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Despite the practical success of deep neural networks, a comprehensive theoretical framework that
can predict practically relevant scores, such as the test accuracy, from knowledge of the training
data is currently lacking. Huge simplifications arise in the infinite-width limit, where the number
of units Nℓ in each hidden layer (ℓ = 1, . . . , L, being L the depth of the network) far exceeds the
number P of training examples. This idealisation, however, blatantly departs from the reality of
deep learning practice. Here, we use the toolset of statistical mechanics to overcome these limitations
and derive an approximate partition function for fully-connected deep neural architectures, which
encodes information about the trained models. The computation holds in the “thermodynamic
limit” where both Nℓ and P are large and their ratio αℓ = P/Nℓ is finite. This advance allows us
to obtain (i) a closed formula for the generalisation error associated to a regression task in a one-
hidden layer network with finite α1; (ii) an approximate expression of the partition function for deep
architectures (via an “effective action” that depends on a finite number of “order parameters”); (iii)
a link between deep neural networks in the proportional asymptotic limit and Student’s t processes.

I. INTRODUCTION

The rise of deep learning, driven by advances in com-
puting technology and foreshadowed by decades of re-
search, has outpaced our ability to develop a solid the-
oretical foundation [1, 2]. Filling the gaps in our un-
derstanding of deep learning on a fundamental level is a
long-time collective effort involving several communities.
Statistical physics achieved far-reaching results in this re-
gard, and remains a wellspring of fresh perspectives and
breakthroughs [3–11]. One notable recent advance was
obtained by considering the infinite-width limit, where
the number of training data P is fixed and the size of
the hidden layers is taken to infinity. The observation
that such deep models are equivalent to Gaussian pro-
cesses (GPs) [12–20] established a connection between
deep learning and kernel methods [21], and provided a
statistical physics description of this regime [7, 22, 23].

However, there is agreement that a more complete the-
ory should address deep learning beyond the infinite-
width limit [24–29]: in fact, realistic neural networks op-
erate in a qualitatively different regime, where the num-
ber of training examples exceeds the width of the largest
layer. Modeling the finite-width regime in the thermo-
dynamic limit, where the number of degrees of freedom
diverges and the tools of statistical mechanics are most
effective, amounts to taking the asymptotic limit where
both the size of the training set P and the number of
units in each hidden layer Nℓ are taken to infinity with

their ratios fixed, as we consider in the present work:

P,Nℓ → ∞, αℓ =
P

Nℓ
finite ∀ℓ = 1, . . . , L (1)

with L being the (finite) depth of the network (the scal-
ing of P with the input size N0, which deserves special
care, is discussed in section III F of the Methods). This
choice guarantees that such networks work in the over-
parametrised regime.
Another fruitful line of research, in the direction of

overcoming the limitations of the infinite-width limit,
sacrifices the non-linear nature of the network by con-
sidering a deep linear input-output mapping: even if the
resulting architecture lacks the expressive power [30–37]
of the same model with non-linearities, the multi-layer
structure maintains the learning problem non-convex,
while amenable to analytical investigation [38, 39]. Very
recently, Li and Sompolinsky [5] proposed a method to
analytically evaluate properties of deep finite-width lin-
ear networks (e.g., their generalisation error) trained on
a generic fixed training set. However, the more relevant
case of generic non-linear DNNs remains an open prob-
lem, despite some recent notable attempts to address
it [3, 26–29, 40–42].
In statistical mechanics, the partition function is the

central object encoding the properties of the system in
the thermodynamic limit. In this work we address the an-
alytical computation of the partition function of a fully-
connected, multi-layer, non-linear neural network, as a
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function of the training set in the asymptotic limit de-
fined in (1). Technically, the computation amounts to
integrating out an extensive number of degrees of free-
dom (the weights of the network), thus landing on an
expression that involves only a finite number (propor-
tional to the depth L) of integrals, to be evaluated by
the saddle-point method. In the one-hidden-layer (1HL)
case, the only key approximation is justified by a gener-
alised central limit theorem due to Bardet and Surgailis
[43] (which belongs to a class of results known as Breuer-
Major (BM) theorems [44] from the seminal paper [45]).

In the general case of an architecture with L hidden
fully-connected layers, we show that the distribution of
the pre-activations at each layer ℓ is a mixture of Gaus-
sians that depends on ℓ parameters. Notably, the back-
propagating integration performed in [5] is not a viable
option as soon as non-linearities are added to the model.
We introduce a forward-propagating method to carry out
nested integrations starting from the input layer. This re-
sult depends on an assumption that is similar, at least
in spirit, to the Gaussian equivalence principle employed
for random and generic feature models [46–52].

From these developments, we are able to obtain quanti-
tative predictions for the generalisation error of the net-
work below the interpolation threshold. Moreover, our
results have an intriguing interpretation from the point
of view of stochastic processes: we show that in the case
of finite αℓ the GP arising in the infinite-width limit of
Bayesian neural networks [15] should be generalised to a
Student’s t stochastic process [53].

As a first application of the theory, we establish a sim-
ple criterion (equivalent to the one found in the linear
case [5, 54] and in finite-P perturbation theory [55, 56])
to predict whether it is convenient, in terms of generali-
sation performance, to employ a finite-width deep neural
network over its infinite-width version.

Problem setting - We consider a supervised learning
problem with training set TP = {xµ, yµ}Pµ=1, where each

xµ ∈ RN0 and the corresponding labels yµ ∈ R. The
architecture is a deep neural network fDNN(x) with (L−
1) fully-connected hidden (FC) layers and a final linear
readout layer as defined in (23). We analyse regression
problems with a quadratic loss function:

L =
1

2

P∑
µ=1

[yµ − fDNN(x
µ)]

2
+ Lreg , (2)

Lreg =
λL
2β

NL∑
iL=1

v2iL +
1

2β

L−1∑
ℓ=0

λ(ℓ)∥W (ℓ)∥2 , (3)

where L2 regularisations have been added for each layer
to the loss function, ∥·∥ is the standard Frobenius norm
defined for the weights matrices W (ℓ), and β = 1/T is
the inverse temperature parameter.

As a standard practice in statistical mechanics of deep
learning, we define the partition function of the problem

as:

Z =

∫
Dθ e−βL(θ) . (4)

where the symbol
∫
Dθ indicates the collective integra-

tion over the weights of the network, θ = {W (ℓ), v}.
This choice enforces minimization of the training error for
β → ∞. We notice that scaling Lreg by 1/β has a natural
Bayesian learning interpretation: the Gibbs probability
Pβ(θ) = Z−1e−βL(θ) associated with the partition func-
tion in equation (4) is the posterior distribution of the
weights after training, whereas the Gaussian regulariza-
tion is a prior equivalent to assuming that weights at
initialization have been drawn from a Gaussian distribu-
tion
In this framework, the average test error over a new

(unseen) example (x0, y0) is given by:

⟨ϵg(x0, y0)⟩ =
∫
Dθ [y0 − fDNN(x

0)]2
e−βL(θ)

Z
. (5)

II. RESULTS

A. Asymptotic effective action for one-hidden-layer
neural networks in the Bayesian setting

In the case of 1HL architectures, we are able to reduce
the partition function (4) to the following two-variables
integral in the thermodynamic limit described in (1):

Z =

∫
dQ

∫
dQ̄ exp

[
−N1

2
S(Q, Q̄)

]
(6)

where we have defined an effective action S given by:

S =−QQ̄+ log(1 +Q) +
α1

P
Tr log β

[
1
β
+
Q̄K

λ1

]
+
α1

P
y⊤
[

1
β
+
Q̄K

λ1

]−1

y

(7)

and we have introduced a vectorial notation for the out-
put y⊤ = (y1, y2, . . . , yP ). The P × P , input-dependent
kernel K/λ1 is the neural network Gaussian process
(NNGP) kernel [15] arising in the infinite-width limit
and its precise definition in terms of the input covari-
ance matrix (rescaled by the Gaussian prior of the first
layer λ0) Cµν = xµ · xν/(λ0N0) is given in the Methods,
equation (45). Note also that equation (7) holds for zero-
mean activation functions, that is functions whose aver-
age over a centered Gaussian is zero (see equation (44);
an effective action for the generic finite-mean case is re-
ported in the supplemental material [57], Sec. IV) and
that for many reasonable non-linearities and input data
distributions the derivation goes through at least in the
regime P = O(N0) (we discuss this key technical point
in the Methods). This is the first main result of our work
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FIG. 1. (a) Learning curves of 1HL architectures with Erf
activation (trained with a discretised Langevin dynamics, see
also Methods) as a function of the hidden layer size N1 for
two regression tasks on the CIFAR10 (above) and MNIST
(below) datasets. Zero/one labels have been chosen in both
cases and the images of the CIFAR10 dataset have been gray-
scaled and down-scaled to N0 = 28 × 28. The experimental
test loss at different values of the trainset size P (points with
error bars indicating one standard deviation) are compared
with the theory computed from equation (8) (solid lines). The
bar centres are computed as the average over an ensemble of
S = 450 equilibrium configurations. Samples are taken every
104 Langevin steps (after thermalisation of the dynamics).
The error bar represents one standard deviations from the
average. (b,c) Experimental learning curves as a function of
N1 for increasing values of the Gaussian prior of the last layer
λ1. Error bars are within points, and dashed lines connecting
the points are shown to guide the eye. The nets are trained
on P = 3000 examples from the CIFAR10 dataset in (b) and
P = 500 examples from MNIST in (c). Two qualitative pre-
dictions of the theory at zero temperature are checked: (i) the
generalisation loss should decrease for any N1 when λ1 grows;
(ii) the dependence of the learning curves on N1 disappears
in the large-λ1 limit, since the bias is constant (see also main
text).

and we conjecture it is exact since the only key Gaussian

approximation that we perform is justified by the exten-
sion of the Breuer-Major theorem [43], as argued in the
Methods.
In the supplemental material [57], we obtain a number

of additional results that did not enter here for space lim-
itations: (i) a re-derivation of the effective action in the
case of linear activation function, valid at fixed P,N1, N0,
together with a comparison with the results given in
[5, 58]; (ii) a specific derivation of the effective action
for quadratic activation function, which makes no use of
the Breuer-Major theorem; (iii) the generalisation of the
effective action in equation (7) to the case of multiple
(but finite) outputs.
We can now solve equation (7) using the saddle-point

method, since N1 → ∞, which amounts to finding the
solutions Q∗, Q̄∗ of the system of equations ∂QS = 0,
∂Q̄S = 0 (the infinite-width limit is re-obtained for α1 →
0 and corresponds to the particular solution Q∗ = 0,
Q̄∗ = 1). In the zero-temperature limit, we can find
the analytical solution of the saddle-point equations (see
Methods). A straightforward computation shows that
the generalisation error is given in terms of the usual
bias-variance decomposition:

⟨ϵg(x0, y0)⟩ =
(
y0 − Γ1

)2
+ σ2

1 ,

Γ1 =
∑
µ,ν

κµ(x
0)K−1

µν yν ,

σ2
1 =

Q̄∗

λ1

[
κ0(x

0)−
∑
µ,ν

κµ(x
0)K−1

µν κν(x
0)

]
,

(8)

where κµ(x
0), κ0(x

0) can be computed from the func-
tional definition of the NNGP kernel using the new un-
seen input x0, as shown in the Methods.
We can directly employ equation (8) to obtain testable

predictions for the generalisation error of finite-width
1HL architectures trained in the Bayesian learning set-
ting, as we do in panel (a) of Fig. 1 for two specific regres-
sion tasks defined on the CIFAR10 and MNIST datasets
(details on the numerical experiments are provided in the
Methods section IIIH and in Sec. V of the supplemental
material [57]). It turns out that the generalisation curves
for the two regression tasks are monotonically increasing
(decreasing) as a function of N1 depending on the fact

that the observable y⊤ (K/λ1)
−1
y/P is smaller (larger)

than one. The importance of this quantity in controlling
the generalisation performance has been already noted in
linear networks [5, 54] as well as in direct perturbation
theory at finite P for non-linear networks [55, 56].
We also point out two semi-quantitative predictions

for the general behavior of the generalisation error, just
by looking at the dependence of equation (8) on the
size of the hidden layer N1 and on the Gaussian prior
of the last layer λ1. At T = 0, the bias is constant
as a function of N1 (as explicitly observed also in the
linear case in Ref. [5]) and of λ1. On the contrary, the
variance depends on N1 and decreases as 1/

√
λ1 in the

large-λ1 limit. These observations lead to the following



4

two testable predictions: (i) increasing the magnitude of
the Gaussian prior λ1 should systematically improve the
generalisation performance at any N1; (ii) for large λ1
the dependence on N1 of the generalisation error should
disappear (see also the numerical experiments performed
in panel (b) in Fig. 1).

B. Link between Student’s t-processes and shallow
neural networks in the proportional limit

In obtaining the results reported in Sec. IIA, our the-
ory can be formulated as a statement on the probability
distribution of the output variables

sµ ≡ 1√
N1

N1∑
i1=1

vi1σ(h
µ
i1
) , (9)

where h ∼ N (0, C⊗1N1
), v ∼ N (0, λ−1

1 1N1
). Proceeding

as in the derivation of the partition function presented in
Methods, the p.d.f. of these variables can be written as
a re-weighted Fourier transform,

P (s|TP ) =
e−

β
2

∑
µ(y

µ−sµ)2

Z

∫ ∏
µ

ds̄µ

2π
eis̄

⊤sΞ(s̄) , (10)

of the function

Ξ(s̄) =

(
1 +

1

λ1N1

P∑
µ,ν

s̄µKµν(C)s̄
ν

)−N1
2

. (11)

It is straightforward to notice that as long as N1 → ∞
and N1 ≫ P , the dependence on N1 disappears and we
get:

Ξ(s̄) → e−
1

2λ1

∑P
µ,ν s̄µKµν(C)s̄ν . (12)

This quantity has a very natural interpretation in view of
the NNGP literature. Indeed, for N1 large and P finite,
the variables (9) are jointly multivariate Gaussian dis-
tributed according to the central limit theorem, as noted
for example in [15]: this limit corresponds indeed to the
RHS of our equation (12) and is the cornerstone of the
mapping of an infinite-width Bayesian neural network
to a GP. This is however no more the case when P is
comparable to N1: equation (11), derived exploiting the
Gaussian equivalence based on the BM theorem in the
proportional asymptotic limit P/N1 ∼ O(1), is suggest-
ing that the variables s̄µ are distributed according to a
multivariate Student’s t-distribution [53, 59–61].

The need of considering Student’s t-processes as a gen-
eralisation of NNGPs has been noted already in the case
of different priors on the distribution of the last layer’s
weights [62]. Non-Gaussianity of the posterior in a form
similar to that of Eq. (11) has appeared also in [63–65].
The reason why this kind of process arises in the case we

are considering here can be understood with an heuris-
tic argument: when N1 and P are of the same order, we
cannot take the limit N1 → ∞ before P → ∞, and so we
need to use the empirical covariance of the output vari-
ables sµ instead of their true one in estimating their prob-
ability distribution. A more precise characterization of
these neural network Student’s t-processes (NNTPs) and
the regime where they arise represent interesting topics
for future work.

C. Asymptotic effective action for deep neural
networks in the Bayesian setting

In the generic case of a deep fully-connected architec-
ture with a finite number of layers L and zero-mean ac-
tivation function, we express the partition function in
terms of a 2L-dimensional integral (see Methods):

ZDNN =

∫ L∏
ℓ=1

dQℓ dQ̄ℓe
−NL

2 SDNN({Qℓ,Q̄ℓ}) , (13)

where the effective action is given by:

SDNN =

L∑
ℓ=1

αL

αℓ

[
−QℓQ̄ℓ + log(1 +Qℓ)

]
+
αL

P
Tr log β

(
1
β
+K

(R)
L ({Q̄ℓ})

)
+
αL

P
yT
(

1
β
+K

(R)
L ({Q̄ℓ})

)−1

y (14)

and we have introduced a renormalised kernel K(R) that
generalises the the recurrence relation for the L-layer
NNGP kernel as:

K
(R)
ℓ ({Q̄ℓ}) = Q̄ℓ/λℓK ◦

[
K

(R)
ℓ−1({Q̄ℓ})

]
, K

(R)
0 = C ,

(15)
where C is the covariance matrix of the inputs defined

above and we stress that each K
(R)
ℓ depends on the vari-

ables Q̄1, . . . , Q̄ℓ−1 only. For completeness, we notice
that the recurrence relation for the infinite-width kernel
KL is given by equation (15) with Q̄ℓ = 1 ∀ℓ = 1, . . . , L.
This action shares the same structure as the one found

in section IIA for the special case of 1HL, with the differ-
ence that for L hidden layers, the recursive nature of the
derivation introduces additional order parameters that
are nested in the definition of the kernel KL. Further-
more, since our derivation applies to layers of arbitrary
size Nℓ, the action also depends on the aspect ratios αℓ.
In the supplemental material [57], we derive a series of
additional results: (i) we generalise this effective action
for finite-mean activation functions; (ii) we show how
to recover the linear case in the isotropic limit αℓ = α
∀ℓ = 1, . . . , L; (iii) using (i) we show how to correct the
heuristic theory for ReLU activation presented in Ref.
[5].
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FIG. 2. (a,d) Test loss of a L-HL neural network with ReLU activation, as a function of the depth L, for P = 100. The
net is trained on a regression task in the small α regime (α = 0.1), close to the infinite-width limit. The finite-width network
can outperform the infinite-width prediction only when sL < 1 (shaded area), i.e. only for the MNIST task and for depth
L < 3. (b,e) Visualisation of the entries of the infinite-width NNGP kernel at different layers of the network. The ReLU NNGP
kernel converges to zero after repeated iterations. This generates almost vanishing eigenvalues that makes sL eventually always
larger than one. (c,f) Test loss of a 4-HL network trained on P = 1000 examples with different regularisation strengths (with
Nℓ = N = 1000). While increasing the magnitude of the Gaussian prior of the last layer still improves generalisation for all N ,
it is not clear anymore (as it was for 1HL networks) that the curve at large λL is a constant as a function of N . The dashed
line is shown to guide the eye. In all panels, error bars lie within points.

The computation of the generalisation error over a new
example (x0, y0) gives:

⟨ϵg(x0, y0)⟩ = (y0 − ΓL)
2 + σ2

L (16)

where

ΓL =
∑
µν

κ
(R)
Lµ

(
1
β
+K

(R)
L ({Q̄ℓ})

)−1

µν

yν , (17)

σ2
L = κ

(R)
L0 −

∑
µν

κ
(R)
Lµ

(
1
β
+K

(R)
L ({Q̄ℓ})

)−1

µν

κ
(R)
Lν (18)

and κ
(R)
Lµ , κ

(R)
L0 are recursive kernels computed from the

recurrence given in equation (15) using the input x0 in
the initial conditions.

Note that also in this case we can perform the same
scaling analysis of the dependence of the generalisation
error on the Gaussian prior in the last layer λL (in the
zero temperature limit). It turns out that the bias does
not depend on it, whereas the variance σ2

L approaches

zero as 1/
√
λL as λL is taken to infinity. This means

that also in the case of finite depth L > 1, training at
large values of the Gaussian prior of the last layer should
improve generalisation at any aspect ratio of the network.
We confirm this general observation with numerical ex-
periments in panels (c) and (f) of Fig. 2. However, dif-
ferently from the 1HL case, we observe that the bias does
depend on the aspect ratio even in the zero-temperature

limit and we cannot expect anymore that the dependence
on the aspect ratios of the networks αℓ disappears in the
λL → ∞ limit.
We can obtain another prediction of the theory at L

layers (that again confirms previous results on linear net-
works and perturbative calculations for non-linear net-
works [5, 54–56]) by considering the effective action for
ReLU activation. A straightforward Taylor expansion
around the infinite-width limit αℓ = α = 0 ∀ℓ = 1, . . . , L
shows that the first correction to the test loss ∆ϵg is pro-
portional to:

∆ϵg ∝ α

(
1

P
yTK−1

L y − 1

)
. (19)

where KL is the solution of recurrence in equation (15)
for Q̄ℓ = 1 ∀ℓ = 1, . . . , L and ReLU activation. This
means that there exists a simple scalar observable that
determines whether the finite-width deep neural network
will outperform its infinite-width counterpart that gen-
eralises the one found at 1HL:

sL =
1

P
yTK−1

L y . (20)

In particular, we expect the finite-width network to out-
perform its infinite-width counterpart whenever sL < 1.
In panel (a) and (c) of Fig. 2 we check this prediction for
deep architectures with ReLU activation on the same re-
gression tasks employed in the 1HL case. Notice that sL
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FIG. 3. (Left panel) Training loss of different one-hidden layer
architectures trained on a completely random task (i.e. both
the inputs x ∈ RN0 with N0 = 50 and the scalar outputs y are
i.i.d. random variables sampled from a normal distribution
with zero mean and unit variance) as a function of α1. At the
moment we can not capture this universal phenomenon with
our theory, which only describes the overparametrised limit
where the training error is exactly zero. (Right panel) The
numerical evaluation of the solution Q̄ is shown in the case of
ReLU activation function and isotropic network αℓ = α ∀ℓ,
for different depths L. As L grows (L ∼ 30), the parameter
Q̄ quickly approaches 1 for all α, suggesting that also DNNs
in the asymptotic regime converge to a kernel limit in the
sequential limit where the depth L is taken to infinity after
P,N .

quickly diverges to infinity as the number of hidden lay-
ers L grows. The reason for this is simply that the ReLU
NNGP kernel KL develops at least one zero eigenvalue
as L→ ∞. This ultimately occurs because each element
of the matrix KL converges to zero as L grows (see panel
(b) and (c) of Fig. 2), as one can easily check by looking
at the explicit recurrence relation for the NNGP ReLU
kernel. [15, 66]. We note that this singularity can be
equivalently thought as the fixed point of the discrete
dynamical map defined by the recurrence relation for the
NNGP kernel and therefore it might be worth investigat-
ing the relation between the generalisation performance
in our asymptotic limit and the line of work on the edge
of chaos in random neural networks [67, 68].

Equation (19) provides an additional link with Stu-
dent’s t inference. In fact, the same criterion has
been found by Tracey and Wolpert [69] in the study of
Bayesian optimization with Student’s t-processes. Here
the authors show that the value of sL determines whether
the Student’s t-process they consider has a larger/smaller
variance than the corresponding GP with the same ker-
nel.

III. DISCUSSION

In our work we have described a strategy to investigate
the statistical mechanics of deep neural networks beyond
the infinite-width limit, that is in the finite asymptotic
regime P,Nℓ → ∞ at αℓ = P/Nℓ > 0 as opposed to

the infinite-width αℓ = 0. In the 1HL case, we con-
jecture that our evaluation is exact in the above ther-
modynamic limit. As such, we do not expect any addi-
tional corrections to the result, at least in the asymptotic
regime. In particular, we have found a closed expres-
sion for the generalisation error that in principle provides
a Bayesian estimator of the generalisation capabilities
of fully-connected architectures for any given empirical
dataset, provided that the chosen architecture is capable
of perfectly fitting the trainset.

For the case of finite depth L > 1 networks, it should
be possible, at least in principle, to take systematically
into account non-Gaussian corrections to the saddle-
point action to check whether these are relevant or not
for the theory at finite width, since the assumptions we
made in deriving the results are clear [70] (see also Meth-
ods).

From the mathematical perspective, we find the link
with Student’s t-processes very promising. The precise
characterization of this mapping and its limits of validity
represent a research line for future investigation.

Notably, our theory predicts that a kernel limit should
also appear in the asymptotic regime as the depth L ap-
proaches infinity. This could be checked, for instance,
considering the isotropic limit αℓ = α ∀ℓ and ReLU acti-
vation. Here one can numerically solve the saddle-point
equation for Q̄ at large L and verify that Q̄ → 1 for all
α, as shown in panel (b) Fig. 3. As such, also in this
limit we expect an equivalence with a kernel theory with
kernel given by K∞(C). Note that from our framework
it is clear that we are taking the depth L infinity only
after P,N . As such we are not making claims about the
challenging simultaneous limit L,N → ∞ at fixed L/N ,
as done for instance in Refs. [27, 28, 58, 70].

It is fair to stress that our theory only describes the
equilibrium regime of zero train loss, so that our analysis
should not apply in the regime P/N1 ≫ 1. Interestingly,
numerical simulations performed with 1HL architectures
of varying width and random training labels show that
the train loss follows a universal behavior [54, 71] w.r.t.
α1 (see Fig. 3, panel (a)) also in the regime where the
DNN is not capable to perfectly fit the data. It would
be desirable to develop a theory that also captures this
phase.

Another interesting aspect to understand is the degree
to which this mean-field static analysis can be extended
beyond equilibrium in order to assess the full training
dynamics; such a theory would indeed make it possible
to investigate the performance of the many (often heuris-
tics) learning algorithms employed to train deep neural
networks.

We conclude by pointing out that it would be interest-
ing to compare our theory at fixed data with the data-
averaged cases studied in [54, 72] and to extend our re-
sults to convolutional layers, as done in the infinite-width
case in Ref. [17].
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METHODS

A. Setting of the learning problem and notation

We consider deep neural networks fDNN(x) with L
fully-connected hidden layers, where the pre-activations

of each layer h
(ℓ)
iℓ

(iℓ = 1, . . . , Nℓ; ℓ = 1, . . . , L) are given
recursively as a non-linear function of the pre-activations

at the previous layer h
(ℓ−1)
iℓ−1

(iℓ−1 = 1, . . . , Nℓ−1):

h
(ℓ)
iℓ

=
1√
Nℓ−1

Nℓ−1∑
iℓ−1=1

W
(ℓ)
iℓiℓ−1

σ
(
h
(ℓ−1)
iℓ−1

)
+ b

(ℓ)
iℓ
, (21)

h
(1)
i1

=
1√
N0

N0∑
i0=1

W
(1)
i1i0

xi0 + b
(1)
i1

(22)

where W (ℓ) and b(ℓ) are respectively the weights and the
biases of the ℓ-th layer, whereas the input layer has di-
mension N0 (the input data dimension). σ is a non-linear
activation function and it is common to each layer. We
add one last readout layer and we define the function
implemented by the deep neural network as:

fDNN(x) =
1√
NL

NL∑
iL=1

viLσ
[
h
(L)
iL

(x)
]
, (23)

where v is the vector of weights of the last layer.
The average training error at a given inverse tempera-

ture β is given by:

⟨ϵt⟩ =
1

P

∫
Dθ [L(θ)− Lreg(θ)]

e−βL(θ)

Z
, (24)

Training and test errors (as defined in equation (5))
represent two special observables, but more in general,
for an arbitrary observable O we have:

⟨O⟩ =
∫
Dθ O(θ)

e−βL(θ)

Z
. (25)

B. The Breuer-Major theorem as a justification for
the Gaussian equivalence in shallow networks

The Breuer-Major theorem and its extensions deal
with the following sequence of random variables:

SN =
1√
N

N∑
i=1

ciF (xi) N ≥ 1 . (26)

Clearly, if the distribution of the vector x = (x1, . . . , xN )
is factorized over its coordinates, i.e. p(x) =

∏
i p(xi)

and F (x) = x, the random variable S = limN→∞ SN is
normal distributed as long as the mean E(xi) = 0, the
variance E(x2i ) is finite and the ci’s satisfy the so-called
Lindeberg’s condition. This is also true whenever F is a
well-behaved non-linearity.

The Breuer-Major theorem essentially extends this re-
sult to generic GPs, providing sufficient conditions on
the covariance matrix of the GP and on the non-linearity
F that guarantee convergence of SN to the normal dis-
tribution. We report here the modern statement of the
theorem given in Ref. [44].
We first consider a stationary (unidimensional) GP

x = (xk)k∈Z. Stationarity –which is not essential and
will be replaced by a weaker condition in the following–
amounts to require that the covariance of the process
Cij = E(xixj) is a function of the difference i − j, i.e.
Cij = C(i − j). The only technical condition to be im-
posed on the non-linear function F is to have well-defined
Hermite rank R. The Hermite rank is the smallest posi-
tive integer that appears in the decomposition of F over
the Hermite polynomials:

F (x) =

∞∑
k=R

fk Hek(x) , (27)

where Hek(x) is the k-th Hermite polynomial and fk the
coefficient of the expansion. For many reasonable activa-
tion functions F , R = 1.

Theorem 1 (Breuer and Major, 1983) Let
x = (xk)k∈Z be a stationary unidimensional GP
with covariance C(i − j). Let E [F (x1)] = 0 and
E
[
F 2(x1)

]
< ∞ and assume that the function F has

Hermite rank R ≥ 1. Suppose that:∑
j∈Z

|C1j |R <∞ . (28)

Then σ2 := E
[
F (x1)

2
]
+2

∑∞
j=1 E [F (x1)F (xj)] is finite.

Moreover, one has that the sequence of random variables

SN =
1√
N

N∑
i=1

F (xi) N ≥ 1 (29)

converges in distribution to N (0, σ2), i.e. to a Gaussian
distribution with zero mean and variance σ2.

For our scopes we will need a slightly stronger state-
ment than the one just mentioned: (i) in our calcula-
tion the covariance will not be stationary and (ii) we will
need to consider a more general sequence of nonlinear
functions ciF (xi), such that each term of the sum (29) is
weighted by a factor ci ̸= 1.
It has been shown, already in the original reference

[45], that the hypothesis of stationarity can be weakened
and replaced with a requirement of uniform convergence
of the elements of the covariance, namely:∑

j∈Z

|Cij |R < B0 ∀i ∈ Z , (30)

where B0 is a positive finite constant. Extensions (i) and
(ii) have been addressed more recently by Bardet and
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Surgailis in [43], as we report in the following. Let xN be
an N -dimensional Gaussian vector, such that E[xNi ] = 0,
E[(xNi )2] = 1. Now define CN

ij = E[xNi x
N
j ]. For a given

integer m ≥ 1, assume

sup
N≥1

max
1≤j≤N

N∑
i=1

|CN
ij |m <∞ , (31)

sup
N≥1

1

N

∑
1≤i,j≤N
|i−j|>K

|CN
ij |m −→

K→∞
0 . (32)

Take also L2
0(x) =

{
f : E f(x) = 0,E f2(x) <∞

}
, where

x is a standard normal variable. Then

Theorem 2 (Bardet and Surgailis [43], 1.ii)
Assume (31), (32). Let fNi ∈ L2

0(x) (N ≥ 1, 1 ≤ i ≤ N)
be a sequence of functions all having Hermite rank m
at least one. Assume that there exist a L2

0(x)-valued
continuous function ϕτ , τ ∈ [0, 1], such that

sup
τ∈(0,1]

E[fN[τN ](x)− ϕτ (x)]
2 −→

N→∞
0 . (33)

Moreover, let

(σN )2 = E

[
1√
N

N∑
i=1

fNi (xNi )

]2
−→
N→∞

σ2 , (34)

where σ2 > 0. Then

1√
N

N∑
i=1

fNi (xNi )
d−→

N→∞
N (0, σ2) , (35)

where
d−→

N→∞
denotes convergence in distribution.

The hypotheses of this theorem should be taken as condi-
tions on the activation function σ, on the rescaled input
covariance matrix Cµν and on the dominant configura-
tions s̄ in the Fourier integral (10) in order to justify our
Gaussian ansatz (see below, Eq. (42)).

C. Sketch of the calculation of the effective action
in the Bayesian setup for one-hidden layer

fully-connected neural networks

We now discuss the salient aspects of the calculation.
The starting point is the following partition function:

Z =

∫ N1∏
i1

dvi1

N1,N0∏
i1,i0

dwi1i0 exp

{
−λ1

2

N1∑
i1

v2i1 −
λ0
2
∥w∥2

− β

2

P∑
µ

[
yµ − 1√

N1

N1∑
i1

vi1σ

(
N0∑
i0

wi1,i0x
µ
i0√

N0

)]2}
.

(36)

where w = W (1) and we took b(1) = 0 without loss gen-
erality 1. The first step is to decouple the weights of the
different layers in the loss function. This can be done
including standard identities built over two families of
Dirac deltas, one for the pre-activations of the hidden
layer and one for the output of the network:

1 =

∫ P∏
µ

dsµδ

[
sµ − 1√

N1

N1∑
i

vi1σ(h
µ
i1
)

]
, (37)

1 =

∫ P∏
µ

N1∏
i1

dhµi1δ

(
hµi1 −

1√
N0

N0∑
i0

wi1i0x
µ
i0

)
. (38)

By using a standard Fourier representation of these
deltas, which introduces the conjugate variables h̄µi1 and
s̄µ, we can perform the gaussian integrals on the internal
and external weights:

Z =

∫ P∏
µ

dsµ ds̄µ

2π
e−

β
2

∑
µ(y

µ−sµ)2+i
∑P

µ sµs̄µ

×

{∫ P∏
µ

dhµ dh̄µ

2π
ei

∑P
µ hµh̄µ− 1

2λ1N1
[
∑P

µ s̄µσ(hµ)]
2

× e−
1

2λ0N0

∑N0
i0
(
∑P

µ h̄µxµ
i0
)
2

}N1

,

(39)

where we used the fact that the integrals on hµi1 and h̄µi1
can be factorized on the index i1. The integral over the
h̄µ is Gaussian and can be solved:∫ P∏

µ

dh̄µ

2π
ei

∑P
µ hµh̄µ− 1

2λ0N0

∑N0
i0
(
∑P

µ h̄µxµ
i0
)
2

= P1({hµ}) ,

(40)
where

P1({hµ}) =
e−

1
2

∑P
µ,ν hµC−1

µ,νh
µ√

(2π)P detC
, Cµν =

1

λ0N0

N0∑
i0

xµi0x
ν
i0 .

(41)
This last step requires the covariance matrix C to be
invertible. Note that this is false as soon as P > N0, but
adding a small diagonal term to C solves the issue. One
can explicitly check that the final result does not depend
on this extra regularization.
To deal with the integral over hµ we can include

a further Dirac delta identity for the random variable
q = 1/

√
λ1N1

∑
µ s̄

µσ (hµ). This leaves us with the prob-

lem of finding the probability density P (q). In the limit
defined in (1), this is exactly the same setting of the

1 One can map a system with non-zero biases in a zero-bias one
increasing by one the dimensions of the input and of the activa-
tions at each layer. The original biases are then trivially mapped
in the extra weights of the augmented system.
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Breuer-Major theorems [43–45]. As such, it is sufficient
that both the (regularized) covariance C and the acti-
vation function σ satisfy the hypotheses of the theorem
to guarantee that the probability distribution P (q) con-
verges in distribution to a Gaussian:

P (q) =

∫
dPhP1({hµ})δ

[
q − 1√

λ1N1

∑
µ

s̄µσ (hµ)

]
,

P (q) → Nq(0, Q) .

(42)

with variance

Q(s̄, C) =
1

λ1N1

P∑
µ,ν

s̄µ
[∫

dPhP1({hρ})σ(hµ)σ(hν)
]
s̄ν

=
1

λ1N1

P∑
µ,ν

s̄µKµν(C)s̄
ν .

(43)
One can show that there exist special configurations

s̄ in the domain of integration for which we are not al-
lowed to invoke a Gaussian equivalence (see for instance
our discussion at the end of Sec. II in the supplemental
material [57]). In our derivation, we are assuming that
the contribution of these special configurations to the ef-
fective action is negligible in the thermodynamic limit.
Here we have also assumed that the variable q has zero
mean, a condition verified as long as∫

dPhP1({hµ})σ(hν) = 0 , (44)

that is whenever σ is zero-mean; for a more gen-
eral derivation, relevant for finite-mean activation func-
tions such as ReLU, see the supplemental material [57],
Sec. IV.

Each element of the kernel matrixKµν(C) can be easily
reduced from a P -dimensional integral to a simpler two-
dimensional one:

Kµν(C) =

∫
dt1 dt2√
(2π)2 det C̃

e−
1
2 t

T C̃−1tσ(t1)σ(t2) , (45)

where t = (t1, t2)
T and

C̃ =

(
Cµµ Cµν

Cµν Cνν

)
. (46)

is the reduced 2× 2 input covariance matrix. It is worth
pointing out that the kernel we find here is the so-called
neural network Gaussian process (NNGP) kernel. It dif-
fers from the neural tangent kernel (NTK) that is found
in the infinite-width limit of networks trained under gra-
dient descent [73]. The fact that the infinite-width limit
of a Bayesian neural network differs from the one ob-
tained from gradient descent is indeed known and dis-
cussed in literature [20].

Now we can integrate over the variable q and obtain:

∫ dq e−
q2

2 − q2

2Q(s̄,C)√
2πQ(s̄, C)


N1
2

= [Q(s̄, C) + 1]
−N1

2 . (47)

In the general case of finite α1 = P/N1, we are only
left with the integrals in sµ and s̄µ. To solve them it is
convenient to introduce one final Dirac delta identity:

1 =

∫
dQ δ

[
Q− 1

λ1N1

∑
µ,ν

s̄µK(C)µν s̄
ν

]
, (48)

where Q ≥ −1 is now an integration variable and not a
function of s̄, so that we have removed the explicit depen-
dence on

√
Q(s̄, C) + 1 in the partition function. Finally,

the integrals in sµ and s̄µ are Gaussian once another inte-
gral representation of the delta via a conjugate variable
Q̄ is inserted. This allows us to get the final effective
action obtained in equation (7).

D. Exact solution of the saddle-point equations in
the zero temperature limit

The saddle-point equations obtained from (7) consid-
erably simplify in the zero temperature limit (β → ∞).
In particular, using the fact that the kernel K has only
positive eigenvalues (in the asymptotic regime α1, α0 fi-
nite), we get:

Q̄ =
1

1 +Q
, Q = +

α1

Q̄
− α1

Q̄2

1

P
yT
(
K

λ1

)−1

y . (49)

Given the condition Q ≥ −1, the unique exact solution
for Q̄ is positive and reads:

Q̄∗ =

√
(α1 − 1)2 + 4α1

1
P y

T
(

K
λ1

)−1

y − (α1 − 1)

2
.

(50)

E. Predictors statistics

The main observable we are interested in is the general-
isation error (5). We can proceed along the same lines of
the calculation performed in Sec. III C introducing, other
than the variables sµ, hµi defined by (37), (38), additional
variables s0, h0i that describe output and pre-activations
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of the new test example. We thus get:

⟨ϵg(x0, y0)⟩ = 1

Z

∫
ds0 ds̄0

2π

∫ P∏
µ=1

dsµ ds̄µ

2π
(y0 − s0)2

× e−
β
2

∑P
µ=1(y

µ−sµ)2+i
∑P

µ=1 sµs̄µ+is0s̄0

×

[
1 +

1

λ1N1

(
P∑

µ,ν=1

s̄µKµν s̄
ν

+ 2s̄0
P∑

µ=1

s̄µκµ(x
0) + (s̄0)2κ0(x

0)

)]−N1
2

,

(51)

where κµ and κ0 are respectively the train-test and the
test-test kernel integrals defined as in (43) when the co-
variance matrix involves the test input, namely:

κµ =

∫
dt1dt2√

(2π)2 det C̃µ

e−
1
2 t

T C̃−1
µ tσ(t1)σ(t2) , (52)

κ0 =

∫
dt√
2πC00

e−
t2

2C00 σ(t)2 , (53)

where

C̃µ =

(
Cµµ Cµ0

Cµ0 C00

)
, Cµ0 =

1

λ0N0

N0∑
i0

xµi0x
0
i0 ,

C00 =
1

λ0N0

N0∑
i0

(x0i0)
2 .

(54)

Now we can introduce the order parameters Q and Q̄
via equation (48) and their Fourier representation and
perform the integration over all the sµ, s̄µ and over the
s̄0. Doing so yields a single integral in s0 and integrals
on Q and Q̄.

⟨ϵg(x0, y0)⟩ = 1

Z

∫
dQdQ̄

2π
e−

N1
2 S(Q,Q̄)

×
∫

ds0(y0 − s0)2√
2πσ2

e
− (s0+Γ1)2

2σ2
1 ,

(55)

with

Γ1 =
Q̄

λ1

∑
µν

κµ(x
0)

(
1
β
+
Q̄

λ1
K

)−1

µν

yν ,

σ2
1 =

Q̄

λ1

[
κ0(x

0) (56)

− Q̄

λ1

∑
µν

κµ(x
0)

(
1
β
+
Q̄

λ1
K

)−1

µν

κν(x
0)

]
We can then unfold the easy integrals in s0 and evalu-
ate the result on the saddle point solution. The gener-
alisation error is expressed in terms of Γ1 and σ2

1 as in
equation (8). Taking the β → ∞ limit in equations (56)
yields the expressions in (8).

F. Constraints on the scaling of the size of the
dataset P with the input dimension N0

In this section we address the additional constraints to
the thermodynamic scaling (P,N1 → ∞ with α1 = P/N1

finite) that may come from the hypotheses of the Breuer-
Major on the covariance matrix C. The only stringent
condition to verify is equation (30), that is

P∑
µ=1

|Cµν |R < B0 ∀ ν = 1, . . . , P , (57)

where B0 is a given finite constant and R the Hermite
rank of the activation function σ. In the case of inputs
x with i.i.d. standard Gaussian coordinates, Cµν is a
Wishart random matrix with off-diagonal entries of or-
der 1/

√
N0 and random signs: after taking the absolute

value, the sum in Eq (57) is of order P (N0)
−R/2. Note

that this provides an infinite class of activation functions
(those with Hermite rank R ≥ 2) where we can safely
work at least at finite α0 = P/N0. For activation func-
tions with Hermite rank R = 1 (such as Erf or ReLU)
we cannot provide such a guarantee by only looking at
the hypothesis of the Breuer-Major theorem. It is also
worth stressing that, given any odd (non-odd) activation
function σ(x) with Hermite rank R = 1, it is easy to en-
gineer a new reasonable activation function with Hermite
rank R = 3 (R = 2), just by replacing the old activation
function with a new one σ1(x) = σ(x) − g1x, where the
coefficient g1 = ⟨σ(x)He1(x)⟩ and the average is over a
normal distribution of zero mean and unit variance.
We observe that there is at least one case of activation

function with R = 1 where the derivation goes through at
finite α0, i.e. the linear function σ(x) = x (in this case we
can obtain the result at finite P,N1, N0, as done also in
Ref. [58]). In the supplemental material [57], Sec. II, we
examine the specific case of quadratic activation σ(x) =
x+x2 (that has R = 1), deriving the final effective action
without employing the BM theorem. As in the linear
case, this derivation goes through at finite α0. We are
thus led to think that the scaling P = O(

√
N0) suggested

for R = 1 is overly-pessimistic.

G. Generalisation to deep neural networks with a
finite number of hidden layers L > 1 and zero-mean

activation

In the same spirit of the 1HL calculation, we introduce
L sets of auxiliary variables hµiℓ (where iℓ = 1, . . . , Nℓ)
that are equal to the pre-activations at each layer. The
strategy to perform the calculation is to show that the
probability distribution of the preactivations at each
layer Pℓ({hµiℓ}) can be computed recursively, starting
from the input layer. We notice that this is conceptu-
ally different from the backpropagating kernel renormal-
isation group introduced in Ref. [5]. It is still a ker-
nel renormalisation group, but forward-propagating, and
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represents a generalisation to NNTPs of the kernel recur-
rence arising in NNGPs [15]. In practice, our approach
amounts to a systematic, layer-by-layer description of the
pre-activation statistics by the Student’s t distribution
that we have shown to appear in the 1HL case. This can
be seen as a quantitative correction to the standard Gaus-
sian statistics that is recovered in the infinite width limit.
At the moment we are not able to re-derive the same re-
sult using the backpropagating method introduced in [5].

Let us start by integrating the weights of the first
layer. This defines a probability distribution over the
pre-activations of the first layer via:

P1({hµi1}) =
∫

DW (1)
∏
i1,µ

δ

(
hµi1 −

1√
N0

N0∑
i0=1

W
(1)
i1i0

xµi0

)

=

N1∏
i1=1

e−
1
2

∑
µν hµ

i1
C−1

µν hν
i1√

(2π)P detC
.

(58)
where C is defined in (41). This result is straightforward
and it is valid for any N0, P and N1, since the prior for
the weights is gaussian. At the second layer we have:

P2({hµi2}) =
∫

DW (2)Dh1P1({hµi1})

×
∏
i2,µ

δ

(
hµi2 −

1√
N1

N1∑
i1=1

W
(2)
i2i1

σ(hµi1)

)
(59)

We now introduce conjugate variables h̄µi2 to the acti-
vation of the second layer and the calculation proceeds
as in the case of 1HL architectures. To make analyti-
cal progress we need to make two fundamental approx-
imations: (i) assuming that the set of random variables
qi2 = 1/(

√
N1λ1)

∑
µ h̄

µ
i2
σ(hµ), where h ∼ N (0, C),

is Gaussian-distributed; (ii) neglecting correlations be-
tween different pre-activations of the second hidden layer.
In conclusion we get:

P2({hµi2}) =
∫

dQ1 dQ̄1e
−N1

2 (−Q1Q̄1+log(1+Q1))

×
N2∏
i2=1

e
− 1

2

∑
µν hµ

i2
(Q̄1K(C)/λ1)

−1

µν
hν
i2√

(2π)P det(Q̄1K(C)/λ1)
, (60)

where K(C) is defined by equation (43). Notice that
except for the integration over the two variables Q1 and
Q̄1, this is the same as the probability distribution of the
1HL system (41) if we replace C with Q̄1K(C)/λ1. This
reasoning can be easily iterated across layers and gives:

PL({hµiL}) =
∫ L−1∏

ℓ=1

dQℓ dQ̄ℓe
−

∑L−1
ℓ=1

Nℓ
2 [−QℓQ̄ℓ+log(1+Qℓ)]

×
NL∏
iL=1

e
− 1

2

∑
µν hµ

iL

(
K

(R)
L−1({Q̄ℓ})

)−1

µν
hν
iL√

(2π)P det(K
(R)
L−1({Q̄ℓ}))

, (61)

where K
(R)
ℓ ({Q̄ℓ}) is a renormalised kernel that satisfies

the recurrence relation in equation (15).
The computation of the generalisation error over a new

example (x0, y0) gives:

⟨ϵg(x0, y0)⟩ = (y0 − ΓL)
2 + σ2

L (62)

where ΓL and σ2
L are defined respectively in Eqs. (17)

and (18). Note that κ
(R)
Lµ , κ

(R)
L0 are recursive kernels that

generalise the train-test and test-test kernels (52)-(53).
They are defined starting from equation (15) where the
kernel K is now evaluated with the covariance matrix
C involving train-test or test-test points. Note that L-
hidden layers generalisation error is found replacing the
1HL kernel with its recursive generalisation (15).

H. Numerical experiments

1. Network architectures

We perform numerical experiments with deep fully-
connected architectures trained on two regression tasks in
computer vision. In particular we use the 0 and 1 classes
of the MNIST and CIFAR10 datasets, which for the latter
correspond to the labels “cars” and “planes”. Examples
from CIFAR10 are coarse grained to N0 = 28× 28 pixels
and converted to grayscale.
To test our theory in the zero-mean activation func-

tion case, we used the Erf function, for which the NNGP
kernel can be computed analytically [74]:

KErf
µν (C) =

2

π
arcsin

(
2Cµν√

(1 + 2Cµµ) (1 + 2Cνν)

)
. (63)

In Fig. 2 we train networks with σ = ReLU. The kernel
can be computed analytically also in this case [66] and
reads:

KReLU
µν (C) =

√
CµµCνν κ

(
Cµν√
CµµCνν

)
, (64)

κ(x) =
1

2π

[
x(π − arccos(x)) +

√
1− x2

]
.

2. Sampling from the Bayesian posterior

To ensure convergence of the posterior weights distri-
bution to the Gibbs ensemble, we train our networks us-
ing a discretised Langevin dynamics, similarly to what
is done in [3, 5]. At each training step t the parameters
θ = {W ℓ, v} are updated according to:

θ(t+ 1) = θ(t)− η∇θL(θ(t)) +
√
2Tηϵ(t) (65)

where T = 1/β is the temperature, η is the learning
rate, ϵ(t) is a white Gaussian noise vector with entries
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drawn from a standard normal distribution, and the loss
is the one defined in equation (3). We employ T = η =
10−3 throughout all the experiments. This is sufficient
to approximate the T = 0 dynamics in the regime we
are considering. This dynamics requires 105/106 steps
to reach thermalisation, depending on the sizes of the
dataset and network. We extract the generalisation loss
within a single run: after the train error has reached its
minimum and the test loss is thermalised, we average test
loss values every 103/104 epochs (depending again on the
magnitude of P , Nℓ). For the sake of completeness, we
report the best test accuracy achieved on both datasets
by 1HL architectures: 0.86 on CIFAR10 with P = 3000
and λ1 = 1000, 0.999 on MNIST with the same Gaussian
prior and P = 1000. The train accuracy is always 1.
Additional comments on the technical issues encountered
in simulating the Bayesian dynamics are discussed in the
Supplemental material [57] in Sec. V.

DATA AVAILABILITY

The CIFAR10 and MNIST datasets that we used for
all our experiments are publicly available online, respec-
tively at https://www.cs.toronto.edu/~kriz/cifar.
html and http://yann.lecun.com/exdb/mnist/.

CODE AVAILABILITY

The code used to perform experiments, com-
pute theory predictions and analyze data is avail-
able at: https://github.com/rpacelli/FC_deep_
bayesian_networks [75].

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn-
ing (MIT Press, 2016).

[2] A. Engel and C. Van den Broeck, Statistical Mechanics
of Learning (Cambridge University Press, 2001).

[3] I. Seroussi, G. Naveh, and Z. Ringel, Separation of scales
and a thermodynamic description of feature learning in
some cnns, Nature Communications 14, 908 (2023).

[4] A. J. Wakhloo, T. J. Sussman, and S. Chung, Linear clas-
sification of neural manifolds with correlated variability,
Phys. Rev. Lett. 131, 027301 (2023).

[5] Q. Li and H. Sompolinsky, Statistical mechanics of deep
linear neural networks: The backpropagating kernel
renormalization, Phys. Rev. X 11, 031059 (2021).

[6] C. Baldassi, C. Lauditi, E. M. Malatesta, R. Pacelli,
G. Perugini, and R. Zecchina, Learning through atypical
phase transitions in overparameterized neural networks,
Phys. Rev. E 106, 014116 (2022).

[7] A. Canatar, B. Bordelon, and C. Pehlevan, Spectral bias
and task-model alignment explain generalization in ker-
nel regression and infinitely wide neural networks, Nature
communications 12, 1 (2021).

[8] A. Mozeika, B. Li, and D. Saad, Space of functions com-
puted by deep-layered machines, Phys. Rev. Lett. 125,
168301 (2020).
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E. Fox, and R. Garnett (Curran Associates, Inc., 2019).

[20] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak,
J. Sohl-Dickstein, and J. Pennington, Wide neural net-
works of any depth evolve as linear models under gradient
descent, in Advances in Neural Information Processing
Systems, Vol. 32, edited by H. Wallach, H. Larochelle,
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Supplemental material

I. DERIVATION OF AN EFFECTIVE ACTION FOR 1HL NEURAL NETWORKS WITH MULTIPLE
OUTPUTS

In this section, we sketch the calculation to derive an effective action for 1HL neural networks with multiple outputs
κ > 1. We stress that κ is finite and the case where the number of outputs scales with the width of the hidden layer
N1 has been the subject of investigations in [63–65]. We consider the following loss function:

L =
1

2κ

P∑
µ=1

κ∑
a=1

[yµa − (fDNN(x
µ))a]

2
+ Lreg , (66)

Lreg =
λ1
2β

∥v∥2+λ0
2β

∥W∥2 . (67)

The partition function is defined as:

Z =

∫ κ,N1∏
a,i1

dva,i1

N1,N0∏
i1,i0

dwi1i0 exp

{
−λ1

2
∥v∥2−λ0

2
∥w∥2 − β

2κ

P∑
µ

κ∑
a

[
yµa − 1√

N1

N1∑
i1

va,i1σ

(
N0∑
i0

wi1,i0x
µ
i0√

N0

)]2}
. (68)

We can decouple the layers in the loss through the addition of Dirac deltas, noticing that there will be one additional
index a for the outputs.

Z =

∫ P,κ∏
µ,a

dsµa ds̄
µ
a

(2π)
exp

{
− β

2κ

P,κ∑
µ,a

(yµa − sµa)
2
+ i

P,κ∑
µ,a

sµa s̄
µ
a

}∫ P,N1∏
µ,i1

dhµi1 dh̄
µ
i1

(2π)
exp

i
P,N1∑
µ,i1

hµii h̄
µ
i1


∫ κ,N1∏

a,i1

dva,i1 exp

{
−λ1

2
∥v∥2 − i

∑
a,µ

s̄µa
∑
i1

va,i1h
µ
i1√

N1

}∫ N1,N0∏
i1,i0

dwi1,i0 exp

−λ0
2
∥w∥2 − i

∑
i1,µ

h̄µi1

∑
i0

wi1,i0x
µ
i0√

N1

 .

(69)

The integrals over the weights wi1,i0 and va,i1 are Gaussian and can be performed. As in the single-output case we
can factorize the integrals in hµi1 and h̄µi1 over the index i1:

Z =

∫ ∏
µ,a

dsµa ds̄
µ
a

2π
e−

β
2κ

∑
µ,a(y

µ
a−sµa)

2+i
∑

µ,a sµa s̄
µ
a

{∫ P∏
µ

dhµ dh̄µ

2π
ei

∑P
µ hµh̄µ− 1

2λ1N1

∑κ
a(

∑
µ s̄µaσ(h

µ))
2− 1

2λ0N0

∑N0
i0
(
∑P

µ h̄µxµ
i0
)
2

}N1

.

(70)

Once the integrals over the variables h̄µ are performed we obtain that the hµ are Gaussian-distributed with zero mean
and covariance matrix C, in analogy with the single-output case. The critical step is to consider the joint probability
distribution of the following random variables:

qa =
1√
λ1N1

P∑
µ

s̄µaσ(h
µ). (71)

As in the single-output case, in the asymptotic proportional limit P/N1 ∼ O(1) we can conjecture a Gaussian
equivalence, based on the reasonable assumption that the BM theorem can be generalised to the multivariate case.
We therefore have that P ({qa}) → N (0, Q) where now Q is the covariance matrix given by:

Q(s̄, C)a,b =
1

λ1N1

P∑
µ,ν

s̄µa

[∫
dPhP1({hρ})σ(hµ)σ(hν)

]
s̄νb =

1

λ1N1

P∑
µ,ν

s̄µaKµν(C)s̄
ν
b (72)
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and K/λ1 is the NNGP kernel, as in the single-output case. We now integrate over the set of variables {qa}:∫ κ∏
a

dqa
1√

det(Q)
e−

1
2

∑κ
a(qa)

2− 1
2

∑κ
a,b qaQ

−1
a,bqb = det (1κ +Q)

− 1
2 . (73)

Differently from the single-output case, we need to introduce a κ× κ matrix order parameter Qa,b as:

1 =

∫ ∏
a,b

dQa,b δ

[
Qa,b −

1

λ1N1

P∑
µ,ν

s̄µaKµν(C)s̄
ν
b

]
(74)

and its dual Q̄a,b via the Fourier representation of the deltas:

Z =

∫
dQQ̄ det [1κ +Q]

−N1
2 ei

∑
a,b Qa,bQ̄a,b

∫ ∏
a,µ

ds̄µa exp

 i

λ1N1

∑
a,b

Q̄a,b

∑
µ,ν

s̄µaKµν s̄
ν
b

∫ ∏
a,µ

dsµae
− β

2κ

∑
a,µ(y

µ
a−sµa)

2+i
∑

a,µ sa,µs̄a,µ .

(75)

In conclusion, the integrals in s and s̄ can be solved and we land with the following effective action S:

S(Q, Q̄) =− Tr[QQ̄⊤] + Tr log(1κ +Q) +
α1

P
Tr log

β

κ

[
κ

β
1κ ⊗ 1P +

Q̄⊗K

λ1

]
+
α1

P
y⊤
[
κ

β
1κ ⊗ 1P +

Q̄⊗K

λ1

]−1

y.

(76)

II. 1HL EFFECTIVE ACTION AND SINGLE OUTPUT: SPECIAL CASES

In this section we report cases of activation functions for which we are able to evaluate analytically the probability
distribution of the variable q, defined in the main text as

q =
1√
λN1

P∑
µ=1

s̄µσ(hµ) , (77)

at fixed instance of the vector s̄, clarifying the conditions to impose on the data for q to be Gaussian. Its characteristic
function is defined as

ψ(t) = Eq {exp(iqt)} = Eh

{
exp

[
it√
λN1

∑
µ

s̄µσ(hµ)

]}
. (78)

If q is Gaussian, then ψ = ϕ, where

ϕ(t) = exp

(
− t

2Q

2

)
= exp

(
− t2

2λN1

∑
µ,ν

s̄µKµν s̄
ν

)
(79)

is the characteristic function of a Gaussian variable with variance given by

Q =
1

λN1

∑
µ,ν

s̄µKµν s̄
ν , Kµν = Eh[σ(h

µ)σ(hν)] . (80)

A. Linear activation function: q is Gaussian at finite P , N0, N1

The case of σ = id has been already worked out in the literature, see [5, 58]. We report it here for reference, and to
stress that our theory reduces to known cases as it should. Indeed, when the activation function is linear the average
over h in Eq. (78) can be computed exactly at finite P , N1, and gives

ψlin(t) = exp

(
− t2

2λN1

∑
µ,ν

s̄µCµν s̄
ν

)
. (81)
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Note that C is the value of the kernel for σ = id. This is strictly true as long as C has no zero eigenvalue, so at
least for N0 > P ; however, a small regularization proportional to the identity matrix can be added to C to avoid this
problem.

This result is simply due to the fact that the sum of jointly Gaussian variables is Gaussian, which is true for generic
Gram matrices C and any value of P , N1, even far from the asymptotic limit P ∼ N1 large. In order to evaluate the
remaining integrals over the order parameters at the saddle-point of the effective action, this limit is still required,
as performed indeed in [5], to which our theory reduces; otherwise, for P , N1 finite one can express the partition
function exactly in terms of Meijer G-functions, see [58].

B. Quadratic activation function

Let us take now Cµµ = 1 (normalized data) and quadratic (zero-mean) activation function:

σ(x) = x+ a(x2 − 1) . (82)

The kernel is given by

Kµν = Eh[σ(h
µ)σ(hν)] = Cµν + 2a2(Cµν)

2 . (83)

Also in this case the characteristic function in (78) can be evaluated exactly:

ψquad(t) =

exp

{
− t2

2λN1
s̄⊤C

[
1P − 2iat√

λN1
diag(s̄)C

]−1

s̄

}
det[(1P − 2iat√

λN1
diag(s̄)C)]1/2

exp

(
− iat√

λN1

∑
µ

s̄µ

)
. (84)

We can express the non-trivial matrices appearing in this expression as Neumann series:[
1P − 2iat√

λN1

diag(s̄)C

]−1

=

+∞∑
n=0

(
2iat√
λN1

)n

[diag(s̄)C]n , (85)

−1

2
Tr log

[
1P − 2iat√

λN1

diag(s̄)C

]
= −

+∞∑
n=1

1

n

(
2ia√
λN1

)n

Tr{[diag(s̄)C]n} . (86)

To prove Gaussianity, we need to require the following asymptotic behaviors:

1

N
1+n/2
1

s̄⊤C[diag(s̄)C]ns̄ = O(P/N
1+n/2
1 ) , (87)

1

N
n/2
1

Tr{[diag(s̄)C]n} = O(P/N
n/2
1 ) , (88)

so that in the regime where α1 = P/N1 is finite only the n = 0 term counts for (85) and the n = 1, 2 terms for (86).
Using

−1

2
Tr log

[
1P − 2iat√

λN1

diag(s̄)C

]
≈ iat√

λN1

∑
µ

s̄µ − a2t2

λN1

∑
µ,ν

s̄µ(Cµν)
2s̄ν , (89)

we get

ψquad(t) ∼ exp

[
− t2

2λN1

∑
µ,ν

s̄µKµν s̄
ν

]
. (90)

The conditions (87), (88) should be interpreted as hypothesis on the Gram matrix of the data C and on the
realization of the vector s̄ in order for the property of Gaussianity to hold. Let us see the simplest case of i.i.d.
standard normal input data and s̄⊤ = (1, · · · , 1). Then, C is a Wishart matrix with a finite spectrum in the regime
P ∼ N0 [76], and

1

P
Tr(Cn) = O(1) ,

1

P

∑
µ,ν

(Cn)µν = O(1) . (91)
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The first behaviour follows from the fact that the eigenvalues are O(1), while the second can be proven using

C = O(1)1P +O(1/
√
N0)H , (92)

where H is a symmetric random matrix with elements ±1, or, more formally, exploiting the fact that the eigenvectors
of a Wishart matrix are random and uniformly distributed on the sphere [77], so that

1

P

∑
µ,ν

(Cn)µν =
1

P

∑
ρ

λnρ
∑
µ

Uµρ

∑
ν

U−1
ρν = O(1) , (93)

where λρ is the ρ-th eigenvalue of C and U the matrix whose ρ-th column is the corresponding eigenvector. Given
that, properties (87), (88) follow and q is Gaussian.

In principle, Gaussianity can be also proven via diagrammatic techniques. Take for example the quartic moment
of the variable q in (77). One can see, via Wick’s theorem, that

Eh[σ(h
µ1)σ(hµ2)σ(hµ3)σ(hµ4)]− (Kµ1µ2Kµ3µ4 +Kµ1µ3Kµ2µ4 +Kµ1µ4Kµ2µ3) =

16a4(Cµ1µ2Cµ1µ3Cµ2µ4Cµ3µ4 + Cµ1µ2Cµ1µ4Cµ2µ3Cµ3µ4 + Cµ1µ3Cµ1µ4Cµ2µ3Cµ2µ4)

+ 4a2(Cµ1µ2Cµ1µ3Cµ2µ4 + Cµ1µ2Cµ1µ3Cµ3µ4 + Cµ1µ2Cµ1µ4Cµ2µ3+

Cµ1µ2
Cµ1µ4

Cµ3µ4
+ Cµ1µ2

Cµ2µ3
Cµ3µ4

+ Cµ1µ2
Cµ2µ4

Cµ3µ4
+

Cµ1µ3
Cµ1µ4

Cµ2µ3
+ Cµ1µ3

Cµ1µ4
Cµ2µ4

+ Cµ1µ3
Cµ2µ3

Cµ2µ4
+

Cµ1µ3
Cµ2µ4

Cµ3µ4
+ Cµ1µ4

Cµ2µ3
Cµ2µ4

+ Cµ1µ4
Cµ2µ3

Cµ3µ4
) ,

(94)

while the quartic term from (79) involves only the diagrams

Kµ1µ2
Kµ3µ4

+Kµ1µ3
Kµ2µ4

+Kµ1µ4
Kµ2µ3

=

4a4(C2
µ1µ2

C2
µ3µ4

+ C2
µ1µ3

C2
µ2µ4

+ C2
µ1µ4

C2
µ2µ3

)

+ 2a2(C2
µ1µ2

Cµ3µ4
+ Cµ1µ2

C2
µ3µ4

+ C2
µ1µ3

Cµ2µ4
+ Cµ1µ3

C2
µ2µ4

+ C2
µ1µ4

Cµ2µ3
+ Cµ1µ4

C2
µ2µ3

)

+ Cµ1µ2
Cµ3µ4

+ Cµ1µ3
Cµ2µ4

+ Cµ1µ4
Cµ2µ3

.

(95)

This is not surprising: the variables σ(hµ) are not Gaussian due to the non-linearity. However, when summed over all
the indices, the diagrams in Eq. (94) are of the form TrC4 or

∑
µ,ν(C

3)µν , both O(P ) under the hypothesis stated

above, while the diagrams in (95) are of the form (
∑

µ,ν(C
2)µν)

2, (
∑

µ,ν Cµν)
2 or (

∑
µ,ν(C

2)µν)(
∑

µ,ν Cµν), which

are all O(P 2) and leading over the first ones.
As long as s̄µ ∼ O(1) for all µ, we do not expect the previous derivation to change. On the other hand, we point

out that there exist special configurations s̄, such as s̄⊤ = (1, 0, · · · , 0), for which this reasoning breaks down. As
such, we are assuming that the contribution of these special configurations to the effective action is negligible in the
thermodynamic limit.

III. GENERALISATION TO DEEP NEURAL NETWORKS WITH L HIDDEN LAYERS: DERIVATION
OF THE SADDLE-POINT EQUATIONS IN SPECIAL CASES

In the next sections we consider two cases where simplifications arise. These special cases correspond to kernels K
such that K(αC) = αsK(C), where α is any positive scalar and s ≥ 0 is an integer. It turns out that s = 0 is realized
by the sign activation function, whereas s = 1 holds for piece-wise linear activations such as ReLU or Leaky-ReLU.

A. Saddle-point equations for scale independent kernels of the form K(αC) = K(C) (α > 0)

In the case of sign activation function, it is straightforward to show that the behavior under scalar multiplication

of the kernel K
(R)
L (C) follows from the property sign(αx) = sign(x). It turns out that in this special case the effective

action for deep learning considerably simplifies, since the non-linear dependence of K
(R)
L on the variables {Q̄ℓ}ℓ ̸=L

disappears. This allows to solve the saddle-point equations exactly. In particular:

Q∗
ℓ = 0 , Q̄∗

ℓ = 1 ∀ ℓ = 1, . . . , L− 1 , (96)
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whereas the functional form of the solution for Q̄L is the same as in the one-hidden layer case (in the zero temperature
limit):

Q̄∗
L =

√
(αL − 1)2 + 4αL

1
P y

TK−1
L y − (αL − 1)

2
. (97)

In practice, such a solution shows that deep architectures with sign activation (that are problematic to employ in
practice since it is challenging to backpropagate derivatives) essentially behave as one hidden layer neural networks
in the proportional limit and the only marker of the depth L is retained in the infinite-width kernel KL.

B. Saddle-point equations for piecewise linear kernels of the form K(αC) = αK(C)

The linear behavior of the kernel under scalar multiplication follows for ReLU and leaky ReLU activation function
from the property ReLU(αx) = αReLU(x). It turns out that in this case the effective action reads:

SDNN({Qℓ, Q̄ℓ}) =
L∑

ℓ=1

αL

αℓ

[
−QℓQ̄ℓ + log(1 +Qℓ)

]
+
αL

P
Tr log β

[
1
β
+

(
L∏

ℓ=1

Q̄ℓ

)
KL(C)

]

+
αL

P
yT

[
1
β
+

(
L∏

ℓ=1

Q̄ℓ

)
KL(C)

]−1

y . (98)

Exactly as for the one hidden layer case, the saddle-point equations simplify in the zero temperature limit and
under the assumption that the L-hidden layers kernel KL has only positive eigenvalues:

QℓQ̄ℓ − αℓ +
αℓ(∏
ℓ1
Q̄ℓ1

) 1

P
yTK−1

L y = 0 (99)

for all ℓ = 1, . . . , L.
Notice that if αℓ = α for all ℓ = 1, . . . , L, it is easy to show that the only solution must satisfy Q∗

ℓ = Q∗ for all
ℓ and we recover the heuristic mean field theory proposed in Ref. [5]. The reason for this equivalence is obvious:
the authors of [5] found the heuristic mean field theory for ReLU activation by replacing the linear kernel with the
corresponding NNGP kernel, noticing that the ReLU kernel transforms as the linear one under multiplication by a
scalar. Our derivation shows that this replacement is not correct for general activation functions (see for instance the
case of sign activation previously discussed), but it is possible in this particular case.

For completeness, we also show how to re-derive the self-consistent equations found by Li and Sompolinsky [5] in
the linear case. The effective action for the linear case reads:

SDNN({Qℓ, Q̄ℓ}) =
L∑

ℓ=1

αL

αℓ

[
−QℓQ̄ℓ + log(1 +Qℓ)

]
+
αL

P
Tr log β

[
1
β
+

(
L∏

ℓ=1

Q̄ℓ

)
CL

]

+
αL

P
yT

[
1
β
+

(
L∏

ℓ=1

Q̄ℓ

)
CL

]−1

y , (100)

where CL = C/(
∏L

ℓ=1 λℓ) and Cµν = xµ · xν/(λ0N0). Let us consider the case of isotropic aspect ratios αℓ = α,
∀ℓ = 1, . . . , L and same Gaussian priors at each layer λℓ = λ, ∀ℓ = 0, . . . , L. The saddle-point equations for Q̄ℓ read:

1− Q̄ℓ = α

(
1− λL(∏

ℓ1
Q̄ℓ1

) 1

P
yTC−1y

)
. (101)

It turns out that we recover the equation for the renormalization parameter u0 in [5] by noticing that the only solution
of this system of equations is of the form Q̄ℓ = Q̄∗ and by making the identification u0 = Q̄∗/λ.

IV. GENERALISING THE EFFECTIVE ACTION TO FINITE-MEAN ACTIVATION FUNCTIONS

In this section we show how the theory can be generalized in the case of finite-mean activation functions. In fact, up
to this point, our derivation assumed that the integral of the activation function over a centered Gaussian is zero, i.e.
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the activation function is zero-mean. The goal of this section is to show that removing such hypothesis modifies the
effective action in the asymptotic limit. Since ReLU activation belongs to this more general case, the findings of this
section imply that Li-Sompolinsky heuristic theory [5] should be modified as well. As for the rest of the manuscript,
we start by considering one hidden layer architectures and we later extend the result to L hidden layers.

The crucial difference wrt to the case studied in section IIA is that if the activation function is not zero-mean, also
the random variable

q =
1√
N1λ1

P∑
µ=1

s̄µσ(hµ) (102)

has now a finite mean. In particular:

⟨q⟩P (q) =
1√
N1λ1

P∑
µ=1

s̄µmµ , mµ =

∫
dt√
2πCµµ

e−t2/(2Cµµ)σ(t) . (103)

A straightforward calculation shows that the result for finite-mean activation is found by performing the replacement:

Q̄

λ1
K → K(R)(Q, Q̄) =

Q̄

λ1
K −

(
Q̄− 1

1+Q

)
λ1

K(1) , K(1)
µν = mµmν (104)

in the effective action in Eq. (7) of the main text. As such, the one-hidden layer action for finite-mean activation
functions reads:

S1HL = −QQ̄+ log(1 +Q) + +
α1

P
Tr log β

[
1
β
+K(R)(Q, Q̄)

]
+
α1

P
y⊤
[

1
β
+K(R)(Q, Q̄)

]−1

y (105)

It is worth noticing that while in the zero mean case there was a simple relations between Q and Q̄ at any temperature,
we now lose that property and the saddle-point equations are not exactly solvable anymore, not even in the zero
temperature limit. On the contrary, one can check that in the infinite-width limit we recover the previous result
Q̄ = 1, Q = 0 and the rank one matrix K(1) does not contribute to the generalization error, since it does always
appear in combination with the scalar Q̄− 1/(1 +Q) that vanishes in the infinite-width limit.

Let us move to the derivation of an effective action for L hidden layers. As for the derivation with zero-mean
activation function, the key step is to understand how the joint probability of the pre-activations at layer ℓ is linked
to the one at layer ℓ − 1. While in the zero-mean activation case, the key observation was that P2 is related to P1

by the replacement C → Q̄1K(C)/λ1 (see Eq. 60), here we find that the correct replacement is C → Q̄1K(C)/λ1 −
(Q̄1 − 1/(1 + Q1))K

(1)/λ1. Differently from the zero-mean activation case, where the kernel at layer L was only
depending on the variables {Q̄ℓ}, here we find that the recurrence is given in terms of the {Qℓ} as well. In conclusion,
this produces a more unpleasant action where all the {Qℓ, Q̄ℓ} are coupled via the nested non-linear expression of the
kernel. The explicit recurrence relation for finite-mean activation functions is given by:

K
(R)
ℓ =

Q̄ℓ

λℓ
K ◦

[
K

(R)
ℓ−1

]
−

(
Q̄ℓ − 1

1+Qℓ

)
λℓ

K(1) ◦
[
K

(R)
ℓ−1

]
, K

(R)
0 = C (106)

and the effective saddle-point action reads:

SDNN =

L∑
ℓ=1

αL

αℓ

[
−QℓQ̄ℓ + log(1 +Qℓ)

]
+
αL

P
Tr log β

(
1
β
+K

(R)
L ({Q̄ℓ, Qℓ})

)
+
αL

P
yT
(

1
β
+K

(R)
L ({Q̄ℓ, Qℓ})

)−1

y .

(107)

In view of the above considerations, it should be now clear that the heuristic Li-Sompolinsky theory (re-derived in
the previous section) amounts to disregard all the additional terms K(1) that arise from the approach presented in
this section.

V. NUMERICAL ISSUES IN SAMPLING FROM THE BAYESIAN POSTERIOR

Obtaining a perfect agreement between theory and simulations when sampling from a Bayesian posterior (especially
in the zero temperature limit) is prevented by a number of technical numerical issues presented in the following.
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1. Finite-size effects certainly play a role in explaining the small mismatch between theory and experiment. To
address this point, we are currently performing high-precision numerical simulations with fixed α = P/N1 and
increasing values of N1 and P .

2. The T → 0 limit, which corresponds to perfect interpolation of the dataset and is the only case in which the
saddle point equations can be solved analytically, was the most logic to address for starting, but turns out to
be very hard to simulate. This is clear from some preliminary work we are doing, where we numerically solve
the saddle point equations at generic T for the saddle point variables Q, Q̄ = f(Q). We find that the function
Q(T ) changes rapidly for small temperatures.

3. At T = 0.001, the autocorrelation time of the simulation is already very large, taking as little as 5 · 106 epochs
to thermalize. As the temperature is decreased, the autocorrelation time increases, and we need hundreds of
thousands of epochs to gain satisfactory statistics.

4. The effect of a finite learning rate η has to be taken into account as well. From our preliminary results, we
empirically observe that finite-η effects are larger at higher temperature. The standard way to take into account
finite-η effects is to perform the extrapolation to η → 0 simulating different learning rates.

5. Computing the theory in the case of L > 1 networks requires to numerically minimize a complex nested saddle-
point functional of the variables Q̄ℓ. We are currently working on a numerical routine to efficiently perform this
task.
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