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Abstract. We address the presence of bound entanglement in strongly

interacting spin systems at thermal equilibrium. In particular, we consider

thermal graph states composed of an arbitrary number of particles. We show that

for a certain range of temperatures no entanglement can be extracted by means

of local operations and classical communication, even though the system is still

entangled. This is found by harnessing the independence of the entanglement

in some bipartitions of such states with the system’s size. Specific examples for

one- and two-dimensional systems are given. Our results thus prove the existence

of thermal bound entanglement in an arbitrary large spin system with finite-range

local interactions.
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1. Introduction

The application of tools recently developed in the context of quantum information theory to

problems historically native from the area of many-body physics has helped us gain new insight

about collective quantum phenomena [1]. In particular, the characterization of the entanglement

properties of ground and thermal states of strongly interacting spin Hamiltonians provides a

description of these systems from a novel and alternative perspective. Also, in general, it gives

us information about how hard it is to simulate their dynamical and statical properties with

classical resources [2]. In addition, such characterization is crucial to determine when these

systems can in turn assist as resources in some given quantum-information processing task. For

all these reasons it is important to classify and characterize standard many-body models in terms

of their entanglement properties.

However, the entanglement characterization in multiparticle systems turns out to be

formidably hard. On one hand, the calculation of truly multipartite entanglement measures is in

general extremely difficult, even for the pure-state case [3, 4]. On the other hand, for realistic

many (and especially macroscopically many)-body systems, the interaction with its surrounding

environment can additionally never be neglected and mixed states have to be necessarily taken

into account. Unfortunately though, the characterization of mixed-state entanglement is to

date very poorly developed even for the general bipartite case. One of the most frequent and

important types of such interactions—the one on which we will focus here—takes place when

the system is embedded in a thermal bath at temperature T and reaches thermal equilibrium with

it, a process called thermalization. This process typically causes the system to lose quantum

coherence, gain entropy and in most cases also lose entanglement.

An important step forwards in the characterization of mixed-state entanglement was to

recognize two different types of entanglement: distillable and bound entanglement [5]. An

entangled state ρ is said to be distillable if it is possible, by means of local operations and

classical communication (LOCC), to obtain from ρ (or, more precisely, several copies thereof)

pure-state entanglement. Entangled states for which this task is impossible are said to be bound-

entangled. Bound-entangled states were for some time believed to be useless for quantum

information processing. Nevertheless, they are nowadays known to be useful in some practical

situations [6].
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Historically, most examples of bound entangled states have been provided without relying

on any operational recipe (see e.g. [4]). Yet this kind of entanglement has been recently

found to arise in natural processes, in particular thermalization [7]–[11] and other dynamical

decoherence processes [11]. For thermal states, the presence of bound entanglement was found

in chains of harmonic oscillators in the thermodynamic limit, that is for an arbitrary number

of oscillators [7]. On the other hand, in the case of fermionic systems the existence of thermal

bound entanglement has been shown only for small systems of up to 12 spins [7]–[9] or for

models involving non-local interactions between an arbitrary number of spins [10]. The main

contribution of the present paper is thus to show the existence of bound entangled thermal

states in strongly correlated systems of arbitrary number N of spin-1/2 particles with local

interactions, in particular in the limit N → ∞.

We show the presence of thermal bound entanglement for the exemplary family of

Hamiltonians through which graph states are defined [12]. These Hamiltonians are always

frustration-free and typically, depending on the graph, also local (meaning that not all particles

interact simultaneously) and of finite-range (meaning that no particle interacts with another

one infinitely far away)3. Graph states constitute an extremely important family of states from

practical and fundamental points of view. They include cluster states, which are resources for

universal measurement-based quantum computation [13], codeword states for quantum error

correction [14], and the well-known GHZ states, which are resources for secure quantum

communication [15]. Moreover, this family of states can be used in quantum non-locality

tests [16]–[19].

The motivation of this work is thus twofold: from a practical point of view, to establish the

range of temperatures for which a thermal state of an interesting many-body model proves useful

as a resource for some potential quantum information processing task; and, from a fundamental

viewpoint, to take this particular case as a concrete example within a broader investigation of

the properties of quantum correlations of strongly correlated systems undergoing open-system

dynamics.

2. Thermal graph states and dephased graph states

In this section, we define the states under scrutiny and establish the notation. Let us begin by

defining a mathematical graph G ≡ {V, E} as the union of the set V of vertices i ∈ V with the

set E of edges {i, j} ∈ E connecting each vertex i to some other j , being 16 i, j 6 N . Next, for

each graph G we define Hamiltonian H acting on N spin-1/2 particles as

H = −
1

2

N
∑

i=1

Bi X i ⊗
⊗

j∈Ni

Z j , (1)

where Bi > 0 are arbitrary (strictly positive) coupling strengths in arbitrary units, Xk and Zk

are the usual Pauli operators acting on particle k, and Nk denotes all neighbouring particles

of k—i.e. each particle whose graph representation in G is a vertex j directly connected to

k by some edge { j, k} ∈ E . Hamiltonian (1) involves m-body interactions, where m is given

by the maximum connectivity of the graph G. Also, since each and all of the N terms in

3 Exceptions are of course the Hamiltonians associated with the maximally connected graphs (that give rise to

GHZ states [16]), which are never local; and the ones associated with expander graphs, which can be local but not

necessarily of finite range.
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summation (1) commute with each other, the eigenstates—here denoted by |Gµ1 ... µN
〉, with

µi = 0 or 1, for 16 i 6 N—of each local term are also eigenstates of the whole summation.

This implies that Hamiltonian (1) is frustration-free, meaning that the ground state—|G0 ... 0〉—
minimizes the energy of each term in H .

The ground state |G0 ... 0〉 is the unique (non-degenerate) ground state of Hamiltonian (1)

with eigenenergy − 1

2

∑N

i=1 Bi , whereas states |Gµ1 ... µN
〉—related to the former by the local-

unitary transformation |Gµ1 ... µN
〉 ≡ ⊗N

i=1 Z
µi

i |G0 ... 0〉—are eigenstates of (1) with
∑N

i=1 µi

excitations and associated eigenenergies −1

2

∑N

i=1 Bi(−1)µi [12]. The eigenstates |Gµ1 ... µN
〉

form a complete orthogonal basis of the N -qubit Hilbert space. Since they are local-unitarily

related, they all possess exactly the same entanglement properties, extensively studied in

[12, 20] and references therein. For historical reasons, the ground state |G0 ... 0〉 has been taken

however as the defining state for the so-called graph state. Let us recall that there exists also an

alternative operational definition for such graph state: it can be physically produced initializing

N qubits in the superposition |+〉 = (|0〉 + |1〉)/
√

2 and subsequently applying control-Z gates

C Z i j = ei(π/4)(Zi

⊗

Z j −Zi −Z j +✶) onto each pair of neighbouring qubits defined by the graph G.

Mathematically,

|G0 ... 0〉 =
N

⊗

i=1

⊗

j∈Ni

C Z i j

N
⊗

k=1

|+〉k. (2)

We are now in a position to introduce the thermal graph state associated with G as the

thermal state of Hamiltonian (1):

ρT =
e−H/T

Tr
[

e−H/T
] , (3)

where T is the temperature of some bath with which our system of interest has reached thermal

equilibrium (Boltzmann’s constant is set as unit kB ≡ 1 throughout).

Alternatively, ρT can be defined as a decohered graph state. In order to show that we need

to introduce the completely positive map 3, acting on any N -qubit density matrix ρ as

3(ρ) ≡ D1 ⊗ . . . DN (ρ), (4)

as the composition of local, independent channels Di ,

Di(ρ) =
(

1 −
pi

2

)

ρ +
pi

2
Z iρZ i , (5)

with 06 pi 6 1. Local channel Di describes the physical process in which, with probability pi ,

an undesired π -phase shift is experienced by qubit i and, with probability 1 − pi , the system is

left untouched. This process is present in situations where, with probability pi , there is complete

loss of quantum coherence but without any population exchange. In the context of decoherence,

map 3 in turn is often referred to as local (or individual) dephasing (or phase damping).

It was shown in [21] that thermal state (3)—for the particular case of constant couplings

Bi ≡ B—can also be alternatively obtained by individually dephasing graph state (2) with equal

probabilities pi ≡ p = 2

1+eB/T . As shown in the appendix, this property also holds for general

thermal states of Hamiltonian (1) with arbitrary couplings. Indeed,

ρT ≡ 3(|G0 ... 0〉〈G0 ... 0|), (6)
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with 3 defined according to equations (4) and (5), but with the additional constraint that the

local dephasing probabilities satisfy

pi

2
≡

1

1 + eBi /T
. (7)

The equivalence mathematically expressed in equations (6) and (7) establishes a very interesting

connection between a collective decoherence process (thermalization of systems governed by

graph-state Hamiltonians as (1)) and a local one (individual dephasing of systems initialized in

graph states as (2)).

3. Appearance of multipartite bound entanglement in thermal graph states

As mentioned before, the characterization of entanglement in multiqubit systems is formidably

hard even for pure states. However, a useful tool for the evaluation of the amount of

entanglement contained in decohered graph states was developed in [22] for an important family

of decoherence processes (see also [21, 23]). Given a certain multipartition of a graph G, the

machinery developed in [22] allows us to map the calculation of the entanglement of a decohered

(mixed) graph state to the average entanglement of several effective systems, constituted only

by the so-called boundary qubits—the ones lying on the border of the multipartition and having

neighbours on the other side of the border. Solving the former problem involves an optimization

over a parameter space exponentially large with N , whereas solving the latter involves only an

optimization over the boundary qubits, a task that requires always exponentially less memory

space and usually also considerably less computational time, especially when N is large, as in

the thermodynamical limit.

For our case of interest, individual dephasing, this formalism works even better as the

entanglement contained in an arbritrary multipartition of a locally dephased graph state is

equivalent not to the average entanglement of an ensemble of smaller effective boundary

systems but just one. Furthermore, such an effective system is simply composed by the locally

dephased original system itself but without all non-boundary qubits. The key point behind

this idea is that all the control-Z gates that define |G0 ... 0〉 in equation (2) commute with the

dephasing map (4)4. Hence, the order in which channels Ei and the control-Z gates are applied

on the product state
⊗N

k=1 |+〉k to obtain 3(|G0 ... 0〉〈G0 ... 0|) is irrelevant. In particular, state (6) is

also obtained if the control-Z gates act after the dephasing channels. Now, all C Zs not crossing

any boundary are local unitary operations with respect to the multipartition (see figures 1 and 3

for simple examples). Thus, because every entanglement quantifier is invariant under local

unitary operations, as far as what concerns the amount of entanglement in the multipartition

one can simply forget about these non-boundary-crossing CZs.

In what follows we apply this idea to some well-known, paradigmatic examples of graphs

to show that there exists a range of temperatures where the associated thermal graph state

possesses multipartite bound entanglement. We do it first for the case of constant couplings

Bi ≡ B to transmit the essential idea clearly and then move to the arbitrary-coupling case.

3.1. The linear cluster with equal couplings

Let us start with the simplest example: the linear cluster state. Here the defining graph G is

the linear graph sketched in figure 1. We denote its thermal state as ρ1DT
. First we consider

4 This was indeed the key point behind the results of [21]–[23].
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Figure 1. Two possible bipartitions of the linear cluster: the system is split

into two subpartitions, represented by the grey and white regions. Note that

all control-Z gates corresponding to black edges act locally with respect to the

bipartition adopted, and thus do not change its entanglement. (A) The system is

divided in two contiguous blocks of spins. The entanglement in this bipartition is

equivalent to the entanglement between the two qubits in blue (see the text). (B)

Another possible bipartition, this time non-contiguous blocks of spins are part of

the same single subpartition (the white one). In this case, all the entanglement is

contained in the three-qubit boundary system shown in blue.

a bipartition of the system into two contiguous blocks of spins (figure 1(A)), say from qubit

i to the left (grey) and from qubit i + 1 to the right (white). We can easily see from the figure

that all control-Z gates but one (in blue) act as local unitary operations, and thus have no

effect on the entanglement in the bipartition considered. As a result, the entire entanglement

between any two contiguous blocks of spins in ρ1DT
is equivalent to that of the simple two-

qubit thermal graph state in boundary pair i–i + 1. Then, by imposing the entanglement between

i and i + 1 to vanish we can establish the critical temperature for which the entire thermal

cluster is separable with respect to the bipartition under scrutiny. Any entanglement quantifier

valid for two-qubit-mixed states would do for this aim, so we choose the simplest one to

calculate: the negativity [24]. The negativity Neg(ρ) of a state ρ is the sum of the absolute

values of the negative eigenvalues of ρŴ, where ρŴ is the partial transposition of ρ according

to some bipartition. The negativity Negi |i+1(ρ1DT
) of the thermal state of pair i |i + 1 is readily

calculated to be Negi |i+1(ρ1DT
) = 1

4
(2 − 2pi − 2pi+1 + pi pi+1). For the case of constant couplings

pi = pi+1 ≡ p = 2

1+eB/T condition Negi |i+1(ρ1DT
) = 0 leads to the critical temperature [21]

T c
i |i+1(B) =

−B

ln(
√

2 − 1)
≈ 1.1B. (8)

For T > T c
i |i+1(B), since the partition is separable, it is not possible to extract any type of

entanglement between any two contiguous blocks joined at spins i and i + 1 from a thermal

one-dimensional (1D) graph state by applying contiguous-block-local operations (arbitrary

operations acting on spins 1 to i and on spins i + 1 to N ). This imposes strong restrictions

on the operations one needs to apply to ρ1DT
to distill some entanglement (if any) from some

other of its multipartitions. For instance, if individual local operations on each spin are applied,

no entanglement can be distilled from this bipartition of ρ1DT
if T > T c

i |i+1(B), for these are a

particular case of contiguous-block-local operations. Now, since here we have taken all coupling

strengths equal, the critical temperature for separability of contiguous blocks is the same for all

i . This means that for T > T c
i |i+1(B) all contiguous blocks of ρ1DT

are in a separable state.
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So no entanglement between any two particles can be extracted by LOCC, as for any two

particles a contiguous-block bipartition can be found in which each particle lies on a different

side of the partition and is therefore separable from the other. Therefore, no entanglement at all

can be extracted from ρ1DT
for T > T c

i |i+1(B) by LOCC.

We now find another (non-contiguous) family of bipartitions for which the separability

temperature, T c
i |i−1,i+1(B), is strictly larger than T c

i |i+1(B). This suffices to prove the non-

separability of ρ1DT
—and therefore the presence of multipartite bound entanglement in—for a

range of temperatures T c
i |i+1(B)6 T 6 T c

i |i−1,i+1(B).5 Consider for instance the entanglement

between the i th qubit in the chain and all the rest (see figure 1(B)). In this case, one can ignore

all but two control-Z gates in the calculation of the entanglement. So for these partitions, the

entanglement (again quantified here by the negativity) of ρ1DT
is equivalent to that of the central

particle versus its two neighbours in a linear thermal cluster state of only three qubits. This

negativity vanishes at a critical temperature T c
i |i−1,i+1(B) that turns out to be strictly larger than

T c
i |i+1(B) (T c

i |i−1,i+1(B)& 1.6B, see figure 2). In the range T c
i |i+1(B)6 T 6 T c

i |i−1,i+1(B),

even though ρ1DT
possesses entanglement, we already know that none of it can be distilled

through local operations assisted by classical communication. Such entanglement can only

be extracted if particles i − 1 and i + 1 interact, which is of course not a local operation.

Therefore, in this range of temperatures thermal cluster state ρ1DT
possesses multipartite bound

entanglement.

It is important to stress that none of the latter results or conclusions depends at all on

the size N of the graph. This allows us to guarantee that thermal bound entanglement is also

present in macroscopic specimens of these graphs. This independence of the entanglement on

the graph’s size is precisely the key point behind the method we used to simplify the calculation

of the negativity of ρ1DT
. In general, in order to calculate the negativity of an N -qubit mixed

state, one would need to diagonalize a 2N× 2N matrix, which already for a few tens of qubits

cannot even be written down by a current classical computer. In the example studied in this

subsection, this method has enabled us to obtain results for arbitrarily large systems calculating

only negativities of two-qubit and three-qubit systems.

3.2. The 2D square cluster with equal couplings

Our next example is the 2D thermal cluster state ρ2DT
, for which the associated graph G is a√

N ×
√

N square lattice (see figure 3). The columns of G are labeled by index 16 i 6
√

N

and the rows by index 16 j 6
√

N . At T = 0 this state is known to be a universal resource for

one-way quantum computation. As a consequence, understanding the entanglement properties

of this model under realistic noisy conditions is of course very important from a practical point

of view.

To prove the existence of thermal multipartite bound entanglement in this example

we follow exactly the same reasoning as in the previous subsection: establish a region of

temperatures where the system is separable with respect to any two contiguous blocks—and

therefore non-distillable with respect to (contiguous-block) local operations while still being

entangled in other partitions. In figure 3(A), we consider a vertical partition of the system from

column i to the left (grey) and from column i + 1 to the right (white). Following the same steps

as before, the calculation of entanglement in this bipartition can be reduced to that of a product

5 Note that in the first version of arXiv:0902.4343 it was erroneously claimed that T c
i |i+1(B) is the separability

temperature for ρ1DT
[25].
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T
D
)

T

B

Figure 2. Negativities of the thermal linear cluster state ρ1DT
, as a function

of temperature T/B. The considered bipartitions are those of figure 1: any

two contiguous blocks, in red and any qubit versus the rest, in blue. None

of these curves depends on the size N of the graph. Therefore such thermal

bound entanglement is also present in the macroscopic thermodynamical limit.

Besides, we also display in dashed line the negativity of the even–odd partition,

where particles with even label belong to subsystem A and particles with odd

label to subsystem B. In this case, the negativity does depend on the system’s

system and the plot is done for N = 12. Our numerical investigations suggest

that the even–odd partition is the most robust bipartition, i.e. the one with the

highest critical temperature of vanishing negativity. The shaded region shows the

range of temperatures where the thermal system possesses bound entanglement

(see text).

of the
√

N two-qubit thermal cluster states lying on the boundary. In this way, we see that the

critical temperature for separability (of all contiguous blocks) is again given by (8). Once again

we consider another family of bipartitions, say, any qubit i j inside the lattice (1 < i <
√

N

and 1 < j <
√

N ) versus all the rest of the qubits (see figure 3(B)). The entanglement in this

bipartition is equivalent to that between the qubit i j and its four neighbours, in a thermal graph

state in a star configuration. The temperature for which the negativity vanishes in this case

happens to be T c
i j |i−1,i+1, j+1, j−1(B) ≈ 2.5B, which is again strictly larger than T c

i |i+1(B).

3.3. Unequal Hamiltonian couplings

Consider now arbitrary couplings Bi in Hamiltonian (1) with average value B, that is:
1

N

∑N

i=1 Bi = B. We first restrict ourselves to the familiar 1D graph studied in subsection 3.1,

New Journal of Physics 12 (2010) 025011 (http://www.njp.org/)
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Figure 3. Two different bipartitions of a two-dimensional (2D) cluster.

(A) The system is divided vertically into two parts. The only control-Z gates

not acting as local unitary operations are the boundary-crossing ones, shown in

blue. Thus, the entanglement in any such bipartition of the 2D cluster in a thermal

state is equivalent to that of several copies of a two-qubit thermal cluster state

(represented in blue). (B) The cluster is partitioned into a central spin and all

other ones. The entanglement is this time equivalent to that between the central

spin and only its four neighbours in a five-qubit thermal graph state in a star

configuration (also in blue).

as this already qualitatively captures all the essential changes that can appear when

different couplings are present. The contiguous-block separability condition Negi |i+1(ρ1D T ) =
1

4
(2 − 2pi − 2pi+1 + pi pi+1) = 0 now involves pi ≡ 2

1+eBi /T 6= pi+1 ≡ 2

1+eBi+1/T . Thus, the critical

temperature is implicitly expressed by the equation

1 = e−(Bi /T ) + e−(Bi+1/T ) + e−(Bi +Bi+1)/T . (9)

Equation (9) above has a unique real solution T = T c
i |i+1(Bi , Bi+1), but is however non-

invertible in general. Clearly, critical temperature T c
i |i+1(Bi , Bi+1) is symmetric under the

exchange of Bi and Bi+1. Also, numerical inspections immediately show that it is a

monotonously growing function of Bi (Bi+1) for fixed Bi+1 (Bi ). Furthermore, under some

constraints, as for example Bi + Bi+1 constant, the critical temperature is maximal when the

couplings are equal.

As before, we compare T c
i |i+1(Bi , Bi+1) with the critical temperature

T c
i |i−1,i+1(Bi−1, Bi , Bi+1) corresponding to the bipartition, which distinguishes qubit i

versus the rest. For all cases we have studied, T c
i |i−1,i+1(Bi−1, Bi , Bi+1) turns out to be strictly

larger than T c
i |i+1(Bi , Bi+1) ∀16 i 6 N . If this is true in general, it implies that neither the

appearance, nor the range of temperatures, of bound entanglement will be considerably affected

by small deviations of Bi from the mean value B.

However, the critical temperatures can be considerably sensitive to the values of the

coupling constants at each site i when the deviations are large (say, of the order of B

itself). In such case, it might as well happen that T c
i |i+1(Bi , Bi+1) < T c

i |i−1,i+1(Bi−1, Bi , Bi+1) <

T c
k|k+1(Bk, Bk+1) < T c

k|k−1,k+1(Bk−1, Bk, Bk+1), for some i 6= k. Remarkably, also in these cases

the system displays a finite range of temperatures for which it is bound entangled. To see

this, it suffices to consider the site imax for which the critical temperature of contiguous-block

separability is the largest of all, i.e. T c
imax|imax+1(Bimax

, Bimax+1)> T c
i |i+1(Bi , Bi+1), ∀16 i 6 N .

New Journal of Physics 12 (2010) 025011 (http://www.njp.org/)
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By the same reasoning as before, from T = T c
imax|imax+1(Bimax

, Bimax+1) ≡ T c
imax|imax+1 on ρ1DT

is non-distillable, but it is entangled up to T = T c
imax|imax−1,imax+1(Bimax−1, Bimax

, Bimax+1) ≡
T c

imax|imax−1,imax+1. Therefore (assuming again that T c
imax|imax−1,imax+1 > T c

imax|imax+1 is always true),

for T ∈ [T c
imax|imax+1, T c

imax|imax−1,imax+1) the state is bound entangled. The main conclusion to

draw from the considerations in this paragraph is that rather than a peculiarity of the (ideal) case

of equal coupling strengths, the presence of bound entanglement in a finite range of temperature

appears to be a general phenomenon for (arbitrarily large) thermal graph states.

Finally, let us stress that similar results hold also for other graphs with different couplings.

There again different partitions will give rise to different critical temperatures implying again

the presence of bound entanglement along the lines of section 3.2.

4. Conclusion

Considering thermal graph states we have shown the presence of bound entanglement in systems

containing a macroscopic number of spins with finite range interactions. This result extends the

previous results [7] for bosonic chains to fermionic systems. Our findings suggest that thermal

bound entanglement could manifest also in more general systems, since this seems to be a robust

feature against, in particular, to modifications in the symmetries of the Hamiltonian.

In this paper, we considered systems with three- (or more)-body interactions. Thus a

natural question arises regarding the presence of macroscopic thermal bound entanglement

also in spin-1/2 models containing only two-body interactions. This was indeed found in the

case of harmonic oscillators systems [7]. Actually, we expect thermal bound entanglement to

be a common phenomenon of general many-body systems since it is very unlikely that the

negativities of all possible bipartitions of a system vanish at the same temperature. However,

proving that for systems in the thermodynamical limit turns to be difficult problem.

It is also worth mentioning that we used the negativity of some bipartitions of the system

to detect inseparability of the thermal state. So our method cannot detect bound entanglement

in the case that all bipartitions of a system have positive partial transpositions. This was in

turn found in the case of small spin systems [8]. We leave the existence of this kind of bound

entanglement in macroscopic systems as an open problem.

An interesting question concerns the utility of thermal graph states for information

processing. For the region of temperatures such that these states are distillable, one could in

principle apply first a distillation protocol (e.g. see [21]) before using the state as a resource

for quantum information. However, for the regions of bound entanglement, not even this

experimentally demanding strategy would work.

Since in any practical implementation the temperature is always non-null, thermal bound-

entangled graph states are ideal probes to explore the limitations of realistic (experimentally

feasible) measurement-based quantum computation. This question is certainly of great interest

and can be the subject of further analysis.
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Appendix. Thermal graph state as a dephased graph state for arbitrary couplings

Thermal state (3) expressed in the eigenbasis of Hamiltonian (1), {|Gµ1 ... µN
〉}, reads (disregard-

ing its normalization) ρT ≡ e−H/T =
∑1

µ1 ... µN =0 e(1/2T )
∑N

i=1 Bi (−1)µi |Gµ1 ... µN
〉〈Gµ1 ... µN

|. Next,

we explicitly evaluate dephased state 3(|G0 ... 0〉〈G0 ... 0|) using equations (4) and (5)

3(|G0 ... 0〉〈G0 ... 0|) ≡ D1 ⊗ . . . DN (|G0 ... 0〉〈G0 ... 0|)

≡
1

∑

µ1 ... µN =0

N
∏

i=1

(1 − pi/2)|µi −1|2(pi/2)|µi |2|Gµ1 ... µN
〉〈Gµ1 ... µN

|,

where ‘| |2’ stands for ‘modulo 2’. The latter is equal to the former expression for ρT if and

only if each and all of the terms in the summation are equal. That is, if and only if
∏N

i=1(1 −
pi/2)|µi −1|2(pi/2)|µi |2 ≡ e(1/2T )

∑N
i=1 Bi (−1)µi

, which when equation (7) holds—and using the

fact that 1

1+eBi /T ≡ e−Bi /2T

e−Bi /2T +eBi /2T and 1 − 1

1+eBi /T ≡ eBi /2T

e−Bi /2T +eBi /2T —in turn reads
∏N

i=1
e(−1)µi Bi /2T

e−Bi /2T +eBi /2T ≡
e(1/2T )

∑N
i=1 Bi (−1)µi

, which can in turn be immediately checked to be true up to a constant

normalization factor.
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