic modes able to mimic a semi-infinite uni-
form chain of harmonic oscillators. The use of the MC al-
lows for a reduction to O(t) of the TEDOPA time complexity
and makes it possible to use the algorithm to determine long
time OQS dynamics, such as those required for one- and two-
dimensional electronic spectroscopy.

Another context where long time dynamics are typically
required is the investigation of non-equilibrium steady-state
properties (NESS) of open quantum systems interacting with
fermionic environments. Macroscopic fermionic environ-
ments play a major role in several areas of condensed matter
physics, such as the Kondo effect, explaining the resistance
minimum of metallic conductors. Another key area where
fermionic environments play a crucial role is the dynamical
mean-field theory (DMFT) approach to strongly correlated
materials. The challenging part of the program is to solve
the impurity model; this requires finding the impurity spectral
function, which can be accurately determined only if a NESS
is reached. Fermionic environments typically appear also in
the study quantum transport, where two fermionic environ-
ments (leads) at a certain temperature and chemical potential
are connected to some quantum system that acts as a bridge to
transport energy and/or particles48–50.

The extension of the TEDOPA mapping to fermionic envi-
ronments has been discussed in detail in Ref. 51. The anal-
ysis presented in Ref. 52, in particular, reveals a steady and
fast build-up of strong correlations between the environmental
fermionic modes induced by the interaction with the impurity.
Even by adopting state-of-the art strategies for the mitigation
of the effects of the appearance of such correlations, the de-
termination of the OQS dynamics over long times, which is
typically required to reach the NESS state, remains a compu-
tationally most challenging task. The possibility of exploiting
the MC construct in the fermionic setting would therefore rep-
resent a powerful asset. The definition of a MC mechanism
for the case of fermionic structured environments is, however,
currently lacking. In this work we fill this gap by introducing a
fermionic MC, and illustrate its application and computational
impact by means of some relevant case studies.

The manuscript is organized as follows. We start by defin-
ing the general model in Section II. We discuss the ther-
malization of the spectral density in Section III and provide
details on the chain-mapping procedure in Section IV. Sec-
tion V is devoted to the derivation of the Fermionic Marko-
vian Closure (FMC). In Section VI we present the accu-

racy/performance results. We conclude the work by dis-
cussing other possible applications of the FMC construct.

II. THE MODEL

Consider a general impurity model interacting with contin-
uous fermionic baths (leads). The evolution of the overall
system-bath complex is defined by the Hamiltonian

HSE = HS +HE +HI, (1)

HE = HE,L +HE,R =
∑

α∈{L,R}

∫

Ωα

dω (ω − µα)f
†
α,ωfα,ω,

(2)

HI =
∑

α∈{L,R}

m∑

λ=1

∫

Ωα

dω hλ,α(ω)(A
†
λfα,ω + f †

α,ωAλ).

(3)

The derivation that follows is essentially independent of the
details of the system, which we model here as an m-level
fermionic system with annihilation and creation operators dλ
and d†λ, λ ∈ {1, . . . ,m}, satisfying the canonical anticommu-
tation relations (CARs) {dλ, d†ν} = δλ,ν ; the system Hamilto-
nianHS is an arbitrary function of these operators. The Hamil-
tonian HE describes the left (L) and right (R) leads, i.e. two
continua of (non-interacting) fermionic modes indexed by
their frequency ω ∈ Ωα, in the presence of a chemical po-
tential µα, with α ∈ {L,R}; the operators fα,ω and f †

α,ω and

obey CARs {fα,ω, f †
α′,ω′} = δα,α′δ(ω − ω′).

The interaction between the system and the environment is
specified by HI, with Aλ and fα,ω and f †

α,ω operators acting
on level λ of the system and on the left (α = L) or right
(α = R) bath side respectively. The interaction (hybridiza-
tion) strength between the system and the fermionic modes is
instead given by hλ,α(ω) = κλ,α

√
Jα(ω), where the func-

tions Jα : Ωα → R
+ and α ∈ {L,R} are spectral densities,

while the (real) coefficients κλ model possibly different inter-
action strengths between the environments and the different
levels of the system. We observe that the system-bath com-
plex Eq. (1) can describe different relevant fermionic (spin-
less) open quantum systems such as the resonant level model
(RLM) and the interacting resonant level model (IRLM), and
can be straightforwardly generalized to the case of spinful
fermions (e.g. SIAM) and multichannel leads. We point out
that if the system Hamiltonian HS comprises only terms that
are up to quadratic in dλ and d†λ, the model fixed by (1) is
exactly solvable by means of exact diagonalization53.

We assume, moreover, that the overall system is initially in
a factorized state ̺SE(0) = ̺S(0)̺E(0), for an arbitrary ̺S(0),
while ̺E(0) = ̺E,L(0)̺E,R(0) is the factorized state of the left
(right) environment in the thermal state ̺E,L(0) (̺E,R(0)) for
a given chemical potential µL (µR) and inverse temperature
βL = 1/TL (βR = 1/TR), with

̺E,α =
1

Zα
exp(−βαHE,α), (4)
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where Zα = Tr exp(−βαHE,α), α ∈ {L,R} is the partition
function. We observe that correlated system-environment ini-
tial states can be prepared starting from this reference state
by either an adiabatic evolution (as we will do in Section VI),
or a DMRG search of the (correlated) ground state. The ther-
mal state at inverse temperature β for a single fermion of fre-
quency ω in the presence of a chemical potential µ is

̺β,µ(ω) =
1

Z exp
(
−β(ω − µ)f †

ωfω
)
. (5)

The expectation value of the number operator 〈f †
ωfω〉 satisfies

the Fermi-Dirac distribution

nβ,µ(ω) = Tr
(
̺β,µ(ω)f

†
ωfω

)
=

1

eβ(ω−µ) + 1
. (6)

A local Hamiltonian term of the form (ω − µ)f †
ωfω admits

the eigenvalues 0 and ω − µ, corresponding to the vacuum
and filled state that we indicate respectively by |0〉ω and |1〉ω.
Depending on the value of µ, therefore, the ground state of the
local Hamiltonian for the mode ω can be the vacuum or filled
state.

III. EQUIVALENT ENVIRONMENTS

The model described by Eqs. (1) to (3) satisfies the follow-
ing three hypotheses: (i) the free environment Hamiltonian
HE is quadratic in fα,ω and f †

α,ω, (ii) the initial state ̺E(0) of
the environment is Gaussian with zero mean of the creation
and annihilation operators, i.e. vanishing first moments, and
(iii) the system-bath interaction is bilinear in fα,ω and f †

α,ω.
Because of these three properties, the two-time correlation
functions (TTCFs) of the operators on the environment part
of HI completely determine the reduced dynamics of the sys-
tem, i.e. the reduced density matrix ̺S(t). This can be seen by
either using the influence functional54 or through the Keldysh
formalism of Green’s functions55,56. This fact has most use-
ful consequences that we are going to illustrate, by means of
some relevant examples, in the following subsections. We will
show, in particular, how two-time correlation functions pro-
vide the pivotal element which allows us to replace the origi-
nal OQS environment(s) with transformed environments that
are equivalent (i.e. leading to the same open-system dynamics)
but simpler to deal with. As we will see next, such transfor-
mation essentially amounts to suitably absorbing the thermal
factors, namely the average occupation, into the coupling be-
tween the system and extended environments44.

A. Thermo-chemical spectral modulation

Let us start by considering a simplified version of the model
described by Eqs. (1) to (3). A fermionic quantum system S
interacts with a single environment E consisting of a contin-
uum of fermionic modes f (†)

ω , ω ∈ Ω and initially set in a
thermal state ̺E(0) at inverse temperature β in the presence

of a chemical potential µ, i.e.

HE =

∫

Ω

dω (ω − µ)f †
ωfω,

̺E(0) =
1

Z exp(−βHE).

(7)

In this simplified setting, the system-bath interaction Hamilto-
nian can be written as

HI = A†
S

∫

Ω

dω h(ω)fω −AS

∫

Ω

dω h(ω)f †
ω =

= A†
SBE −ASB

†
E,

(8)

where h(ω) =
√
J(ω), with J : Ω → R

+ the spectral density,
and AS is an arbitrary operator acting on the system. The
reduced dynamics of the system is therefore determined only
by the following two-time correlation functions:

c0(t1, t2) = 〈BE(t1)BE(t2)
†〉̺E(0) =

= TrE
(
BE(t1)BE(t2)

†̺E(0)
)
,

c1(t1, t2) = 〈BE(t1)
†BE(t2)〉̺E(0) =

= TrE
(
BE(t1)

†BE(t2)̺E(0)
)
,

(9)

since the other two functions, which are 〈BE(t1)BE(t2)〉̺E(0)

and 〈BE(t1)
†BE(t2)

†〉̺E(0), are identically equal to zero. Here
and in what follows BE(t) indicates the BE operator evolved
under the free environment Hamiltonian HE, i.e. BE(t) ..=
eitHEBEe

−itHE . After very simple algebra, we obtain

c0(t1, t2) =

∫

Ω

dω J(ω)
(
1− nβ,µ(ω)

)
e−i(ω−µ)(t1−t2),

c1(t1, t2) =

∫

Ω

dω J(ω)nβ,µ(ω)e
i(ω−µ)(t1−t2).

(10)
We notice that up until here the chemical potential has the only
role of a frequency shift in the free Hamiltonian. Without loss
of generality, therefore, we can translate the frequencies so
that the environment has µ = 0; the support Ω of the spec-
tral density becomes, consequently, Ω′ = Ω − µ. Clearly
enough, due to the stationarity of the initial state under the
free evolution of the environment, the two functions depend
on the time instants only through their difference t1 − t2. In
what follows we will thus define and use c0(t) = c0(t, 0) and
c1(t) = c1(t, 0).

In close analogy with the T-TEDOPA strategy44, we now
introduce the modified spectral densities

J
(0)
β,µ(ω)

..= (1− nβ(ω))J(ω + µ),

J
(1)
β,µ(ω)

..= nβ(ω)J(ω + µ),
(11)

where nβ = nβ,0, and J (j)
β,µ : Ω

′ → R
+, j ∈ {0, 1}. We will

refer to this transformation of the spectral density, account-
ing for the temperature and chemical potential terms, as the
thermo-chemical spectral modulation (TCSM). By rewriting
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Eq. (10) in terms of the thermo-chemically modulated spec-
tral densities (11)

c0(t) =

∫

Ω′

dω J
(0)
β,µ(ω)e

−itω,

c1(t) =

∫

Ω′

dω J
(1)
β,µ(ω)e

itω,

(12)

it is possible to recognize that c0(t) coincides with the (only
non-vanishing) TTCF

∫

Ω′

dω Jβ,µ(ω)〈g0,ω(t)g†0,ω〉|0〉〈0| (13)

of a fermionic environment of modes g(†)0,ω initially set in the
pure vacuum state |0〉〈0|, with g0,ω|0〉 = 0, evolving under the
free Hamiltonian HE,0 =

∫
Ω′

dω ωg†0,ωg0,ω and interacting
with the system via

HI,0 =

∫

Ω′

dω

√
J
(0)
β,µ(ω)(A

†
Sg0,ω −ASg

†
0,ω). (14)

We can analogously identify c1(t) as

c1(t) =

∫

Ω′

dω Jβ,µ(ω)〈g†1,ω(t)g1,ω〉|F〉〈F| (15)

i.e. the TTCF of a fermionic environment of modes g(†)1,ω ini-

tially set in the pure filled state |F〉〈F|, with g†1,ω|F〉 = 0, evolv-

ing under the free Hamiltonian HE,1 =
∫
Ω′

dω ωg†1,ωg1,ω and
interacting with the system via

HI,1 =

∫

Ω′

dω

√
J
(1)
β,µ(ω)(A

†
Sg1,ω −ASg

†
1,ω). (16)

The two just introduced distinct environments, one starting
in the pure vacuum state and the other in the pure filled state,
and interacting with the system as

H ′
I =

∫

Ω′

dω

√
J
(0)
β,µ(ω)(A

†
Sg0,ω + g†0,ωAS)

+

∫

Ω′

dω

√
J
(1)
β,µ(ω)(A

†
Sg1,ω + g†1,ωAS) =

= A†
S

∫

Ω′

dω
(√

J
(0)
β,µ(ω)g0,ω +

√
J
(1)
β,µ(ω)g1,ω

)

−AS

∫

Ω′

dω
(√

J
(0)
β,µ(ω)g

†
0,ω +

√
J
(1)
β (ω)g†1,ω

)
=

= A†
SB

′
E −ASB

′
E
†

(17)

determine the same reduced dynamics of the system S. As
a matter of fact, once defined the initial state |ψ0〉 such that
g0,ω|ψ0〉 = 0 and g†1,ω|ψ0〉 = 0 for all ω ∈ Ω, one can easily
see that

c′0(t) = 〈ψ0|B′
E(t)B

′
E
†|ψ0〉 = c0(t),

c′1(t) = 〈ψ0|B′
E(t)

†
B′

E|ψ0〉 = c1(t).
(18)

This derivation of auxiliary environments determining the
same open-system dynamics leads to the same auxiliary en-
vironments obtained by the thermofield transformation57 (see
also Appendix A for more details). Differently from this lat-
ter approach, which is based on a purification of the ther-
mal state and a suitable Bogoliubov transformation on an ex-
tended space of environmental modes, our approach pivots
on the equivalence of auxiliary environments at the level of
TTCFs. Furthermore, by applying a particle-hole inversion
f1,ω → f †

1,ω the variant of the fermionic thermofield transfor-
mation proposed in Ref. 58 is obtained.

The same derivation can be applied to interaction Hamilto-
nians of the form (3), i.e. where the open system is composed
of multiple levels, each one coupling differently to the envi-
ronments, if the hybridization functions for each level differ
only by a constant, namely

HI =

m∑

λ=1

∫

Ω

dω κλ
√
J(ω)(A†

λfω + f †
ωAλ) (19)

(we use a single environment in this example for simplicity).
With the replacement Ã ..=

∑m
λ=1 κλAλ it is evident that,

even in this case, one still ends up with the same (pure vacuum
and pure filled) environments as in the case of a single system
operator AS; the interaction Hamiltonians (14) and (16) be-
come

HI,j =

∫

Ω′

dω

√
J
(j)
β,µ(ω)

m∑

λ=1

κλ(A
†
λgj,ω −Aλg

†
j,ω) =

=

∫

Ω′

dω

√
J
(j)
β,µ(ω)(Ã

†gj,ω − Ãg†j,ω).

(20)

with j ∈ {0, 1}.

B. Environment additivity

The previous results can be exploited as a starting point
to derive auxiliary environments for more complex scenarios.
We extend the system introduced in the previous subsection by
considering the interaction of the open system S with two sep-
arated leads, modeled as fermionic baths labeled by L and R.
We will consider the general case, with the two leads possibly
having different temperature, chemical potential and system-
bath interaction strength profiles, as defined by the respective
spectral densities JL(R)(ω). The system S, therefore, connects
the leads and acts as a bridge to transport energy and/or parti-
cles.

The TCSM introduced in the previous subsection can be
used to replace each of the finite-temperature environments
with two pure state auxiliary environments. The resulting con-
figuration thus comprises four separated pure state environ-
ments Eα,k, with α ∈ {L,R} and k ∈ {0, 1}, each one inter-
acting with the system with a Hamiltonian

HI,(α,k) =

∫

Ω′

α

dω

√
J
(k)
βα,µα

(ω)(A†
Sg(α,k),ω −ASg

†
(α,k),ω),

(21)



5

1

2

3

4

SJL(ω)

ωL
min ωL

max
0

JR(ω)

ωR
min ωR

max
0

S

J
(0)
L (ω)

ωL
min ωL

max
0

J
(1)
L (ω)

ωL
min ωL

max
0

J
(0)
R (ω)

ωR
min ωR

max
0

J
(1)
R (ω)

ωR
min ωR

max
0

SJ(0)(ω)

ωL
min ωL

maxωR
min ωR

max
0

J(1)(ω)

ωL
min ωL

maxωR
min ωR

max
0

S

FIG. 1. (1) The initial system is coupled to two leads, each one starting from a thermal state with different temperature and chemical potential
(here we show the two spectral density functions already shifted). (2) Each lead is split into two new environments, one starting from the
empty state, the other from the filled state, with thermo-chemically modulated spectral densities. (3) The two empty environments are merged,
summing their spectral densities; the same is done with the filled environments. (4) The resulting environments are chain-mapped into discrete
sets of fermionic modes with nearest-neighbor interaction.

with Ω′
α = Ωα −µα and the auxiliary environments Eα,0 and

Eα,1 in the vacuum and filled state respectively. This configu-
ration can be simplified; as a matter of fact a direct inspection
of the system-bath interaction Hamiltonian

HI = A†
SBL −ASB

†
L +A†

SBR −ASB
†
R = A†

SC −ASC
†

(22)

where B(†)
α =

∫
Ωα

dω
√
Jα(ω)f

(†)
α,ω and C(†) = B

(†)
L +B

(†)
R ,

reveals that, as in the case of a single bath, there are only two
non-vanishing TTCFs and that each of them receives contribu-
tions from both the left and the right lead. For example, if we
indicate by ̺E(0) = ̺L(0)̺R(0) the (factorized) initial state
of the leads, each one starting from a thermal state at inverse

temperature βL(R), we have

〈C(t)C†〉̺E(0) = 〈BL(t)B
†
L〉̺L(0) + 〈BR(t)B

†
R〉̺R(0) =

=

∫

Ωext

dω e−iωt
∑

α∈{L,R}
J
(0)
βα,µα

(ω)1Ω′

α
(ω)

(23)

whereΩext
..= Ω′

L ∪Ω′
R, J (0)

β,α is defined as in Eq. (11) and 1Ω′

is the indicator function of the set Ω′ = Ω − µ. In the last
line of Eq. (23) it is easy to recognize the TTCF correspond-
ing to a fermionic bath of modes g(†)0,ω in the frequency range
Ωext, initially set in the vacuum state, undergoing a free evolu-
tion determined by HE,0 =

∫
Ωext

dω ωg†0,ωg0,ω and interacting
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with the open system S through the Hamiltonian

H ′
I,0 =

∫

Ωext

dω

√
J
(0)
ext (ω)(A

†
Sg0,ω −ASg

†
0,ω), (24)

with

J
(0)
ext (ω)

..=
∑

α∈{L,R}
J
(0)
βα,µα

(ω)1Ω′

α
(ω). (25)

In a similar way we can see that the TTCF 〈C(t)†C〉̺E(0) is

determined by a collection of modes g(†)1,ω starting in the filled
state and interacting with the system via

H ′
I,1 =

∫

Ωext

dω

√
J
(1)
ext (ω)(A

†
Sg1,ω −ASg

†
1,ω), (26)

where

J
(1)
ext (ω)

..=
∑

α∈{L,R}
J
(1)
βα,µα

(ω)1Ω′

α
(ω). (27)

We have therefore shown that the two leads, each start-
ing in a thermal state in the presence of (possibly different)
chemical potentials, can be replaced by two equivalent pure
state environments, one starting from the vacuum state and
the other starting from the filled state, and each account-
ing for thermo-chemically weighted contributions from the
two leads by means of modified spectral densities J (k)

ext for
k ∈ {0, 1}. An extension to multiple environments or to the
case of a level-dependent system-bath coupling follows im-
mediately (see Eq. (20)). We finally observe that the environ-
ment additivity property can be applied to purified environ-
ments as obtained, for example, by means of the thermofield
approach57. It is still under investigation whether there exists
a way to resolve the dynamics pertaining to a single environ-
ment among the merged ones. So far we have not found any,
and the answer to the question seems to be no, which would
mean that after the merging step the information about the in-
dividual environments is lost.

C. Modified resonant level model and spin bath

Let us consider a special instance, also known as the mod-

ified resonant level model51, of the system studied in Sec-
tion III A. The interaction between the fermionic open system
S and a single environment defined as in Eq. (7), is now given
by

HI = iAS

∫

Ω

dω
√
J(ω)Bω, (28)

with AS and Bω self-adjoint operators acting, respectively, on
the system and on the bath side. We observe that, because of
the CARs, the system and bath operators anticommute, so we
need an additional i factor in the definition of HI to make it
Hermitian. We moreover assume that the operators Bω are
linear in the creation and annihilation operators f †

ω and fω.

In what follows we will set Bω = Xω = fω + f †
ω, but our

results will be valid for any self-adjoint linear combination
aXω + bPω, i.e. of the (Majorana) operators Xω and Pω =
i(f †

ω − fω).
In this setting, the reduced dynamics of the system is deter-

mined by a single TTCF, namely

C(t) =

∫

Ω

dω J(ω)〈Xω(t)Xω(0)〉̺β,µ(ω) =

=

∫

Ω

dω J(ω)
[
e−i(ω−µ)t

(
1− nβ,µ(ω)

)
+ei(ω−µ)tnβ,µ(ω)

]

with ̺β,µ and nβ,µ defined as in Eqs. (5) and (6) respectively.
The following identity, moreover, holds:

C(t) =

∫

Ω

dω J(ω)〈Xω(t)Xω(0)〉̺β,µ(ω) =

=

∫

Ω′

dω J(ω + µ)
(
1− nβ(ω)

)
e−iωt

+

∫

−Ω′

dω′ J(−ω′ + µ)nβ(−ω′)e−iω′t

(29)

where we have applied the shift ω → ω − µ, so that Ω′ =
Ω−µ, as in Section III A, nβ = nβ,0, and we used the change
of variable ω′ = −ω in the second integral. Since

nβ(−ω) = 1− nβ(ω) =
1

2

(
1 + tanh

βω

2

)
, (30)

we can rewrite the whole integral as the transform of a single
function J ext

β,µ defined as

J ext
β,µ(ω)

..=
1

2

(
1 + tanh

βω

2

)[
1−Ω′(ω)J(−ω + µ)

+ 1Ω′(ω)J(ω + µ)
]
, (31)

so that

C(t) =

∫ +∞

−∞
dω J ext

β,µ(ω)e
−iωt. (32)

In Eq. (32) it is easy to recognize the TTCF of an environ-
ment consisting of modes g(†)ω , ω ∈ R each starting from the
vacuum state |0〉ω, freely evolving under HE,ω = ωg†ωgω and

interacting with the system as HI,ω =
√
J ext
β,µ(ω)ASXω.

In the presence of multiple baths, e.g. left and right
fermionic leads, with different temperatures, chemical poten-
tials and spectral densities, we can apply the same construc-
tion to each bath independently and exploit, similarly to what
we did in Section III B, the additivity of the TTCF to derive a
single equivalent environment, always starting from the pure
vacuum state, with an extended spectral density equal to the
sum of the spectral densities of the transformed separated en-
vironments. For example, if we consider an environment com-
prising two fermionic leads, as in Eq. (2), interacting with the
system via the interaction term

HI = i
m∑

λ=1

∑

α∈{L,R}

∫

Ωα

dω hλ,α(ω)AλXα,ω, (33)
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with a self-adjoint Aλ, Xα,ω = fα,ω + f †
α,ω and hλ,α(ω) =

κλ
√
Jα(ω), Jα : Ωα → R+, our construction will define an

equivalent environment comprising modes g(†)ω , ω ∈ R each
starting from the vacuum state |0〉ω, freely evolving under
HE,ω = ωg†ωgω and interacting with the system as

Hext
I,ω =

m∑

λ=1

κλAλ

√
J ext(ω)Xω, (34)

where

J ext(ω) = J ext
βL
(ω) + J ext

βR
(ω), (35)

with J ext
βα

(ω), α = {L,R}, defined as in Eq. (31). This re-
sult extends the one obtained in Ref. 51, where only the zero
chemical potential case was considered.

The results of this section allow to extend the T-TEDOPA
derivation introduced in Ref. 44 for single bosonic environ-
ments to the case of multiple environment at different tem-
perature and (negative) chemical potentials. As a matter of
fact, once the thermal factors have been shifted from the ini-
tial states of the bosonic modes to the spectral density, all the
environments start from the same (vacuum) state, and their ac-
tion on the system is the same as a single environment over an
extended support Ωext and system-bath interaction strengths
modeled by a spectral density of the form (35).

Another relevant application of thermo-chemical spectral
density modulation is the study of open quantum systems
interacting with (multiple) spin baths in the thermodynamic
limit. In order to understand why it is the case, it is expedient
to consider a single spin environment consisting of N spin-
1/2 particles. Each spin evolves under the local Hamiltonian

H spin
j = εjσ

+
j σ

−
j , (36)

where σk
j , k ∈ {x, y, z} are the Pauli operators acting on the

j-th spin, σj
± = (σj

x ± iσj
y)/2 and we assume, without loss of

generality, that εj ∈ Ω = [0, ωmax]. Each spin starts from the
thermal state ̺βj = exp(−βHj)/Zj , where Zj is the partition
function; the system bath interaction has the form

H spin
I =

N∑

j=1

hjASσ
x
j =

N∑

j=1

hjAS(σ
+
j + σ−

j ). (37)

Equations (36) and (37) become in the thermodynamic limit
N → +∞

H spin
E =

∫

Ω

dω ωσω
+σ

ω
−, (38)

H spin
I = AS

∫

Ω

dω h(ω)σω
x . (39)

As shown in Refs. 59 and 60, in this limit the spin bath be-
haves as a Gaussian fermionic bath, so that, if the initial state
is a Gaussian state, the reduced dynamics of the system is
completely determined by the TTCF. It is thus clear that all
the results presented in this and in the previous subsections
apply to spin baths in the thermodynamic limit as well.

J(ω)

J ext
β,µ(ω)

−ωmax + µ −µ µ ωmax − µ ωmax0
ω

FIG. 2. Example of an extended spectral density resulting from
Eq. (31), starting from a semicircle spectral density on (0, ωmax).

IV. TCSM-TEDOPA

In the previous section we showed how the thermo-
chemical spectral density modulation leads to the definition
of equivalent environments starting from pure vacuum/filled
states and to the recombination of different baths. In this sec-
tion we will show the impact of this approach on non per-
turbative simulations of open quantum system dynamics by
means of the TEDOPA algorithm. We refer the reader to
Refs. 36, 37, 44, and 51 for a full account on TEDOPA for
bosonic and fermionic environments.

To introduce the TEDOPA method it is convenient to start
from the system defined in Section III A: a fermionic system S
interacting with a fermionic bath E according to Eq. (8), with
the free Hamiltonian and initial state of the bath defined as in
Eq. (7). A spectral density J : Ω → R+ which is absolutely
continuous with respect to the Lebesgue measure defines a
measure

dλ(ω) = J(ω) dω; (40)

if the spectral density moreover belongs to the Szegő class
then there exists a unique family of polynomials {pn(ω)}n∈N

which is orthogonal with respect to the measure dλ(ω)36. We
refer the reader to Appendix B for a precise definition of the
Szegő class.

By exploiting the properties of such orthogonal polynomi-
als (in particular the three-term recurrence relation they sat-
isfy) it is possible to introduce a unitary transformationUn(ω)
on the environmental fermionic modes f †

ω resulting in a count-

able set of new fermionic modes c(†)n , n ∈ N, satisfying the
CAR {cn, c†m} = δn,m. The Hamiltonian (1) can be therefore
unitarily transformed as follows:

HC
SE = HS +HC

I +HC
E ,

HC
I = η(A†

Sc0 + c†0AS) ,

HC
E =

+∞∑

n=0

ωnc
†
ncn +

+∞∑

n=0

κn(c
†
n+1cn + c†ncn+1),

where the coefficients η, ωn and κn depend on the spectral
density J(ω). Note that the interaction strength between the
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system and the first chain mode η =
√∫

Ω
dω J(ω) is pro-

portional to the overall system-bath interaction strength, and
does not depend on any particular features of the spectral den-
sity. Moreover different (bilinear) interaction Hamiltonians
would result in the same chain HamiltoniansHC

E and different
system-chain interactions HC

I .
The determination of the chain initial state

̺C
E(0) =

exp(−βHC
E )

Z (41)

is generally a non-trivial problem. Even at zero tempera-
ture the TEDOPA mapping brings one major disadvantage: it
builds new fermionic bath modes as a linear combination of
all original bath modes, thereby mixing occupied and empty
bath modes. Hence, the Fermi sea is not a trivial product
state in the chain geometry and is typically highly entan-
gled. Zero- and finite-temperature initial states of the chain
are typically (approximately) determined by suitable projec-
tions on the ground or thermal state, respectively. If, for ex-
ample, the system-chain state were represented as an MPS,
a computationally demanding DMRG search of the ground
or thermal state would be required34. The results presented
in the previous section, or the thermofield transformation, al-
low us to circumvent this issue. The mapping procedure de-
scribed above can be applied to the auxiliary environments
as well, as long as the thermally weighted spectral densities
J
(0)
β (ω) and J

(1)
β (ω) defined in Eq. (11) are in the Szegő

class. As shown in Appendix B, this is indeed the case as
long as the original spectral density J(ω) is Szegő. The com-
bination of the fermionic spectral density modulation and the
TEDOPA chain mapping of fermionic environments results in
what we call the Thermo-Chemical Spectral Density Modu-
lation TEDOPA method (TCSM-TEDOPA). For example, a
system with an exchange-type interaction such as the one de-
scribed by the Hamiltonian (8) is mapped into a configuration
where the open system interacts with two different fermionic
chains, namely

HC = HS +HC
E,0 +HC

E,1 +HC
I,0 +HC

I,1,

HC
E,j =

+∞∑

n=0

ωj,nc
†
j,ncj,n+

+∞∑

n=0

κj,n(c
†
j,n+1cj,n + c†j,ncj,n+1),

HC
I,j = ηj(A

†
Scj,0 + c†j,0AS),

(42)
where the coefficients ηj , ωj,n and κj,n depend on the thermal-

ized spectral densities J (j)
β for j = 0, 1, and the modes c0,n

and c1,n start, respectively, from the vacuum and filled state.
When the system interacts with two fermionic environ-

ments, as in the model discussed in Section III B, one could
proceed in a similar way and map each lead into two chains.
The resulting configuration would then have the system inter-
acting with four chains. While this topology can be repre-
sented by means of tensor networks, it would lead to a highly
non-local entanglement structure, known to be severely detri-
mental to the efficiency of DMRG and time-evolution algo-
rithms. The results obtained in Section III B, however, suggest
a different approach. As a matter of fact, if the spectral densi-
ties JL(ω) and JR(ω) are Szegő-class and ΩL ∩ ΩR 6= ∅,

i.e. if the supports of the considered spectral densities, al-
ready suitably shifted by the corresponding chemical poten-
tials, do overlap, then the extended spectral densities J (0)

ext (ω)

and J (1)
ext (ω) defined in Eqs. (25) and (27) are Szegő as well.

This in turn means that only two chains, one corresponding to
the chain mapping of J (0)

ext (ω) and starting from the vacuum

state and one corresponding to the chain mapping of J (1)
ext (ω)

and starting from the filled state, are sufficient to determine
the same reduced dynamics of the system. We observe that
the condition ΩL ∩ ΩR 6= ∅ is indeed a very mild one, since
in conduction schemes the leads do typically include the sys-
tem transition frequency. From the discussion of Section III B
it is clear that the same procedure can be extended, under the
same conditions, to more than two environments and to the
case of level-dependent system-bath interaction strength, by
first summing the level-specific system-side operators within
HI into a collective one as in Eq. (19). As a matter of exam-
ple, let us consider the general model introduced in Section II.
The application of the TCSM-TEDOPA procedure will lead
to a Hamiltonian of the same form as Eq. (42) with

HC
I,j = ηj(Ã

†
Scj,0 + c†j,0ÃS), (43)

where

ÃS =

m∑

λ=1

κλAλ, ηj ..=

√∫

Ωext

dω J
(j)
ext (ω). (44)

We lastly remark that, if the interaction Hamiltonian is of the
form (33), it is possible to use a single chain, with chain coeffi-
cients determined by the spectral density J ext

β (ω) and system-
bath and all the modes starting from the vacuum state.

V. FERMIONIC MARKOVIAN CLOSURE

After the chain mapping procedure has been applied, we
are left with the system interacting with semi-infinite chain(s)
of fermionic modes. It is clear that in actual simulations the
chain(s) needs to be truncated after a certain number of sites.
In this section we will restrict our attention to the single chain
case; we will show towards the end of the section how the
results extend to the multiple chain case.

The truncation point, i.e. the number N of chain sites that
are kept, must be suitably chosen so as not to induce finite-
size effects on the system and on the chain dynamics. It is
therefore clear that such a choice depends on both the speed
at which the perturbations induced by the interaction of the
first chain site with the system propagate along the chain and
on the simulation time tmax, so that N = N(tmax). While the
exact dependence on the simulation time is hard to define, in
general for sufficiently large tmax Lieb-Robinson bound tech-
niques suggest that N(tmax) scales linearly in tmax. We will
better motivate this claim in the following subsection. What is
important to stress here is that longer simulation times require
longer chains so that the determination of long-time dynamics
can soon become prohibitively expensive.
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The Markovian Closure (MC) mechanism, recently pro-
posed in Ref. 47 for bosonic environments, provides a solu-
tion to this problem. In the following subsections we will
introduce the basic ideas behind the MC and formulate an
equivalent mechanism for fermionic environment. The key in-
gredient in the MC is the equivalence theorem61 which allows
establishing when a unitarily evolving environment induces
the same reduced dynamics on an open quantum system S as
an auxiliary environment undergoing a non unitary Lindblad
evolution.

A. Asymptotic coefficients

If a spectral density J : [ωm, ωM] → R+ belongs to the
Szegő class, then the chain coefficients have an interesting
convergence property36,37: the sequences of site energies and
interaction coefficients {ωn}+∞

n=0 and {κn}+∞
n=1 converge, for

n → +∞, to limiting values that depend only on the support
of J :

Ω ..= lim
n→+∞

ωn =
ωM + ωm

2
, (45)

K ..= lim
n→+∞

κn =
ωM − ωm

4
. (46)

In analogy to what has been recently proposed in Ref. 47 for
the case of bosonic environments, once the coefficients have
converged towards their asymptotic values up to a desired tol-
erance, say ε > 0, i.e. |ωn −Ω| < ε and |κn −K| < ε for all

n > NE = NE(ε), the chain part comprising the modes c(†)n

for n > NE can be approximated by a uniform chain whose
coefficients ωn and κn are set equal to Ω and K respectively.
The resulting chain Hamiltonian reads

H̃C
E =

NE∑

n=0

ωnc
†
ncn +

NE∑

n=0

κn(c
†
n+1cn + c†ncn+1)

+

+∞∑

n=NE+1

Ωc†ncn +

+∞∑

n=NE+1

K(c†n+1cn + c†ncn+1). (47)

It helps the physical intuition to think of the uniform chain
as a “runway”: particles/holes entering this region are prop-
agated without the possibility of being scattered back by in-
homogeneities in the couplings or in the frequencies62. The
propagation speed of a particle/hole over this uniform region
is thus constant in time. This justifies theO(tmax) dependence
the truncation point N used at the beginning of the section.

Such flat part of the chain can be traced back (by inverting
the chain mapping) to a continuous fermionic environment,
that we call residual environment, characterized by

H res
0 =

∫ ωM

ωm

dω ωf †
ωfω, (48)

with ωm
..= Ω − 2K and ωM

..= Ω + 2K , interacting with the
NE-th mode (the last one of the inhomogeneous part) through

H res
I =

∫ ωM

ωm

dω
√
J∞(ω)(c†NE

fω + f †
ωcNE

), (49)

where J∞ is the spectral density

J∞ : [Ω − 2K,Ω + 2K] → R
+

ω 7→ 1

2π

√
(2K −Ω + ω)(2K +Ω − ω).

(50)

The convergence toward a flat residual spectrum can be seen
as an embedding of the original system into an enlarged set
of degrees of freedom that evolve in a Markovian way63. In
fact, in Ref. 47 it was proven that a bosonic residual envi-
ronment having spectral density J∞ can be replaced with an
auxiliary system, the Markovian Closure, that consists of a
small number of damped, interacting bosonic modes under-
going a Lindbladian evolution. This mechanism allows for
the replacement of a semi-infinite homogeneous chain of har-
monic modes with a finite auxiliary environment acting as an
absorber for the excitations traveling along the homogeneous
part of the chain. The MC is moreover universal, in the sense
that it can be applied to all chain mappings of bosonic environ-
ments with spectral densities in the Szegő class. In what fol-
lows we will provide an analogous construction for fermionic
environments. More in detail, we will show how the semi-
infinite homogeneous chain of fermionic modes governed by
the Hamiltonian

Hhom =

+∞∑

n=NE+1

Ωc†ncn+
+∞∑

n=NE+1

K(c†n+1cn+c
†
ncn+1) (51)

from Eq. (47) can be replaced by a fermionic Markovian clo-
sure having the same structure as the one devised for bosonic
systems. The resulting closure, moreover, has the same univer-
sality character of its bosonic counterpart: it can be applied to
all fermionic environments with Szegő spectral density.

B. Derivation of the fermionic Markovian Closure

Ref. 61 shows how the reduced dynamics of an open sys-
tem in contact with a bosonic bath can, under certain condi-
tions, be obtained by replacing the bath with a suitably param-
eterized (finite) set of pseudomodes, i.e. damped harmonic os-
cillators. An equivalent result for fermionic systems is pro-
vided by Ref. 56, in which the original bath is first mapped,
as we did in Section III, to an auxiliary system comprising
two different baths, one of which is initially completely filled
(µ = +∞) and the other completely empty (µ = −∞), rep-
resenting the original environmental modes below and above
the chemical potential. The reduced dynamics of the open sys-
tem, with this new auxiliary configuration, is then equated to
one where the environment is a set of damped fermionic oscil-
lators, with appropriate parameters. Indeed, the equivalence
of the reduced dynamics generated by the different environ-
ments rests on the equivalence of the correlation functions of
the interaction Hamiltonian.

We start, as we did in Section III A, by defining

AS
..= cNE , BE

..=

∫ ωM

ωm

dω
√
J∞(ω)fω (52)
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so that we can write the interaction Hamiltonian (49) as

H res
I = A†

SBE +B†
EAS. (53)

We must then compute the correlation functions

c0(t) = 〈BE(t)BE(0)
†〉,

c1(t) = 〈BE(t)
†BE(0)〉

(54)

for the initially empty environment, which starts from the vac-
uum state |0〉; we have BE|0〉 = 0, so c1(t) is identically zero
and we are left only with

c0(t) = 〈0|BE(t)BE(0)
†|0〉 =

∫ ωM

ωm

dω e−iωtJ∞(ω). (55)

When the environment starts from a completely filled state |F〉
instead, as the other chain does, B†

E|F〉 = 0 so we only have

c(t) = 〈F|BE(t)
†BE(0)|F〉 =

∫ ωM

ωm

dω eiωtJ∞(ω). (56)

By computing the Fourier transform of J∞ we finally get

c0(t) = K2e−iΩtCsc(2Kt),

c1(t) = K2eiΩtCsc(2Kt),
(57)

where

Csc(x) =

∫ 1

−1

dy e−ixy 2

π

√
1− y2 = J0(x) + J2(x) (58)

is the transform of the unit-radius semicircle spectral density

jsc(y) =
2

π

√
1− y2 (59)

and Jn(x) denote Bessel functions of the first kind.
Pseudomodes are a new set of fermionic modes, which we

describe by a different set of fermionic annihilation and cre-
ation operators a(†)j . Let us start from the residual environ-
ment associated to a chain in the vacuum state: this system
acts as a perfect absorber of excitations, so we set its ini-
tial state as the vacuum |0〉〈0| and that its free dynamics is

generated by the Lindblad operator L(0)
R (̺) = −i[H(0)

R , ̺] +

D(0)
R (̺) with

H
(0)
R =

NC∑

i,j=1

Λ
(0)
ij a

†
iaj (60)

and

D(0)
R (̺) =

NC∑

i,j=1

Γ
(0)
ij

(
aj̺a

†
i −

1

2
{̺, a†iaj}

)
; (61)

note that the vacuum is stationary with respect to the evolution
operator, i.e. L(0)

R (|0〉〈0|) = 0. We define a new operator BR,

which plays the same role as BE in the exchange-interaction
Hamiltonian (53),

BR
..=

NC∑

k=1

ζkak, (62)

for some ζk ∈ C. This operator generates new correlation
functions,

c′0(t) = 〈BR(t)BR(0)
†〉,

c′1(t) = 〈BR(t)
†BR(0)〉,

(63)

that must match, respectively, c0(t) and c1(t) from Eq. (54)
if we want the reduced dynamics to be equal. We refer the
reader to Appendix C for full detail on the determination of
the equivalent auxiliary environment; here we limit ourselves
to report the fundamental steps.

A particular solution to our problem exists for the unit-
radius semicircle spectral density jsc defined in Eq. (59). In
detail, let

M =




α1 β1 0 0 · · · 0
β1 α2 β2 0 · · · 0
0 β2 α3 β3 · · · 0
0 0 β3 α4 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · αNC




(64)

be a NC ×NC complex matrix, and w ∈ CNC be a solution to

〈w, exp(tM)w〉 = Csc(t). (65)

It then follows that by setting, in Eqs. (60) and (61),

Λ(0) =




ω1 g1 0 · · · 0
g1 ω2 g2 · · · 0
0 g2 ω3 · · · 0
...

...
...

. . .
...

0 0 0 · · · ωNC




(66)

and

Γ
(0)
i,j = γjδi,j , (67)

where

ωj = Ω − 2K Imαj ,

gj = −2K Imβj ,

γj = −4K Reαj ,

(68)

and by choosing, in Eq. (62),

ζj = Kwj , (69)

the equality

c0(t) = K2e−iΩtCsc(2Kt) = 〈BR(t)BR(0)
†〉 = c′0(t) (70)

holds for all t ≥ 0. The auxiliary environment defined by
Eqs. (62), (66) and (67) is a collection of NC pseudomodes,
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S

S

initial state: completely empty initial state: completely filled

FIG. 3. The chain-mapped system before and after truncating the
TEDOPA chains and replacing the residual environments, on both
the initially empty and initially filled side, with appropriate sets of
interacting pseudomodes.

with nearest-neighbor interaction, undergoing local dissipa-
tion and each starting from the vacuum state and interact-
ing with the truncation site NE of the chain; this provides a
fermionic Markovian closure (FMC) for a TEDOPA chain of
fermionic modes starting from the vacuum state |0〉. If the
filled state |F〉 is the initial state of the chain, we only have to
use αj and βj instead of αj and βj respectively, and set the
initial state of the closure sites to the filled state as well (see
Appendix C). In Fig. 3 we provide a graphical representation
of the TCSM-TEDOPA transformation and of the finite-size
system resulting from the use of the FMC construct.

We can see in Eq. (68) that the parameters needed to de-
fine the Markovian closure modes depend on the original en-
vironments only through Ω and K , which are easily obtain-
able from the lower and upper bounds of the domain of the
original spectral density function. In order to implement the
fermionic Markovian closure it is therefore only necessary to
apply an affine rescaling to the αj and βj coefficients, a fea-
ture shared with the bosonic Markovian closure47. Determin-
ing the αj and βj coefficients requires the solution of a non-
trivial inversion problem64 and, in general, only approximate
solutions (e.g. by means of approximated Prony methods65)
can be found. As shown in Appendix C, however, we do not
need to solve the problem anew, but we can use the same coef-
ficients determined in Ref. 47 for the bosonic setting. We refer
the reader to the Supplemental Material of the same work for
an analysis of the accuracy of the approximation, which holds
here as well. For the sake of self-containedness the parameters
for closures consisting of NC = 6, 8, 10 modes are provided
anyway in Appendix C.

Finally, we remark that the semicircular density of states is
not the only way we can reshape an environment. Other fitting
schemes have been proposed, e.g. in Ref. 66 or Ref. 54, target-
ing specific spectral densities. While a tailored fitting proce-
dure might produce, by directly replacing the original environ-
ment with some pseudomodes and skipping the TEDOPA con-
struction altogether, equivalent environments with a smaller
number of modes, the construction of the pseudomodes with
the Markovian closure is a more generic approach which does
not rely on particular features of the initial spectral densities.

C. Error sources

We observe, moreover, that different interaction patterns,
e.g. with fully connected pseudomodes or next-nearest neigh-
bor interactions, and alternative methods for the determina-
tion of the closure coefficients, as the one recently proposed
in Ref. 67 and 68, could be used to either reduce the number
of modes in the closure or further reduce the approximation
error.

Another source of errors is the choice of the convergence
point NE, i.e. the chain site connected to the FMC. As a mat-
ter of fact, as remarked in Section V A, the chain coefficient
ωn and κn converge to the values Ω and K only asymptot-
ically, so that the actual residual spectral density is only ap-
proximated by a semicircle spectral density J∞. For any as-
signed spectral density, however, it is always possible to make
a suitable choice of NE and to estimate the corresponding er-
ror69. As we will see in the next sections, moreover, in the
case of spectral densities that are relevant in the fermionic set-
ting, the approximate convergence is reached within a very
small number (NE < 10) of chain sites.

VI. NUMERICAL TESTS

With the application of the Markovian closure construc-
tion, the system resulting from the TCSM mapping is no
longer one-dimensional; the small number of pseudomodes
usually needed to represent the residual environments, how-
ever, makes it still amenable to such a representation. As
a matter of fact, it suffices to “flatten” the pseudomodes
into a linear configuration at the cost of creating non-nearest-
neighbor interactions between the sites (see Fig. 4). We point
out that our procedure cannot be, in general, used if the open
system is composed of multiple levels each of which inter-
acts with substantially different environments, i.e. with differ-
ent spectral density functions that are not multiples of one an-
other, or through different operators on the system side in the
interaction Hamiltonian. In the presence of m environments,
the number of auxiliary environments would scale as 2m, and
they cannot be efficiently merged in just one or two chains
since the resulting local dimension would grow exponentially
with m.

Moreover, we encode the state into a matrix-product state,
instead of a matrix-product operator, by first vectorizing the
density matrix, i.e. by taking its representative vector in a ba-
sis which is orthonormal with respect to the Hilbert-Schmidt
inner product, and then we compute its time evolution by
means of the time-dependent variational principle (TDVP) al-
gorithm70. Following Ref. 52 we also change how the sites
are enumerated in order to interleave the two environments,
so that the open system is put at one edge of the linear chain
(Fig. 4 at the bottom). The two chains in the original scheme
(Fig. 4 at the top) would, in fact, become strongly correlated
over time, as a consequence of the evolution towards a steady
state; therefore, the original “naive” tensor network devel-
ops long-range correlations between the two different pseu-
domode sets. The interleaved configuration instead brings the
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FIG. 4. Top: tensor network layout representing the application of
a Markovian closure on both chains of an environment to the chains
resulting from TCSM-TEDOPA transformation. Bottom: interleaved
configuration in the tensor network. In both frames, a line between
two squares denotes an interaction.

two environments “closer” to each other, allowing us to use
a lower overall bond dimension in the matrix-product states;
this turns the original nearest-neighbor interactions into next-
nearest-neighbor ones, which is an acceptable trade-off.

Throughout this section we will use the SIAM71 as an ex-
ample model. Generally this model describes electrons, so we
have two fermionic levels σ ∈ {↑, ↓} (representing the spin
degrees of freedom) making up the system Hamiltonian

HS = ε↑d
†
↑d↑ + ε↓d

†
↓d↓ + Ud†↑d↑d

†
↓d↓. (71)

In the continuum limit the environment—also composed of
electrons—can be described by the following Hamiltonian op-
erators:

HE =
∑

σ∈{↑,↓}

∫

Ω

dω ωf †
σ,ωfσ,ω,

HI =
∑

σ∈{↑,↓}

∫

Ω

dω
√
J(ω)(f †

σ,ωdσ + d†σfσ,ω)

(72)

for some spectral density function J , starting from the ther-
mal state at a given temperature and chemical potential. We
will use for the most part the non-interacting version, i.e. with
U = 0, to test the fermionic MC method. In this version dif-
ferent spins do not interact anymore (through the system), so
we can consider a single spin component only: instead of elec-
trons we will speak of spinless fermions, i.e. each mode will
represent just a two level (empty/occupied) degree of freedom.

A. Correlation functions from simulations

First of all we check that the we can faithfully reproduce the
correlation functions of the environment from the FMC set-
ting. This is an important consistency check, since our method
is entirely built on the fact that the environment correlation
functions completely determine the dynamics of the open sys-
tem. We make sure that, in fact, the open system “sees” the
expected correlation functions, at least to a sufficient degree
of approximation. To this purpose we choose a non-trivial ex-

ample, merging the two semicircle spectral densities

JL(ω) =
1
2π

√
ω(2− ω), TL = 0.2, µL = 1,

JR(ω) =
1
4π

√
ω(2− ω), TR = 1, µR = 1

4 ,
(73)

both on the domain (0, 2). Through the procedure detailed
in the previous chapters we derive the two equivalent environ-
ments

J (0)(ω) =
∑

α∈{L,R}
(1 − nα(ω))Jα(ω + µα),

J (1)(ω) =
∑

α∈{L,R}
nα(ω)Jα(ω + µα),

(74)

and reshape the respective environments with the chain map-
ping: the top half of Fig. 5 shows how the chain coeffi-
cients converge towards their asymptotic values. We apply the
Markovian closure leaving NE = 13 or NE = 20 chain sites
and adding NC = 6 pseudomodes on each side: we choose
these numbers so that for n > NE the distance of the n-th
coefficients from their asymptotic value is less than 10−2 for
NE = 13, and less than 5×10−3 forNE = 20. We then repro-
duced the spectral densities by calculating the inverse Fourier
transform of the correlation function, which for the initially
empty environment gives

1

π
Re

∫ +∞

0

dt eiωtη20 Tr
(
c0,0Φt(c

†
0,0|0, F〉〈0, F|)

)
(75)

where c0,0 is the annihilation operator of the first mode of the
chain derived from the initially empty environment, as in (42),
and Φt the time-evolution map, i.e. exp(tL) where L is the
Lindbladian operator fixed by Eqns. (60) and (61). An analo-
gous formula holds for the initially filled environment. We run
the simulation up until t = 400; this (inevitable) truncation
would introduce artifacts in the Fourier transform, so we also
multiply the correlation function by an exponentially decay-
ing factor exp(−at2) with a such that the resulting product is
10−15 at t = 400. This does not alter the correlation function
significantly since it is already exponentially decaying, but it
smoothes out the errors due to the truncation. We can see in
Fig. 5 that the expected and simulated spectral densities are in
very good agreement. Of course, since we can compute the
correlation function only for a finite amount of physical time,
this procedure is not able to describe correctly the spectral
density function in a neighborhood of its non-differentiable
points; this is expected and, in any case, the deviation is suffi-
ciently small.

B. Accuracy

We take the non-interacting SIAM with the impurity start-
ing from the occupied state, while the environment is de-
scribed by a semicircle spectral density

J(ω) =
1

10π

√
ω(2− ω) (76)
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FIG. 5. Top: absolute distance between chain coefficients of the
equivalent environments (j = 0: initially empty, j = 1: initially
filled) obtained from Eq. (73). Bottom: comparison of the expected
(dashed) and simulated (solid) correlation functions from Eq. (74).
The inset plot shows the absolute error between the simulated and
the expected functions. Plots with darker colors represent simula-
tions with NE = 20, lighter ones with NE = 13.

on the domain (0, 2), and ε = −π
8 as the energy of the excited

level of the impurity.
In Figs. 6 and 7 we compare our approach to standard

TEDOPA, i.e. without the Markovian closure, by plotting the
expectation value of the population of the impurity site. We
also translate J so that the chemical potential is zero, obtain-
ing a new frequency domain Ω = (−0.2, 1.8) from µ = 0.2
in Fig. 6 and Ω = (−1, 1) from µ = 1 in Fig. 7. In both
figures different closure sizes (NC = 6, 8, 10) attached to the
truncation point NE = 6 are considered.

The number NC of pseudomodes has an effect on the ac-
curacy of the simulations. Counter-intuitively, the use of a
larger number of pseudomodes does not necessarily improve
the quality of the results. As observed in Ref. 47, this can be
related to the fact that theNC = 8 closure better approximates
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FIG. 6. Population of the open system, starting from a filled state,
comparing the FMC and standard TEDOPA methods on a spinless
SIAM simulation with Ω = (−0.2, 1.8), µ = 0 and T = 0.4,
NE = 8, ε = −π

8
. Inset: absolute error between FMC and TEDOPA
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FIG. 7. Population of the open system, starting from a filled state,
comparing the FMC and standard TEDOPA methods on a spinless
SIAM simulation with Ω = (−1, 1), µ = 0, T = 0.4 and NE = 6,
ε = −π

8
. Inset: absolute error between FMC and TEDOPA simula-

tions.

the residual spectral density near the border of the domain
than theNC = 10 one. The quality of the approximation of the
semicircle spectral density at the edges of the support impacts
on low- and high-momentum components of the wave-packet
traveling along the chain. The effect of the deviations from
the ideal spectral density in these regions, therefore, strongly
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depends on the excitation dynamics on the chain, which is,
in turn, determined by the chain coefficients. Unbalanced en-
vironments, namely when the shifted support Ω − µ of the
spectral density Jβ,µ(ω) is not symmetric with respect to the
origin, will lead to different system-chain coupling strength
ηj (see Eq. (42)) for the vacuum (j = 0) and filled chain
(j = 1). This asymmetry is responsible for the generation
of slowly traveling packets, which, due to the chain momen-
tum/energy dispersion relation, sample the frequency region
where the approximation of the asymptotic spectral density is
less accurate. If the chemical potential sits at the middle point
of the domain of the spectral density, as in the case considered
in Fig. 7, the situation is more favorable: the system-chain
couplings ηj have the same magnitude and the Markovian clo-
sure performs better, without a significant difference between
the three NC = 6, 8, 10 cases.

The accuracy does not depend, on the other side, on NE,
i.e. how many sites we leave on the original chains before we
attach the FMC; if we increase this parameter, the error starts
to appear at a later time (as expected), but then it increases un-
til it reaches the same value. We show in Appendix D that with
our choices of NE we can reproduce the spectral density func-
tions of the equivalent environment to a very high accuracy.
Increasing NE also increases the numerical costs in general,
since the system is bigger, and possibly the bond dimension
too, so we see no practical advantage in taking a bigger value
of this parameter.

Simulations of spinful SIAM are inevitably more costly
than the spinless counterpart, since the local dimension in-
creases from 22 = 4 to 42 = 16, merging the two spin com-
ponents into a single vector in C4. In this case, as discussed
in Ref. 51, a simulation in the Heisenberg picture, which in-
volves minimal modifications to the time-evolution algorithm
in our vectorized setting, allows us to use an overall lower
bond dimension. Figure 8 compares the results in the spin-
ful obtained by Heisenberg-picture standard TEDOPA and
TEDOPA+FMC, with Eq. (76) as spectral density, ε↑ = ε↓ =
−π

8 and U = −π
4 , T = 0.4 and µ = 1. We observe that after

a reasonably long initial transient period the FMC has intro-
duced an error of the order of 10−3 in all cases, both spinless
and spinful ones.

C. Computational cost

For a given chain of length L, the complexity of a TEDOPA
simulation scales as O(Ltmax(dχ)

3)44, where d is the local
dimension, χ the bond dimension of the MPS, and tmax the
total physical simulation time. In a uniform TEDOPA chain,
the excitations propagate at rate that equals twice the coupling
constant between the sites. In a typical TEDOPA simulation
the asymptotic value of the coupling constant, K , is a good
estimate of the actual propagation speed if the coefficient, site
by site, converges relatively quickly towards this value. The
chain should therefore contain at least 2Ktmax sites if we want
to avoid that the excitations “bounce back”, creating artifacts
due to the finite size; with L = Ktmax we get that TEDOPA
complexity scales as O(Kt2maxd

3χ3).
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FIG. 8. Expectation value of the total population 〈nS,↑(t)+nS,↓(t)〉
of the system site in the spinful SIAM: we show an FMC simulation
in the Heisenberg picture, with J as in Eq. (76), ε↑ = ε↓ = −π

8
,

U = −2ε↑, T = 0.4 and µ = 1, and a standard TEDOPA one taken
as a reference. Inset: absolute error between FMC and TEDOPA
simulations.

In FMC simulations, the size of the system (i.e. its length
L) is fixed, but d gets squared and the new bond dimension χ′

is generally higher than χ, to account for thermal correlations
and the presence of longer-range interactions: overall we find
O(tmaxd

6χ′3). Whether the FMC is an advantage over stan-
dard TEDOPA depends on how much χ′ needs to be higher
than χ.

Given these scaling properties, it is clear that the FMC
can be an advantage over a standard TEDOPA simulation
only if we want to study long-time dynamics, when the
t2max-dependence of the latter can overcome the simpler tmax-
dependence of the former. In Section VI B we compared the
two methods to prove that the FMC provides a satisfactory
good approximation to a standard TEDOPA simulation. To
compare directly the two methods in terms of efficiency would
however be unfair, since they are really meant to be used in
different situations:

• a standard TEDOPA simulation is more efficient, even
with very long chains, if the entanglement is low, effec-
tively making use of the favorable scaling properties of
matrix-product states;

• the FMC method works best with very long simulations
or if the whole system develops moderate levels of en-
tanglement, in which case the determination of the evo-
lution of long chains would require very long computa-
tional times.

It is however important to stress that, if the open system starts
from a mixed state or if there are Lindblad terms acting on the
open system (e.g. dephasing terms), so that both TEDOPA and
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FMC simulation methods have to deal with density matrices
and thus a d6-dependence on the local dimension, then the
FMC provides a clear major speed-up, not limited to long time
simulations, due to its naturally finite size.

The possibility to reach longer physical times can be ben-
eficial e.g. for the computation of spectral functions: usually,
extrapolation of the retarded or advanced Green functions by
means of some ingenious method, such as linear prediction72,
is needed. The determination of the retarded Green function
typically requires the preparation of some equilibrium state
through an adiabatic evolution from a simple initial state. This
evolution must be sufficiently slow so as to reach the correct
equilibrium state, so that one can easily end up with very long
TEDOPA chains in order to accommodate a high tmax. We
try out this scheme on the non-interacting model, following
the technique presented in Ref. 52: system and environment
are initialized in a product state, then they are evolved using
a time-dependent Hamiltonian where the system-environment
interaction term is slowly ramped up from zero to its actual
value. Figure 9 displays the results of this procedure: as al-
ways, we take a standard TEDOPA simulation as a reference.

We use the spectral density J as in Eq. (76) and ε = −π
8 .

At the beginning of the evolution, our open system is in the
empty state and the environment in its thermal equilibrium
state with T = 0.4 and µ = 1; the composite system is slowly
evolved under the Hamiltonian H(t) = HE + r(t)(HI +HS)
where r(t) = min{1, t/τ}, τ = 20, until t = 100. We
found that a bond dimension equal to 200 is sufficient for an
FMC structure with NE = 6 and NC = 6 to obtain a state
̺MC such that, if ̺TEDOPA is the state obtained with a stan-
dard TEDOPA evolution, |Tr(A(̺MC − ̺TEDOPA))| < 10−3

for local and non-local observables A acting on the common
sites between the two systems, i.e. on the open system and
on the first NE sites on each environment chain. We show at
last in Fig. 10 the difference in computational time between
the standard TEDOPA and FMC simulations used to compute
these equilibrium states. It illustrates the wall-clock time re-
quired for each time step in the relaxation phase (i.e. when
t > τ ) of the adiabatic evolution towards an equilibrium state,
considering environments of various lengths. In this situation,
entanglement is slowly spreading along the chain, requiring
more and more time for each sweep of the TDVP algorithm in
the normal TEDOPA cases, since the number of singular val-
ues needed to well approximate the state increases and so the
singular value decomposition (SVD) takes more time. In the
FMC case, instead, the entanglement increases rapidly at the
beginning (which here already happened in the ramp-up phase
of the adiabatic evolution, not shown) and reaches very soon
the maximum quantity allowed by the limited bond dimension.
After this point, the computational time remains constant as
the evolution goes on.

D. Possible improvements

We note that the structure given by the Markovian closure
construction resembles the one presented in Ref. 73; in fact,
some remarks given by the authors in that paper apply here as
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FIG. 9. Adiabatic evolution of non-interacting SIAM with T = 0.4,
µ = 1, ε = −π

8
and J given by Eq. (76). Population of the open

system (top frame) and of the last site before the FMC in the chain
of the initially filled environment (bottom frame). The composite
system is evolved from a product state towards a state where the im-
purity is in equilibrium with the environment. We show two different
approximations within the FMC scheme, varying the number NC of
pseudomodes. Insets: absolute error between the FMC and TEDOPA
simulations.

well. Specifically, consider the total number operator, which
e.g. for the spinless SIAM in a thermal environment (we use
the same NE and NC for the two equivalent zero-temperature
environments for simplicity)

N= d†d+
NE∑

n=0

(c†0,nc0,n+c
†
1,nc1,n)+

NC∑

n=1

(a†0,na0,n+a
†
1,na1,n)

(77)
where c denotes a chain operator as in Eq. (47) and a a clo-
sure operator such as in Eq. (60). the linear map N (̺) ..=
[N, ̺] commutes with the generator L of the time evolution,
i.e. L(N (̺)) = N (L(̺)), as long as the original Hamiltonian
conserves the particle number74.

This could be used to restrict the evolution of the initial state
within its initial N -eigenspace: if the system S starts from a
pure state which is an eigenstate of the number operator then
N (̺0S̺

0
E) = 0.

Another improvement comes from using a different factor-
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FIG. 10. Computational time required for each step (top) and for
the whole evolution (bottom) in standard TEDOPA and FMC simula-
tions, for varying lengths of the TEDOPA chain, of the same system
in Fig. 9. All simulations were run with 8 CPU cores on identical
hardware.

ization technique for the re-orthogonalization of the MPS dur-
ing a TDVP sweep, where the cost of a traditional SVD de-
composition can become very demanding (it scales as (dχ)3

where d is the local dimension and χ the bond dimension) es-
pecially in the spinful case where d = 16. The reduced-rank

randomized singular value decomposition75 has a more favor-
able scaling with respect to the standard SVD, and might be
useful to speed up the calculations. We finally observe that,
for very long simulation times that exceed the memory time
of the environment, the transfer tensors formalism76 can be
used to further enhance efficiency.

VII. CONCLUSIONS

In this work we presented a way to improve the numerical
simulation with tensor networks of open systems coupled to
continuous fermionic environments. Firstly, we showed a way
to reshape the environments: through the TCSM transforma-
tion, which is closely related to the thermofield transformation
and absorbs the factors depending on chemical potential and
temperature into a modified spectral density, it becomes possi-
ble to merge several environments into a single effective one.
Besides a reduction of the number of chains to be determined
by means of the TEDOPA chain mapping, this simplification
can benefit other simulation schemes. Secondly, after perform-
ing the chain mapping on the environment to transform it into
a linear discrete chain of sites, we developed a way to approxi-
mate the dissipative behavior of the environments using only a
finite number of sites, extending the already existing MC con-
struction for bosonic environments to fermionic environments.
We compared the time evolution with normal TEDOPA and
with the FMC of several systems and environments and found
in all cases a satisfactory match between the expectation val-
ues of operators measured in the two cases, with relative er-
rors below 10−3. Moreover, we successfully compared the
environment correlation functions (and the associated spectral
density functions) from FMC simulations against the expected
theoretical results in some trivial and non-trivial cases. These
results, starting from the equivalence theorem, show the valid-
ity of the FMC method.

The FMC can in some cases reduce the time complexity of
the simulation and proves to be more efficient than standard
TEDOPA in simulations involving long chains and moderate
levels of entanglement. We have therefore developed a gen-
eral framework that complements TEDOPA in the study of
continuous fermionic environments, with a systematic way to
approximate the behavior of environments with a finite num-
ber of sites that does not rely on specific forms of the spectral
density or ad-hoc discretization schemes. We moreover re-
mark that the FMC, by playing the role of a (quasi-)perfect
absorber or emitter, can find application in a variety of cases,
independently of the use of chain mapping techniques77.

There are of course some improvements that can be stud-
ied in order to enhance the performance of the FMC method.
While the quality of the results obtained by means of FMC
is already more than satisfying, we can look for a better
parameterization of the closure, e.g. by means of the tech-
niques introduced in Refs. 67 and 68, to improve the accu-
racy of the fitting of the asymptotic spectral density, as well
as fermion-to-spin representations leading to a decrease of the
entanglement in the tensor network. This will all be object
of future work, together with the exploitation of symmetries
and conserved quantities leading to a further reduction of the
time/memory complexity of the simulation, and the applica-
tion of this method to analyze physically relevant quantities
such as spectral functions of interacting systems or the Kondo
peak.
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Appendix A: Thermofield transformation

We observe that the state ̺β,µ of the environmental
fermionic degrees of freedom is, in general, a mixed state. As
shown in Refs. 51 and 58, the same TTCFs, and therefore the
same reduced dynamics of the open quantum system S, is de-
termined by an extended environment E′ obtained from the
original one via a thermofield transformation79 and starting
from a pure state. The transformation is essentially based on
a local purification of the mixed state ̺β,µ: to each “physical”
mode f1,ω ≡ fω we associate an ancillary mode f2,ω, so that
the free Hamiltonian of the extended environment is

HE′ =

∫ ωmax

0

dω (ω − µ)(f †
1,ωf1,ω − f †

2,ωf2,ω). (A1)

The ancillary modes are introduced as independent modes, not
interacting with the physical ones. The f1,ω and f2,ω modes
are then linearly combined into new fermionic modes c1,ω and
c2,ω through the unitary (orthogonal) transformation57

(
c1,ω
c2,ω

)
=

(
cos

(
θβ,µ(ω)

)
− sin

(
θβ,µ(ω)

)

sin
(
θβ,µ(ω)

)
cos

(
θβ,µ(ω)

)
)(

f1,ω
f †
2,ω

)
,

(A2)
with θβ,µ(ω) determined through the relation

sin2
(
θβ,µ(ω)

)
=

1

eβ(ω−µ) + 1
. (A3)

In terms of the newly defined fermionic modes c1/2,ω, the free
Hamiltonian (A1) reads

HE′ =

∫ ωmax

0

dω (ω − µ)(c†1,ωc1,ω + c†2,ωc2,ω). (A4)

We observe that if the modes c1,ω start from the (factor-
ized) vacuum state |01〉 such that c1,ω|01〉 = 0 and the modes

c2,ω start from the filled state |F2〉 such that c†2,ω|F2〉 = 0

∀ω ∈ (0, ωmax), the physical occupation in the state |01, F2〉 is
sin2(θβ,µ(ω)) as in Eq. (A3), so that

〈01, F2|c†1,ωc1,ω + c†2,ωc2,ω|01, F2〉 = Tr
(
̺β,µf

†
1,ωf1,ω

)
.

(A5)
The interaction Hamiltonian HI in Eq. (3) becomes

HI =

∫ ωmax

0

dω
[
h1β,µ(ω)(A

†
Sc1,ω + c†1,ωAS)

+ h2β,µ(ω)(A
†
Sc2,ω + c†2,ωAS)

]
, (A6)

with the coupling h1,2(ω) defined as

h1β,µ(ω) = cos
(
θβ,µ(ω)

)
h(ω),

h2β,µ(ω) = sin
(
θβ,µ(ω)

)
h(ω).

(A7)

Appendix B: The Szegő class

In this appendix we study the Szegő class of functions to
find which conditions we need to impose on the spectral den-
sities so that the modulation and the recombination processes
give meaningful results. It turns out that the conditions are
very mild, so that these transformations are always well de-
fined for the usual spectral densities seen in literature.

1. Definitions

The Szegő class was originally defined in Ref. 80, 1, Sec-
tion 12.1 as the set of non-negative measurable functions on
[−π, π] such that

∫ π

−π

dt f(t) and
∫ π

−π

dt |log f(t)| (B1)

are finite, or equivalently the set of non-negative measur-
able functions w defined on [−1, 1] such that f(t) ..=
w(cos t)|sin t| satisfies (B1).

We can rewrite the integrals in (B1) to obtain clearer con-
ditions on w. For the first one, we note that the integrand
function is even, so

∫ π

−π

dt w(cos t)|sin t| = 2

∫ π

0

dt w(cos t)|sin t|; (B2)

then we change variables with t = arccosx, obtaining

2

∫ π

0

dt w(cos t)|sin t| =

= 2

∫ 1

−1

dxw(x)|sin(arccosx)| 1√
1− x2

=

= 2

∫ 1

−1

dxw(x)
√

1− x2
1√

1− x2
=

= 2

∫ 1

−1

dxw(x).

(B3)

https://github.com/phaerrax/markovian_closure_fermions
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With the same procedure, the second one becomes instead
∫ π

−π

dt
∣∣log

(
w(cos t)|sin t|

)∣∣ =

= 2

∫ π

0

dt
∣∣logw(cos t) + log|sin t|

∣∣ =

= 2

∫ 1

−1

dx
|logw(x) + log

√
1− x2|√

1− x2
=

= 2

∫ 1

−1

dx

∣∣∣∣
logw(x)√
1− x2

+
log(1− x2)

2
√
1− x2

∣∣∣∣.

(B4)

The second fraction in the last integral gives
∫ 1

−1

dx

∣∣∣∣
log(1 − x2)

2
√
1− x2

∣∣∣∣ = −π log 2, (B5)

so on one hand
∫ 1

−1

dx

∣∣∣∣
logw(x)√
1− x2

+
log(1− x2)

2
√
1− x2

∣∣∣∣ ≤

≤
∫ 1

−1

dx

∣∣∣∣
logw(x)√
1− x2

∣∣∣∣+
∫ 1

−1

dx

∣∣∣∣
log(1− x2)

2
√
1− x2

∣∣∣∣ =

=

∫ 1

−1

dx

∣∣∣∣
logw(x)√
1− x2

∣∣∣∣+ π log 2

(B6)

while with the reverse triangular inequality |a−b| ≥
∣∣|a|−|b|

∣∣
we get
∫

dx |A(x) −B(x)| ≥
∫

dx
∣∣|A(x)| − |B(x)|

∣∣ ≥

≥
∣∣∣∣
∫

dx
(
|A(x)| − |B(x)|

)∣∣∣∣ ≥

≥
∫

dx
(
|A(x)| − |B(x)|

)
=

=

∫
dx |A(x)| −

∫
dx |B(x)|

(B7)

so we conclude that
∫ 1

−1

dx
|logw(x)|√

1− x2
− π log 2 ≤

≤
∫ 1

−1

dx

∣∣∣∣
logw(x)√
1− x2

+
log(1− x2)

2
√
1− x2

∣∣∣∣ ≤

≤
∫ 1

−1

dx
|logw(x)|√

1− x2
+ π log 2. (B8)

This proves that w belongs to the Szegő class if and only if
∫ 1

−1

dxw(x) < +∞, (B9)

∫ 1

−1

dx
|logw(x)|√

1− x2
< +∞. (B10)

Another common definition of the Szegő class is the set of
non-negative functions w on [−1, 1] such that

∫ 1

−1

dx
logw(x)√
1− x2

> −∞ (B11)

which stems from the fact that the asymptotic formula for the
recurrence coefficients of the orthogonal polynomials asso-
ciated to w, found for example in Ref. 80, Theorem 12.7.1,
which are key objects in the TEDOPA derivation, contains a
factor

exp

(
− 1

2π

∫ 1

−1

dx
logw(x)√
1− x2

)
. (B12)

While not always explicitly stated, condition (B9) should also
be required in this case, since the system-environment cou-
pling constant after the TEDOPA transformation is precisely
the square root of the left-hand side.

Both definitions imply useful properties, so we start show-
ing that they describe, actually, the same set. Let G1 be the
set of functions satisfying (B9) and (B10), and G2 the set of
those satisfying (B9) and (B11). It is easy to see thatG1 ⊆ G2

since (B10) bounds the integral in (B11). Vice versa, (B9)
makes the integral in (B11) also bounded from above: in fact
by changing the integration variable with x = cos t we first
get

∫ 1

−1

dx
logw(x)√
1− x2

=

=

∫ 0

−π

dt
logw(cos t)√
1− cos2 t

|sin t| =

=

∫ 0

−π

dt logw(cos t) =

=

∫ 0

−π

dt
(
logw(cos t) + log|sin t| − log|sin t|

)
=

=

∫ 0

−π

dt log
(
w(cos t)|sin t|

)
−
∫ 0

−π

dt log|sin t| =

=

∫ 0

−π

dt log
(
w(cos t)|sin t|

)
+ π log 2.

(B13)
Now we bound the logarithm by its argument, which is of
course always positive, and change t to −t obtaining

∫ 0

−π

dt log
(
w(cos t)|sin t|

)
+ π log 2 ≤

≤
∫ 0

−π

dt w(cos t)|sin t|+ π log 2 =

=

∫ π

0

dt w(cos t)|sin t|+ π log 2.

(B14)

With another change of variables, t = arccos y, we get to

∫ 1

−1

dy w(y)|sin(arccos y)| 1√
1− y2

+ π log 2 =

=

∫ 1

−1

dy w(y)
√

1− y2
1√

1− y2
+ π log 2 =

=

∫ 1

−1

dy w(y) + π log 2

(B15)
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which we know is finite, so

∫ 1

−1

dx
logw(x)√
1− x2

≤
∫ 1

−1

dxw(x) + π log 2 < +∞ (B16)

as we wanted. This proves (B10) and consequentlyG2 ⊆ G1,
which ultimately means G1 = G2.

We denote the Szegő class just by G. We point out that
functions defined on other intervals can be always be trans-
lated and dilated so that they become defined in [−1, 1]; in
general, we could as well define the Szegő class on a generic
interval [a, b] as the set of functionsw : [a, b] → [0,+∞) such
that

∫ b

a

dxw(x) < +∞,

∫ b

a

dx
|logw(x)|√
(b− x)(x + a)

< +∞
(B17)

but it is enough to consider the [−1, 1] case, except in cases
when we need to add functions defined on different domains,
which of course start as Szegő-class functions on different
sets.

2. Properties

Now that we settled on a definition, we analyze what prop-
erties we need from Szegő-class functions so that the compo-
sition and modulation of spectral densities in the main text is
sure to work. Take for example two functions J1 : [−1, 1] →
[0,+∞) and J2 : [0, 2] → [0,+∞), combined into

J ′(x) =
(
1 + tanh

x

2

)(
1[−1,1](x)J1(x) + 1[0,2](x)J2(x)

)
,

(B18)
which imitates e.g. (25) after ignoring irrelevant constants. We
cannot view this simply as the sum of two functions in the
Szegő class on [−1, 1] and [0, 2] respectively because either i)
the functions are on different domains, but functions in G are
defined on the same domain, or ii) if we consider both of them
as defined on [−1, 2], then e.g. 1[−1,1](x)J1(x) = 0 on [1, 2]
so cannot be in the Szegő class on [−1, 2]. However we can
write J ′ as

J ′(x) =






(1 + tanh x
2 )J1(x) −1 ≤ x < 0,

(1 + tanh x
2 )(J1(x) + J2(x)) 0 ≤ x < 1,

(1 + tanh x
2 )J2(x) 1 ≤ x ≤ 2

(B19)
which can be seen as the concatenation of the restrictions
J1|[−1,0], (J1 + J2)|[0,1] and J2|[1,2], times a bounded func-
tion, 1 + tanh x

2 , also in the Szegő class.
We need then the Szegő class to be closed under four kinds

of operations:

1. addition,

2. product (at least if one of the functions is also bounded
almost everywhere),

3. concatenation,

4. restriction on a smaller domain.

We study the closure of G under these operations one by one.

Property 1 (Addition). For any f, g ∈ G,

∫ 1

−1

dx
(
f(x) + g(x)

)
=

∫ 1

−1

dx f(x) +

∫ 1

−1

dx g(x) < +∞
(B20)

and since g(x) ≥ 0 for all x ∈ [−1, 1]

∫ 1

−1

dx
log

(
f(x) + g(x)

)
√
1− x2

≥
∫ 1

−1

dx
log f(x)√
1− x2

> −∞.

(B21)

Property 2 (Product with an a.e. bounded function). Let
f, g ∈ G with g bounded almost everywhere. By Hölder’s
inequality

∫ 1

−1

dx f(x)g(x) ≤ ‖f‖1‖g‖∞ < +∞ (B22)

while for the logarithms

∫ 1

−1

dx
log

(
f(x)g(x)

)
√
1− x2

=

=

∫ 1

−1

dx
log f(x)√
1− x2

+

∫ 1

−1

dx
log g(x)√
1− x2

> −∞ (B23)

since both are greater than −∞.

In our case we never multiply two generic spectral densi-
ties together: for TCSM we only need to multiply a (shifted)
spectral density by factors of the form 1

ex+1 , 1
e−x+1 or 1 +

tanh x
2 (with some coefficients), which are always positive

and bounded.

Property 3 (Concatenation). If u, v ∈ G we define their con-
catenation as the following function on [−1, 1]:

w(t) =

{
u(2t+ 1) −1 ≤ t ≤ 0,

v(2t− 1) 0 < t ≤ 1.
(B24)

This function is in G since it obviously satisfies (B9) and

∫ 1

−1

dt
|logw(t)|√

1− t2
=

=

∫ 0

−1

dt
|log u(2t+ 1)|√

1− t2
+

∫ 1

0

dt
|log v(2t− 1)|√

1− t2
=

=

∫ 1

−1

dx
|log u(x)|√

(3− x)(1 + x)
+

∫ 1

−1

dx
|log v(x)|√

(3 + x)(1 − x)
≤

≤
∫ 1

−1

dx
|log u(x)|√

1− x2
+

∫ 1

−1

dx
|log v(x)|√
1− x2

< +∞.

(B25)

Property 4 (Restriction to subinterval). Take f(t) equal to
1 on [−1, 0] and e−1/

√
t on (0, 1]: if we restrict it to [0, 1]

and suitably “stretch” it so as to obtain a function on [−1, 1],



20

i.e. f ′(t) := f( t+1
2 ), then f ′ /∈ G, so we need more assump-

tions. Informally, we could say that the restriction to a subin-
terval [a, 1] works provided 0 < w(a) < +∞ or a = −1
(similarly for a restriction to [−1, a]). If a = −1 nothing
changes, while if a > −1 and 0 < w(a) < +∞ then for a
small enough δ > 0

∫ a

a−δ

dx
logw(x)√

(a− x)(1 + x)
∼

∼ logw(a)√
1 + a

∫ a

a−δ

dx
1√
a− x

< +∞. (B26)

Note that the assumptions that make this property work are
mild (and they are certainly not necessary, w(a) may very
well be 0 as long as w(x) → 0 “nicely” as x→ a).

Appendix C: Detailed derivation of FMC

Here we provide a full derivation of the fermionic Marko-
vian closure discussed in Section V.

Let us start by considering the TTCF c′0(t) (see Eq. (63)),
corresponding to an auxiliary environment starting from the
vacuum state. Given the initial condition aj(0) = aj , the only
non-zero two-time correlation function is

c′0(t) = 〈0|BR(t)BR(0)
†|0〉 =

=

NC∑

k=1

NC∑

l=1

ζkζl〈0|ak(t)a†l |0〉 =

=

NC∑

k=1

NC∑

l=1

ζkζl〈0|ak(t)|1l〉,

(C1)

where |1l〉 ..= a†l |0〉 is the state in which the l-th mode (only)
is occupied.

Let vi(t) be the vector whose j-th component is vij(t) =
〈0|ai(t)|1j〉. It satisfies

dvij(t)

dt
= 〈0|ȧi(t)|1j〉 = 〈0|L′

R

(
ai(t)

)
|1j〉 (C2)

where L′
R is the adjoint Lindblad operator such that

L′
R(̺) = i[H

(0)
R , ̺] +D(0)′

R (̺) (C3)

which appears in the equation of motion in the Heisenberg
picture. We find

〈0|H(0)
R ai(t)|1j〉 = 0,

〈0|ai(t)H(0)
R |1j〉 =

NC∑

m=1

Λ
(0)
mj〈0|ai(t)|1m〉,

〈0|D(0)′
R

(
ai(t)

)
|1j〉 = −1

2

NC∑

m=1

Γ
(0)
mj 〈0|ai(t)|1m〉.

(C4)

We collect these results in the equation

dvi(t)

dt
=

(
−iΛ(0) − 1

2Γ
(0)

)T
vi(t), (C5)

which together with the initial condition

vij(0) = 〈0|ai(0)|1j〉 = 〈0|ai|1j〉 = δij (C6)

is solved by

vij(t) =

NC∑

m=1

exp(−itΛ(0) − 1
2 tΓ

(0))mjv
i
m(0) =

= exp(−itΛ(0) − 1
2 tΓ

(0))ij .

(C7)

The correlation function is therefore

c′0(t) =
NC∑

k=1

NC∑

l=1

ζkζl exp(−itΛ(0) − 1
2 tΓ

(0))kl =

= 〈ζ, exp(−itΛ(0) − 1
2 tΓ

(0))Tζ〉.
(C8)

Now, when the TEDOPA chain starts from the completely
filled state |F〉〈F|, we assume

H
(1)
R =

NC∑

i,j=1

Λ
(1)
ij a

†
iaj ,

D(1)
R (̺) =

NC∑

i,j=1

Γ
(1)
ij

(
a†i̺aj −

1

2
{̺, aja†i}

) (C9)

which satisfies D−
R (|F〉〈F|) = 0. The only nonzero correlation

function is

c′1(t) = 〈F|BR(t)
†BR(0)|F〉 =

=

NC∑

k=1

NC∑

l=1

ζkζl〈F|a†k(t)al|F〉 =

=

NC∑

k=1

NC∑

l=1

ζkζl〈F|a†k(t)al|F〉.

(C10)

An analogous calculation brings us to

c′1(t) = 〈ζ, exp(itΛ(1) − 1
2 tΓ

(1))Tζ〉. (C11)

The correlation functions Eqs. (54) and (63) are equal if and
only if

K2e−iΩtCsc(2Kt) = 〈ζ, exp(−itΛ(0) − 1
2 tΓ

(0))Tζ〉 (C12)

for the initially empty environment, and

K2eiΩtCsc(2Kt) = 〈ζ, exp(itΛ(1) − 1
2 tΓ

(1))Tζ〉 (C13)

for the initially filled one. The reduced dynamics will be the
same as long as these equalities are satisfied for all t ≥ 0. We
note that by taking the conjugate of Eq. (C13) we have

K2e−iΩtCsc(2Kt) = 〈ζ, exp(itΛ(1) − 1
2 tΓ

(1))Tζ〉 =
= 〈ζ, exp(−itΛ(1) − 1

2 tΓ
(1))ζ〉

(C14)
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which has the same structure as Eq. (C12), so once we solve
Eq. (C12) we can just set Λ(1) = Λ(0) and Γ (1) = Γ (0) and
obtain a solution for Eq. (C13). Ultimately, this means that
we need to solve

〈ζ, exp(−itΛ− 1
2 tΓ )

T ζ〉 = K2e−iΩtCsc(2Kt). (C15)

forΛ, Γ and ζ. We already know from Ref. 47 that a particular
solution exists where iΛ + 1

2Γ is tridiagonal; moreover, we
can always rescale a semicircular spectral density so that it
becomes the “unit” semicircle

jsc(x) =
2

π

√
1− x2; (C16)

we can fit a certain set of pseudomodes to reproduce the corre-
lation function generated by jsc, which is simplyCsc, and then
rescale back the results to obtain the ones relative to the orig-
inal spectral density. In detail, let M be an NC × NC matrix
defined as in Eq. (64) and w ∈ CNC be a solution to

〈w, exp(tM)w〉 = Csc(t). (C17)

We observe, however, that this equation is the same as the one
determined in Ref. 47 for the bosonic case, so the coefficients
determined there for the bosonic MC are valid also in our
fermionic setting. The coefficients for the casesNC = 6, 8, 10
are reported in Table I.

Going back to Eq. (C15), define Λ′ ..= Λ − ΩI and ζ′ ..=
Kζ: we get

K2e−iΩt〈ζ′, exp(−itΛ′ − 1
2 tΓ )

T ζ′〉 = K2e−iΩtCsc(2Kt)

〈ζ′, exp(−itΛ′ − 1
2 tΓ )

T ζ′〉 = Csc(2Kt);

now rescale the matrices by 2K , withΛ′ = 2KΛ′′ and Γ (1) =
2KΓ ′′ to obtain

〈ζ′, exp(−2iKtΛ′′ − 1
22KtΓ

′′)T ζ′〉 = Csc(2Kt),

then rescale the time, too, with s = 2Kt, so that

〈ζ′, exp(−isΛ′′ − 1
2sΓ

′′)T ζ′〉 = Csc(s).

This shows that M = −iΛ′′ − 1
2Γ

′′ and w = ζ′; therefore, if
we set Λ(0) as in Eq. (66) and Γjk = δjkγj (see Eq. (67)), we
obtain the following relations:

ωj = Ω − 2K Imαj ,

γj = −4K Reαj ,

gj = −2K Imβj ,

ζj = Kwj .

(C18)

Recalling Eq. (C14), if the initial state is the filled one we will
have to use αj and βj instead of αj and βj respectively.

Appendix D: Convergence of chain coefficients from
simulations

In this section we shortly comment on the convergence of
the chain coefficients of the equivalent environments from the

j Reαj Imβj Rewj Imwj

1 −1.60 · 10−2 7.85 · 10−1 2.74 · 10−5 −1.11 · 10−5

2 −1.48 · 10−10 −8.13 · 10−1 −4.79 · 10−1 3.99 · 10−1

3 −2.18 · 100 −1.08 · 100 6.34 · 10−6 −3.53 · 10−6

4 −1.44 · 10−11 −6.75 · 10−1 4.82 · 10−1 −3.84 · 10−1

5 −4.79 · 10−3 8.05 · 10−1 −1.40 · 10−6 2.45 · 10−6

6 −1.57 · 10−9 3.83 · 10−1 −2.93 · 10−1

j Reαj Imβj Rewj Imwj

1 −1.06 · 10−9 −8.88 · 10−1 −6.58 · 10−2 −2.48 · 10−1

2 −1.64 · 10−10 4.07 · 10−1 −1.31 · 10−1 3.47 · 10−2

3 −2.70 · 10−11 −9.96 · 10−1 −1.79 · 10−1 −6.75 · 10−1

4 −2.98 · 100 −1.49 · 100 1.92 · 10−2 −5.08 · 10−3

5 −1.02 · 10−9 −1.04 · 100 9.77 · 10−2 3.68 · 10−1

6 −3.61 · 10−9 −4.55 · 10−1 −1.36 · 10−1 3.60 · 10−2

7 −3.53 · 10−11 8.48 · 10−1 −1.06 · 10−1 −4.01 · 10−1

8 −3.73 · 10−11 −2.91 · 10−1 7.73 · 10−2

j Reαj Imβj Rewj Imwj

1 −3.43 · 10−1 1.13 · 100 −1.32 · 10−3 4.62 · 10−4

2 −8.67 · 10−5 1.05 · 100 3.32 · 10−3 5.49 · 10−4

3 −2.73 · 100 −1.08 · 100 −2.40 · 10−3 −1.48 · 10−3

4 −7.09 · 10−1 8.35 · 10−1 1.94 · 10−2 −3.55 · 10−2

5 −3.24 · 10−6 −6.04 · 10−1 −3.32 · 10−2 −1.20 · 10−2

6 −4.50 · 10−7 −5.09 · 10−1 1.04 · 10−1 −3.53 · 10−1

7 −2.79 · 10−6 6.77 · 10−1 1.21 · 10−1 2.08 · 10−2

8 −9.48 · 10−5 1.61 · 10−1 1.65 · 10−1 −8.17 · 10−1

9 −1.37 · 10−3 −9.51 · 10−1 −1.21 · 10−1 −4.45 · 10−3

10 −5.95 · 10−6 4.72 · 10−2 −3.67 · 10−1

TABLE I. Universal parameters for the Markovian closure in the
NC = 6, 8 and 10 cases (from top to bottom). In all three cases
Imαj and Reβj are zero for all j.

non-interacting SIAM simulations in Figs. 6 and 7, which are
described by a semicircle spectral density function on (0, 2)
with µ = 1 and µ = 0.2 respectively, at temperature T = 0.4.
It is clear from the plots in Figs. 11 and 12 that the chain coef-
ficients are very close to their asymptotic values already from
n = 5, which motivates the choices for NE in the simulations
shown in the main text.
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