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A B S T R A C T   

Substitution of the chlorido ligand of the cyclometalated complexes [Pt(5-R-dpyb)Cl] (R = methyl, 2-thienyl; 
dpyb = 1,3-di(2-pyridyl)benzene) by 1-phenyl-1H-tetrazole-5-thiolate leads to the related thiolato complexes 
[Pt(5-R-dpyb)(1-phenyl-1H-tetrazole-5-thiolate)], which have been fully characterised. Their photophysical 
properties were determined in degassed dichloromethane solution at room temperature. It turned out that the 
color of the phosphorescence can be tuned by the nature of the substituents on the benzene ring, with the 
introduction of a donor group such as 2‑thienyl allowing a large red-shift of the emission. Substitution of the 
chloride ligand with 1-phenyl-1H-tetrazole-5-thiolate has a negligible effect on the emission maxima and life-
times, since both parameters remain in a narrow range which is very close to the original value. However, the use 
of this thiolate as ancillary ligand can lead to very high quantum yields, approaching unity.   

1. Introduction 

In the last decade, there has been a growing interest in the study of 
cyclometalated platinum(II) complexes for a wide range of applications 
such as nonlinear optics [1–8], electroluminescent devices [9–21], 
bioimaging [22–26], photodynamic therapy [26–29], and sensing de-
vices [30–35]. The important spin–orbit coupling due to the platinum 
atom helps intersystem crossing, and consequently emission of light 
from triplet excited states, a performance that is further enhanced by the 
introduction of Pt–C bonds [36–38]. Besides, an interesting aspect of 
square planar platinum(II) complexes is that their emitted colour can be 
easily controlled by the concentration of the complex, as a consequence 
of the parallel emissions coming from the mono-molecular and bi- 
molecular excited states; as a matter of fact, the square planar geome-
try allows the creation of bi-molecular states, both in the excited states 
(excimers) and in the ground states (dimers) by means of Pt-Pt and/or 
ligand–ligand intermolecular interactions [18,39–41]. 

Chlorido Pt(II) complexes bearing a cyclometalated 1,3-di(2-pyridyl) 
benzene (dpyb) ligand turned out to be very bright emitters, with the 
monomer emission colour easily modulated by the choice of the sub-
stituents on the phenyl or pyridyl rings of the cyclometalated dpyb 
ligand [9]. For example, the introduction of electron-acceptor groups on 

the phenyl ring, where is mainly localized the highest occupied molec-
ular orbital (HOMO), lowers the HOMO energy and thus increases the 
HOMO-LUMO gap leading to a blue shift of the emission. A further blue 
shift can be achieved by increasing the lowest unoccupied molecular 
orbital (LUMO) energy upon addition of electron-donor groups on the 
pyridines, where the LUMO is mostly localized. Vice-versa, introduction 
of electron-acceptor groups on the pyridines and/or electron-donor 
groups on the phenyl ring leads to a red-shift of the emission [9,42–44]. 

Recently, a topic of growing interest is the effect of the substitution of 
the chloride co-ligand on the emission properties of these platinum(II) 
complexes. Up to now, complexes with isothiocyanate [11,13,25], azide 
[28], acetylides [12,34,35,45–47], isocyanides [48,49], iodide [50], 
phenolates [51], and thiolates [19,52–54] instead of chloride have been 
prepared. It turned out that while substitution with isothiocyanate or 
acetylides maintains high Quantum Yields, the presence of a thiolate 
brings about different effects. Thus, differently substituted thio-
phenolates [52] or a simple thioacetate [53] result in a much lower 
Quantum Yield with respect to the parent chlorido compound. On the 
contrary, we found that [Pt(5-mesityl-dpyb)(1-phenyl-1H-tetrazole-5- 
thiolate)] (Fig. 1; complex 1) is characterized by a monomeric emissive 
colour similar to that of the related complex with chloride (complex A) 
[55] or 4-phenylthiazole-2-thiolate (complex 4) [54], but it is much 
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more emissive (Φlum = 0.90, 0.62 and 0.55 for 1, A and 4, respectively). 
These observations and the desire to gain a deeper understanding of the 
effect of a 1-phenyl-1H-tetrazole-5-thiolate co-ligand on the emission 
properties of Pt(II) complexes bearing a cyclometalated 1,3-di(2-pyr-
idyl)benzene ligand prompted us to prepare complexes [Pt(5-R-dpyb) 
(1-phenyl-1H-tetrazole-5-thiolate)] (R = Me, 2; R = 2-thienyl, 3) and 
compare their photophysical properties with that of the related com-
plexes with chloride (B, C) and 4-phenylthiazole-2-thiolate (5, 6). 

2. Experimental 

2.1. Materials and methods 

All reaction solvents and reagents were purchased from Sigma- 
Aldrich, whereas deuterated solvents for NMR measurements were 
purchased from Eurisotop; all of them were used without further puri-
fication. Complexes [Pt(5-methyl-dpyb)Cl] (B) [56] and [Pt(5-(2- 
thienyl)-dpyb)Cl] (C) [55] were prepared by reaction of the suitable 
N^C^N ligand with 1.2 eq of K2PtCl4 in glacial acetic acid at reflux under 
argon for 24 h, according to literature [55,56]. 1H and 13C{1H} NMR 
spectra of the final complexes are reported in the SI. 

Electronic absorption spectra were carried out in CH2Cl2 solution, at 

room temperature, using a Shimadzu UV3600 spectrophotometer and 
quartz cuvettes with 1 cm optical path length. Luminescence measure-
ments were recorded in CH2Cl2 solution after three Freeze-Pump-Thaw 
cycles in order to remove dissolved oxygen. Absolute photo-
luminescence quantum yields (QY) were measured using a C11347 
Quantaurus Hamamatsu Photonics K.K spectrometer. Steady-state and 
time-resolved fluorescence data were obtained using a FLS980 spec-
trofluorimeter Edinburg Instrument ltd). The measurement techniques 
are well described in the SI. 

2.2. Synthesis of the new complexes 2 and 3 

2.2.1. Synthesis of [Pt(5-methyl-dpyb)(1-phenyl-1H-tetrazole-5-thiolate)] 
(2) 

[Pt(5-methyl-dpyb)Cl] (14 mg, 0.029 mmol) was dissolved in a 
mixture of MeOH (3.0 mL) and CH2Cl2 (3.0 mL), and sodium 1-phenyl- 
1H-tetrazole-5-thiolate (89 mg, 0.44 mmol) was added. The obtained 
mixture was stirred at room temperature under argon atmosphere and in 
the dark. After 24 h the precipitation of an orange solid was observed. 
MeOH (5.0 mL) was added to precipitate all the product and to dissolve 
the sodium salt in excess; after 10 min of stirring the desired product was 
recovered by filtration, washed with MeOH and Et2O, and dried (17 mg, 
0.027 mmol, 94 %). 

1H NMR (400 MHz, CD2Cl2) δ (ppm): 9.14 (2H, s, with 195Pt satellite 
peaks), 7.97 (2H, dd, J = 7.3 Hz, J = 7.7 Hz), 7.88 (2H, d, J = 7.0 Hz), 
7.73 (2H, d, J = 7.7 Hz), 7.53–7.37 (5H, m), 7.23 (2H, m), 2.44 (3H, s). 

13C{1H} NMR (100 MHz, CD2Cl2) δ (ppm): 153.14, 139.30, 128.89, 
124.83, 123.46, 119.36, 21.71. Not all peaks are visible, due to the low 
solubility of the complex. 

Elemental Analysis for C24H18N6PtS: calcd. C 46.67 %; H 2.94 %; N 
13.61 % found. C 46.98 %, H 2.92, N 13.70 %. 

2.2.2. Synthesis of [Pt(5-(2-thienyl)-dpyb)(1-phenyl-1H-tetrazole-5- 
thiolate)] (3) 

[Pt(5-(2-thienyl)-dpyb)Cl] (36 mg, 0.066 mmol) was dissolved in a 
mixture of MeOH (6.0 mL) and CH2Cl2 (6.0 mL), and sodium 1-phenyl- 
1H-tetrazole-5-thiolate (200 mg, 0.99 mmol) was added. The obtained 
mixture was stirred at room temperature under argon atmosphere and in 
the dark. After 24 h the precipitation of an orange solid was observed. 
MeOH (10.0 mL) was added to precipitate all the product and to dissolve 
the sodium salt in excess; after 10 min of stirring the desired product was 
recovered by filtration, washed with MeOH and Et2O, and dried (37 mg, 
0.055 mmol, 83 %). 

1H NMR (300 MHz, CD2Cl2) δ (ppm): 9.19 (2H, s, with 195Pt satellite 
peaks), 8.07–7.99 (2H, t, J = 5.5 Hz), 7.92–7.77 (5H, m), 7.53–7.42 (3H, 
m), 7.40 (1H, d, J = 3.7 Hz), 7.33–7.25 (2H, m), 7.20–7.15 (1H, m). 

13C{1H} NMR (100 MHz, CD2Cl2) δ (ppm): 139.36, 129.10, 128.23, 
124.37, 123.71, 122.74, 121.84, 119.68. Not all peaks are visible, due to 
low solubility of the complex. 

Elemental Analysis for C27H18N6PtS2: calcd. C 47.29 %; H 2.65 %; N 
12.26 % found. C 46.99 %, H 2.68, N 12.13 %. 

3. Results and discussion 

Complexes [Pt(5-methyl-dpyb)(1-phenyl-1H-tetrazole-5-thiolate)] 
(2) and [Pt(5-(2-thienyl)-dpyb)(1-phenyl-1H-tetrazole-5-thiolate)] (3) 
were prepared by reaction of the related chlorido complex with sodium 
1-phenyl-1H-tetrazole-5-thiolate (Scheme 1, see Experimental). 

The UV–vis absorption spectra of complexes 2 and 3 in dichloro-
methane (CH2Cl2) solution at the concentration of 1•10− 6 M are shown 
in Fig. 2, along with that of the related 1 complex. In addition, the 
UV–vis absorption spectra at different concentrations in CH2Cl2 solution 
were registered in order to calculate the molar extinction coefficients 
(ε), see Figs. S1 and S2, and Table S1 in the SI. 

The two new complexes show intense absorption bands at 237–325 
nm which can be attributed to intraligand 1π-π* transitions of the N^C^N 

Fig. 1. Structure of the investigated complexes [Pt(5-R-dpyb)Cl (R = mesityl 
for A, methyl for B, 2‑thienyl for C), [Pt(5-R-dpyb)(1-phenyl-1H-tetrazole-5- 
thiolate)] (R = mesityl for 1, methyl for 2, 2‑thienyl for 3) and [Pt(5-R-dpyb)(4- 
phenylthiazole-2-thiolate)] (R = mesityl for 4, methyl for 5, 2‑thienyl for 6). 
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ligand and less intense bands at 350–450 nm assigned to charge-transfer 
transitions involving the cyclometalated ligand and the metal [13]. In 
addition, a very weak absorption band at lower energy (around 492 nm) 
is distinguishable in the absorption spectrum of 2 at the concentration of 
2⋅10-4 M (see inset expansion in Fig. S1 panel A). This weak absorption 
band is probably composed by the overlapping of two absorption bands: 
one due to direct population of 3π-π* states of 2, as observed for similar 
complexes [21], and the other by the absorption of the aggregates (see 
below). 

Fig. 3 reports the normalized emission spectra of complexes 2 and 3 
studied in dearated CH2Cl2 solutions at the concentration of 1•10-6 M, 
along with that of the related complex 1. The emission wavelengths, a 
comparison of the Quantum Yields before (QYbefore) and after (QYafter) 
three Freeze-Pump-Thaw (FPT) cycles, and the lifetimes of 2 and 3 are 
reported in Table 1, together with the values relative to complex 1 and of 
the related complexes with chloride (A-C) and 4-phenylthiazole-2-thio-
late (4–6). Complete data and spectra are reported in the SI. 

As expected, complex 2, bearing a methyl group on the phenyl ring, 
shows intense phosphorescent bands with a maximum wavelength at 
504 nm, slightly red-shifted with respect to 1, whereas a much larger 
red-shift is observed for 3, in agreement with the presence of the much 
stronger electron-donor thienyl group on the phenyl ring (Fig. 3). The 
same trend has been observed for the complexes bearing a chloride (A-C) 

[55,56] or a 4-phenylthiazole-2-thiolate (4–6) [54] ligand. 
When the concentration of the 2 and 3 complexes is increased up to 

2⋅10− 4 M, new broad structureless emission bands arise at around 690 
nm (Figs. S4 and S6), which are slightly blue shifted compared to the 1 
complex (733 nm) (Fig. 4). These new bands at lower energy can be 
ascribed to the emission from bi-molecular emissive excited states 
(excimers and aggregates) of the platinum(II) complexes, as previously 
reported for related complexes.[19,53,57,58] It is worth noting that the 
excitation spectrum profile of the 2 and 3 complexes recorded at the 
wavelength of 503 and 545 nm, respectively, and those of the struc-
tureless emission bands at around 690 nm are quite different between 
440 ÷ 550 nm, see Figs. S4 and S6. This difference is attributed to the 
absorption of the aggregates of the two complexes which are excited 
between 440 ÷ 550 nm and then decay radiatively at 690 nm. 

As a general consideration arising from the comparative data re-
ported in Table 1, substitution of the chloride ligand with 1-phenyl-1H- 
tetrazole-5-thiolate or 4-phenylthiazole-2-thiolate doesn’t exert a 
noticeable effect on the emission maxima. Therefore, in the case of de-
rivatives of complex B, the λmax 

em has values of 504 nm and 503 nm for 
2 and 5 respectively, starting from a maximum at 505 nm; the same is 
valid also for compounds 3 and 6 (λmax 

em = 545 nm for both, from an 
original 548 nm for C), and for compounds 1 and 4 (λmax 

em = 498 nm for 
both, from an original 501 nm for A). Similarly, the lifetimes of the 

Scheme 1. General reaction for the substitution of the -Cl ligand with the thiolate.  

Fig. 2. UV–vis absorption spectra of 1–3 in CH2Cl2, at a concentration of 
1•10− 6 M. 

Fig. 3. Emission spectra of 1–3 in dearated CH2Cl2 at a concentration of 
1•10− 6 M. 
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complexes with the investigated thiolates remain very close to the 
original value of the chlorido parent. They are in the range 7.4–7.9 µs for 
the mesityl- and methyl-substituted complexes, while longer lifetimes 
characterize the compounds with a 2‑thienyl moiety, reaching values of 
19–20 µs. Increasing the concentration of complexes 2 and 3 to 2⋅10− 4 M 
leads to a drastic decrease of the lifetimes at 0.72 and 1.85 µs, 
respectively. 

Moving to the absolute Quantum Yields, the effect of the replace-
ment of the chloride appears more evident. Complex 3, having the 1- 
phenyl-1H-tetrazole-5-thiolate as ancillary ligand and the 2‑thienyl 
group on the phenyl ring, is the best-performing among all the investi-
gated compounds (Table 1), with a QY of 93 %, a value slightly higher 
than that of the related 4-phenylthiazole-2-thiolate complex 6 (89 %) 
[54] and much higher than that of the parent chlorido complex C (54 %) 

[55]. A similar excellent QY (90 %) was previously observed with the 
related 1-phenyl-1H-tetrazole-5-thiolate complex 1, having a mesityl 
instead of a 2‑thienyl group on the phenyl ring [19]. However, the QY 
measured for complex 2 is lower (42 %). Increasing the concentration of 
2 and 3 leads to a strong decrease in QY up to 14.1 % and 18.5 %, 
respectively, due to quenching caused by the presence of aggregates and 
excimers. To get a better understanding of the observed trends in the 
quantum yield, radiative (kr) and nonradiative (knr) rate constants have 
been calculated (see Table 1 and Table S2, details in the supporting 
information, Equations 3–4). kr represents the rate constant for the 
radiative deactivation of the excited state of a molecule (in this case as 
phosphorescence), in which no competitive radiationless pathways are 
present from the emitting state; on the other side, knr represents the sum 
of all rate constants deactivating the excited state in a non-radiative 
way. Although photophysical data for groups A-C, 1–3 and 4–6 in 
Table 1 are obtained from different sources, a qualitative rationalization 
of the results can still be obtained. It is observed that the complexes 
bearing the 2‑thienyl substituent on the phenyl ring always show a 
lower kr with respect to complexes with mesityl and methyl substituent 
in each of the three groups; moreover, the complexes with the methyl 
substituent have the highest kr, except for that of 1 which is higher than 
the value of 2. These behaviours suggest that the stronger the donor 
group, the lower the kr; however, the high value of kr obtained for 1 
cannot be justified without a deeper quantomechanic analysis which 
allows to calculate the transition dipole moment from the triplet excited 
state to the ground state of the two complexes. Interestingly, 1 displays 
not only a high kr but also a very low knr and this can explain the high 
value (90 %) of QY recorded for this complex. Molecules that possess 
rigid structures, for which twisting and stretching of bonds is inhibited, 
tend to decrease the radiationless transition rate [59]. In 1, steric hin-
drance of the methyl groups of the mesityl ligand decreases the rotation 
of the mesityl group itself with respect to the terdentate ligand; as well as 
the steric interactions between the terdentate ligand and the phenyl 
group of the tetrazole-bearing phenyl moiety prevent the twisting of the 
latter [19]. On the contrary, in 2 the rotations of the methyl group on the 
central phenyl ring result in a higher knr value, which ultimately causes a 
low QY. In general, the complexes with the 2‑thienyl substituent present 
a lower knr than the complexes with mesityl and methyl substituents in 
each of the three groups, due to the coplanarity of the 2‑thienyl and the 
terdentate ligand. In particular, these low knr values for 3 and 6 are 
responsible for the excellent measured quantum yield values, 93 % and 
89 %, respectively. As the concentration of complexes 2 and 3 is 
increased up to around 2⋅10− 4 M, the knr values increase by at least one 
order of magnitude with respect to the diluted solution at 1•10-6 M and 
this is compatible with the presence of excimers and aggregates. 

As for the related complexes in dilute aerated dichloromethane so-
lution (Table 1), the luminescence of 2 and 3 is very efficiently quenched 
by oxygen at room temperature, this species being detrimental for light- 
emitting devices; however, the production of singlet oxygen could be 
interesting for other applications such as sensors and photodynamic 
therapy. 

4. Conclusion 

In conclusion, two new luminescent complexes, namely [Pt(5-R- 
dpyb)(1-phenyl-1H-tetrazole-5-thiolate)] (R = methyl for 2; R =

2‑thienyl for 3), have been prepared. In this thiolate N^C^N-platinum(II) 
family, it was shown how the color of the phosphorescence can be tuned 
by the nature of the substituents on the benzene ring, with the presence 
of a donor group such as 2‑thienyl allowing a large red-shift of the 
emission. It appeared that, in this kind of platinum(II) complexes, sub-
stitution of the chloride ligand with a thiolate ligand such as 1-phenyl- 
1H-tetrazole-5-thiolate or 4-phenylthiazole-2-thiolate has a negligible 
effect on the emission maxima and on the lifetimes, since both param-
eters remain in a narrow range which is very close to the original value. 
However, the use of 1-phenyl-1H-tetrazole-5-thiolate as ancillary ligand 

Table 1 
Key luminescence data for complexes 1–3, related chloride compounds A-C and 
complexes 4–6 bearing a 4-phenylthiazole-2-thiolate ancillary ligand at the 
concentration of 1•10− 6 M.  

Complex λmax 
em / 

nm 
QYafter / 
% 

QYbefore / 
% 

τ / µs 
f 

kr / s− 1 

g 
knr / s− 1 

g 

Aa 501 62  4.5  7.9  7.9⋅104  4.8⋅104 

Bb 505 68  2.4  7.8  8.7⋅104  4.1⋅104 

Ca 548 54  1.5  20.5  2.6⋅104  2.2⋅104 

1c 498 90  5.0  7.39  1.2⋅105  1.3⋅104 

2d 504 42  5.0  7.90  5.3⋅104  7.3⋅104 

3d 545 93  3.3  19.2  4.8⋅104  3.0⋅103 

4e 498 55  3.5  7.7  7.1⋅104  5.8⋅104 

5e 503 65  2.5  7.9  8.2⋅104  4.4⋅104 

6e 545 89  3.0  19.1  4.7⋅104  6.0⋅103  

a From reference [55]. Luminescence quantum yields were determined by the 
method of continuous dilution, using quinine sulfate in 1 M H2SO4 (QY = 0.546) 
as the standard. 

b From reference [56]. The reported value represents the mean obtained from 
measurements using three standards: [Ru(bpy)3]Cl2 in H2O (QY = 0.028), 
fluorescein in 0.1 M NaOH (QY = 0.90) and quinine sulfate in 1 M H2SO4 (QY =
0.546). 

c From reference [19] Absolute QY were measured using a C11347 Quan-
taurus Hamamatsu Photonics K.K spectrometer. 

d This work. Absolute QY were measured using a C11347 Quantaurus 
Hamamatsu Photonics K.K spectrometer. 

e From reference [54] Absolute QY were measured using a C11347 Quan-
taurus Hamamatsu Photonics K.K spectrometer. 

f Lifetimes were recorded in deaerated solutions. 
g Formulas for calculating kr and knr are reported in the supporting 

information. 

Fig. 4. Emission spectra of 1–3 in dearated CH2Cl2 at a concentration of 
2•10− 4 M. 
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can be useful for the photophysical properties because it can lead, 
although not always, to very high quantum yields, approaching unity. 
Complex Pt3 is characterized by a quantum yield of 93 % in diluted 
dearated solution which decreases by a factor of almost 30 (QY = 3.3 %) 
in the presence of oxygen, an interesting aspect for sensors and photo-
dynamic therapy. 
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