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Abstract

Hamiltonian matrices in electronic and nuclear contexts are highly compute-intensive

to calculate, mainly due to the cost for the potential matrix. Typically these matrices

contain many off-diagonal elements that are orders of magnitude smaller than diagonal

elements. We illustrate that here for vibrational H-matrices for H2O, C2H3 (vinyl)

and C2H5NO2 (glycine) using full-dimensional ab initio-based potential surfaces. We

then show that many of the these small elements can be replaced by zero with small

errors of the resulting full set of eigenvalues, depending on the threshold value for

this replacement. As a result of this empirical evidence, we investigate three machine

learning approaches to predict the zero elements. This is shown to be successful for

these H-matrices after training on a small set of calculated elements. For one vinyl

and glycine H-matrices, of order 15 552 and 8 828, respectively, training on a percent

or so of elements is sufficient to obtain all eigenvalues with a mean absolute error of

roughly 2 cm−1.
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The most general quantum approach to obtain accurate energies and wavefunctions of

bound states of electrons (in electronic structure theory) and nuclei (vibrational dynamics)

is “configuration interaction” (CI). This approach typically leads to a large Hamiltonian

matrix, the cost of which to obtain scales exponentially or factorially with the size of the

underlying basis. This bottleneck has stimulated numerous approaches to reduce the size

of the basis, which of determines the size of the H-matrix. For approaches in electronic

structure, see for example refs. 1–4. Also note the recent “heat-bath” CI approach,5,6 which

has also been using in vibrational CI, denoted VCI.7,8

Here we focus on vibrational dynamics, which has some prominent differences with elec-

tron motion; perhaps the biggest one is the need to obtain hundreds to thousands of eigen-

values from nuclear CI compared to a much smaller number in electronic CI.

To begin, recall that in the widely-used direct-product (Hartree) basis for f -modes the

H-matrix is given by

⟨n′
1, n

′
2, ..., n

′
f |H|n1, n2, ..., nf⟩, (1)

where the quantum numbers are the usual ones for this basis. For example, these could

be harmonic-oscillator functions in normal coordinates of a potential minimum. More so-

phisticated 1-mode bases are used currently, but the details of these are not relevant. The

interested reader can consult relevant chapters in a recent book on computational approaches

to vibrational dynamics.9 In applications, the values of these quantum numbers for each 1-

mode basis is restricted. In addition, the sum of quantum numbers of all modes is typically

bounded. This is probably the most common method to restrict the basis and goes back 40-

50 years.10,11 More fine-grained restriction methods are used in the code MULTIMODE,12–14

where the excitation space is restricted, as in electronic structure methods, to “singles”, “dou-

bles”, “triples”, “quadruples”, etc. Then separate excitation bounds are applied to each level

of excitation. Also, when applicable, point-group symmetry is also used to block-diagonalize

the H-matrix.

The above (and perhaps other) approaches all reduce the basis compared to an unre-
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stricted basis. And this does result in a major reduction in the size of the H-matrix. We

might refer to this as a basis-restricted H-matrix. It is possible to go further and directly

eliminate elements of the matrix. This has been done, albeit rarely, in the vibrational dy-

namics literature. One example uses a method suggested by Handy and Carter15 and used

for vibrational energies of C2H4 and CH3NO2.
16 The method is based on second-order per-

turbation theory to eliminate elements and borrows from similar ideas in electronic structure

theory. A direct approach has been given in ref. 17 as a means to reduce the storage of the

H-matrix, illustrated for C2H4. This is simply to neglect Hamiltonian matrix elements be-

low an absolute value of about 0.00002 cm−1. Doing so resulted in a major reduction is the

number of elements stored in memory.

While it may be possible to exploit the presence of very small matrix elements in memory

storage and even reduce the size of the matrix, it still requires the calculation of theH-matrix.

Clearly, it would be advantageous if the determination of very small elements could be done

without calculating them. Here we report several machine learning classification approaches

to achieve this. This is illustrated for H2O, C2H3 (vinyl), and C2H5NO2 (glycine).

To proceed, we give histograms of five H-matrix elements for these molecules obtained,

with one exception, using MULTIMODE, which uses the exact Watson Hamiltonian with a

direct product basis and the n-mode representation18,19 of full-dimensional ab initio poten-

tial energy surfaces. Potential matrix elements were calculated using optimized numerical

quadrature. In one case, 4-mode vinyl, the H-matrix was obtained using a direct-product of

numerical basis functions in the normal coordinates of the saddle-point separating the two

equivalent minima in vinyl. Details of the steps used in these calculations have been given

previously for H2O,12 vinyl,20,21 and glycine22 and the interested reader if referred to those

references for details.

First, consider the H-matrix for H2O using a high-level potential.23 Restriction of the

basis was done using an excitation space up to triples. Point group symmetry was also

used. The resulting H-matrix consists of two blocks (A1 and B2) of orders 161 and 125,
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respectively. (Even with these small matrices, the eigenvalues for the fundamentals and the

bend overtone are within less than 1.0 cm−1 of “exact” results.) A histogram of the matrix

elements for the A1 block is given in Figure 1. As seen many elements are small; 1 192 of

the 13 041 elements are less than 10−10 hartree (0.00002 cm−1) in magnitude and so can

be classified as negligible. Of course many more elements are also small, e.g., 7 310 have

magnitude less than 10−5 hartree (2 cm−1). Whether these can classified as negligible, i.e.,

assigned the value zero, or not requires quantitative investigation and that is done after

histograms for vinyl and glycine are given.

cm-1

N
um

be
r

Figure 1: Histogram of H-matrix elements in cm−1 for the A1 symmetry block of for H2O.
See text for more details.

Next consider the histogram of H -matrix elements from MULTIMODE for 5-mode vinyl,

shown in Figure 2, using an accurate ab initio-based potential.24 Note we used an option

in MULTIMODE to consider a subset of modes. In this case 5 modes and a quintuples

excitation space. As seen the vast majority of elements have a magnitude of order 0.01

cm−1.

The final histogram we show is for 10-mode glycine in Fig. 3, where it appears that the
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Figure 2: Histogram of H -matrix elements in hartree for 5-mode vinyl on a semi-log scale

Figure 3: Histogram of H -matrix elements for the A′′ symmetry block for 10-mode glycine
on a semi-log scale
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vast majority of elements are either very small or exactly zero. The “exact-zeros” occur only

for 10-mode glycine among the five H-matrices considered here. We explain this below.

To proceed we determine the quantitative relationship between the magnitude of matrix

elements that are be set to zero, based on a threshold, and the resulting mean absolute

error (MAE) of all the eigenvalues for each H-matrix. (The number is the same as the

order of the matrix and this is given for convenience in the second column of Table 1.) This

relationship is shown in Figure 4 for five H-matrices. The two additional ones are for 3-mode

and 4-mode vinyl. The latter one is the exception mention above that was not obtained with

MULTIMODE. It was obtained used saddle-point normal modes, following earlier work.21

As seen, and as expected, the fraction of elements set to zero and the MAE of all eigenvalues

increases with increasing threshold. For the threshold of 10−5 hartree (2.2 cm−1) the MAE

is at most 1 cm−1. Also at that threshold the percentage of zeroed elements increases from

about 25 to 90+ percent. For glycine with a percentage just below 100 %, the histogram

includes numerous elements that are set to zero in MULTMODE without calculating them.

Glycine is the only example where this occurs and as noted earlier we provide the explanation

below, where we examine the n-mode representation of the potential.

We now describe the machine learning classification (MLC) approaches we use to predict

zero matrix elements. This is a standard 0/1 classification problem: in the training set,

elements with a magnitude greater than the threshold are labelled 1, and elements with

smaller magnitudes are labelled 0. The ML model then will predict 0 or 1 for an unknown

matrix element; if it predicts 0, the matrix element can be set to zero so the computation

can be skipped, and otherwise if the prediction is 1, the actual value matrix element will be

calculated.

For demonstration purposes, we use a threshold of 1 × 10−5 hartree, 2.2 cm−1, as this

achieves good accuracy in the eigenvalues and considerable savings in the computations.

Using this threshold, we label H-matrix elements as 0 or 1 to create a binary dataset that

can be used in machine learning classification. The features (X) for this classification prob-
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Figure 4: Fraction of matrix elements classified as zero as a function of the threshold for the
5 H-matrices studied in this work (upper); mean-absolute-error (MAE) of all eigenvalues as
a function of the threshold (lower). The dashed line shows the threshold we use for the ML
classification, 1× 10−5 hartree (2.2 cm−1).
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lem are the quantum numbers of the 1-mode basis in bra and ket, ⟨n′
1, n

′
2, ..., n

′
nmode| and

|n1, n2, ..., nnmode⟩. We investigate three widely used classification algorithms on the water

H-matrix: random forest (RF), support vector machine (SVM), and multilayer perceptron

(MLP). All ML models were trained using scikit-learn package.25

First consider the smallest H-matrix (of order 161) for water, with distribution of ele-

ments shown in Fig. 1. There are 13 041 matrix elements. These are randomly split into

40% training and 60% testing. For MLP and SVM models, the feature X is standardized to

zero mean and unit variance by using the StandardScaler from scikit-learn, while for the

RF model, we did not scale the features because it is invariant to feature scaling. The RF

uses 20 estimators (also known as “decision trees”) with maximum depth of 10. The MLP

model uses two hidden layers with 15 neurons in each, and ’relu’ as the activation function.

Early stopping is used to mitigate overfitting when the validation score (which is based on

20% of the training data, set aside as the validation set) does not improve for 10 consecutive

training epochs. The SVM model uses C-Support Vector with radial basis function (RBF)

kernel.

For 5-mode and 3-mode vinyl the H-matrices are of 1 152 and 1 960, respectively, so the

numbers of matrix elements are 664 128 and 1 921 780. The SVM algorithm implemented in

scikit-learn becomes too expensive, so only RF and MLP classifiers are considered. In these

two cases, only 10% of the data set is used as the training data. This is produces sufficient

data to train on. And, more importantly since the goal of the ML approach is to accurately

predict negligible matrix elements and thus avoiding calculating them, we would like to keep

the training set as small as possible. For these matrices the MLP classifier uses 20 neurons

in each hidden layer and The RF classifier use 50 estimators with maximum tree depth of

20.

Moving on to much largerH-matrices, consider 4-mode vinyl using a saddle-point normal-

mode basis and the B2-symmetry block of the 10-mode glycine. The respective H-matrices

are order 15 552 and 8 828. Thus there are tens or hundreds of millions of matrix elements,
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and for vinyl each matrix element requires 4D quadrature. Note, for glycine, although we

included 10 normal modes in the basis, we used 4-mode representation of the potential so

the highest dimension for the numerical quadrature of potential matrix elements is still 4D.

For glycine, as explained in detail below, because the number of modes is larger than than

4, many matrix elements are known to be exactly zero and so not calculated. In these two

cases, only 1% of the matrix elements are used to train the ML models. The MLP models

for these two examples have three hidden layers of 20 neurons, while the RF models use 50

estimators with maximum depth of 25. For 4-mode vinyl that uses the saddle-point normal-

mode basis, the H-matrix is of order 15 552 and only the MLP classifier is used, since the

random forest also becomes too expensive.

Now we present the training and testing accuracy of the ML models on the five H-

matrices in Table 1. It can be seen that all ML models give accurate predictions for the

labels, with an accuracy close to or greater than 90%. The random forest models slightly

overfit the training set, indicated by the difference in the training and testing accuracy.

Table 1: Training/testing accuracy of the ML predicted labels of the matrix
elements for the five H-matrices.

H-matrix Order SVM RF MLP

H2O 161 0.891 / 0.885 0.963 / 0.933 0.889 / 0.882
5-mode vinyl 1 152 - 0.994 / 0.970 0.966 / 0.963
3-mode vinyl 1 960 - 0.984 / 0.93 0.915 / 0.914
10-mode glycine 8 828 - 0.999 / 0.992 0.994 / 0.993
4-mode SP vinyl 15 552 - 0.975 / 0.879 0.872 / 0.872

Next we reconstruct the H-matrices using the predicted labels from various ML models.

If the predicted label for a matrix element is 1, we keep the exact value of that element, and if

the predicted label is 0, we simply set that matrix element to zero. Then we diagonalize the

reconstructed H-matrices and compare the resulting eigenvalues with the exact eigenvalues

of the exact H-matrices. In Table 2, we present the mean-absolute-error (MAE) of all the

eigenvalues. We can see that the MAE of the eigenvalues are about 1–2 cm−1, except for
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the RF model on glycine. This is probably due to the very unbalanced 0/1 label in this H-

matrix. When using a threshold of 10−5 hartree, 98.9% of the matrix elements are labelled

0, so a small amount of wrong predictions may cause relatively large error. Nevertheless,

this level of accuracy in the eigenvalues is satisfactory compared to the the errors caused by

the underlying electronic structure theory, fitting precision, etc.

Table 2: Mean-absolute-error (in cm−1) in the eigenvalues of the approximate H-
matrices based on the predicted labels from different ML models on the matrix
elements.

H-matrix SVM RF MLP

H2O 1.12 0.67 1.42
5-mode vinyl - 1.31 0.84
3-mode vinyl - 0.94 1.37
10-mode glycine - 7.37 1.62
4-mode SP vinyl - 2.23 2.17

Finally, we present the timings for training these ML models and make predictions on

the matrix elements. The goal of pruning the matrix elements is to save computer times

for “zeros”, so the training and prediction of the ML models must at least be more efficient

than actually computing those matrix elements. We only test the timings on the largest

H-matrix, i.e., from 4-mode saddle point vinyl, as the matrix elements are expensive to

compute in this example. The ML approach may not have the advantage if the matrix size

is small to medium, since computing all matrix elements in a small or medium H-matrix is

still fast, while the overheads of training ML models make this approach slower than simply

computing all the elements. For this 4-mode vinyl H-matrix, training the RF model takes

only 48 seconds and predicting the off-diagonal elements take 389 seconds, and the training

and prediction of the MLP model takes 151 and 36 seconds, respectively. As a comparison,

computing the H-matrix exactly takes hours, so the overhead of the ML model is small.

The advantage of the ML approach will become more significant as the size of the H-matrix

increases.

In summary, the ML classification approaches are quantitatively accurate for the H-
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matrices examined here by training on just 1% of the elements with a major reduction on

the number of predicted non-negligible elements to be calculated. For the largest examples,

4-mode vinyl with the saddle point basis and 10-mode glycine the reductions are around

90%. Also the results here show that the percentage reduction increases with the number of

modes. Note the matrices considered here were not so large as to need special routines that

can exploit sparse matrices. However, there are routines that do exploit this sparsity, both

in terms of greatly reducing the memory needed to store the non-zero elements and also to

obtain eigenvalues. Examples are scipy.sparse.linalg in Scipy26 and sparse solver routines

in the MKL library. Also, iterative routines that multiply the H-matrix by a trial vector

clearly benefit from sparsity.

Figure 5 shows a flow chart of our proposed approach that would be implemented for

a calculation of the H-matrix. As usual the starting point is the restricted basis for the

calculation of the H-matrix.
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Figure 5: Flow chart of the machine-learning approach to prune the H-matrix elements.
Note: * Could train committee ML models; ** Optionally could try other thresholds.
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Finally, to provide insight into the large number of very small matrix elements consider

the n-mode representation of the potential,12,14,18 which some readers may know is used in

MULTIMODE. In brief it represents the potential by

V (Q1, Q2, · · · , Qf ) =
∑
i

V
(1)
i (Qi) +

∑
i,j

V
(2)
ij (Qi, Qj)+

∑
i,j,k

V
(3)
ijk (Qi, Qj, Qk) +

∑
i,j,k,l

V
(4)
ijkl(Qi, Qj, Qk, Ql) + · · · ,

(2)

where V
(1)
i (Qi) is the one-mode potential, i.e., the 1D cut through the full-dimensional PES

in each mode, one-by-one, V
(2)
ij (Qi, Qj) is the intrinsic 2-mode potential among all pairs of

modes, etc. Here, intrinsic means that any n-mode term is zero if any of the arguments is

zero. This representation is exact if there are f terms. In MULTIMODE this level goes up to

a maximum of V
6)
ijklmn terms. For H2O, C2H3 with 3, 4, and 5 modes this expansion was taken

to the level of being exact. For the VCI calculation using saddle point normal modes the

full 4-mode potential was used without expansion as above. The 10-mode glycine example

the 4-mode representation of the potential was used,22 as many applications have indicated

that this level produces eigenvalues that converged to with a few cm−1. For the present work

the accuracy of the representation is not relevant. However, the 10-mode glycine example is

insightful. A general potential matrix is given by

⟨n′
1, n

′
2, ..., n

′
10|V |n1, n2, ..., n10⟩, (3)

Using a 4-mode representation of V , it should be clear that many of these elements are exactly

zero. And indeed MULTIMODE takes note of these and sets them to zero. Referring to the

n-mode representation, it’s clear that only by going to V
(10)
ijklmn... would these analytical zeros

disappear. If the n-mode representation is not used then the potential for 24-mode glycine

(the actual number of vibrational modes) would be expressed as usual by V (Q1, ..., Q24)

and the idea of doing general matrix would be truly infeasible and nonsensical. Clearly,
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at a minimum the excitation space would have to be severely limited. However, even with

the evaluating the matrix elements by even the most efficient quadrature methods would

be prohibitive in 24 dimensions.27 This fact notwithstanding, it does appear that the ML

approach here will be powerful means to avoid calculating very small matrix elements. And,

based on the empirical evidence given here and the discussion above, the number of elements

increases rapidly with the number of degrees of freedom. Thus, the ML method proposed

will become even more “needed” and effective as a means to deal with this rapid increase.

We note that non-direct product bases are also used in vibrational dynamics. These

generally come from partitioning the full Hamiltonian into two sub-Hamiltonian in non-

overlaping modes plus an interaction part. Diagonalization of the sub-Hamiltonians yields a

new basis in the corresponding modes, which can then be used in new direct-product repre-

sentation. Matrix elements in this new basis are then done and a final H-matrix is obtained.

The goal here is to reduce the order of this matrix, however, a reasonable expectation is that

there also many small elements in this matrix. Major examples of this approach are in refs.

28–30 It does appear that the machine learning classification approach described here for a

direct-product basis should be directly applicable to non-direct product bases. That is work

for the future.
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