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Abstract
We study the effect of non-Markovianity in the charging process of an open-system quantum
battery. We employ a collisional model framework, where the environment is described by a
discrete set of ancillary systems and memory effects in the dynamics can be introduced by allowing
these ancillas to interact. We study in detail the behaviour of the steady-state ergotropy and the
impact of the information backflow to the system on the different features characterizing the
charging process. Remarkably, we find that there is a maximum value of the ergotropy achievable:
this value can be obtained either in the presence of memoryless environment, but only in the
large-loss limit, as derived in (Farina et al 2019 Phys. Rev. B 99 035421), or in the presence of an
environment with memory also beyond the large-loss limit. In general, we show that the presence
of an environment with memory allows us to generate steady-state ergotropy near to its maximum
value for a much larger region in the parameter space and thus potentially in a shorter time.
Relying on the geometrical measure of non-Markovianity, we show that in both the cases of an
environment with and without memory the ergotropy maximum is obtained when the
non-Markovianity of the dynamics of the battery is zero, possibly as the result of a non-trivial
interplay between the memory effects induced by, respectively, the environment and the charger
connected to the battery.

1. Introduction

A battery is a device meant to act as an energy (work) reservoir, where energy is injected during the charging
process and later discharged into a consumption hub. The study of the performances of quantum batteries
(QB), that is batteries whose energy charging and discharging processes are based on the laws of quantum
mechanics, has both fundamental and technological motivations.

Since the seminal work of Alicki and Fannes [1], where the concept of quantum battery has first been
introduced, various scholars explored this increasingly vast field, investigating the role of quantum resources
in the charging of this kind of devices, their charging power bounds and the development of optimal
charging protocols [2–6]. Theoretical frameworks applied to the study of QBs are numerous, including
collections of qubits, spin chains and harmonic oscillators [5, 7–9], covering for an equally large amount of
experimental platforms available to implement QBs. As of recently, a Dicke-model QB has been realized
through a cavity [10] and another has been implemented through superconducting qubits [11].

To guarantee that a real-life implementation of QBs actually works despite the unavoidable interaction
with the environment, it is important to include this interaction, and any dissipative effect it might entail, in
the theoretical description. Moreover, the dissipation and decoherence brought by the interaction lead
quantum batteries to a stationary state and, as a consequence, the stored energy to a stationary value, at
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Figure 1. A collisional model of an OQB interacting with a non-Markovian environment: (left) two qubit systems representing a
battery B (red qubit) and a charger C (blue qubit) interact between themselves for a discrete time δt via a energy-exchange
Hamiltonian, with coupling constant g. At the same time, C is driven by an external laser (with frequency α) and interacts with the
i th environmental ancilla Ai, with coupling strength κ; (middle) before the next interaction between system and environment,
the ith and the (i+ 1)th ancillas interact with each other via an incoherent partial-SWAP operation with probability p; (right) the
interaction Hamiltonian is turned on for another time step δt and the charger is put in contact with the next ancillary system.

variance with unitary charging protocols, where the energy has an oscillatory behaviour. For these reasons,
much attention has been given to the study of QBs in an open-system setting, sometimes being referred to as
open quantum batteries (OQBs).

Within this framework, there is interest not only in studying the effect of the environment on QBs
[12–15], but also in developing open-system protocols to stabilize the extractable work of a charged battery
through quantum control techniques [16–21].

In most of the studies mentioned above, the dynamics induced by the environment is Markovian, that is,
the memory effects are negligible [22, 23]. This is indeed a useful assumption that simplifies considerably the
characterization of the dynamics, but in many circumstances one does need to go beyond it. When the
interaction of the system of interest with any further degree of freedom affecting its evolution is not weak or
whenever the evolution of the environment takes place on a similar time scale as the one of the system, one
should take memory effects into account, thus entering into the realm of non-Markovian quantum dynamics
[24–26].

As regards OQBs, memory effects have been considered only in very few cases. In [14] the authors study
the behaviour in time of the energy stored in a qubit coherently driven and whose dissipative dynamics is
described via specific non-Markovian master equations, without however discussing the effect on the
ergotropy, that is on the maximum amount of actual work extractable from the battery qubit. In [15] the
dynamics of a system composed of a qubit-battery and a qubit-charger, with the second initially prepared in
an excited state, is considered; there, both systems are interacting with two specific non-Markovian
environments, where the initial excitation is eventually lost, and the analysis is focused on the time evolution
of the ergotropy characterizing the battery. Finally, in [27] the charging and discharging of a qubit-battery is
studied, and either a Markovian or non-Markovian environment plays the role of the charger.

In this work we rather consider the following model of an OQB, that has already been put forward in [12]
and that is pictured in figure 1: two qubits, corresponding respectively to battery and charger, interact via an
energy exchange Hamiltonian. The energy is injected into the system via a driving Hamiltonian applied to
the charger. The charger qubit is also coupled to an environment that will cause decoherence and dissipation
for the battery, leading eventually to the steady-state of the dynamics. At variance with [12], where the
interaction with a memoryless environment was considered, we will here study the impact of an
environment that can induce memory effects on the dynamics of the system.

For this purpose, we exploit a useful framework to study non-Markovianity in the quantum setting:
collisional models (CMs) [28] (see [29–31] for more details on these models and their connection with
quantum thermodynamics and multipartite quantum dynamics). In these models both the environment and
time are discretized: the environment is indeed represented by a discrete set of ancillas that interact with the
systems sequentially at discrete times. We remark that CMs have already been employed as a tool for studying
the behaviour of OQBs [32–37]. However in most of these works the stream of ancillas that constitutes the
CM plays the role of the charger, except in [34] where it plays the role of the battery itself. In our model, as
represented in figure 1, we instead exploit CMs in order to describe the dissipative environment interacting
with the charger qubit.

The structure of this work as follows: in section 2, we recall the notion of quantum batteries and the
figures of merit we use to assess them. In section 3, we describe the non-Markovian CM that we exploit to
characterize the environment for our model of dissipative quantum battery. In section 4, we fix the
microscopic details of the model we study. In section 5, we present the results in the case of both a
discrete-time and a continuous-time evolution, while in section 6 the precise connection between
non-Markovianity and ergotropy is investigated. Section 7 concludes the paper with a final discussion and
some outlooks of our work.
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2. Quantum batteries

A quantum battery can be described by a d-dimensional system with Hamiltonian:

Ĥ0 =
d∑

n=1

εn|εn⟩⟨εn| (1)

with non-degenerate energy levels such that εn < εn+1. The charging and extraction of work can be modeled
trough a time-dependent control parameter regulating the interaction that describes the process, giving a
time-dependent Hamiltonian that reads Ĥ(t) = Ĥ0 +V(t). To evaluate the maximum energy that can be
extracted from a given state of the system one considers a discharging process that starts at the time t= 0 and
finishes after a time t= τ when the battery is fully empty [38].

The system is driven from the unitary operator generated by the full Hamiltonian and the average
extracted work is given by

W(Û(τ),ρ0) = Tr[Ĥ0ρ0]−Tr[Ĥ0Û(τ)ρ0Û
†ger(τ)] (2)

where ρ0 indicates the initial state of the system. The maximum amount of work that on average can be
extracted from the system, a quantity called ergotropy, is then given by

E(ρ0) = max
Û∈SU(d)

W(Û(τ),ρ0). (3)

To rewrite it in a more operational form, we can consider the spectral decomposition of ρ0, written as

ρ0 =
d∑

j=1

rj|rj⟩⟨rj|, (4)

with rj ⩾ rj+1, and referring to equation (1), it becomes evident that the state minimizing the system energy,
that is, the equilibrium state once all the work has been extracted, is given by

ρ0 =
d∑

j=1

rj|εj⟩⟨εj|. (5)

As work can no longer be extracted from this state, one usually refers to it as passive state. The ergotropy
can simply be evaluated as the energy lost by the system during a discharging process that drives the system
to its passive state:

E(ρ0) =
d∑

n,j=1

rjεn(
∣∣⟨rj|εn⟩∣∣2 − δjk). (6)

We remark that for a qubit state, and assuming the Hamiltonian Ĥ0 = (ω0/2)σ̂z, one can easily evaluate
evaluate average energy and ergotropy in terms of the average values of the corresponding Pauli matrices, as

E(ρ) =
ω0

2
⟨σ̂z⟩ , (7)

E(ρ) = ω0

2
(|⟨σ̂⟩|+ ⟨σ̂z⟩) , (8)

where we have introduced the notation ⟨Ô⟩= Tr[Ôρ] and we have defined the quantity
|⟨σ̂⟩|=

√
⟨σ̂x⟩2 + ⟨σ̂y⟩2 + ⟨σ̂z⟩2. By observing the formula for the qubit ergotropy, and by recalling that the

purity of a qubit state is equal to

µ(ρ) = Tr[ρ2] =
1+ |⟨σ̂⟩|2

2
, (9)

we find that ergotropy can be expressed as a function of energy and purity as

E(ρ) = E(ρ)+
ω0

2

√
2µ(ρ)− 1 . (10)

It is thus clear that for qubits larger values of ergotropy can be obtained by maximizing not only the energy
but also the purity of the state.

3
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3. Collisional models

In this section we provide the basic notions on CMs, describing the differences between Markovian and
non-Markovian scenarios, and discussing the continuous-time limits of such models.

3.1. Discrete-time collisional models
In a collisional model, a quantum system S described by an Hamiltonian Ĥs, is coupled to an environment E,
made up from an infinite, but discrete, collection of subsystems, called ancillas, each with its own free
Hamiltonian, such that the environment Hamiltonian reads ĤE =

∑
i Ĥai , with Ĥai denoting the free

Hamiltonian of each ancilla. Time is also discretized, as the system interacts subsequently with each ancilla
for a time interval δt, and one can thus introduce a collision rate γ = 1/δt. By denoting with V̂s,ai the
interaction Hamiltonian between the system and the ith ancilla, the unitary operator describing the
evolution at the ith step reads (we assume ℏ= 1 throughout the manuscript):

Ûi = e−i(Ĥs+Ĥai
+V̂s,ai

)δt. (11)

A Markovian collisional model is realized when all these conditions are satisfied: (i) there are no initial
correlations between the system and the ancillae; (ii) the initial state of the ancillae is factorized: σ̂e =

⊗
i ηi

(for simplicity we also assume that they are prepared in the same initial state ηi = η); (iii) there are no
ancilla–ancilla collisions; (iv) each ancilla collides only once with the system.

Under these assumptions, the evolution of the state of the system can be described through a discrete
map

ρn = C[ρn−1] = Tran [Ûn(ρn−1 ⊗ η)Û†
nger], (12)

so that the state after n steps is related to the initial state ρ0 by

ρn = Cn[ρ0]. (13)

This corresponds, in the context of discrete evolutions, to the semigroup property, which defines Markovian
dynamics that are also homogeneous in time [22].

To introduce non-Markovianity in the model, one has to relax at least one of the conditions listed above;
here we introduce ancilla–ancilla collisions as shown in figure 1, in the form of a (incoherent) partial-swap
quantum map

Wn,n−1 = (1− p)I + pSn,n−1 (14)

where I represents the identity map, and p represents the probability of applying the SWAP operation Sn,n−1

between the (n− 1)th and the nth ancilla (as expected one has 0⩽ p⩽ 1). In practice, before colliding with
the system S, each ancilla with probability p swaps its quantum state with the state of the previous ancilla that
has just interacted with S. Clearly for p= 0 one obtains the Markovian case previously discussed, while for
p> 0 one introduces memory effects in the environment. In particular, in the opposite limit of p= 1 the
system effectively interacts continuously with the same ancilla, and it is easy to show that its dynamics is
described by the map

Fn[ρ0] = Tra1 [Û
n
1(ρ0 ⊗ η)Û†gern

1 ]. (15)

Through the maps Fj one can thus express the state of the system at the nth step for arbitrary values of p as
[29]

ρn = (1− p)
n−1∑
j=1

p j−1Fj[ρn−j] + pn−1Fn[ρ0]. (16)

3.2. Continuous-time limit
We now describe two examples where one can derive a continuous-time limit for the Markovian and
non-Markovian collisional models we have just described. Deriving the continuous-time limit corresponds
to taking the limit for the ancilla-system interaction time δt→ 0. For simplicity and as it will correspond to
the case we consider in the next sections, we assume that both the system and all the ancillas are qubits and
we focus on a particular interaction Hamiltonian between system and ancillas.

4
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We start from the Markovian case and we consider as a paradigmatic example the following
system–ancilla interaction Hamiltonian

V̂s,ai =

√
κ

δt

(
σ̂
(s)
+ σ̂

(ai)
− + σ̂

(s)
− σ̂

(ai)
+

)
, (17)

with κ⩾ 0 and where σ̂− = (σ̂x + i σ̂y)/2, and σ̂+ = (σ̂−)
†. The introduction of a coupling constant

ξ =
√
κ/δt that diverges in the limit δt→ 0 is necessary to obtain a well-defined continuous limit [29, 39].

In fact, by considering all the ancillas in the initial state η = |0⟩i i⟨0| (such that σ̂(ai)
− |0⟩i = 0), the dynamics

described by the collisional model in the limit δt→ 0 is equivalent to the one described by the Markovian
master equation in the Lindblad form [40, 41]

dρ

dt
=−i [Ĥs,ρ] +κD[σ̂−]ρ, (18)

where we have defined the superoperatorD[̂c]ρ= ĉρĉ† − (̂c†ĉρ+ ρĉ†ĉ)/2.
The continuous-time limit of the non-Markovian collisional model introduced above is not as

straightforward. In fact it is possible to numerically check that, by introducing the partial-swap quantum
map defined in equation (14) with a fixed value of p, and by decreasing the time-step interval δt, the
dynamics does not converge to a well-defined continuous-time dynamics.

One can however show that a continuous time limit can be taken by introducing a memory rate Γ, and
by making the partial-swap parameter p time-dependent as p= exp−Γδt [29]. In particular, in the limit for
Γδt≪ 1, such that p≈ 1−Γδt, a memory-kernel non-Markovian integro-differential ME can be found in
the form

ρ̇= Γ

ˆ t

0
dt ′e−Γt ′F(t ′)[ρ̇(t− t ′)]+ e−ΓtḞ(t)[ρ0] , (19)

where F(t) is the continuous-time version of the map (15).

4. AMarkovian open quantum battery

In the following, we use as benchmark of our investigation the qubit model of OQB in a Markovian
environment studied in [12], which thus fixes the microscopic details of the quantum battery under study.

The qubit B represents the quantum battery itself, with free Hamiltonian ĤB,0 = (ω0/2)σ̂
(B)
z , and it interacts

with another qubit C that corresponds to the charger, via an energy-exchange interaction

ĤBC = g
(
σ̂
(B)
− σ̂

(C)
+ + σ̂

(B)
+ σ̂−(C)

)
. (20)

The Hamiltonian for the charger is the sum of two terms, ĤC = ĤC,0 + Ĥdrive, where ĤC,0 = (ω0/2)σ̂
(C)
z is the

free Hamiltonian of the charger, while

Ĥdrive = α
(
e−iω0tσ̂

(C)
+ + e+iω0tσ̂

(C)
−

)
(21)

represents the driving of the charger qubit, injecting energy in the system via a laser driving at frequency ω0.
In [12], the charger is subjected to an amplitude damping due to the interaction with a memoryless

environment. By going to the interaction picture with respect to the Hamiltonian Ĥ0 = ĤB,0 + ĤC,0, the
dynamics of the battery and charge state is described by the Lindblad equation

dρ

dt
=−i [Ĥ ′

BC,ρ] +κD[σ̂
(C)
− ]ρ, (22)

where

Ĥ ′
BC = g

(
σ̂
(B)
− σ̂

(C)
+ + σ̂

(B)
+ σ̂−(C)

)
+ασ̂(C)

x . (23)

The global maximum of the ergotropy is reached in the large-loss limit (i.e. for κ≫ α), and by tuning
driving and coupling such that α≈ 1.09g, yielding [12]

Emax =
√
2− 1

2
ω0 ≈ 0.207ω0 . (24)

5
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The dynamics described by the master equation (22) corresponds to the continuous-time limit of a
particular Markovian collision-based model, as follows from what shown in section 3.2. Here, we explore
what happens beyond this regime by taking into account memory effects induced by the environment, first
via a discrete-time collisional model, and then looking at the continuous-time limit. As in [12] we focus on

the steady-state properties of the battery ρ(B)ss , evaluating via equations (7) and (8) the corresponding average
energy Ess and ergotropy Ess.

5. Results

5.1. Discrete-time collisions
We first study the discrete-time collisional model where the open system consists of the two qubits
representing the battery and the charger, with Hamiltonian ĤS = Ĥ ′

BC as in equation (23), and the charger
interacts with the ancillas describing the environment, via a Hamiltonian of the form (17), which in our case
reads

V̂s,ai =

√
κ

δt

(
σ̂
(C)
+ σ̂

(ai)
− + σ̂

(C)
− σ̂

(ai)
+

)
. (25)

Each system–ancilla collision lasts for a time δt= 1/γ, leading to a unitary evolution as in equation (11), and
we introduce ancilla–ancilla interactions via the partial-swap map defined in equation (14).

We now present our results for the steady state of the battery, focusing on the role of the parameter
controlling the information backflow to the battery and the charger, that is the swap-probability p, as well as
on the battery-charger coupling g and the driving constant α. We have considered collision rates γ much
larger than the other frequencies characterizing the dynamics, so that by setting the swap probability p= 0
we (numerically) recover the continuous-time limit dynamics described by equation (22).

To characterize the battery charging properties in an environment with memory and beyond the
large-loss limit, in figure 2 we plot the steady-state ergotropy and energy as a function of both p and g, by
fixing the value of α= 0.9κ. We immediately notice a different behaviour between energy and ergotropy: in
particular, while the former shows a generally decreasing behaviour with p, the ergotropy shows a
non-monotonous behaviour as a function of both p and g. However, a noticeable optimal region of
parameters can be identified, corresponding to p≈ 0.9 and g≈ α, where the maximum amount of ergotropy
is observed. This different behaviour emphasizes the necessity to use a measure of extractable work like the
ergotropy as figure of merit for a quantum battery instead of simply evaluating its energy. Indeed, for fixed
values of α/κ and g/κ, increasing p can lead to an increase in the portion of the system maximum
extractable energy, its ergotropy, while decreasing the maximum amount of average energy itself. As we
remarked in equation (10), the ergotropy of a qubit can be expressed as a function of the energy and of the
purity of the state. The previous observations clearly hint to the fact that the ergotropy enhancement due to
the backflow of information from the environment corresponds to the generation of less mixed steady-states.

To further understand this improvement of the ergotropy due to memory effects, we compare the
maximum of ergotropy in the region with p> 0 with the maximum achieved in the large-loss limit at p= 0.
In figure 3 we therefore show the behaviour of the steady-state ergotropy as a function of the memory
parameter p, for different values of the coupling g, and by fixing the driving parameter α such that the
optimal condition α= 1.09g, identified for the large loss memoryless scenario [12], is satisfied. We remark
that in general, at each value of p, a different optimal tuning condition between α/κ and g/κ can be found.
This tuning condition, as we will later describe, is generally close to the value at p= 0, and also the difference
in the corresponding values of the ergotropy is negligible, as we have numerically verified for all the
parameter regimes considered in our plots.

We observe that for small values of α and g, that is towards the large-loss limit, the behaviour of the
ergotropy as a function of p is almost flat. Only for larger values of g and α we observe a more evident
non-monotonous behaviour of the ergotropy as a function of p, and that an enhancement is observed with
respect to the Markovian case p= 0, reaching a maximum for a certain, relatively large, value of p.

The most remarkable result we observe in figure 3 is that the maximum amount of ergotropy Emax

derived in the memoryless case in the large-loss regime (see equation (24)) maximizes the ergotropy also in
our collisional model with memory, but Emax can be achieved also beyond the large-loss regime in the
presence of large enough values of p. As we numerically checked, the maximum value of ergotropy is indeed
reached in all the considered regimes via the same steady state, described by Bloch vector components

⟨σ̂x⟩=−
√√

2− 1, ⟨σ̂y⟩= 0, ⟨σ̂z⟩= 1√
2
− 1. Importantly, for any value of g/κ≲ 1, and for the right tuning

condition between g and α, there is always a value of p for which the ergotropy approximates its maximum
value, while this is no longer the case for larger values of g/κ.

6
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Figure 2. Steady-state value for the battery energy Ess/ω0 (left) and ergotropy Ess/ω0 (right) as functions of g/κ and p; with
α= 0.9κ and γ = 102κ. While the energy is monotonously decreasing for both p and g increasing, the ergotropy displays a more
complex behaviour. As a function of g, it has a maximum value for α≈ 1.09g, which, for our choice of parameters, can be seen in
the central area of the plot. As a function of p, it has a non-monotonous behaviour, increasing until it reaches a maximum value
for p≈ 0.9 before starting to decrease.

Figure 3. Steady-state ergotropy Ess/ω0 as function of p for different values of g/κ and fixing the coupling parameter such that
α= 1.09g and γ/κ= 102. The value for the steady-state ergotropy is upper bounded by the maximum found in the memoryless
case in the large-loss limit [12]. Indeed, for p= 0, the ergotropy is the higher the lower is g/κ, but when p increases, the ergotropy
also starts to increase for all curves at different speed, with the curves further from the large-loss limit exhibiting the largest
increment, all plateauing under the boundary condition. Therefore systems that are already in the optimal region of parameters
display a mostly flat behaviour, while systems out of that region can achieve the maximum gain from a backflow of information
due to the environment.

We also observe that in our model only coherence contributes to ergotropy, and as a consequence its
maximum possible value a priori could be ω0/2 [42]. However, we find Emax < ω0/2 irrespectively of the
values of the parameters considered and of the memory properties of the environment, hinting to the fact
that the optimal performance of the battery depends on the sole operatorial form of the interaction between
battery and charger and between charger and environment.

We then further investigate the optimal tuning condition between α and g to achieve maximum
ergotropy. In figure 4 we plot the steady-state ergotropy as a function of α and g, respectively, in the model
without swap, p= 0, and for a large swap probability p= 0.95. In the former case, we observe as expected
that the maximum of the ergotropy is obtained in the large-loss limit α≪ κ and for α= 1.09g, as
analytically demonstrated in [12]. On the other hand, in the case of a collisional model with memory, we
now observe an extended region of parameters where one can find large values of the ergotropy, and in
particular there exist a linear boundary between the parameters g/κ and α/κ along which the maximum
value of the ergotropy can be found for a limited region of the plot, approximately identified by the
condition g/κ≲ 1. We can thus conclude that the presence of memory effects allows us to obtain the
maximum value of ergotropy Emax for a larger region in the parameters space.

7
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Figure 4. Steady-state ergotropy Ess as function of α and g for fixed values of p (left: p= 0; right: p= 0.95); γ = 102κ. On the left,
the steady-state ergotropy shows the same result obtained in [12], i.e. the ideal tuning condition to maximize the ergotropy exists
in the large-loss limit, α≪ κ, for a fixed ratio of α and g. On the right, the same plot realized for a higher value of p, shows how a
backflow of information from the environment can extend the optimal tuning region also outside the large-loss limit.

Figure 5. Ergotropy as a function of time for different combinations of parameters. For all curves with given values of g/κ and
α/κ, the swap probability p has been chosen as the minimum needed to approximate Emax within one percent of relative error.
The inset shows the charging time tc as a function of g/κ, where the other parameters are chosen following the same logic of the
main plot (the charging time tc is defined as the time necessary for the system to reach its steady state).

Besides the steady-state properties of the ergotropy of the battery, also its transient evolution can be
indeed of interest, for example because the maximum value can be obtained on different timescales
depending on the parameters fixing the dynamics. In figure 5, we plot the ergotropy as a function of time for
both the memoryless model in the large loss limit (g/κ= 0.01) and various combinations of the values for
the swap probability p and for g/κ; in all these cases α/κ is determined by the optimal tuning condition that
maximizes the steady state ergotropy. What is shown is that the various curves reach approximately the same
asymptotic value Emax, but this happens the sooner the larger g/κ. This shows that, if larger values of the
coupling g are possible, an accurate choice of p can be done in order to speed up the dynamics and obtain the
maximum amount of the ergotropy in a shorter time. Indeed, one should keep in mind that too large values
of p will eventually slow down the stabilization process, as in the limit p→ 1 one obtains a unitary dynamics.
However a large enough value can still be chosen to approximate the maximum ergotropy at steady state and
still speed up the dynamics. For this reason the values of p leading to the curves in figure 5 correspond to the
minimum value needed, at fixed g/κ, to approximate the maximum state ergotropy. In the inset we plot the
time tc that is required for these curves to reach their steady-state value as a function of g: we indeed observe
how larger values of g monotonously lead to a faster charging time.
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Figure 6. Steady-state energy Ess/ω0 (left) and ergotropy Ess/ω0 (right) for the continuous-time limit of the collision based model
described by the ME (19) as a function of the memory rate Γ. Different curves correspond to different values of the coupling g.
Other parameters are fixed as α= 0.9κ and γ = 103κ (equivalent results are obtained as expected for larger values of γ, that is
towards the continuous-time limit). As functions of the memory rate Γ, energy and ergotropy show opposite behaviours, with the
energy decreasing to a minimum as Γ increases, while the ergotropy monotonously increases. In general, for higher values of Γ,
more energy passed onto the system can no longer be recovered. This means, in this regime of parameters, that the backflow of
information from the environment has a negative impact on the properties of the battery.

5.2. Continuous-time limit dynamics
As we described in section 3.2, the considered collision-based model with memory leads to a well defined
continuous-time limit if we introduce a memory rate Γ, allow the partial-swap probability to be dependent
on the collision rate as p= e−Γ/γ , and consider the regime Γ≪ γ. In fact under these conditions, the limit
1/γ = δt→ 0 of the collision-based model is well described by the integro-differential ME (19), where the
map F(t) also includes the effect of the driving Hamiltonian acting on the charger qubit and the
charger–battery coupling Hamiltonian.

We have thus exploited our collisional model to simulate such integro-differential master equation, by
considering the regime Γ≪ γ and by fixing γ/κ= 103 (we have checked numerically that equivalent results
are obtained by considering larger values of γ and thus approaching the continuous-time limit δt→ 0). The
results in terms of energy and ergotropy for the steady state of the dynamics are reported in figure 6. In
particular, when compared to the discrete-time model where the energy decreases when increasing p, we
observe that the energy has a minimum as a function of the memory rate Γ. On the other hand the
ergotropy, which is our main figure of merit, monotonically increases with Γ. This result may seem in
contradiction with what we have observed in the previous section for the discrete-time model, as it hints that
ergotropy increases when one moves towards the Markovian regime, that is by increasing Γ. However we
have to remind ourselves that in order to obtain a well-defined continuous limit, we are restricting to values
of p very close to one; consequently, even if a one-to-one correspondence between the discrete- and
continuous-time models cannot be properly defined due to the dependence between p, Γ and γ, what we
observe in figure 6 approximately corresponds to the region in figure 2 where the ergotropy, after having
reached its maximum, decreases when p takes large values and approaches one.

Until now, we have studied the steady state ergotropy for different values of the parameter p, which
quantifies the probability of having collisions among the environmental ancillas, in turn inducing memory
effects in the evolution of the battery and the charger as discussed in section 3.1. On the other hand, to fully
understand the role of non-Markovianity in the properties of the battery we need to quantify in an explicit
way the amount of memory effects in the dynamics, i.e. to introduce a measure of non-Markovianity. This is
what we are going to do in the next section.

6. The role of non-Markovianity

Among the different quantifiers of non-Markovianity [24, 25], we exploit the so-called geometrical measure
of non-Markovianity, defined in [43]. The amount of non-Markovianity in a given dynamics is here
quantified by integrating the expansions of the volume of possible states accessible by the system throughout
the evolution. Compared to other measures of non-Markovianity—such as those based on non-monotonic
behaviors of the trace distance [22] or on the breaking of divisibility [44] – the geometrical measure is
weaker, i.e. it might be equal to zero also for dynamics where other measures are not. On the other hand,
besides its clear geometrical meaning that will be recalled below, it has the advantage of being manageable
also for high-dimensional systems: in fact, it provides us with a clear computational convenience already for
the two-qubit system formed by the battery and the charger.
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6.1. Geometrical measure of non-Markovianity
Every state ρ of a finite n-dimensional system, i.e. positive trace-one linear operator on Cn, can be written as
[45]

ρ=
1

n

1+
n2−1∑
α=1

rαĜα

 , (26)

where 1 is the identity map on Cn, rα ∈R and the Ĝα are the hermitian traceless generators of SU(n). For
n= 2, the latter identify with the Pauli matrices and equation (26) corresponds to the well-known
Bloch-vector representation of the qubit states [46]; we then call the vector r with components
{rα}α=1,...,n2−1 generalized Bloch vector.

Now, the map Λ(t) describing the state evolution,

ρ(t) = Λ(t)[ρ(0)], (27)

corresponds to an affine transformation of the generalized Bloch vector

r(t) = A(t)r(0)+ q(t), (28)

where A(t) is a n2 − 1× n2 − 1 real matrix with elements

Aα,β(t) = Tr[ĜαΛ(t)[Ĝβ ]] (29)

and q(t) is a n2 − 1 real vector. The matrix A(t) describes rotations (possibly composed with inversions) and
contractions of the generalized Bloch vectors, so that its determinant ||A(t)|| accounts for the contraction
factor of the volume of accessible states, i.e. the volume V(t) of the image of the set of generalized Bloch
vectors under the action of the affine transformation defined in equation (28).

The geometrical measure of non-Markovianity defined in [43] is given in terms of the variations of the
volume of the set of accessible states as

Nb =
1

V(0)

ˆ
dV
dt >0

dV(t)

dt
dt=

ˆ
d||A||

dt >0

d||A(t)||
dt

dt, (30)

that is, as the integral of the derivative of the volume of accessible states over all the time intervals where such
volume increases, divided by the overall volume of the set of states. The basic idea is that in Markovian
evolutions, such as semigroup dynamics, there is a monotonic decay of the volume of accessible states
corresponding to an irreversible loss of information from the open system [47], while the revivals in time of
the volume of accessible states can be read as memory effects leading to a (partial) recovery of previously lost
information.

6.2. Memory effects and ergotropy
In the following we study the behaviour of the geometric non-Markovianity measureNb, by focusing on the
discrete-time scenario. In particular, we evaluate the measure for both the composite system (battery plus

charger)N (BC)
b and for the battery subsystem onlyN (B)

b .
The non-Markovianity of the composite system, plotted in figure 7, follows the expected behaviour as it

is monotonically increasing with the swap probability p, which in fact quantifies the memory of the

environment affecting the composite system. We also observe thatN (BC)
b is equal to zero in a large region of

values of p, the extension of which depends on the the different parameters involved in the dynamics.

If we rather focus on the battery subsystem only, the behaviour of the non-Markovianity measureN (B)
b is

rather different, as one can observe in figure 8. First, a non-zero value of non-Markovianity is obtained for a
memoryless environment, that is for p= 0. A Markovian dynamics of the joint system consisting of the
battery and the charger, as fixed by the semigroup map in equation (13) (or the Lindblad equation (18) in
the continuous case), can well induce a non-Markovian evolution of the battery only: the two-fold exchange
of information between the battery and the charger qubits due to their coherent interaction will generally
result in a repeated backflow of information to the battery, with large values of non-Markovianity. Increasing
the value of p the non-Markovianity of the battery has a non-monotonic behavior, which strongly depends

on the ratio g/κ. For low values of g/κ (g≲ 2κ),N (B)
b decreases and reaches zero at different values of the

swap probability p, and then suddenly increases for p≳ 0.95. For higher values of the ratio g/κ,N (B)
b still

decreases, but it no longer reaches zero.
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Figure 7. Geometrical measureN (BC)
b for the composite system (charger+ battery) as a function of p for different values of g.

The other parameters are α= 1.09g, γ = 102κ. As expected, the geometrical measure grows monotonously with p in the area
shown. We remark that for smaller values of p, the measure of non-Markovianity is zero.

Figure 8. Geometrical measure for the battery subsystemN (B)
b as a function of p for different values of g. The other parameters

are: α= 1.09g, γ = 102κ. At variance with the measure for the composite system, hereN (B)
b has a non-zero value for p= 0, due

to the memory effects caused by the battery-charger coherent interaction, but as the backflow of information from the

environment to the charger increases, the measure itself decreases. For values of the ratio g/κ small enough,N (B)
b goes to zero for

a given value of p, and it starts to increase only for very large values of p. For larger values of the ratio g/κ,N (B)
b decreases to a

finite minimum, without reaching zero. We remark that our numerical simulations show that towards the large-loss limit

(g/κ= {0.1,0.2}),N (B)
b is zero except in the region of very large values of p.

An intuitive interpretation of this behaviour traces back to the fact that for values of p larger than zero the
battery dynamics has two sources of memory. Besides the one already mentioned above originating directly
in the coherent interaction with the charger, now there is also an information backflow from the
environment, due to the ancilla–ancilla collisions. As follows from the discussion in section 3.1, the latter will
store and give back memory about previous stages of the evolution, affecting in the first instance the charger,
with which the ancillas directly interact, and then also the battery due to its interaction with the charger. The
overall behaviour of the battery dynamics depends on the interplay between these two sources of memory, so
that the presence of a second source can reduce the impact of the memory effects induced by the charger
observed in the case p= 0. This effect strongly depends on the ratio of the two couplings g and κ, connecting
respectively the charger with the battery, and the environment with the charger. For small values of this ratio,
the environment is capable of affecting the battery dynamics enough to cancel out the information backflow
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Figure 9. Geometrical measure for the battery subsystemN (B)
b as a function of g/κ in the presence of a memoryless environment

as discussed in [12]. For each value of g/κ, the driving α has been chosen in order to optimize the steady-state ergotropy.

from the charger, while for higher values of the ratio the impact of the memory from the environment on the
non-Markovianity of the battery is weaker.

Note that there are values of p such that the joint battery-plus-charger dynamics is non-Markovian, while
the reduced battery dynamics is Markovian, see figures 7 and 8; this is indeed in contrast with what happens
commonly, that is, by enlarging the set of degrees of freedom one moves from non-Markovian to Markovian
evolutions. On the other hand, a similar phenomenon has been observed in [48] and exploited for quantum
teleportation in [49], where non-local memory effects in the dephasing dynamics of two qubits—originating
from the presence of initial correlations within the environment—affect the joint system made by the two
qubits, but neither of the two individually.

By comparing figures 3 and 8, we notice some significant correlations betweenN (B)
b and Ess. The two

have in general opposite behaviour, with one increasing while the other decreases. Even more, every time the

steady state ergotropy approximate its absolute maximum Ess, the battery non-MarkovianityN (B)
b is equal to

zero. For small values of the ratio g/κ (e.g. g/κ= {0.1,0.2}), the steady state ergotropy is approximately

equal to Ess for almost any value of p, and similarlyN (B)
b is zero for most values of p. Analogously, the range

of values for which the curves referred to g/κ= {0.4,0.6,0.8} approximate the maximum of steady state
ergotropy corresponds to a region without memory effects in the battery dynamics. We also notice how,

differently, the curve with g/κ= 2 does not reach Ess even though its value ofN (B)
b reaches zero for certain

values of p.
We conclude that the absence of memory effects for the battery dynamics seems to be necessary, although

not sufficient, to reach the maximum of steady state ergotropy in our model. This is confirmed by the

behaviour ofN (B)
b as a function of the ratio g/κ for the scenario described by the Lindblad master equation

considered in [12] and that corresponds to our collisional model with no swap between ancillas (p= 0). As
shown in figure 9, the non-Markovianity measure is a monotonously increasing function of g/κ and it is
equal to zero under a certain threshold; we thus observe that, also in this case, in the regime where one
obtains the maximum ergotropy (the large loss limit, g/κ→ 0), the effective dynamics of the battery
subsystem is in fact Markovian.

7. Conclusions

In this work, we studied the discrete-time and continuous-time dynamics of a quantum battery interacting
with a collisional model that acts as the environment. Specifically, we described how a discrete-time
collisional model is able to mimic an environment with memory by introducing an ancilla–ancilla partial
swap interaction with a certain probability p. It was therefore possible to explore the transition between a
memoryless environment (obtained for p= 0) and an environment able to induce strong memory effects on
the battery and the charger (for values of p approaching 1), while observing the properties of the
corresponding steady states of the dynamics. In particular, we observed a non-monotonic behaviour of the
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ergotropy as a function of the swap probability p, and the presence of a maximum for a large value of p,
smaller than the limiting value p= 1. As we also observed that energy decreases monotonically with p, we
came to the conclusion that the ergotropy behaviour is mainly driven by the change in the steady-state purity.

We have also found that the maximum ergotropy achievable at steady state in all the different parameter
regimes corresponds to the same value that was obtained with a Markovian environment in the strong
dissipative regime, which suggests that the maximum ergotropy is fixed by the operatorial properties of the
interaction, regardless of the features of the environment. On the other hand, the presence of memory effects
induced by the environment allows us to approach the maximum value of ergotropy in a broader region of
the parameter space, and in a shorter amount of time, thus boosting the charging speed of the battery.

The behaviour observed in the discrete-time model is consistent with what we observe in the regime of
parameters where the continuous-time limit exists, that is, for p≈ 1. Specifically, we observe that the
ergotropy increases by increasing the memory rate Γ characterizing this dynamics, and thus by decreasing
the capability of the environment to store information about the evolution of the system.

By using a definite measure of non-Markovianity, the geometrical measure, we investigated the amount
of memory effects affecting the battery and the charge seen as a joint system, as well as the battery only.
While the non-Markovianity of the joint system shows the expected monotonically increasing behavior as a
function of the ancilla–ancilla collision parameter p, the non-Markovianity of the battery has a
non-monotonic behavior as a function of p, possibly including regions where there are actually no memory
effects, as quantified by the geometrical measure of non-Markovianity. Remarkably, the maximum of the
steady state ergotropy lies in regions of parameters where the battery dynamics is Markovian, as the
combined effects of the memory due to, respectively, the direct coherent interaction with the charger and the
backflow of information mediated by the ancilla–ancilla collisions cancel each other.

Our work is one of the first attempts in understanding the role of memory effects in quantum battery
charging and is particularly suitable for a direct experimental implementation in the next future on actual
quantum devices, as quantum collisional models have recently been demonstrated on different quantum
simulation platforms [50–52]. We believe that our study paves the way to further research in this direction: it
will be interesting and necessary to understand if the behaviour we have observed will be confirmed when
considering quantum batteries with larger dimensionality, that is, going beyond the qubit case, and/or for
other noise-models characterized by different forms of the coupling or by different sources of
non-Markovianity. In the first instance, one could for example look at dephasing, where non-trivial
thermodynamic behaviour has recently been found [53]. Concerning non-Markovianity, one could consider
collisional models exhibiting information backflow with or without system-environment correlations [54]: it
has been indeed shown how the two scenarios have an impact on thermodynamic properties, such as the
entropy production rate [55]. These results suggest that it may be interesting to exploit these models in order
to further study the actual relationship between ergotropy, decoherence, information backflow and
system-environment correlations.
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