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Abstract

Surveillance systems are increasingly ex-
ploiting multimodal information for im-
proved effectiveness. This paper presents an
audio event detection method for road traf-
fic surveillance, combining generative deep
autoencoders and fuzzy modelling to per-
form anomaly detection. Baseline deep au-
toencoders are used to compute the recon-
struction error of each audio segment, which
provides a primary estimation of outlierness.
To account for the uncertainty associated to
this decision-making step, an interval type-
2 fuzzy membership function composed of
an optimistic/upper component and a pes-
simistic/lower component is used. The fi-
nal class attribution employs a probabilistic
method for interval comparison. Evaluation
results obtained after defuzzification show
that, with a careful parameter setting, the
proposed membership function effectively
improves the performance of the baseline au-
toencoder, and performs better than the state-
of-the-art one-class SVM in anomaly detec-
tion.

Keywords: Audio event detection, audio
surveillance, anomaly detection, deep au-
toencoder, fuzzy membership, interval com-
parison.

1 Introduction

Video data have been so far much more popular than
audio signals for surveillance tasks. However, in the
past few years an increasing attention has been paid
to audio event detection (AED). In fact, AED looks
more advantageous in certain applications, such as
road surveillance, for the following reasons: a) AED

offers a lower installation cost, in addition to less ex-
pensive requirements in terms of bandwidth, memory
and computational load; b) thanks to omnidirectional
microphones and/or microphone arrays, audio surveil-
lance has no problems with perception angles nor with
luminosity/visibility conditions; ¢) even in presence of
physical obstacles, most relevant sounds can be de-
tected; d) audio data are more useful than video when
it comes to detect certain events, like gunshots and
screams, where sound bears more importance than im-
age; e) generally, audio data are more separable than
video scenes. This latter point is quite important when
the task consists in detecting certain event categories.

The present paper describes the design of a machine
learning-based system dealing with the problem of
AED for audio surveillance of road traffic. This prob-
lem can be modelled in different ways. Two possible
formalisations are: a) As a task of classification of all
perceived events; b) as detection of anomalous/outlier
events only. For this application, due to the strong
imbalance between classes, we opt for a generative
modelling approach to anomaly detection. Anomalous
events are incidents, such as car accidents and other
events indicating potential hazard (tire skidding, harsh
braking, etc.), whereas normal events are all the rest
(cars and pedestrians passing by, people talking, horn
blowing, etc.). Hence the problem is how to distin-
guish the outliers in such a noisy environment, where:
i) Practically all events are more or less masked by
noise; ii) relevant events, such as car accidents, consti-
tute an overwhelming minority in comparison to nor-
mal events. In the proposed solution, a set of au-
toencoders provide generative models of each class of
events of interest.

Due to the complex nature of such vaguely defined
classes, which is especially true of the background
noise, membership to any class must be considered af-
fected by a degree of uncertainty. This calls for an ex-
plicit treatment of such uncertainty. Type-2 fuzzy sets
[9] are a natural choice for this type of problem. In this
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work we opt for using interval type-2 fuzzy member-
ships to model classes because, apart from their inher-
ent simplicity and their popularity, they minimise the
need for arbitrary modelling decisions about the mem-
bership itself. To take the final decision, the interval-
valued memberships to different classes are compared
using a method of interval comparison described in
[L9]. In this way the decision is taken without discard-
ing the information about uncertainty expressed by the
2-component fuzzy membership.

The rest of the paper is organized as follows: Section 2
reviews the related work, including methods and appli-
cations; Section 3 presents the utilized methods and the
proposed approach; Section 4 details the experimental
protocol and the obtained results. Finally the work is
summarized and commented in the conclusion.

2 Related work

The work in the field of audio surveillance can be re-
viewed either from the theoretic viewpoint, i.e. meth-
ods and techniques, or from the practical side, i.e. ap-
plications and models. As far as methods are con-
cerned, the design of an audio surveillance system de-
pends on the type of surveillance task, distinguishing
primarily between classification or anomaly detection.
In case of classification, several techniques, basically
developed for speech/speaker recognition, may be use-
ful, such as generative models (HMM and GMM) and
discriminative models (SVM and neural networks). In
the other case, several anomaly/outlier detection tech-
niques have been applied to audio data, with differ-
ent levels of efficiency. These methods can be clas-
sified into metric-based e.g. KL-divergence distance,
reconstruction-based e.g. autoencoders, and domain-
based e.g. one-class SVM.

As mentioned, we are focusing on the anomaly/outlier
detection approach. Some early reviews [7, 8] use out-
dated categorisations. In a more recent one [13]], tech-
niques are classified into five categories: a) Probabilis-
tic techniques, based on a density estimation of the
normal class, so that a low density area in the train-
ing set may indicate a low probability of containing
normal samples; b) distance-based approaches, that in-
clude nearest neighbor and clustering analysis meth-
ods, considering that normal data are closely clustered,
whereas anomalies are far from their nearest neigh-
bours; c) reconstruction-based approaches relying on
training a regression model. Then the reconstruction
error between the actual and the reconstructed sam-
ples indicates anomaly/novelty/outlierness; d) domain-
based methods that try to characterize the training data
by defining a boundary around the normal class, but
without explicitly providing a distribution in high den-
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sity regions; e) information theory techniques, that as-
sume that anomaly/novelty/outlierness alters the infor-
mation content in a data set; anomalies are detected by
analysing the information content using information-
theoretical measures, such as entropy or Kolmogorov
complexity. According to this taxonomy, the present
proposal is a reconstruction-based method. It is also
worth noting that several feature representations have
been proposed, either using hand-crafted low level de-
scriptors (LLD), calculated in both temporal and spec-
tral domains, or using feature embedding through auto-
regressive tools, e.g. autoencoders, or from feature fu-
sion [1].

On the application level, audio surveillance systems
have taken profit from the increasing interest to
anomaly detection. In particular, a variety of mod-
els have been developed for road audio surveillance
applications. Among classification-based models, the
CrashZam system [17] uses an in-car microphone and
features/algorithm engineering, with no learning. The
model designed by Foggia et al. [2] uses a two-layer
representation, first low-level audio features then high-
level bag-of-words; in this case a learning component,
i.e. an ensemble SVM for the final event classifica-
tion, is present. In [12]], a universal background model
(UBM) is proposed with the goal to recognize and de-
tect a large number of audio events encountered in ur-
ban areas, with good reported results; the method uses
Markov models for several classes. Previous work by
the present authors has also tackled the problem of
road audio surveillance from an anomaly/outlier detec-
tion perspective. In [[15], an ensemble one-class SVM
parallel to an MLP network is used to calculate the
anomaly score for audio events. The one-class SVM
yields a binary anomaly evaluation (normal if 1 and
anomalous if -1), whereas the MLP output probabil-
ity indicates the event class. The MLP is gated by the
one-class SVM so that its task is to discriminate only
between outlier (interesting) classes, disregarding the
background. Also, the authors addressed the problem
of data imbalance in road audio surveillance [10] by
weighting, so that each event class receives a weight
inversely proportional to the fraction of the samples be-
longing to it in the training set. An autoencoder score
is used to calculate weights, where the inverse of the
reconstruction error is used as a sample weight, so that
the least represented classes, and thus the worst recon-
structed, receive the highest weights.

The issues exhibited by these approaches may be sum-
marised in a limited discrimination ability due to the
complexity of the classes to be modelled. This point is
tackled in the present proposal.
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3 Methods

This work aims to detect anomalous events on roads,
e.g car accident, tire skidding, harsh braking, etc. Nat-
urally, the proportion of such events is much smaller
than that of normal ones, i.e. non-hazardous events.
This suggests a strategy based on anomaly detection
and, rather than a discriminative classifier, on genera-
tive modelling plus adaptive weighting.

Three methods are employed: a) A state-of-the-art
method, i.e. one-class SVM, used mainly for bench-
marking; b) a baseline method which relies on training
an autoencoder only on the normal events present in
the training set, and then assessing outlierness through
the comparison of the reconstruction error to a thresh-
old; b) a proposed method that refines the baseline by
introducing interval type-2 fuzzy memberships to ex-
plicitly account for the uncertainty in the generative
models.

3.1 State-of-the-art method: One-class SVM

OC-SVM is a variant of SVM algorithms, which aims
to estimate a function having positive values on a half-
space, and negative ones on its complement. Gener-
ally speaking, OC-SVM divides the input space into
normal data and outliers. However, the training is per-
formed only on normal data. The final decision is taken
using the sign function g(x), calculated as in (IJ):

g(x) =sgn(w’ ¢(x) - p), (1

where ¢ is the Gaussian kernel, w is the orthogonal
vector to the separating hyperplane, and p is a bias
term. For each sample, if this function is positive, then
the sample is called normal, otherwise it is an outlier.
In this work, OC-SVM is utilized mainly for perfor-
mance comparison with the proposed methods. A thor-
ough description of the OC-SVM problem formulation
and algorithm can be found in [18]].

3.2 Baseline method: Normal event-based
autoencoders

The autoencoder is a neural network whose objective
approximates the identity function. It is commonly
used as an unsupervised learning technique, that aims
to extract features from unlabeled data. To achieve this
goal, the autoencoder optimizes the weights to min-
imize the mean square difference between the given
input and the obtained output; then, the value of a hid-
den layer is used as an encoded representation of the
input. A simple autoencoder has only one hidden layer
(cf. Figure[T). It is therefore parametrised by weights
(w € R™" » € R™™) and biases (b,b € R™), as
follows:
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Figure 1: Architecture of an autoencoder

h= f(wx+D), @)
%= f(hw+D),
where x = (x1,X2,...,%n) € R", ¥ = (%1,%,...,4n) €

R™ and h = (hy,hy,...,h,) € R" are respectively the
inputs, the outputs and the hidden layer code, and f, f
are non linear activation functions, such as the sigmoid

function, f(z) = H% (1.

It can be shown that the encoding obtained from a sim-
ple linear autoencoder, i.e. with f(z) = f(z) = z, spans
the n principal components of the data space, recov-
ering therefore the same embedding as PCA of order
n. In this sense we may state that an autoencoder is
a nonlinear generalization of PCA. Deep autoencoders
with several hidden layers are also possible, although
this may imply an excessive overparameterization with
increased risk of overfitting, or, correspondingly, the
need for exponentially more data.

In this work, the autoencoder is used as a baseline
anomaly detection technique, as it can approximate the
identity function, so that it generates an image of the
input. Thus, the reconstruction error indicates whether
the input pattern is a normal or an outlier. Outliers
are expected to have a different behaviour than normal
samples, and thus their reconstruction error should be
higher.

In a similar approach to one-class SVM, the base-
line autoencoder is trained on normal data, i.e. non-
hazardous events, only. Then the output RMSE error
is calculated for the aforementioned terms as in (3))::

€= i (e *fk)27 3)
m

The comparison of the output error &; to a preset thresh-
old 7y indicates whether the input sample i is normal or
anomalous as in (#):
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> Anomalous’
’Normal’

if &> 1,

if &< @

Event (i) = {
Regarding the architecture, we opted to train deep
feedforward autoencoders. Deep autoencoders were
trained on feature vectors, comprising Mel-frequency
cepstral coefficients (MFCC) and log-Energy, with
their first and second derivatives (A and A-A). The
choice of such features is motivated by their outstand-
ing results in the state-of-the-art methods of speech
recognition [14], audio event detection [12] and in par-
ticular road traffic surveillance [16]].

3.3 Proposed method: Anomaly detection based
on deep autoencoders, fuzzy membership and
interval comparison

In order to improve the performance of the baseline
method applied to audio surveillance of road traffic,
a method based on combining reconstruction-based
learning through autoencoders, and anomaly detection
via a fuzzy membership function is proposed in this
work. Thus, the method proceeds as follows:

* For each subset containing only one type of
events, e.g. background noise, car accidents, tire
skidding, etc., an autoencoder is trained.

* In the test phase, for each signal i and each event
class j = 1...Nasses, the RMSE error g ; is cal-
culated between the input, i.e. the feature vector
representing the signal frame, and the outputs, i.e.
its reconstructed image by the corresponding au-
toencoders.

* For each input signal i, the output error of each
autoencoder, i.e. €i,j is evaluated using a ded-
icated fuzzy membership function, which value
indicates how close the signal is to the event of
interest, i.e. the event on which the autoencoder
model had been trained.

For each type of events, the autoencoder’s out-
put error is associated to a membership function
composed of a low/pessimistic component and an
upper/optimistic component. The values of both
components form the membership function inter-
val (cf. Figure[2).

* Finally, a probabilistic method for interval com-
parison [23] is applied to detect the corresponding
event, and hence to detect outlierness.

3.3.1 Fuzzy membership function

The membership of type-2 fuzzy sets can be expressed
as a 2-variable membership function 4 (x,u) where
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Figure 2: Example of the proposed reconstruction-
error-based membership function. Continuous line
(Uy): optimistic membership. Dashed line (u): pes-
simistic membership. Vertical line at €: interval values
of membership corresponding to error €.

Vxe X,Yu € Jy C[0,1],A = {(x,u), pa(x,u)|Vx €
X,VueJ,C [0,1]}and O < g (o, 1) < 1. pz(x,u) is
called the second grade. When all second grades are
equal to 1, then A is called an interval type-2 fuzzy set

[9l.

Membership to each event is modeled through a fuzzy
membership function based on the corresponding au-
toencoder output error. For each input signal i and for
each event-related autoencoder j, the fuzzy member-
ship is composed of two membership functions: a) Pes-
simistic/Lower membership g ; that is minimum if the
sample is an outlier, i.e. its autoencoder error is above
the defined threshold (cf. (3))), and b) Optimistic/Upper
membership Ly ;, which is maximum when the sample
is considered as normal, i.e. its autoencoder error is be-
low the threshold (cf. ().

&
(Xj*,T] if SjS‘L'J',
(e ) — : 5
He j(€is) { 0 if &>, )
ﬁj*l if SjSTJ‘,
Hu,j(fi,j)—{ =i >, ©

where o and (B; — 1) are the the upper bounds of y; ;
and Uy j, respectively; 7; and g; ; are the threshold and
the error of input signal i corresponding to the autoen-
coder trained on the samples of event class j only, re-
spectively. See Figure[2]
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3.3.2 Interval comparison

The key idea is to compare the interval between
the upper and the lower membership functions
(ur (€ ;) 1u,j(& ;)] for each event-related autoen-
coder j = 1,...,N. Such an interval could be inter-
preted as a confidence measure. Hence, the smaller
is the interval, the higher is the confidence, and thus
the tighter is the membership function. Fuzzy num-
ber comparison in general, and interval comparison in
particular have been broadly investigated since several
years [4}, 6], using different approaches, either proba-
bilistic [3} [19]], possiblistic [S] or based on fuzzy set
theory [24]. A comprehensive review of interval and
fuzzy number comparison is presented in [21} 22].

The goal of interval comparison is to rank real-number
interval, or fuzzy numbers, based on the values of their
boundaries. A heuristic approach developed in [23]]
has an advantage in that it does not rely on midpoints
for interval comparison, which makes sense only in the
case of fuzzy numbers or confidence intervals.

The comparison between two intervals A = [a;,a,] and
B = [by,by] is expressed by the degree of preference of
A over B, denoted P(A > B) defined by [23], as re-
ported in [19], using (7):

max(O,az — bl) — max(O,m — bz)
(a2 —ar)+ (b2 —b1)

P(A>B) = (D

Reciprocally, the degree of preference of B over A is
defined by (8):

max(0,by —a;) —max(0,b; —az)

P(B>A) = . (®
( ) (a2 —ay)+ (b2 —b1)
Hence we obviously have
P(A>B)+P(B>A)=1, )
and
if A=B ‘then P(A>B)=PB>A)=0.5,
if ap, <by then P(B>A)=1.
(10)

Using equations (7) to (I0), we measure the member-
ship function as a degree of preference of intervals.
Thus, for each event-related autoencoder j =1,...,N,
the pessimistic/lower and the optimistic/upper mem-
bership functions calculated for the autoencoder’s
error of the sample i, ie. &, form an interval
(ur (€ ;) 1u,j(&.j)], to be compared to all other in-
tervals formed by membership functions related to the
rest of autoencoders. Finally, the event class corre-
sponds to the interval selected as the least preferred

one, as given by (TI):
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Y

where A; = [up (&) Mu,j(&))], Axzj =

ML k(€ix), Mux(Eix)] V Kk F J.

Figure [2] illustrates the principle of the proposed
method. Let’s assume we have only two categories
of events, i.e. "Normal’ and ’Anomalous’. The data
belonging to each class is trained to yield two au-
toencoder models. For each autoencoder, a thresh-
old 71 is set. In the test phase, the error of
each input sample i generated by each autoencoder j
is used through (3) and () to calculate the interval
Ajj= (M (&), Mu,j(& j)]. Then A;; is compared to
the other intervals obtained for the same sample i by
other autoencoders. Hence, in this case, 2 intervals
are obtained, i.e. {Ai71,Ai72} for each sample i. In-
terval comparison is then performed using (7)) for all
the obtained interval for sample i, yielding in this case
{P(Ai1 > A;2),P(Ai2 > A;1)}. Finally, the predicted
event is obtained by applying (TT).

4 Experiments and results

4.1 Audio materials

MIVIA dataset [2] has been designed for an audio-
based road surveillance system. Recordings were re-
alized in a real road environment at 23 locations in the
province of Salerno, Italy, covering city center, high-
ways and country roads. The recorded sounds were
labeled manually, indicating the audio event and its on-
set and offset times. Two audio events are considered
anomalous, i.e. car crash and tire skidding, whereas all
other events are considered as normal, such as cars and
pedestrians passing by, people talking, and background
street noise. The total duration of the database is ap-
proximately one hour, segmented into 57 audio clips.

4.2 Feature set

In [20], a standard set of features was proposed in
the IEEE challenge for detection and classification of
acoustic scenes and events (DCASE 2013 challenge),
including temporal (energy, zero-crossing rate), spec-
tral (spectral roll-off, flux, entropy, variance, aperiod-
icity bands energy, etc.) and cepstral features (Mel-
frequency cepstral coefficients (MFCC)), in addition
to time-frequency features, extracted from the wavelet
analysis, such as Perceptual Wavelet Packet (PWP).
However, it has been demonstrated in [15] that some
of these features are not quite discriminatory. In par-
ticular, for real-word data, where target events are in-
trinsically mixed with background noise, some of these
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features contribute in worsening the classification per-
formance instead of improving it.

Therefore, after a fine analysis of the discriminatory
power of each type of the aforementioned features,
we opted to keep only the MFCC coefficients and the
Log-Energy. MFCC coefficients have been used for
speech and speaker recognition since a long time for
their considerable efficiency and their ability to cap-
ture the gross spectral characteristics of an audio event
[14]]. Usually, 13 MFCC coefficients are extracted
from the Mel-log spectrum, in addition to log-energy,
along with their first and second derivatives (A and
A-A).

150

50

-50

-100 [

150 I I I I I
-150 -100 -50 0 50 100

Figure 3: t-SNE distribution of MFCC and Log-
Energy features for normal events (0) vs. anomalous
events (1)

4.3 Parameter setting

Part Parameter Value
All Event weight w; 1/p;
Baseline Error threshold 7 T €]0,1]
autoencoder

Event-based | Error threshold 7; To X W;j
autoencoders

Fuzzy Upper bound for py ; () 1
membership | Upper bound for uy ; (B)) 2

Table 1: Parameter setting for the autoencoder error
and the fuzzy membership function (p; is the propor-
tion of Class j samples in the training set)

Since different parameters are involved either in the
autoencoder architecture or in the fuzzy membership
function (cf. @,@), a special care has been addressed
to setting such parameters before presenting the final
results. Naturally, different values were tried out in the
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draft version of the algorithm, however only the pa-
rameter values that give the best results are presented
(cf. Table[T).

Regarding the baseline autoencoder, i.e. without a
fuzzy membership function, the main parameter to be
tuned is the threshold 7y above which the sample is
considered as an outlier. This parameter has been set
inside the interval ]0, 1[ since the baseline autoencoder
error was normalized using min-max rescaling. In our
case, the best results were obtained for 7y = 1/2. How-
ever, the choice may depend on the distribution of the
autoencoder’s error.

For the event-based autoencoders, as the dataset is
highly imbalanced towards the class of background
noise samples, the error thresholds were pondered us-
ing the inverse of the proportion of each class as a
weighting coefficient. Therefore, we opted to set the
threshold 7; for each class j = 1,...,N as the baseline
threshold autoencoder’s threshold 7, pondered by the
corresponding class weight w; = 1/p;, where p; is the
proportion of samples of Class j.

For the fuzzy membership function, two other param-
eters have to be set: the upper and the lower bounds,
ie. o and B;, for each event j =1,...,N. For the
same reason advanced for the choice of 7, i.e. using
normalised output error of the autoencoder, we opted
to set aj =1 and B; =2, so that 0 < py ; <1 and
0<py;<1Vj=1,....N (cf. Table[T).

4.4 Experimental protocol

A series of experiments was conducted to detect audio
events on roads, based on the classification into nor-
mal vs. anomalous events of the provided samples in
MIVIA database [2]]. However, as expected, the pro-
portion of the normal (non-hazardous) event samples,
is much bigger than that of anomalous (hazardous)
events. Therefore, data augmentation was achieved by
segmenting the audio signals into short frames, with
a duration of 250 ms, with a high overlap rate, i.e.
75%. Hence, the 57 audio clips of approx. 1 min
each yielded 57090 frames, in which 45081 belong
to Class 1 (normal) and 12009 frames belonging to
Class 2 (anomalous), more precisely 4440 frames ac-
count for tire skidding and 7569 frames for car acci-
dents. However, it should be emphasized that all train-
ing segments, whether normal or anomalous, contain
nearly the same level of background street noise.

An architecture of a deep autoencoder was utilized, re-
lying on a feedforward neural network. The results of
the autoencoder were analyzed with and without the
fuzzy membership function mentioned in (3) and (6).
For both cases, the input is the vector of 13 x MFCC
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Method Whorm Wanom Accuracy | P P R; R, Fl1, | F1,
One-Class SVM 0.84 094 | 0.59 | 0.86 | 0.77 | 0.90 | 0.67
Deep autoencoder | 1 — porm 0.85 0.86 | 0.79 | 0.97 | 0.38 | 0.91 | 0.51
only (Baseline) 12 0.81 0.81 | 0.85 | 1.00 | 0.08 | 0.89 | 0.14

Dnorm 0.79 0.79 | 0.52 | 1.00 | 0.01 | 0.88 | 0.01
Deep autoencoder | 1 — puorm | 1 — Panom 0.87 0.89 | 0.77 | 0.95 | 0.56 | 0.92 | 0.65
with fuzzy 172 172 0.75 0.96 | 045 | 070 | 0.90 | 0.81 | 0.6
membership Prorm Panom 0.27 0.99 | 0.22 | 0.08 | 1.00 | 0.14 | 0.36

Table 2: Results of anomalous event detection using autoencoders and fuzzy membership function for "Normal’
vs. “Anomalous’ event classification (ppor, = 0.79 and pguom = 0.21 are the proportions of normal and anomalous
samples in the training set); For OC-SVM, the parameters v = and 7 are set to 0.14 and 2.5e-5, respectively, for

their high performance.

and Log-Energy features, with their A and A-A deriva-
tives. Training and validation of the autoencoders were
processed on 80% of the available data, whereas test
was conducted on the remaining 20%.

4.5 Analysis of results

Table [2f lists the results obtained for different exper-
imental settings, including the methods used: state-
of-the-art OC-SVM (used for benchmarking), baseline
autoencoder and event-based autoencoder with fuzzy
membership, and varying the values of the the event
weights {w;};—i . n. The yielding results are ex-

pressed in terms of overall accuracy (Acc), precision
(P), recall (R) and F1 scores, defined as in (12):

; : 2P,R;
P=SR =S F1,=00 (1)
€j rj Pj + Rj
where rj, e; and c; are the number of ground-truth,
estimated and correctly detected events for each class
j=1,...,N, respectively.

In Table 2] the results of both proposed methods,
i.e. baseline autoencoder and event-based autoencoder
with fuzzy membership, show the contribution of the
fuzzy membership function to improve anomaly detec-
tion. The effects of using fuzzy membership can be
listed as follows:

* Both proposed methods perform better than the
state-of-the-art OC-SVM, in terms of overall ac-
curacy and balance between class-based metrics.

* Overall accuracy rates are enhanced, reaching
88% for "Normal’ vs. *Anomalous’ event detec-
tion (cf. Table[2).

* Precision, recall and F1 score are more balanced
between ’Normal’ and ’ Anomalous’ classes when
the fuzzy membership is used (cf. Table [2).

* The effect of event wights is more evidenced, with
higher accuracy for w; = 1 — p;. Hence, the pre-
diction of least abundant class, i.e. ’Anomalous’,
is the most enhanced.

* For such a balanced weighting e.g. w; =1 —p;,
precision, recall and F1 scores are the highest.

5 Discussion and conclusion

In this paper, a novel method of anomaly detection
has been proposed and applied to road traffic surveil-
lance, in the aim to allow detecting hazardous events
such as car accidents using audio signals. The pro-
posed method relies on combining two anomaly detec-
tion tools, i.e. autoencoders and interval type-2 fuzzy
sets. In the training phase, an autoencoder model is
learned for each class of events, to be used to generate
the reconstruction error in the test phase. The baseline
model uses the reconstruction error calculated on the
’Normal’ class only, to compare it to a preset thresh-
old. Hence, the autoencoder model that provides the
highest reconstruction error corresponds to the class of
>Anomalous’ events. Then, this baseline has been im-
proved by adding a membership function stage, where
the reconstruction errors computed on each class are
leveraged to provide a membership score. To do so,
the membership function has been calculated using
a couple of optimistic/upper and a pessimistic/lower
membership components. Both components are used
to define intervals of confidence, which are compared
using a probabilistic method. Hence, the least pre-
ferred/smallest interval corresponds to the ’Anoma-
lous’ class. For evaluation purposes, metrics such as
accuracy, precision, recall and F1-score have been cal-
culated. Results show that with i) a good selection of
the input features, ii) an adequate choice of the mem-
bership function parameters, and iii) a fine tuning of
the event-related class weights, the anomalous events
can be correctly detected with a comparable perfor-
mance of state-of-the-art anomaly detection methods,

449



ATLANTIS
PRESS

Atlantis Studies in Uncertainty Modelling, volume 3

such as OC-SVM. However, the proposed model could
be further improved by becoming less supervised, e.g.
without relying on class weights, or fully unsupervised
by getting around the class-based autoencoder model.

Acknowledgement

This work was carried out in the framework of the
project Xpert funded by the University of Genova.

References

[1]

(2]

(10]

S. Chandrakala, S. Jayalakshmi, Environmental
audio scene and sound event recognition for au-
tonomous surveillance: A survey and compara-
tive studies, ACM Computing Surveys (CSUR)
52 (3) (2019) 1-34.

P. Foggia, N. Petkov, A. Saggese, N. Strisciuglio,
M. Vento, Audio surveillance of roads: A system
for detecting anomalous sounds, IEEE transac-
tions on intelligent transportation systems 17 (1)
(2015) 279-288.

V.-N. Huynh, Y. Nakamori, J. Lawry, A
probability-based approach to comparison of
fuzzy numbers and applications to target-oriented
decision making, IEEE Transactions on Fuzzy
Systems 16 (2) (2008) 371-387.

M. Jiménez, Ranking fuzzy numbers through
the comparison of its expected intervals, Inter-
national Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 4 (04) (1996) 379—
388.

A. Kasperski, A possibilistic approach to se-
quencing problems with fuzzy parameters, Fuzzy
Sets and Systems 150 (1) (2005) 77-86.

E. Lee, R.-J. Li, Comparison of fuzzy num-
bers based on the probability measure of fuzzy
events, Computers & Mathematics with Applica-
tions 15 (10) (1988) 887-896.

M. Markou, S. Singh, Novelty detection: a re-
view—part 1: statistical approaches, Signal pro-
cessing 83 (12) (2003) 2481-2497.

M. Markou, S. Singh, Novelty detection: a re-
view—part 2:: neural network based approaches,
Signal processing 83 (12) (2003) 2499-2521.

J. M. Mendel, R. 1. B. John, Type-2 fuzzy sets
made simple, IEEE Transactions on Fuzzy Sys-
tems 10 (2) (2002) 117-127.

7Z. Mnasri, S. Rovetta, F. Masulli, Audio
surveillance of roads using deep learning and

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

autoencoder-based sample weight initialization,
in: 2020 IEEE 20th Mediterranean Electrotech-
nical Conference (MELECON), IEEE, 2020, pp.
99-103.

Ng, Andrew, Sparse autoencoder, https:
//web.stanford.edu/class/cs294a/
sparseAutoencoder_2011lnew.pdf,
accessed 29 March 2020 (2011).

online;

S. Ntalampiras, Universal background modeling
for acoustic surveillance of urban traffic, Digital
Signal Processing 31 (2014) 69-78.

M. A. Pimentel, D. A. Clifton, L. Clifton,
L. Tarassenko, A review of novelty detection,
Signal Processing 99 (2014) 215-249.

L. R. Rabiner, A tutorial on hidden Markov mod-
els and selected applications in speech recogni-
tion, Proceedings of the IEEE 77 (2) (1989) 257-
286.

S. Rovetta, Z. Mnasri, F. Masulli, Detection of
hazardous road events from audio streams: An
ensemble outlier detection approach, in: 2020
IEEE Conference on Evolving and Adaptive In-
telligent Systems (EAIS), IEEE, 2020, pp. 1-6.

A. Saggese, N. Strisciuglio, M. Vento, N. Petkov,
Time-frequency analysis for audio event detec-
tion in real scenarios, in: 2016 13th IEEE inter-
national conference on advanced video and sig-
nal based surveillance (AVSS), IEEE, 2016, pp.
438-443.

M. Sammarco, M. Detyniecki, Crashzam:
Sound-based car crash detection., in: Proceed-
ings of Vehicle Technology and Intelligent Trans-
port Systems (VEHITS), 2018, pp. 27-35.

B. Scholkopf, R. C. Williamson, A. Smola,
J. Shawe-Taylor, J. Platt, Support vector method
for novelty detection, Advances in neural infor-
mation processing systems 12 (1999) 582-588.

P. Sevastianov, Numerical methods for inter-
val and fuzzy number comparison based on the
probabilistic approach and dempster—shafer the-
ory, Information Sciences 177 (21) (2007) 4645—
4661.

D. Stowell, D. Giannoulis, E. Benetos, M. La-
grange, M. D. Plumbley, Detection and classifica-
tion of acoustic scenes and events, IEEE Transac-
tions on Multimedia 17 (10) (2015) 1733-1746.

X. Wang, E. E. Kerre, Reasonable properties for
the ordering of fuzzy quantities (i), Fuzzy sets
and systems 118 (3) (2001) 375-385.

450


https://web. stanford. edu/class/cs294a/sparseAutoencoder_2011new. pdf
https://web. stanford. edu/class/cs294a/sparseAutoencoder_2011new. pdf
https://web. stanford. edu/class/cs294a/sparseAutoencoder_2011new. pdf

ATLANTIS ; . i ;
PRESS Atlantis Studies in Uncertainty Modelling, volume 3

[22] X. Wang, E. E. Kerre, Reasonable properties for
the ordering of fuzzy quantities (ii), Fuzzy sets
and systems 118 (3) (2001) 387—-405.

[23] Y.-M. Wang, J.-B. Yang, D.-L. Xu, A prefer-
ence aggregation method through the estimation
of utility intervals, Computers & Operations Re-
search 32 (8) (2005) 2027-2049.

[24] C.-H. Yeh, H. Deng, A practical approach to
fuzzy utilities comparison in fuzzy multicriteria

analysis, International Journal of Approximate
Reasoning 35 (2) (2004) 179-194.

451



	Introduction
	Related work
	Methods
	State-of-the-art method: One-class SVM
	Baseline method: Normal event-based autoencoders
	Proposed method: Anomaly detection based on deep autoencoders, fuzzy membership and interval comparison
	Fuzzy membership function
	Interval comparison


	Experiments and results
	Audio materials
	Feature set
	Parameter setting
	Experimental protocol
	Analysis of results

	Discussion and conclusion



