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A B S T R A C T   

The aim of the study was to evaluate the effect of the adoption of precision technologies in dairy cattle farms on 
environmental impact of milk production, estimated using the Life Cycle Assessment methodology. Primary data 
were collected from five dairy farms. Based on this information, scenarios were created to evaluate the effect of 
introducing an Automated Milking System (AMS) and adopting technologies for udder health monitoring and 
heat detection. Comparisons among scenarios showed that the application of these technologies helps to reduce 
the environmental impact of milk production at the farm level. The introduction of the AMS resulted in a 
mitigation of 1.2–5.8% of Global Warming Potential (GWP) per kg Fat and Protein Corrected Milk (FPCM). The 
implementation of technological systems for udder health monitoring led to a decrease in GWP per kg FPCM of 
0.06–0.04% for every 5% increase in the detection of infected cows. The use of automatic systems for heat 
detection reduced GWP of 1 kg of FPCM by 9.4%, Acidification by more than 10% and Land use 5.65–7.69%. The 
effectiveness of precision technologies on environmental impact mitigation depends not only on their imple-
mentation and reliability but also on how the information provided is used by farmer.   

1. Introduction 

Increasing farm efficiency and optimizing resource use are effective 
mitigation strategies for reducing the environmental impact in dairy 
farming (Gerber et al., 2013; Bava et al., 2014). 

Increasing individual milk production and efficiency, along with 
improving fertility and animal health provide an important contribution 
to the environmental impact mitigation, by reducing emissions and non- 
renewable resource use per unit of product (Gerber et al., 2011; Guerci 
et al., 2013; Bell et al., 2015; Tullo et al., 2019). Garnsworthy (2004) 
suggested that by optimizing cow fertility, it is possible to reduce 
methane and ammonia emissions per kg of milk by more than 20%. 
Health, welfare, and longevity significantly affect the amount of GHGs 
emitted per kg of milk produced, by influencing cow productivity, feed 
conversion and fertility (Vellinga and De Vries, 2018; Mostert et al., 
2019; von Soosten et al., 2020). It is estimated, indeed, that diseases can 
reduce the livestock productivity by 25% (von Soosten et al., 2020). In 
particular, some studies have focused on the increase in environmental 
impact due to the onset of mastitis, one of the most important diseases in 
dairy cattle (Hospido and Sonesson, 2005; Mostert et al., 2019). The 
greater environmental impact was attributed to the increased risk of 
early culling of cows, reduced milk production, discarded milk, and 

extended calving interval. Gülzari et al. (2018) estimated a 3.7% 
reduction in GHG emissions per kilogram of corrected milk with a 
decrease in somatic cell count from 800,000 to 50,000 cells per ml. 

In addition, good health can increase the lifespan of cows, resulting 
in environmental benefits due to the reduction in unproductive periods 
compared to productive periods. Von Soosten et al. (2020) reported in a 
model that cows reaching 5–8 lactations reduce their emissions per kg of 
milk by approximately 40% compared to cows culled after the first 
lactation. Similarly, Vellinga and De Vries (2018) showed that 
increasing lifespan from 2 to 6 years reduces GHG emissions by 14–19% 
per kg of fat and protein corrected milk (FPCM). 

The goodwill and skills of the farmer are essential for improving herd 
efficiency, but are they sufficient to tackle the challenge of reducing the 
impact of livestock farming? At the European level, a new target has 
been set, namely, to halve GHG emissions by 2030 (Euco, 2020). 
Therefore, it is crucial to study all the available strategies to improve 
farm management for reducing the environmental impact of livestock. 
One potential solution is the adoption of Precision Livestock Farming 
(PLF) technologies that can assist farmers in identifying herd issues and 
improving livestock efficiency (Niloofar et al., 2021). In fact, Lovarelli 
et al. (2020) reported that PLF could mitigate the environmental impact 
of livestock farming by optimizing input utilization on the farm and 
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reducing production risks. However, to the best of our knowledge, there 
are few studies in the scientific literature that have utilized the life cycle 
assessment (LCA) methodology to evaluate the environmental effects, 
on different environmental impact categories, derived from PLF imple-
mentation at farm level (e.g., Balaine et al., 2020; Pardo et al., 2022). 
Lovarelli et al. (2023) considered the effects of some PLF technologies at 
cow dairy farm level on GWP, not including other environmental im-
pacts categories. 

This study aims to investigate whether and how PLF technologies, if 
smartly and carefully applied, can help to reduce environmental impact 
of milk production. The analyses were performed using data from actual 
farms, and the effect of the implementation of different technologies was 
studied. In particular, the present work focused on how the imple-
mentation of automatic milking systems (AMS) and the application of 
smart technologies for monitoring fertility and udder health can 
enhance herd efficiency and mitigate the environmental impact of milk 
production. The present study is one of the first, in the Italian and Eu-
ropean context, where environmental evaluation of the introduction of 
technologies in dairy farms was performed, analysing different envi-
ronmental impact categories, through the life cycle assessment (LCA) 
methodology. As far as we know, it is the first time that the introduction 
of AMS and PLF sensors for udder health evaluation were evaluated 
thought LCA. 

2. Materials and methods 

Five dairy cattle farms from Lombardy (Italy) were involved in the 
study. Table 1 provides information about the farms, including details 
about the herds and the technologies implemented, with reference to the 
years 2019 (E farm) and 2020 (A, B, C and D farms). Information about 
animal diets and the use of fertilizers are reported in Table S1. 

Farm technological level was calculated using two different scores: 
diffusion rate score and adoption time score. The diffusion rate score 
refers to the presence of precision instruments on the farm (no = 0; yes 
= 1), while the adoption time score considers the time elapsed since 
adoption, with scores ranging from 1 (adoption for less than 1 year) to 5 
(adoption for more than 5 years). Further details about the scores are 
reported by Bianchi et al. (2022). These technological scores provide 
information about the technology level of farms and the period of 
implementation of technologies at the farms. 

2.1. Life cycle assessment 

The evaluation of the environmental impact of milk production was 
performed through the life cycle assessment (LCA) methodology, 
following ISO 14040-compliant and ISO 14044-compliant LCA meth-
odology (ISO 2006a; ISO 2006b). The LCA analysis was based on data 
obtained from the five dairy cattle farms, with reference to the years 
2019 (E farm) and 2020 (A, B, C, and D farms). 

The goal of this LCA study was to quantify the GWP, Acidification, 
Eutrophication (freshwater and marine), Land use and Resource use 
(fossils) of milk production and to evaluate the role of technology 
implemented on farms as a strategy for mitigating emissions. 

2.2. Functional unit, system boundaries and allocation procedure 

The 6 farms produced raw milk to sell to companies, so the functional 
unit considered was 1 kg of Fat and Protein Corrected Milk (FPCM) with 
a composition of 4.0% fat and 3.3% protein following the guideline 
reported by IDF (2015) for milk at farm level without transformation. 
The allocation between milk and meat was performed using the bio-
physical allocation method recommended by the International Dairy 
Federation using the formula Allocation Factor of milk = 1–6.04 x BMR, 
(con BMR = Mass meat/Mass milk) (IDF, 2015), with the average allo-
cation factor for milk being 85.8 ± 6.8%. In the scenario analyses re-
ported below, the allocation between milk and meat was adjusted based 
on variations in milk production levels and/or different culling rates. 

The system boundaries considered included the processes from 
cradle to farm gate. All the inputs (e.g., off-farm feed, bedding material, 
machinery, fuel, electricity, fertilizers and pesticides) and outputs (e.g., 
emissions to the air, milk and meat) throughout the production pro-
cesses were considered (Fig. 1). 

2.3. Life cycle inventory 

Primary data, which was collected through face-to-face question-
naires during farm visits, formed the basis of the study. These data 
encompassed information about cropping system, herd composition, 
manure management, feeding rations, purchased forages, concentrates 
and mineral-vitamin integration, milk production and composition. 
Additionally, secondary data from the Ecoinvent V3.8 2021 and Agri--
footprint (V6, 2022), databases, which are the main databases in terms 
of environmental impact evaluation of animal feed and animal pro-
duction, were used. 

At the barn level, all the emissions related to milk production were 
calculated. The methane emissions from enteric fermentation were 
estimated for all livestock categories by using the equations of the 
Intergovernmental Panel on Climate Change (Equation 10.19 and 
Equation 10.21, IPCC, 2019a). The methane emissions from manure 
storage were estimated using Equation 10.23 of the IPCC (2019a) Tier 2 
method. Volatile solid excretion was estimated considering the gross 
energy of the diets (kJ/kg of dry matter) by using Equation 10.24 of the 
IPCC (2019a). For the feed digestibility, values suggested by Product 
Category Rules of Grana Padano PDO (Protected Designation of Origin) 
were used. N2O emissions from manure storage occurred in direct and 
indirect forms, and they were estimated using Equation 10.25 and 
Equation 10.28 from IPCC (2019a) for direct and indirect emissions, 
respectively. In the current study, animal nitrogen excretion was esti-
mated as proposed by the IPCC (2019a) Tier 2 method, considering the 
nitrogen intake (on the basis of the crude protein % of the diet) minus 
the nitrogen retained by the animals and excreted with milk (Equation 
10.31A, option 2). The effects on direct and indirect N2O emissions 
derived by the application on the field of organic (solid and slurry) and 
synthetic fertilizers, as well as crop residues, were accounted for using 
Equation 11.2 and Equation 11.9 for direct and indirect emissions, 
respectively (IPCC 2019b). NH3 from housing and manure storage was 
estimated through the European Environment Agency method (EEA, 
2019a), as well as NO2 from manure storage. 

NH3 from manure and chemical fertilisers spreading was accounted 
for, using the European Environment Agency method (EEA, 2019a,b), as 

Table 1 
Data of farms involved in the study with reference to the years 2019 (E farm) and 2020 (A, B, C and D farms).  

farm lactating cows (n) milk/cow/day (kg) milking system automatic heat detection systems Year of technology adoption age at first calving (month) 

A 500 37.7 milking parlor activometers 2005 23.5 
B 40 25.6 pipeline none / 26.0 
C 106 33.8 milking parlor activometers 2012 24.7 
D 500 37.0 automatic milking system activometers 1999 24.0 
E 100 27.0 milking parlor milk progesterone detection 2010 26.4  
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well as NO2 from chemical fertilisers spread in the field (EEA, 2019a). 
PO4 and NO3 emissions resulting from organic and inorganic fertilisers 
were computed as proposed by Nemecek and Kägi (2007) and IPCC 
2019b for PO4 and NO3, respectively. 

For soybean meal and oil, direct land use change (LUC) was included 
in the assessment. Different LUC methods result in significantly different 
outputs; in this study, Agri-footprint (V6, 2022) database was used. 
According to the database, the impact for soybean meal (solvent) at 
processing is 4.30 kg of CO2 eq/kg for Brazilian soybean meal and 1.58 
kg of CO2eq/kg for Italian soybean meal. Since, according to ASSALZOO 
(National Association of Animal Feed Producers, 2018), in Italy, 20% of 
all purchased soy feeds and derivatives come from Italy and 80% come 
from South America. 

The emissions associated with off-farm activities were calculated 
using the Ecoinvent V3.8 2021 and Agri-footprint (V6, 2022) databases, 
implemented in Simapro PhD 9.4.0.2 software. The considered pro-
cesses included the production chain of commercial feed (from crop 
growing to feed factory processing), as well as the production of pur-
chased forages and bedding material and the production of synthetic 
fertilizers, pesticides, diesel, and electricity used on the farms. Trans-
portation emissions were accounted for by materials brought in from 
outside of the farm. 

2.4. Life cycle impact assessment 

After classification, characterization was performed through Envi-
ronmental Footprint method (EF 3.0 adapted V1.03), implemented in 
Simapro software, to evaluate the environmental impact of milk pro-
duction in terms of GWP (kg of CO2 eq), Acidification (mol H+ eq), 
Eutrophication (freshwater and marine) (kg P eq and kg N eq), Land use 
(Pt) and Resource use (fossils) (MJ). Selected impact categories were the 
most used in studies that applied LCA at dairy farms (Berton et al., 2021; 
Pardo et al., 2022). Differences between biogenic and fossil methane 
were taken into account by giving different characterization factors, as 
required by the method used. 

2.5. Scenario analyses 

2.5.1. Automatic milking system scenarios 
In this scenario, the environmental effects of AMS adoption in two of 

the five dairy farms (Farms B and E) that currently perform parlor or 
pipeline milking was studied. First, the GWP of the production of 1 kg of 
FPCM was estimated using the LCA methodology based on the actual 
farm data (baseline scenario). Then, by simulating changes in some farm 
indicators (Table 2), as reported in the scientific literature, eight 
different scenarios were created (Table 3). 

An increase in milk fat and protein was applied only in the AMS3, 
AMS4, AMS7 and AMS8 scenarios, as certain studies reported no 

Fig. 1. The system boundaries from cradle to farm gate.  

Table 2 
Changes assumed in Automatic Milking System scenarios.  

Scenario Indicators Changes References 

Automatic 
Milking 
System 

milk yield increased by 5% Bernier-Dodier et al. 
(2010); Hansen (2015);  
Melin et al. (2005) 

increased by 15% 

milk fat 
content 

increased by 0.10% Toušová et al. (2014) 

milk protein 
content 

increased by 0.06% 

Dry Matter 
Intake (DMI) 

increased in 
accordance with 
the increase of milk 
yielda 

Allen et al. (2019);  
Pacchioli et al. (2011) 

Purchased feed increased in 
accordance with 
the increase of DMI 

Energy 
consumption 

increased by 1.80 
kWh and 2.44 kWh 
per 100 L of milk 

Calcante et al. (2016) 

Somatic Cell 
Count (SCC) 

increased by 8.6% De Koning (2010) 

where FNDF = forage NDF content of diet (% of DM), ADF/NDF = ADF as a 
fraction of NDF in the ration, FNDFD = digestibility of forage NDF measured in 
vitro or in situ (% of FNDF), and MY = mean milk yield (kg/d), and assuming 
FNDF content of 4%. 

a DMI (kg/d) = 12.0 − 0.107 × FNDF + 8.17 × ADF/NDF + 0.0253 × FNDFD 
– 0.328 × (ADF/NDF – 0.602) × (FNDFD − 48.3) + 0.225 × MY + 0.00390 ×
(FNDFD − 48.3) × (MY – 33.1). 
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changes in milk composition following the introduction of AMS (Hovi-
nen and Pyörälä, 2011). 

Subsequently, all scenarios were simulated with an 8.6% increase in 
Somatic Cell Count (SCC) due to the introduction of AMS, as reported in 
Table 2. The aim was to compare these scenarios with the 8 AMS sce-
narios and to evaluate, even in the case of a worsening SCC, whether 
AMS adoption is still a valid environmental mitigation strategy. 

In these scenarios (8 AMS with an increased SCC), worsening udder 
health, resulting in a higher percentage of cows prone to mastitis 
(Hovinen et al., 2009), an increase in discarded milk and in the number 
of animals to replace, as well as a decrease of 150 kg of milk per mastitis 
case (>200,000 cells/ml), was considered (Adriaens et al., 2021). 

An impact assessment regarding the energy consumption of the 
entire production process introducing AMS was also made. The differ-
ences between scenarios with a minimum consumption of energy (1.80 
kWh per 100 L of milk; AMS1 AMS3 AMS5 and AMS7) and scenarios 
with a maximum consumption (2.44 kWh per 100 L of milk; AMS2 
AMS4 AMS6 and AMS8) were thus compared (Calcante et al., 2016). 
Amounts of FPCM sold by the two farms in different AMS scenarios were 
reported in Table S2. 

2.5.2. Udder health scenario 
To evaluate the environmental effects of the implementation of 

precision technologies for monitoring mastitis risk, an Udder Health 
(UH) scenario was created starting from actual data of two farms (Farms 
A and D). Considering that both farms normally monitor electrical 
conductivity and milk flow to detect mastitis, in the UH scenario, the 
lack of mastitis detection instruments was assumed, resulting in a lower 
detection capacity than the actual capacity. As reported by Hogeveen 
et al. (2010), mastitis detection sensors, such as instruments for moni-
toring electrical conductivity, have a sensitivity of approximately 80%; 
thus, in the UH scenario, considering a 5% lower ability to detect 
mastitis, a sensitivity of 75% was envisaged. The correct use by breeders 
of the information provided by technological instruments was taken for 
granted. 

In the UH scenario, it was assumed that a greater number of cows 

with mastitis were not identified by farmers and, consequently, were not 
treated (Table 4). 

In this scenario, a variation in purchased feed was considered due to 
the variation in the number of cows and heifers in the herd. On the other 
hand, a decrease in dry matter intake (DMI) in cows with mastitis was 
not considered important and, therefore, was not estimated. 

The increase in untreated mastitis cases was expected to result in an 
increase in milk SCC affecting the amount of discarded milk (DisM), that 
is, milk not sold due to the presence of antibiotics or high SCC. There-
fore, the environmental consequences of DisM were also evaluated. 

For the UH scenario, a sensitivity analysis was performed using 2 
different levels of milk reduction in the case of mastitis suggested by 
Adriaens et al. (2021) and Seegers et al. (2003), namely, losses of 150 
and 300 kg of milk per lactation for each case of mastitis. 

2.5.2.1. Effects on the environmental impact of discarded milk. One of the 
benefits resulting from better udder health monitoring is the reduction 
of DisM. To explore the role of this change in decreasing the environ-
mental impact of milk production, estimations were made on the 
amount of DisM in two dairy farms (Farms A and D). First, the actual 
DisM quantity was calculated for the period between 2016 and 2021 by 
subtracting the milk sold and, if applicable, the milk used for calf 
feeding, as declared by farmers, from the total milk produced. The total 
milk produced was obtained using the monthly official controls of the 
National Breeders Association. 

Second, the environmental effects of reduced DisM were evaluated, 
hypothesizing a reduction of 1 kg of discarded FPCM head/day in 4 
different years: 2016, 2019, 2020 and 2021. 

An evaluation using the LCA methodology was conducted consid-
ering the change in milk production per year, obtained by the reduction 
of DisM. Then, the GWP estimated was compared with the GWP assessed 
in the same farms, considering the real milk yield without the reduction 
of DisM. 

2.5.3. Heat detection scenario 
Real data from two Lombardy dairy farms (Farms C and E) using 

different heat detection tools were considered to build an LCA scenario 
(HD) analysis that aimed to evaluate the environmental effects of 
technology for managing reproduction. In particular, one farm used 
activometers, while the other farm had sensors to detect milk 
progesterone. 

Age at first calving and calving interval were considered indicators of 
reproductive performance for both herds. Differences in these variables 
were measured before and after the introduction of a heat detection 
automatic system. For both farms, 2008 was considered the reference 
year before the introduction of these instruments, while for the period 
after the adoption of these instruments, 2020 was taken as a reference. A 
General Linear Model (GLM) was performed using the SAS statistics 
program (SAS, 2012) to verify whether there were significant differ-
ences in reproductive performance over time. The model used was as 
follows: 

Table 3 
Details of changes applied in the eight different Automatic Milking System 
scenarios.  

Scenario Milk 
Yield 

Milk Fat 
and 
Protein 
Content 

Dry 
Matter 
Intake 
(DMI) 

Feed 
Purchase 

Energy 
Consumption (for 
100 L of milk) 

AMS1 +5% No Yes yes +1.8 kWh 
AMS2 +5% No Yes yes +2.44 kWh 
AMS3 +5% yes yes yes +1.8 kWh 
AMS4 +5% yes yes yes +2.44 kWh 
AMS5 +15% no yes yes +1.8 kWh 
AMS6 +15% no yes yes +2.44 kWh 
AMS7 +15% yes yes yes +1.8 kWh 
AMS8 +15% yes yes yes +2.44 kWh  

Table 4 
Changes assumed in Udder Health scenario.  

Scenario Indicators Changes References or calculation way 

Udder Health 
scenario 

cows with mastitis not identified by farmer increased by 5% Hogeveen et al. (2010) 
cows with at least 4 official milk controls with 
400,000 cells/ml or more, and then culled 

increased by 5% 

milk yield reduced by 150 kg/lactating cow with mastitis not identified Adriaens et al. (2021) 
lost milk of culled cows Fat and Protein Corrected Milk (FPCM) produced (kg/cow/year) 

* number of extra cows culled with high SCC (400,000 cells/ml) 
according to the number of infected cows not 
identified by farmer and then culled 

number of heifers increased by 11.7% according to the replacement of culled cows 
purchased feed decreased by 2.28% according to the different number of cows 

(decreased due to culled cows) 
increased by 0.83% according to the different number of heifers 

(increased due to replacement of cows)  
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Yijkl = μ + Ti + Fj + Sk + TFij + Sk + eijkl                                             

where Yijkl represents the dependent variables (age at first calving and 
calving interval), μ is the general mean, Ti is the effect of introduction of 
technology for heat detection (i = before and after), Fj is the farm effect 
(j = C and E); Sk is the effect of calving season (k = cold and hot season); 
TFij is interaction effect; and eijkl is the residual error. 

To test the calving interval, the parity effect (Pm) was also included in 
the model (m = 1–3; primiparous, secondiparous, multiparous). 

Whenever possible, actual farm data were used to obtain simulations 
that closely resembled reality. In the HD scenario, changes in indicators 
were made using the starting data for 2020, taking into account the 
differences in reproductive performance over time (2008–2020) 
(Table 5). 

The reduction of DMI, as a result of lower milk production during 
cow lifespan, was considered; however, changes in the DMI of primip-
arous cows due to delay in first calving and lengthening of the unpro-
ductive period, were not considered (Grummer et al., 2004). 

A reduction in milk yield was considered both due to the reduced age 
at first calving and the shorter calving interval. 

A Monte Carlo simulation was performed for all scenarios to assess 
the extent to which uncertainties associated with the data used in the 
study can influence the observed environmental impacts. The analysis 
was conducted with a 95% confidence interval and 1000 iterations. 

3. Results 

In Fig. 2, the technological scores (diffusion rate score and adoption 
time score) and the GWP (kg CO2 eq./kg of FPCM) for each farm are 
reported. 

The mitigation of GWP per kilogram of milk achieved through the 
introduction of AMS ranged from 1.20% to 5.83% (Table 6). The results 
on Acidification, Eutrophication (freshwater and marine), Land use and 
Resource use, environmental impact categories are reported in Table 7. 
The least-mitigating scenarios were those with the highest energy con-
sumption and the lowest milk production improvement (AMS2 and 
AMS4). In particular, for energy use category, the effect was very low in 
farm B and negative in farm E, with an increase in this category by 2.5%. 
The greatest environmental benefits, in particular for Eutrophication 
(freshwater and marine) (0.0002 and 0.0002 kg P eq. and 0.009 and 
0.007 kg N eq. for freshwater and marine in baseline scenario for B and E 
farms, respectively) and Land use (100.6 and 70.0 Pt in baseline sce-
nario, for B and E farms, respectively) were associated with the AMS5 
and AMS7 scenarios, characterized by the highest increase in milk 
production (+15%) and the lowest energy consumption. Considering 
only energy consumption, the increase only led to a GWP worsening 
from 0.16% (Farm E) to 0.06% (Farm B), while the improvement in milk 
quality, in terms of fat and protein content, produced an average envi-
ronmental benefit of 0.05%. The main driver was the increase in milk 

yield. 
The increase in SCC due to the introduction of AMS resulted in a 

modest increase in GWP per kg of FPCM ranging between 0.03% and 
0.06% compared to the AMS scenarios. In fact, the GWP of milk in the 
farms in which the adoption of AMS led to an increase in SCC was still 
1.1% (Farm E) and 1.8% (Farm B) lower than the impact values of the 
baseline scenarios. This percentage was calculated taking into consid-
eration the AMS2 scenario (i.e., the worst one, with a 5% increase in 
milk production, a maximum energy consumption and a fat and protein 
content unchanged) compared to the baseline scenario; of course, 
considering the other scenarios, the difference between the AMS and the 
baseline scenarios was greater. 

Regarding the UH scenario, a decrease in mastitis detection capacity 

Table 5 
Changes in Heat Detection scenario.  

Scenario Indicators Changes References or calculation way 

Heat 
Detection 

days in milk increased by almost 14.9% from the difference in calving interval over the years considering the same number of 
cows 

milk yield reduced by 4.10% from the extra non-productive months*primiparous (n.)*average milk produced/cow/ 
day 

reduced by 4.10% due to the increase in days in milk - Lehmann et al. (2019) 
DMI reduced by 7.10% Lehmann et al. (2019) 
purchased feed reduced in accordance with DMI 

reduction 
Lehmann et al. (2019) 

number of lactating 
cows 

increased by about 10% in accordance with longer lactations 

dead cows increased by 16.3% in accordance with the increase of lactating cows 
sold cows reduced by 49.9% 
age at first calving increased by 1.2–1.6 months from the difference in age at first calving over the years  

Fig. 2. Diffusion Rate Score, Adoption Time Score and Global Warming Po-
tential of milk production in the five Italian dairy farms involved in the study. 
1FPCM = Fat and Protein Corrected Milk. 

Table 6 
Global Warming Potential of B and E farms’ AMS scenarios.   

B farm E farm 

Scenario kg CO2 eq./ 
kg of Fat and 
Protein 
Corrected 
Milk 

decrease in 
Global Warming 
Potential 
compared to the 
baseline 
scenario (%) 

kg CO2 eq./ 
kg of Fat and 
Protein 
Corrected 
Milk 

decrease in 
Global Warming 
Potential 
compared to the 
baseline 
scenario (%) 

baseline 1.7313 _ 1.8690 _ 
AMS1 1.6997 1.86 1.8447 1.36 
AMS2 1.7008 1.79 1.8477 1.20 
AMS3 1.6991 1.89 1.8435 1.42 
AMS4 1.7001 1.83 1.8465 1.27 
AMS5 1.6316 5.79 1.7849 4.56 
AMS6 1.6326 5.73 1.7876 4.41 
AMS7 1.6308 5.83 1.7837 4.62 
AMS8 1.6318 5.78 1.7864 4.47  
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due to the lack of a technological system (SCC and electrical conduc-
tivity monitoring) for udder health monitoring at the farm produced an 
increase in GWP and other considered environmental impact categories 
between 0.06% and 0.04% for every 5% decrease in infected cows 
detected, in comparison with the baseline scenario. A different benefit of 
using an udder health monitoring technology was noted in Farms A and 
D, where this scenario was applied. The SCC situation of the two farms 
was initially different; in Farm A, 14% of the cows achieved more than 4 
monthly official controls of the National Breeders Association with high 
SCC (more than 400,000 cells/ml), while in Farm D, the percentage was 
lower (5%). 

As a consequence of the increased number of culled cows, GWP 
increased by 0.80% in the first farm (A) and 0.08% in the second farm 
(D). Also for acidification, eutrophication, land use and resource use, the 
environmental benefits in farm D were minimal and even negative for 
marine eutrophication and acidification. Results of other environmental 
categories are reported in Table 8. 

The increase in the GWP was 1.31% (Farm A) and 0.31% (Farm D) if 
only the quantity of lost milk due to SCC raising was considered. On the 
other hand, considering only the herd changes (fewer lactating cows and 
more heifers), the increase in the GWP was lower, i.e., 0.77% (Farm A) 
and 0.04% (Farm D). The results from sensitivity analysis based on 
reduced milk production due to mastitis reported a reduction in GWP of 
0.13% for Farm B. 

Regarding the quantification of DisM over the years, as expected, an 
average decrease was recorded for farms A and D: on average, in 2016, 
4.60 ± 1.18 kg of milk/cow per day was discarded, while in 2021, 
approximately 2.74 ± 0.51 kg of milk was discarded (in 2019 and 2020, 
on average, 3.24 ± 1.24 and 2.74 ± 2.25 kg of milk/cow per day was 
discarded, respectively). Analysing the environmental benefit of the 
DisM reduction, it was found that the reduction of only 1 kg of discarded 
FPCM head/day leads to an average reduction in GWP of approximately 
2.6%, considering different years (2016, 2019, 2020 and 2021). 

Regarding the reproductive scenario, the calving interval was 447 ±
3.69 days before the introduction of automatic heat detection systems 
and 400 ± 3.00 days after the introduction of automatic heat detection 
systems. Considering age at first calving, averages of 27.0 ± 0.16 and 
25.7 ± 0.11 months were obtained before and after the technological 
investment, respectively. The GLM confirmed an improvement over 
time in the reproductive performances of Farms C and E before and after 
the introduction of automatic heat detection systems (activometers and 

sensors for progesterone detection). 
The introduction of these technologies led to a reduction in all the 

assessed environmental categories, notably Acidification (10.6%) and 
GWP (9.4%). When farmers monitored the heat only visually, the impact 
of 1 kg of FPCM was 9.4 ± 0.5% higher than the GWP found in the 
scenario using automatic heat detection systems. The results about 
environmental categories are reported in Table 9. 

The comparison of average mitigation effects for the use of different 
technologies is reported in Fig. 3. Regarding the udder health scenario, a 
5% lower ability to detect mastitis was considered, reaching 80% 
sensitivity. 

The uncertainty analysis confirmed that the GWP evaluated using 
data from farms that use PLF tools was always lower than the estimation 
obtained without the use of PLF. 

4. Discussion 

The average milk yield of the five farms could be assumed to be 
representative of dairy farms in Lombardy, which have, on average, a 
slightly lower milk yield compared to their counterparts (− 3.5%; AIA, 
2020). The reproductive performance (age at first calving) of the studied 
farms was 7.7% better than the regional average (AIA, 2020). Consid-
ering the diffusion rate score and adoption time score of the technologies 
implemented on the farms, both were higher than the values reported by 
Bianchi et al. (2022), indicating a good level of technological 
advancement in the studied farms. However, high variability between 
farms was noticed for both the diffusion rate score (0.539 ± 0.30) and 
the adoption time score (1.71 ± 0.766). 

The results regarding the LCA of each farm indicate that the GWP and 
Acidification of the involved farms had values included between the 
minimum and maximum values described by Gislon et al. (2020), who 
reported an average GWP and Acidification for milk production of 
approximately 1.37 kg of CO2 eq./kg of FPCM and around 0.03 mol H+

eq respectively. Although not statistically proven, due to the limited 
number of farms, the highest GHG emissions per kilogram of milk were 
observed in farms characterized by a lower technological level 
compared to the others (Farms B, C and E), specifically, lower diffusion 
rate scores and adoption time scores. 

From the results obtained in the scenario analysis regarding the 
introduction of AMS in dairy farms, the environmental benefit of 

Table 7 
Percentage variations between baseline and Automatic Milking System scenarios, for the considered environmental impact categories.  

Farm Impact category AMS1 AMS2 AMS3 AMS4 AMS5 AMS6 AMS7 AMS8 

B farm Acidification − 1.96 − 1.93 − 2.03 − 2.00 − 5.95 − 5.92 − 6.03 − 6.01 
B farm Eutrophication, freshwater − 1.74 − 1.37 − 1.77 − 1.40 − 7.29 − 6.94 − 7.33 − 6.98 
B farm Eutrophication, marine − 2.62 − 2.61 − 2.66 − 2.65 − 7.72 − 7.70 − 7.78 − 7.77 
B farm Land use − 2.80 − 2.77 − 2.84 − 2.81 − 8.42 − 8.40 − 8.47 − 8.44 
B farm Resource use, fossils − 1.71 − 1.25 − 1.75 − 1.29 − 7.59 − 7.16 − 7.64 − 7.20 
E farm Acidification − 1.74 − 1.68 − 1.82 − 1.76 − 5.25 − 5.19 − 5.33 − 5.28 
E farm Eutrophication, freshwater − 1.06 − 0.53 − 1.12 − 0.59 − 6.03 − 5.53 − 6.09 − 5.59 
E farm Eutrophication, marine − 2.39 − 2.36 − 2.46 − 2.43 − 7.07 − 7.04 − 7.13 − 7.10 
E farm Land use − 2.76 − 2.76 − 2.83 − 2.82 − 8.10 − 8.09 − 8.16 − 8.15 
E farm Resource use, fossils 1.05 2.53 0.98 2.46 − 4.70 − 3.31 − 4.76 − 3.37  

Table 8 
Percentage variations between baseline and Udder Health scenario, for the 
considered environmental impact categories.  

Impact category A farm D farm 

Global Warming Potential 0.80% 0.08% 
Acidification 0.65% − 0.18% 
Eutrophication, freshwater 0.96% − 0.03% 
Eutrophication, marine 1.04% 0.11% 
Land use 1.09% 0.24% 
Resource use, fossils 1.10% 0.10%  

Table 9 
Increase (%) in heat detection scenario without technologies in C and E farms’   

Impact category 
Increase (%)  

C farm E farm 
Global Warming Potential 9.78% 9.04% 
Acidification 10.78% 10.34% 
Eutrophication, freshwater 7.95% 6.20% 
Eutrophication, marine 9.13% 8.09% 
Land use 7.69% 5.65% 
Resource use, fossils 7.02% 5.66%  
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adopting this technology is evident on GWP, Acidification, Eutrophica-
tion (Freshwater and Marine) and Land Use. The increase in milking 
frequency drove an increase in milk production. As reported by other 
authors (Gerber et al., 2011; Guerci et al., 2013) and observed in the 
present work, increasing the milk production level can reduce the 
environmental impact per unit of product. At the same time, the results 
for Resource Use differ between farm B and farm E. In farm E the modest 
increase in FPCM production (+5%) does not compensate for the higher 
demand of electricity. Conversely, the main environmental and eco-
nomic issues associated to the adoption of an AMS can be related to 
health problems (mastitis or others) due to the less frequent checking of 
the animals by operators. 

For example, Piwczyński et al. (2021) observed that introducing 
AMS into herds involves increases in the culling rate for locomotor 
diseases, low milk yield and other health problems; on the other hand, in 
the same study, it was also observed that milking automation reduced 
culling associated with udder diseases, as well as with low fertility, ac-
cidents and random events. In fact, as stated by Inzaghi et al. (2021), 
certain information provided by AMS can lead to the early detection of 
udder health issues. As also reported by other authors (Berglund et al., 
2002; Kolenda et al., 2021), SCC can decrease the use of AMS. From an 
environmental perspective, a decrease in SCC can drive various benefits 
in addition to economic profits (Gülzari et al., 2018), namely, less milk 
discarded and extended cow lifespan (Rostellato et al., 2022), due to a 
lower culling rate for mastitis. However, in contrast, other authors (de 
Koning, 2010; Hovinen and Pyörälä, 2011) have reported an increase in 
SCC in milk after the adoption of AMS. This is an undesirable effect that 
requires further investigation. However, it is important to note that in 
our scenarios, this increase in SCC did not significantly affect the envi-
ronmental impact of milk production. 

Previous studies (Hospido and Sonesson, 2005; Gülzari et al., 2018; 
Mostert et al., 2019) have highlighted the influence of mastitis on the 
environmental impact and, as a consequence, the environmental benefit 
of improving mastitis detection leading to a lower number of cows 
culled for this reason. Furthermore, mastitis reduces milk production 
and quality and contributes to the increase in discarded milk, which are 
additional factors that have a negative impact on environmental impact 
of milk production. 

The present study has highlighted a reduction in greenhouse gas 
emissions (expressed ad GWP), land use, and resource utilization 
resulting from improved mastitis detection in both farms studied, 
characterized by different initial management practices. Conversely, the 
effects on acidification and eutrophication varied between the two 
farms. In fact, in Farm A, the benefits were limited, whereas in Farm D, 
they were negative. The low values of acidification and eutrophication 
of freshwater in the scenario without technologies could be attributed to 

the different ratio of adult to replacement animals, favouring the latter, 
due to the high replacement rate and the consequent lower nitrogen 
excretion. Reed et al. (2015) reported lower nitrogen concentration in 
the diets and excretion of replacement animals compared to lactating 
cows. The environmental benefit of improved mastitis detection thus 
differed between the two farms, suggesting, among other things, that the 
enhancement of environmental sustainability is greater when the initial 
situation is more critical. Moreover, the changes in herd composition in 
the scenario with high SCC (and high replacement rate) resulted in a 
lower GWP per kg of milk due to the lower environmental load (related 
to enteric emissions and feed purchase) of heifers, in absolute terms, 
compared to adult cows. However, when considering reduced milk (and 
discarded milk), high milk SCC still led to higher GWP for milk pro-
duction at the farm level. In particular, in the case of milk intended for 
cheese-making, the comparison could be more interesting by also 
considering subclinical mastitis that can result in lower milk production 
and dairy efficiency and reduced milk quality (Bonestroo et al., 2022). 
Subclinical mastitis does not manifest clinically with symptoms; for this 
reason, it would be more easily detectable using technological tools than 
visual evaluation. 

The amount of discarded milk still represents a significant portion in 
some farms, which, of course, has implications for the environmental 
impact per kg of FPCM, but over the other years, a reduction in dis-
carded milk has been observed, which could indicate an improvement in 
farm management. Among these improvements, the use of technology 
could also be included. 

The large presence of heat detecting systems, not only in Italy 
(Borchers and Bewley, 2015), underlines how even farmers are aware of 
the importance of fertility management for the sustainability, especially 
the economic sustainability, of their farms. Because good fertility has a 
positive influence on farm efficiency and also on environmental impact 
of milk, as reported by other studies (Garnsworthy, 2004; Tullo et al., 
2019). The scenarios proposed in the present study show that improving 
reproductive performance can lead to a reduction in all impact cate-
gories associated with milk production; this improvement can also be 
achieved through the use of technological tools. 

Regarding the improvement in reproductive performance over time 
found in this study, it is important to note that it could be due to many 
factors, such as genetic improvement and good feeding management. 
However, technology certainly has also played an important role in 
making dairy farms more efficient in reproductive management. It has 
been shown that detecting heat with sensors, compared to visual 
observation, often increases the effectiveness of breeding (Mayo et al., 
2019). The use of activity metres leads to a decrease in the average 
calving interval and consequently to an increase in annual milk pro-
duction (Rutten et al., 2014). Automated activity monitoring systems 
reduce labour costs (Stevenson et al., 2014), and investing in these tools 
for oestrus detection is likely to be profitable for most dairy farms 
(Rutten et al., 2014). 

A comparison among scenarios showed that the application of 
technologies helps to reduce the environmental impact of milk pro-
duction at the farm level. The environmental benefits achievable 
through the implementation of technology on the farm may not appear 
very meaningful individually, but they can be combined with an addi-
tive and possibly synergistic effect. In a study that focused on intensive 
goat farming, Pardo et al. (2022) showed that after the implementation 
of a PLF platform, significant reductions (− 11%) in greenhouse gases 
and similar trends in other impact categories emerged. It should also be 
emphasized that precision technologies can also have social and eco-
nomic benefits, although these aspects were not evaluated in the present 
study. Balaine et al. (2020) demonstrated that although the imple-
mentation of production and milk quality recordings had no significant 
impact on the environmental footprint, technology enhanced the eco-
nomic and social sustainability of milk production. Despite the prom-
ising results of the current study on reducing the impact of milk 
production with the help of technology, it should be remembered that 

Fig. 3. Average mitigation effects for the use of different technologies at dairy 
farm. 
1GWP = Global Warming Potential. 
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dairy cattle farms produce not only milk but also beef as male calves and 
culled cows; the effect of mitigation strategies should also be evaluated 
by taking into account the effects on the beef sector using a system 
expansion analysis. Improved dairy cow longevity may lead to lower 
availability of beef from dairy farms, which should be compensated for 
by increased beef production from pure beef systems; however, such 
changes also produce impacts. Therefore, it is necessary to provide more 
extensive insights into the impacts on related production systems. 

While the present study has some limitations, notably the utilization 
of literature-based data for scenario formulation, it has unveiled certain 
novel aspects that can enhance scientific knowledge in these topics. 
Moreover, this study did not take into account the economic dimension 
of introducing new technologies in dairy farms, along with the associ-
ated advantages and disadvantages. These economic aspects cannot be 
overlooked in a comprehensive assessment of sustainability. 

5. Conclusion 

The application of technologies seems to help reduce the environ-
mental impact of milk production at the farm level, specifically when, as 
demonstrated in this study, such technologies are adopted to automate 
milking operations and to manage productive, reproductive and udder 
health aspects. Precision livestock farming has the potential to improve 
the efficiency and sustainability of livestock production by reducing 
waste, improving animal welfare and health, and increasing 
productivity. 

The best results were obtained by introducing AMS or automatic heat 
detection instruments. At the same time, technologies can also lead to an 
environmental advantage by helping farmers more accurately diagnose 
and treat animal health issues, leading to improved animal welfare and 
reduced costs and treatments. However, technologies cannot be 
considered a stand-alone impact mitigation tool. Much depends on the 
conditions in which they are applied and how farmers make use of them. 
PLF is able to provide much information, but the benefit depends on 
whether these data are used. The use of technology should not lead to a 
decline in the quality of the human-animal relationship. This aspect 
deserves further study in the future, as it could be a critical point from 
the perspective of social sustainability. 

The development of integrated precision systems capable of col-
lecting information on animals in relation to multiple aspects (behav-
iour, intake, production, location, health and welfare status, etc.) and 
integrating them could provide farmers with reliable and comprehen-
sive information useful for management decisions, making the collected 
data more useable for the farmer and increasing the environmental 
benefit compared to individually employed precision systems. 

The results of the current study confirm that the LCA methodology is 
a useful tool for estimating the environmental impact effect of intro-
ducing PLF tools in dairy farms. The introduction of new sensors can 
bring many changes, which are difficult to measure in real-life situations 
due to other interfering factors such as climate variation, genetics, and 
feed composition. Scenario analyses using LCA can overcome these 
challenges and focus ‘solely’ on the effects of implementing new tech-
nology. Additionally, in scenario development, as shown in the present 
study, it is possible to simultaneously assess the environmental effect of 
different intensities of changes. 
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Balaine, L., Dillon, E.J., Läpple, D., Lynch, J., 2020. Can technology help achieve 
sustainable intensification? Evidence from milk recording on Irish dairy farms. Land 
Use Pol. 92, 104437 https://doi.org/10.1016/j.landusepol.2019.104437. 

Bava, L., Sandrucci, A., Zucali, M., Guerci, M., Tamburini, A., 2014. How can farming 
intensification affect the environmental impact of milk production? J. Dairy Sci. 97, 
4579–4593. https://doi.org/10.3168/jds.2013-7530. 

Bell, M.J., Garnsworthy, P.C., Stott, A.W., Pryce, J.E., 2015. Effects of changing cow 
production and fitness traits on profit and greenhouse gas emissions of UK dairy 
systems. J. Agric. Sci. 153, 138–151. https://doi.org/10.1017/ 
S0021859614000847. 

Berglund, I., Pettersson, G., Svennersten-Sjaunja, K., 2002. Automatic milking: effects on 
somatic cell count and teat end-quality. Livest. Prod. Sci. 78, 115–124. https://doi. 
org/10.1016/S0301-6226(02)00090-8. 

Bernier-Dodier, P., Delbecchi, P., Wagner, G.F., Talbot, B.G., Lacasse, P., 2010. Effect of 
milking frequency on lactation persistency and mammary gland remodeling in mid- 
lactation cows. J. Dairy Sci. 93, 555–564. https://doi.org/10.3168/jds.2009-2320. 

Berton, M., Bovolenta, S., Corazzin, M., Gallo, L., Pinterits, S., Ramanzin, M., Ressi, W., 
Spigarelli, C., Zuliani, A., Sturaro, E., 2021. Environmental impacts of milk 
production and processing in the Eastern Alps: a “cradle-to-dairy gate” LCA 
approach. J. Clean. Prod. 303, 127056 https://doi.org/10.1016/j. 
jclepro.2021.127056. 

Bianchi, M.C., Bava, L., Sandrucci, A., Tangorra, F.M., Tamburini, A., Gislon, G., 
Zucali, M., 2022. Diffusion of precision livestock farming technologies in dairy cattle 
farms. Animal 16, 100650. https://doi.org/10.1016/j.animal.2022.100650. 

Bonestroo, J., van der Voort, M., Fall, N., Emanuelson, U., Klaas, I.C., Hogeveen, H., 
2022. Estimating the nonlinear association of online somatic cell count, lactate 

M.C. Bianchi et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.cesys.2024.100178
https://doi.org/10.1016/j.cesys.2024.100178
https://doi.org/10.1016/j.prevetmed.2021.105420
https://doi.org/10.1016/j.prevetmed.2021.105420
http://refhub.elsevier.com/S2666-7894(24)00016-3/optYURJXtkW7u
http://bollettino.aia.it/
https://doi.org/10.3168/jds.2018-16166
https://www.assalzoo.it/pubblicazioni/annuario/
https://doi.org/10.1016/j.landusepol.2019.104437
https://doi.org/10.3168/jds.2013-7530
https://doi.org/10.1017/S0021859614000847
https://doi.org/10.1017/S0021859614000847
https://doi.org/10.1016/S0301-6226(02)00090-8
https://doi.org/10.1016/S0301-6226(02)00090-8
https://doi.org/10.3168/jds.2009-2320
https://doi.org/10.1016/j.jclepro.2021.127056
https://doi.org/10.1016/j.jclepro.2021.127056
https://doi.org/10.1016/j.animal.2022.100650


Cleaner Environmental Systems 12 (2024) 100178

9

dehydrogenase, and electrical conductivity with milk yield. J. Dairy Sci. 105, 
3518–3529. https://doi.org/10.3168/jds.2021-21351. 

Borchers, M.R., Bewley, J.M., 2015. An assessment of producer precision dairy farming 
technology use, prepurchase considerations, and usefulness. J. Dairy Sci. 98, 
4198–4205. https://doi.org/10.3168/jds.2014-8963. 

Calcante, A., Tangorra, F.M., Oberti, R., 2016. Analysis of electric energy consumption of 
automatic milking systems in different configurations and operative conditions. 
J. Dairy Sci. 99, 4043–4047. https://doi.org/10.3168/jds.2015-10490. 

De Koning, C.J.A.M.K., 2010. Automatic Milking – Common Practice on Dairy Farms. 
The First North American Conference on Precision Dairy Management. 

EEA (European Environment Agency), 2019a. Manure management. In: Chapter 3B in: 
EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019. 

EEA (European Environment Agency), 2019b. Crop production and agricultural soils. In: 
Chapter 3D in: in EMEP/EEA Air Pollutant Emission Inventory Guidebook, 2019.  

EUCO, 2020. (European Council) 22/20. European Council (10 and 11 December 2020), 
conclusion. Available online from: https://www.parlament.gv.at/PAKT/EU/ 
XXVII/EU/04/39/EU_43946/index.shtml. (Accessed 16 September 2023). 

Garnsworthy, P.C., 2004. The environmental impact of fertility in dairy cows: a 
modelling approach to predict methane and ammonia emissions. Anim. Feed Sci. 
Technol. 112, 211–223. https://doi.org/10.1016/j.anifeedsci.2003.10.011. 

Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., 
Tempio, G., 2013. Tackling Climate Change through Livestock – a Global Assessment 
of Emissions and Mitigation Opportunities. Food and Agriculture Organisation of the 
United Nations (FAO). 

Gerber, P.J., Vellinga, T., Opio, C., Steinfeld, H., 2011. Productivity gains and 
greenhouse gas emissions intensity in dairy systems. Livest. Sci. 139, 100–108. 
https://doi.org/10.1016/j.livsci.2011.03.012. 

Gislon, G., Ferrero, F., Bava, L., Borreani, G., Dal Prà, A., Pacchioli, M.T., Sandrucci, A., 
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Influence of precision livestock farming on the environmental performance of 
intensive dairy goat farms. J. Clean. Prod. 351, 131518 https://doi.org/10.1016/j. 
jclepro.2022.131518. 
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