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Abstract—This paper describes the development of PRACTICE,
a distributed healthcare technological platform that supports
various research initiatives by the University of Milan and the
Angelo Bianchi Bonomi Hemophilia and Thrombosis Center,
Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico.
PRACTICE includes three main components: a mobile app that
patients can use to self-acquire ultrasound images at home,
a computer-aided diagnosis web application that supports the
practitioners through a set of machine learning models, and a
set of web tools for image annotation, a prerequisite for training
the machine learning models. Although PRACTICE was designed
in the specific context of supporting the detection of joint recess
blood effusions in hemophilic patients, this paper describes the
main design and implementation challenges that apply to other
applications of a research-oriented health platform.

Index Terms—Hemophilia; point-of-care; deep learning.

I. INTRODUCTION

The application of Artificial Intelligence (AI) methods in
the medical domain is a research area investigated by a large
number of research groups, due to its potential of revolution-
izing diagnosis, treatment, and patient care [1].

Combining these advances with the latest trends in the Inter-
net of Things (IoT) makes it possible to build advanced remote
monitoring systems taking advantage of sensing devices such
as wearable devices, physiological sensors, and smart home
sensors [2]. Such systems have the goal of continuously and
unobtrusively monitoring the health status of a patient with
the long-term objective of improving the patient’s quality of
life and reducing health system costs.

Most of the existing studies in this area mainly focus on
the data analysis aspects that are indeed crucial to provide
clinicians with correct and complete information about the
patient’s health status. However, real-life deployment of these
telemedicine systems requires the development of several tools
that are rarely investigated in research papers. For instance,
several medical domains require the monitored patient to
collaborate in data collection (e.g., self-collecting data) and
this requires user-friendly applications. Similarly, clinicians

who receive AI-processed data from their patients require user-
friendly applications that help them analyze the results to
make informed decisions. Furthermore, in supervised settings,
clinicians also need accurate and easy-to-use annotation tools
that can be quickly adapted to research needs.

In this paper, we describe PRACTICE (Pilot on Remote
AutomatiC ulTrasound scan analysIs for hemophiliC patiEnts),
a distributed healthcare system designed in collaboration be-
tween computer scientists and clinicians to support the appli-
cation of AI methods in the hemophilia domain. For patients
with hemophilia, joint bleeding is a common complication
that, if not treated promptly, can lead to recurrent bleeding,
which ends with synovial hyperplasia, osteochondral damage,
and hemophilic arthropathy [3]. UltraSound imaging is a
practical approach to detect bleeding in the joint recess [4].
However, ultrasounds images are usually acquired by medical
practitioners in specialized centers during outpatient visits,
which can be difficult to schedule for both patients and the
specialized centers. In PRACTICE, each hemophilic patient is
provided with a portable ultrasound system. When necessary
(e.g., a routine check or in case of pain), the patient uses
the probe to acquire ultrasound images of the joints that are
automatically transmitted to the specialized center where a
medical practitioner remotely assesses the presence of joint
bleeding supported by state-of-the-art AI methods (such as [5],
[6]).

The PRACTICE system combines several tools:

• GAJA (Guided self-Acquisition of Joint ultrAsound im-
ages), an application to guide patients to autonomously
acquire joint ultrasound images with a portable probe.

• CADET (Computer-Aided Diagnosis for hEmarThrosis),
an application leveraging AI methods to support clini-
cians in formulating a diagnosis.

• ATOM (Annotation Task Orchestrator Module), a system
for the annotation of ultrasound images targeted to clin-
icians.



In this paper, we report on our experience in designing and
implementing PRACTICE and its components. We also report
the lessons learned in this ongoing project.

II. ANALYSIS OF REQUIREMENTS

PRACTICE is the result of a multi-year collaboration be-
tween two teams of researchers, one from the Computer
Science Department of the University of Milan, and the other
from the Angelo Bianchi Bonomi Hemophilia and Thrombosis
Center, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore
Policlinico, also affiliated with the Department of Pathophys-
iology and Transplantation of the University of Milan. The
collaboration involved multiple funded projects and various
research goals, with the overarching objective of supporting
the diagnosis process and the follow-up monitoring of joint
recess effusions in patients with hemophilia. In this context,
the key functional requirements of the platform are:

• Supporting medical practitioners in the diagnosis process
and the follow-up monitoring of joint healthcare of the
patients through an interactive computer-aided diagnosis
tool that shows ultrasound images collected by the pa-
tients and estimates the presence of joint recess effusion.

• Providing guidance to patients with hemophilia for the
self-acquisition of ultrasound scans of their joints using a
portable ultrasound probe through an application running
on a tablet device that detects anatomical markers of the
joint and interactively instructs the user on how to move
the probe to correctly scan the recess.

• Facilitate the practitioners in annotating the presence of
recess effusion and outlining the recess in the images
collected by the patients in order to train the computer-
aided diagnosis tool to better recognize recess effusion.

In addition to the medical practitioner and the patient, we
also identify two supporting figures, along with their roles:

• The system administrator that manages the users of the
platform, assigns the annotation tasks to the medical
practitioners, and monitors the completion progress of
the annotation tasks.

• The data scientist who uses the annotated images to train
the machine learning models.

There are also three non-functional requirements that are
relevant for the system design:

• The entire decision process, starting with the acquisition
of the ultrasound images by the patient and concluding
with the determination of the diagnosis by the medi-
cal practitioner using the computer-aided diagnosis tool,
should not have a longer duration, for the physician, than
the usual practice, with the patient going to the hospital
for an in-person visit.

• Since the process involves the remote acquisition of ultra-
sound images, their transmission to the hospital servers,
and their usage in the annotation system, the training
of the machine learning model, and the computer-aided
diagnosis tool, it is crucial to guarantee the patients’
privacy at all stages of the process.

• Given the research-oriented nature of the project, the data
scientist can be interested in exploring various ML mod-
els. This requires high flexibility in the data annotation
process.

III. SYSTEM ARCHITECTURE AND TECHNOLOGIES

Figure 1 shows PRACTICE system architecture. The system
is composed of the PRACTICE server, the hospital ultrasound
device, the GAJA app running on Windows tablet computers
and connected to a portable ultrasound probe, and two web
applications: CADET and ATOM.

The hospital ultrasound device is a closed system that
does not have a publicly available Software Development Kit
(SDK). This means that it is not possible to develop ad-hoc
applications using the hardware of the ultrasound device. To
the best of our knowledge, this is common for most ultrasound
devices. Therefore, we integrated this device by leveraging
its pre-installed application and configuring it so that, at the
end of each visit, it automatically saves the media (images
and videos) in a folder on the PRACTICE server. A daemon
running on the PRACTICE server watches for changes in that
folder and, when it observes a new file, loads the media and its
associated metadata (e.g., date of visit) on the database (main-
DB) through main-API, a set of REST APIs implemented
through a Node server.

The other three clients (GAJA, CADET, and ATOM) inter-
act directly with main-API to store and retrieve data from
main-DB. All three clients also share a common problem:
preserving patients’ privacy. To address this issue, the PRAC-
TICE system adopts a pseudonymization approach: all data
and media related to a patient are associated with a pseudo-
identifier as soon as they are stored in the main-DB. All
operations related to pseudonymization are implemented by
the pseudonymization-API, a set of rest APIs that store data
in the identities-DB, a separate database with higher security
(restricted access). In the following processing, the media is
associated with the pseudo-identifier, unless the real patient’s
name is required (e.g., by the practitioner during a visit). In
these cases, client applications can access the name through
pseudonymization-API that implements a role-based access
control policy (e.g., the practitioners can access the patients’
names, while data scientists cannot).

Finally, there are two other components worth mentioning.
The first is ML-API, which provides access to the machine
learning models through a set of REST APIs available only
for local calls and implemented in Python. The second is a set
of instances of various annotation tool services. As detailed in
Section IV, ATOM orchestrates various third-party annotation
tools, each running with its own instance (and possibly its own
database) and interacting with main-API.

IV. IMAGES ACQUISITION AND ANNOTATION

Deep learning algorithms rely on large datasets to effectively
learn to generalize patterns of various pathological conditions
or to identify areas of interest. However, a public dataset of
ultrasound media is not available for the considered medical
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Fig. 1: Overview of PRACTICE architecture

domain. Therefore, we created a new dataset by collecting
ultrasound media from hemophilic patients. Data was collected
by expert practitioners during hospital visits, using a high-
end ultrasound device. Since media is acquired during regular
visits, the overall procedure was designed to avoid additional
workload for the practitioners and inconvenience to patients.

One problem that emerged during the creation of the dataset
is related to the fact that ultrasound imaging is highly depen-
dent on the operator and has a high inter-patient variability
hence making the acquired data highly heterogeneous, a factor
that can negatively impact the training of the machine learning
models. To mitigate this problem, we defined an acquisition
protocol based on the following principles [5], [7].

• Inclusion criteria. The media of patients with signif-
icantly different characteristics (at the level of muscu-
loskeletal ultrasound imaging) are excluded from the
dataset. For example, children and patients with prosthe-
ses are excluded.

• Standardization. By adopting well-established proce-
dures in the medical literature and practice, we defined a
standard procedure for image acquisition. This includes,
for example, the set of joints to consider and, for each of
them, the set of scans1.

1A scan defines the probe position and, consequently, which anatomical
targets are framed in the ultrasound image.

• Parameters definition. When acquiring an ultrasound
media, the practitioner can tune several settings (e.g.
power and frequency). We selected a fixed value for most
of these settings, leaving the practitioner with the ability
to select only a few parameters whose value has to be
defined specifically for each patient (e.g., the “depth”
value).

After dataset acquisition, we defined a set of tools and
practices for data annotation. The guiding objectives were
to reduce the annotation time and errors. To achieve these
objectives, we initially developed an ad-hoc annotation tool.
However, we then realized that the research activities fre-
quently required the creation of new annotation tasks. For this
reason, we designed the ATOM (Annotation Task Orchestrator
Module) system that allows the administrator to quickly create
a new annotation task by specifying the following data.

• The set of media from the dataset.
• The annotation tool, a third-party application. For exam-

ple, for some annotation tasks, we used Label Studio [8]
that, for privacy reasons, we configured to run on our
server. These tools automatically transmit the annotations
to PRACTICE, which stores them.

• The type of annotation (e.g., the set of classes).
• The set of annotators (i.e., practitioners).
The system was designed to interact with any compatible

annotation tool, including those for creating image class
annotations, bounding boxes, and segmentations. In addition
to creating annotation tasks, ATOM also provides two main
functions. One function is designed for annotators, who can
access the list of tasks assigned to them and run the annotation
tool. The other function is designed for the administrator to
monitor the completion of the annotation tasks and to check
the inconsistencies among the annotators. Specifically, for each
annotation task, the administrator can define one or more
equality functions. Then ATOM uses these functions to create
a confusion matrix that shows, for each pair of annotators,
the percentage of images (among those annotated by both
annotators) that have the same annotation (according to the
equality functions). Figure 2 shows an example screen of
the admin panel, On the left we can see the list of active
tasks, with the progress. On the right a detailed view of a
single selected task, where the progress is divided among
the different practitioners and the tables on the bottom report
statistics of the currently annotated data for various equality
functions.

V. GAJA: SELF-ACQUISITION OF ULTRASOUND IMAGES

GAJA is an application that assists patients in self-acquiring
ultrasound images of their joints for remote diagnosis by
medical practitioners. Current approaches for patient-acquired
ultrasound images are based on two paradigms: patient training
to acquire ultrasound images on their own [9] or real-time
remote guidance of patients by an expert during ultrasound
image acquisition [10]. However, both approaches have limita-
tions that impede their applicability in the considered scenario.



Fig. 2: ATOM admin example screen

The first approach requires extensive training for patients
to acquire good images independently, and patients tend to
forget the correct practices over time [11]. In the second
approach, real-time guidance is a time-consuming process, and
it requires the concurrent availability of a medical practitioner,
which is a major constraint and expense for the hospital.
The motivation behind GAJA is to address these limitations,
providing real-time automated guidance for ultrasound image
acquisition to the patient, without requiring support from
medical practitioners.

To correctly acquire ultrasound images of a body part,
an operator should follow established protocols that define
how to set the probe parameters, how to position the probe,
and how to interpret the ultrasound video output [12]. GAJA
aims to automate some of these actions and to provide real-
time guidance for actions that cannot be automated, which
normally require specialized training and medical knowledge.
Furthermore, it provides reminders and tutorials for those steps
that are easy to explain. This makes GAJA a functional and
usable system for remote self-acquisition of ultrasound images.
Currently, GAJA runs on a Windows tablet and uses an SDK to
access the stream of frames from a portable ultrasound probe.

To meet GAJA objectives, we defined a collaborative pro-
cess between patients and practitioners based on two main
steps [13].

a) Reference image acquisition: During the patient’s
initial visit at the hospital, a medical practitioner collects
a reference image for each target joint. Using an object
detection model, GAJA detects, for each reference image, a
predefined set of anatomical markers (e.g. patella and femur
for the knee). GAJA stores this information together with
the probe parameters used by the practitioner, such as scan
depth and gain. Finally, the patient receives a short training
(approximately 10 minutes) to learn how to use GAJA.

Fig. 3: Ultrasound images acquisition guidance interface

b) Self-acquisition: The patient can initiate remote visits
at home, as periodical checkups or on-demand in case of pain
or trauma. During a remote visit, the patient selects the target
joint and completes a short questionnaire on their health status.
Brief tutorial videos (a few seconds long) are used to remind
the patient of the key steps of the process, like putting the gel
on the probe and positioning the probe correctly. The patient
then proceeds to acquire ultrasound images, guided by the
interface shown in Fig. 3. The interface screen is divided into
two areas: the right section displays the feed acquired from
the probe and shows the anatomical markers detected in real
time, the target positions to which they need to be aligned, and
the arrows indicating the direction of the movement needed to
align the markers; the left section of the screen shows example
images illustrating how to position and move the probe. When
the anatomical markers are aligned, a short sound cue is
played, and their bounding box is coloured green. The user
is advised to hold still to avoid blur in the acquired images,
and, after a few seconds, ultrasound images are collected and



sent to the PRACTICE server.

VI. CADET : COMPUTER-AIDED DIAGNOSIS

CADET is a web-based interface that supports clinicians
in formulating the diagnosis; it manages both in-presence
and remote visits. To design CADET we first analyzed the
habitual visit procedure adopted by practitioners without the
support of a computer-aided diagnosis system. The physicians
used to collect media with the ultrasound probe and then
enter the diagnosis of blood effusion in a word processor file,
following a template that defines a set of information for each
joint [12]. The diagnosis was finally uploaded to the national
health system server and, after printing, stored in the patient’s
physical medical record.

This procedure had several limitations. First, the media and
exam data were not linked, making access to the patient’s
medical history (complete with diagnosis and the media)
impractical. This affects practitioners, who need to review
the stored data during follow-up visits, and also makes it
impossible to use the data for the training of ML models.
Second, some operations required the practitioner’s interven-
tion although, in principle, they could be automated. This
included, for example, the creation of the diagnosis on the
word processor. Finally, no CAD system was implemented
and remote visits were not possible.

We initially designed a first CADET prototype in which the
practitioner could use the web app to automatically acquire
media from the ultrasound probe. This solution was designed
with the idea that the practitioner could quickly switch from
CADET to the probe. However, due to technical limitations
of the ultrasound probe (no SDK is available), this was not
possible. Therefore, we designed a solution in which the
practitioner first acquires media using the ultrasound probe and
then interacts with CADET to formulate the diagnosis. The
practitioner first completes an initial general medical history
through a guided questionnaire and then selects the joint,
one at a time. The diagnosis of each joint is divided into
four steps: media selection (Figure 4a), joint-specific history,
a questionnaire related to the standard HEAD-US procedure
[12], and a guided questionnaire for the diagnosis of blood
effusion (Figure 4b).

After completing the process for each joint, the practitioner
can access the final diagnosis that follows the same format as
the word processor template. This report can then be uploaded
to the national health system server and possibly printed for
physical storage.

The remote diagnosis procedure is similar, with the main
difference that some information is already available (media
and history).

CADET adopts two main solutions to support the prac-
titioner. First, it implements a knowledge-based system to
guide the practitioner in diagnosis formulation. This solution
was first designed in terms of a decision tree in which
each node is a Boolean condition and each leaf is the join-
specific medical report. CADET implements this decision
tree through a questionnaire (see Figure 4b) in which some

answers are automatically provided based on the data inserted
in the previous steps (e.g., whether the patient has pain) and
the remaining are provided by the practitioner. The second
solution adopted to support the diagnosis is to automatically
detect recess distention [5], which is a necessary condition for
blood effusion. Taking into account the media available for a
given joint, the system suggests a distention value on a scale
of four possible alternatives (see Figure 4b). The practitioner
can then decide to accept the suggested value or to change it.

Several solutions were also adopted to speed up the process.
First, CADET automatically pre-selects the media obtained
from a visit based on a ML solution that identifies, for each
media, the scan, the joint name, and its laterality. For each
joint, some data are precomputed on the basis of previous visits
and the patient’s medical history. For example, for each joint,
the practitioner has to specify whether there is a prosthesis.
If the practitioner specifies that there is one during a visit,
the system automatically loads the same value during the
following visits. Finally, CADET automatically generates the
diagnosis file that can be uploaded to the national system.

VII. CONCLUSIONS

This paper presents PRACTICE, a healthcare system specif-
ically designed to support hemophilic patients and the medical
practitioners assisting them. The system was also designed
with a third main actor in mind: the data scientist who uses the
collected data to train new ML models. This required defining
medical procedures and technical solutions for the acquisition,
annotation, and storage of ultrasound media.

Two PRACTICE components are currently being used:
CADET supports the practitioner during visits and ATOM
makes it possible to assign annotation tasks to practitioners.
The third component, GAJA, is currently in an advanced
prototyping phase, and experiments with patients are expected
to begin in the next few weeks.
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