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Abstract. Primordial non-Gaussianities (PNG) leave unique signatures in the bispectrum of
the large-scale structure. With upcoming galaxy surveys set to improve PNG constraints by
at least one order of magnitude, it is important to account for any potential contamination.
In our work we show how to include wide-angle effects into the 3-dimensional observed galaxy
bispectrum. We compute the leading wide-angle corrections to the monopole, finding that
they could mimic local PNG with an amplitude of fxr, = O (0.1). We also compute the dipole
induced by wide-angle effects, whose amplitude is a few-percent of the flat-sky monopole. We
estimate that wide-angle effects in the monopole can be safely neglected for survey volumes
of the order of 8 Gpc®h =3, while the dipole can start being detected from surveys probing
volumes larger than 50 Gpc®h=3. Our formalism can be readily adapted to realistic survey
geometries and to include relativistic effects, which may become relevant at high redshifts.
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1 Introduction

The large-scale structure (LSS) of the Universe encodes a wealth of cosmological information,
which is typically compressed in a small number of summary statistics. For a Gaussian field,
all the information is encoded in the power spectrum, i.e. the Fourier transform of the 2-point
correlation function. Non-Gaussianities, either produced by the non-linear gravitational
interaction or set in the initial conditions provided by inflation, generates non-vanishing
3-point functions. Therefore the study of its Fourier transform, the bispectrum, provides
complementary information to the power spectrum, in particular on the non-linear evolution [2—
22] and on the dynamics of Inflation [23-35].

Analyzing measurements of the bispectrum, however, presents a number of technical
challenges, and the first analyses of the BOSS data [36] have been attempted only recently [11,
37-46]. An example of the intrinsic complication in a bispectrum analysis is provided by finite
volume effects convolution, recently studied in [46-51]. Additionally, all the analyses so far
have been working in the so-called flat-sky, or distant observer, approximation, by considering
the lines of sight to different galaxies to be parallel.

In this work we show how to go beyond the flat-sky approximation in the bispectrum
analysis, by expanding perturbatively in the ratio between the pair separations and the
surveys effective comoving distance. Departures from the flat-sky regime are usually referred
to as wide-angle effects. Given the large fraction of the sky covered by current and upcoming
galaxy surveys such as DESI [52], Fuclid [53] and SPHEREx [54], wide-angle effects need to
be quantified to make sure that the analyses are robust.



Recently, similar questions were addressed by the Authors of [1], who computed wide-
angle corrections the bispectrum multipoles using a Cartesian basis. In this work we will
provide a different formulation of wide-angle effects, based on an expansion in spherical
tensors, which is more easily adapted to the state-of-the art approaches to the convolution of
the theoretical model with a survey window function [50], whose effects become important on
the same scales of the wide-angle corrections.

For the power spectrum, wide-angle effects have been studied extensively [1, 55-71].
As the consequence of the partially broken translation invariance, the power spectrum is
no longer diagonal, (0(k1)d(ka)) = P(ki,ks). The current approach in the community is to
consider the so called local estimator (e.g. P(k,x) for the power spectrum, where X is the line
of sight vector), where “local” here refers to a small region where the translation invariance
is approximately preserved [72]. Wide-angle effects then can be captured perturbatively by
expanding over the small parameter! (k:v)_l (see e.g. [67, T3])

Pk,x) =Y P" (k%) (kx)". (1.1)

In principle the same technique can be applied to the bispectrum. As recently shown
by [1], under the assumption of periodic boundary condition (neglecting window function
effects), the wide-angle effects in the bispectrum can be described perturbatively, written
schematically as follows

B(ki,ko,x) =Y > B (ki ko, %) (k12) ™" (ko)™ . (1.2)
n i4+j=n
In this work we are interested in providing an alternative formulation of wide angle effects in
the bispectrum multipoles for the commonly used Scoccimarro estimator [72], which we think
is more suitable for the convolution with the survey window function.

Measurements of the large scale bispectrum offer a unique window into the Early Universe
as revealed by the possible presence of Primordial Non-Gaussianity (PNG) [74]. The wide-
angle corrections to the monopole of the power spectrum and of the bispectrum have a similar
parametric expression to the amplitude of local PNG, and could therefore be misinterpreted for
a detection of PNG in LSS data. We will show that wide-angle effects produce an equivalent
amplitude of local PNG with fxr, ~ 0.2.

Beyond the flat-sky approximation, odd multipoles are generated by wide-angle correc-
tions. In the recent literature [75-77], the dipole of the bispectrum has received some attention,
since it can be sourced by relativistic effects as well. Similarly to what happens for the dipole
of the power spectrum [78-82], the latter offer the opportunity to test modifications to the
Euler equation with a measurement of the odd multipoles of the bispectrum. Moreover, the
bispectrum is the lowest-order statistic, for a single tracer, sensitive to parity violating physics.
Therefore, the understanding of any other source of odd multipoles is crucial in the search
for parity-odd new physics in galaxy clustering, such as vector-type parity-violation [83, 84].
Here we derive the dipole induced by wide-angle corrections, which we expect to be of a
similar magnitude, or greater, than the one induced by relativistic effects. Our formalism can
be easily extended to incorporate relativistic corrections as well.

This work is organized as follows. The wide-angle effects formulation for the bispectrum
multipoles is laid out in section 2. We present the numerical implementation of our approach
in section 3. Finally, we give our conclusions and outlook in section 4.

!The expansion parameter (kx)™! is the Fourier counterpart of the ratio between the pair separation over
the survey effective comoving distance.



2 Wide angle in the bispectrum multipoles estimator

In this section we introduce the bispectrum estimator and we compute its ensemble average
by accounting for wide-angle effects. We start by considering the Scoccimarro bispectrum
estimator [72]

3
By(k1, ka, k3) = H [/k d3qz‘/‘/d395i€zqi'xi} dp(q123)dg(x1)64(x2)04(x3) Lo (41 - X3),

=1
(2.1)

where the integration [, d3q runs over the spherical shell of radius ¢ in the range k — Ak/2 <
q < k + Ak/2. The fluctuation in the galaxy number density is defined as d4 (x) and we have
introduced

Ve = Vi(k1, ke, k3) E/ d3Q1/ d3(12/ d*q3 6p(qiz3). (2.2)
k1 ko ks

We are interested in computing the ensemble average of the bispectrum estimator without
relying on the flat-sky approximation. Hence, ignoring the k-binning, we have

~ d3x .
(Be(k1, ka2, ks)) = (20 + 1)/73/d59613/d39623 (0g(x1)04(x2)dq(x3))
eHaxemiexan (k- k), (23)
where we have introduced the variables

X13 = X1 — X3, X293 — X9 — X3. (24)

From eq. (2.3) it is clear that we need to compute the 3-point correlation function (3PCF)
beyond flat-sky. Therefore, we consider the (deterministic part of) galaxy number density
d4(k), perturbatively expanded up to second order in the matter density field ¢ (k)

5, (k, %) = Z1(k, %)V (k) + / Zo(a.k— .25 (@)V(k —q),  (25)

where we have made the dependence on the line of sight % explicit in the kernels [85]

Zy(k, %) = by + f(k - %)%, (2.6)
b PN
Zg(k,f() = blFQ(kl, kQ) + 52 + bQQS(kl, kg) + f(kl . kQ)QGQ(kl, kg)

fkioks - ko [ky - % . k
Z1(k
+ 5 o 1( 2,X) + s

X .
Zl(klax) ) (27)



with b1, bg, bg, are the linear, quadratic, bias related to second order Galileon field Gy respec-
tively. The functions F» and G9 are the standard second order matter density and velocity
quadratic kernels [85], and

S(ki, ko) = (ki -ko)2 —1. (2.8)
In full generality, the tree-level 3-point function can be written as
d*py dPpy dPp3
(2m)3 (2m)? (2m)?
2{Z1(p1,X1)Zl(P2,ﬁ2)Z2(P1,p2,f<3)P(P1)P(p2)
+ Z1(p2, X2) Z1(P3, X3) Z2(P2, P3, X1) P (p2) P(ps3)
+ 7 (p37>A<3)Z1(p1,f<1)Z2(p3,P1,>A<2)P(P3)P(p1)}

(27T)35D(P1 +p2 + 103)€ip1'x1eipzix2 e'P3 s

(6(%1)0(x2)d(x3)) = /

d3p1 d3p2 i i
= P1-X13 ,iP2-X23 T X1, X9, X 2.9
/ @m? erpt € (Pr, P2, %1, %2, %3), (2.9)
where we have collected the kernels into

F(p1, P2, X1,X2,X3) = 2Z1(P1,%X1) Z1(P2, X2) Z2(P1, P2, X3) P(q1) P(q2) + perms.  (2.10)

Since all the angular dependencies are analytical,”> we can evaluate the 3PCF by expanding
the F kernel in terms of two wide-angle expansion parameters® x13/23 and x93/x3 (where X3
has been chosen to be the line-of-sight)

L3 L3

A A A 11 A A A l‘ i x j
F(p1,p2, X1, %2,%3) = > F9(py, p2, %13, %23, %3) (13) (23) ; (2.11)
ij

where F(9) can be further decomposed into Legendre polynomials of all the angles appearing
in eq. (2.11)

ij o R ) — (i5)
F J)(pl’ P2, X13, K23, X3) = Z Z Z ]:@35445@6@74849@10511 (P1,p2)
LotLr+Ll3<ilo+l10+011<] €3,04,l5

Loy (P1 - D2)Le, (D1 - %X3) Loy (P2 - X3)
L (D1 - X13) Lo, (P2 - X13) Lo (X13 - X3)
Ly, (P1- ﬁ23)££10 (P2 - }A{23)£f11 (X23 - X3). (2.12)

Once the 3PCF is expanded in Legendre multipoles, we can perform all the angular integrals
in eq. (2.3), arriving to the following expression for the tree-level bispectrum multipoles (see

’Due to the mode-coupling between p; and p2, the integrals over L, (p1 - P2) needs to be computed
numerically. We discuss the convergence of the sum over ¢3 in the appendix C.

3 As shown in ref. [86], for the monopole this perturbative expansion at second order in terms of the ratio of
the pair separation over the line-of-sight comoving distance is accurate at the percent level up to the boundary
of the survey window function.



appendix A for derivation),
(Be(k1, k2, k3)) =

Z Z Z Z i@1+€2*512*513

i Lo+Llr+Lg<ilg+L10+011<) L1,02,03,04
ls5,612,013,014

1 drsx’
X [(%)6/ & 3 /d$13$%3/d$23$%3/dp1p%/dp2pg

. . . . (i) z13\" (723’
Jey (P1213) Jey (P223) Jers (K1213) Jity 5 (K2T23) F g 0 02 g5 02 050001000, P1sP2) | — ) | =

x3 x3
14
y (4m) Z(_l)m3+mg+m11+Mgm4mM
Niyt405 Negeres N fatl
l3€405 Vb lrls Y eoliol11 m m; [\
G1MEMAMGY (MM, MMM (GMAM2MMEMT,— NS (GM2MAZMYM10,~ 111 g—Mmsmsmn
L1L304Lely Lol3lslrlig l1412060708 lal13€9€10011 Lislslyy
mmi2miq i * i
gﬁ€12€14 }/51477114 (kl)}/ﬁ13m13 (k2)] ’ (213)
where we have defined
N€1f2€3 = (261 + 1)(262 —+ 1)(263 + 1)7 (214)
and
mimso-mMypn 2 A N A~ N
gell}Q"'an = /d n Yflml (n)meQ (n) e anmn (n) ’ (2'15)

which can be evaluated by repeated use of eq. (E.6) and eq. (E.8).

As we can see, the final expression in eq. (2.13) includes two Hankel transforms, which
can be performed analytically as shown in appendix B. In the next sections we will evaluate
this expression to compute different multipoles of the bispectrum at different order in the
wide-angle expansion.

3 Numerical results

In this section, we present the numerical results of the implementation of wide-angle corrections
to the bispectrum multipoles as defined in eq. (2.13). We relegate all lengthy calculations to
the appendices: in particular we show how to perform the Hankel transform analytically in
appendix B and we study the dependence to the maximum value of ¢3 (which is the multipoles
associated to the angle between two wave-vectors of the bispectrum p; - p2) in appendix C.

Theoretical predictions are computed using the linear power spectrum of ACDM
cosmology, computed with CAMB code [87], with the following parameters: h = 0.695,
Och? = 0.11542, Qph? = 0.02224, n, = 0.9632, A, = 2.20193 x 1077, Teyp = 2.7255. We use
the quadratic fit for the quadratic bias by [88] and the relation derived from excursion set
formalism for the bg, [89, 90]

bg, = 0.524 — 0.547 by + 0.046 b3, (3.1)
4
by = 0.412 — 2.143 by + 0.929 b7 4 0.008 b5 + 3002

Results are shown for two redshift bins centered at z = 1.0 and z = 1.65 with linear
bias by = 1.46 and b; = 1.9 respectively, following the specifications of the official Fuclid
forecast [91].



3.1 Wide-angle effects in the monopole and dipole of the bispectrum

We start by looking at the monopole of the bispectrum. As expected by symmetry, i.e.
translational invariance, the first order wide angle correction vanishes and therefore any effect
start at second order, i.e. n =i+ j = 2 in eq. (2.12). In figure 1 we plot, as a function
of the largest wave-number in the triangle k;, all possible triangles (k1, k2, k3) ordered by
k1 > ks > ko, that satisfy the triangle conditions k1 < ks 4+ k3 and k1 > 2 ks, the amplitude
of the flat-sky monopole, in black, of the leading order wide-angle correction to the monopole,
in orange, and of the bispectrum dipole generated by wide-angle effects, in blue. We see that,
for most triangles, the n = 2 correction to the flat-sky monopole is ~ 0.01% at z = 1. On
very large scales wide-angle effects approach the % level, for a set of triangles that could be
relevant to the constraints on local PNG. For this reason, in figure 2 we focus on squeezed
triangles, with the largest scale fixed at ko = 0.01 h/Mpc. The dashed lines show, in units of
the flat-sky monopole in a Gaussian Universe, the expected local PNG signal for different
values of fyr,, while the black one corresponds to the leading order WA corrections.* We
find that deviations from the plane-parallel approximation roughly correspond to values of
Sy ~ 0.1-0.2, which are close to the uncertainties expected from a measurement of the
bispectrum with future galaxy surveys [54, 74, 92, 93]. It should however be kept in mind
that, at fixed volume, going to higher redshifts reduces the amplitude of the WA corrections.

Going beyond the monopole, wide-angle effects generate a non zero dipole at order
n =1+ j = 1. As it can be seen from figure 3, the corrections are the order of few %’s of the
flat-sky bispectrum monopole. This holds in general, for all triangular configurations and
in the redshift range z € [1,2]. This could have important implications for searches of new
physics in the dipole of the bispectrum.

Another interesting metric to look at is how important the wide-angle effects are with
respect to the error budget of the ongoing and upcoming large-volume galaxy surveys such as
DESI and Fuclid. In figure 4 we compare the wide-angle effects to a theoretical Gaussian
variance assuming a flat-sky bispectrum with linear Kaiser model and Poisson shot-noise.”
Following the Euclid forecast in [91], we consider a redshift bin centered at z = 1 with total
effective volume of Vg = 8 Gpc®h~3 and number density ng = 6.86 x 10~* h3 Mpc3. We
find that the wide-angle corrections to the monopole are always well below the expected
cosmic variance, and can be safely neglected, unless some technique to remove sample variance
is used, e.g. multi-tracing between different samples probing the same volume.

The signal to noise in the bispectrum dipole is instead of the order of 10% for several
triangles. Summing over all configurations indicates that the dipole could be measured with
a significance of (0.76 X ’/SGpc%) 0’s by upcoming surveys. Therefore, the wide-angle
corrections to the bispectrum dipole can start being detected with surveys probing volumes
larger than 50 Gpc® h=3. Note however that the presence of a window function could change
this result, since the signal from other multipoles will leak into the measured dipole, similarly
to what happens in the power spectrum [73].

We conclude this section by a qualitative discussion on the relation between WA effects
and other projection effects that could change the prediction of the large scale bispectrum.
Wide-angle effects introduce corrections which scale as (kx3)™™ at order n = i + j in the
perturbative expansion. At the largest scales, relativistic effects beyond the Newtonian

4Local PNG have been included in the theoretical prediction by modifying the perturbation theory kernels
at leading order in fni, (see for example [33]).
®See for example section 4.2 of [21] for the full expression.



Loy

10
z=1.00]
102t N B —_— Bn 1 n 2
1071,
= | /\
) /
10—5,
— (=1 — (=0
PR & & ¢ S & & $ »
QQ QQ QQQQ QQ QQ S Q'Q Q'Q Q'Q Q'Q Q'Q Q'Q Q'Q Q"x

k1 [/Mpd]

Figure 1. The flat-sky bispectrum monopole is contrasted with the largest wide-angle corrections to
the monopole and the dipole. Wide-angle corrections to the monopole are generally below ~ 0.1% of
the flat-sky monopole. Wide-angle induced dipole can reach few percents of the flat-sky bispectrum
monopole. Here, the bispectrum are plotted as a function of the largest wave-number in the triangle
ky, for all possible triangles (ki1, ko, k3) ordered by ki > k3 > ko, that satisfy the triangle conditions
ki1 <ko+ksand k1 > 2 ko.

description in egs. (2.6)—(2.7), induces corrections which scale as (H/k)". These have
been first computed in linear theory in refs. [94-98] and then extended to higher order in
perturbation theory in refs. [99-104]. Therefore, we expect that these two contributions
have similar amplitudes for deep surveys x3 ~ H ™!, while at low redshift wide-angle effects
are the main correction at large scales.® So far the relativistic effects has been included in
the 3-dimensional Fourier bispectrum only within the flat-sky approximation,” see e.g. [75—
77, 112, 113] or neglecting the convolution with a realistic window function [1]. Our approach
can be straightforwardly extended to also incorporate relativistic corrections and, therefore,
it will allow a complete and correct description of galaxy clustering at the largest scales.

5Let us note that wide-angle and relativistic effects exhibit comparable amplitudes even in the context of
2-point statistics. Furthermore, wide-angle effects are sensitive to the definition of the line of sight. Specifically,
when employing the end-point line-of-sight (as in our work), a significant enhancement of the wide-angle
corrections is observed, which has already been detected in the BOSS catalog. [73, 105].

"Wide-angle effects are naturally included in the angular bispectrum, see e.g. refs. [101, 106-110], and in
the Spherical-Bessel decomposition [111]. However the 3-dimensional information is diluted in a large number
of data points and its analysis will be hardly feasible with upcoming galaxy catalogs.
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Figure 2. Comparison of the wide-angle corrections to the monopole with the local primordial
non-Gaussianity contribution. At z = 1.0, the wide-angle contributions is comparable to a @(0.1) local
fnr signal.

3.2 Comparison with the Cartesian expansion formulation [1]

Recently, wide-angle corrections in the modeling of the bispectrum have been studied in
ref. [1]. While their approach share some common features with our derivation, for instance by
taking advantages of the analytical integration of the double Hankel transform, they expand
the kernels in the Cartesian coordinates,

s s s . s 41 42 53 54 55 [6 —n
F(P1, P2, X1, X2, X3) = Z Foreat304050 (pl’p2’X3)x13,xw13,yx13,zx23,xx23,y$23,z$3 J

L4+ le=n
(3.2)

where n denotes the wide-angle order while x13 = (2132, 13y, 13,2) and similarly for xp3. In
this way, for the most general case where we also include the window function we have

dgl‘g . . d3p1 d3p2
By(ki, ko k3) = (20 + 1) [ =2 [ d° / Brp e—K1%13 o~ ika X3 /
o(k1, ko, k3) = (20 + )/ v / 213 Toz € e ORE

eiP1~X136iP2~X23JT-'(p1, P2, X1, )22,)A(3)W(X1)W(X2)W(X3)£g(kl . X3>
d’z o Cikox d3 43
= (2£+1)/73/d3x13/d3x23 e~ kX3 gika 23/(27313 (2:)23

1P1-X13 ,1P2-X23 S {1 lo A3 Ay s  Le
e'P1X1s P Y Fiutatatatsts(P1y P2, X3)T1h ,a13 015 204 ,a05% 255

£14-+Lg=n

> QE]??yzjs (213, w23) L.y (X13 - X3) L, (X23 - X3) L7 (R13 - Ra3) Lo(ka - X3),
J1,J2,J3

(3.3)
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Figure 3. Wide-angle effects induce a bispectrum dipole shown as a function of angle between the
two wavevectors 6, where cosf = k; - ko. The effects can be as large as few percents of the flat-sky
bispectrum monopole.

where we have defined the 3PCF of the window as follows
. dx
Q™ (x13, x93, %3) = /73

= > QS??]2J3($13,$23)5J1(>A€13'>A<3)EJ2(>A€23'5€3)EJ3(>A<13-fczg). (3.4)
J1,J2,J3

H,’%_n W(Xl)W(Xz)W(Xg)

In the case of uniform window function W(x) =1,

drs o,
73963 0.7,00.7500.750, (3.5)

and thus the Cartesian coordinates of x;13 and x93 only appear as some polynomial functions.
Denoting k1 = (7, kY, k%) (and similarly for ko) we can replace

2iyq — (—i)1pe s, (3.6)

QS??JQJg (213, x23) =
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|Bo
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Figure 4. Comparison of the wide-angle effects to an error budget associated with redshift bin centered
at z = 1 with total effective volume of Vg = 8 Gpc®h 2 and number density n, = 6.86x 10~* h3 Mpc >
following [91]. The error is represented by a theoretical Gaussian variance assuming a flat-sky
bispectrum with linear Kaiser model and Poisson shot-noise, associated with the specifications of the
redshift bin. Wide-angle effects occupy at most few percents of the error of the bispectrum monopole.
On the other hand, the wide-angle induced a dipole which is in the order of ~ 10% of the error budget.
The bispectrum are plotted following the configurations similar to figure 1.

and similarly for the others, giving
Bo(ky ko, k) = 20+ 1)(=0)7" > O af;?i, op o 352 ofe

O+ +Le=n
X / % / d3m13 / d3x23 e~ kX3 g —ikaxag / (C;p)l?) (cg;p)gs ¢'P1X13 o1P2X23
Fortat5000506 (P15, P2, X3) Lo (ky - x3) 23"
= (20 +1)(—i)™" M;ZG:” Ot OO0k 0,301
d3zs R _
x / o Pttt (01, Ko ) Ll - x5)™ (3.7)
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Figure 5. Comparison of the Cartesian method developed in [1] and the method developed in this
work with £3 max = 6. The comparison is shown as a function of § where cos§ = k; -ks. The agreement
is at 0.1% level for most of the triangular configurations.

The main advantage of using Cartesian coordinates relies on having only finite sums. Therefore
we can use it first to cross-check our results and then also to study the convergence and the
cutoff of the sum over ¢3 in eq. (2.13). In figure 5, we show that both Cartesian method and
the method developed in this work agree at 0.1% level for most of the triangular configurations.
We have also checked that our results agree numerically with ref. [1] whenever a comparison
was possible.

The main drawback of the Cartesian coordinates method presented above is that it is
not particularly well suited to include any realistic window function. Actually, the Cartesian
method relies on the assumption that the Cartesian coordinates of x5 and x93 appear as
some polynomial functions, which only true for uniform window function W(x) = 1. The
Cartesian approach can still be generalized to include more realistic geometry, but at the
price of a much larger computational complexity.

On the other hand, the method presented in this work, as shown in appendix A, can
be trivially extended to include arbitrary window functions. The main difference with the
formulation presented in the main text is that now the Hankel transforms in eq. (2.13) have
to be evaluated numerically via FFTs (e.g. with 2D-FFTLog [114]).

4 Conclusions and outlook

In this work we laid out a formalism to include wide-angle effects in the bispectrum multipoles,
matching the theoretical model to the most commonly used bispectum estimator. We found
that, at z = 1, wide-angle effects on the monopole are, for most triangular configurations, a
~ 0.1% correction to the flat-sky monopole. The wide-angle contributions to the monopole
however can become comparable to a @(0.1) local fyi, signal in the squeezed limit. Wide-
angle effects also can induce a dipole that can reach few percents of the flat-sky bispectrum
monopole. In general this effect is less pronounced at higher redshift and at smaller-scale.
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We also consider the prospect of detecting these effects for the ongoing and upcoming
galaxy redshift surveys such as DESI and Fuclid. We found that for a typical reshift-bin of
total volume Vg = 8 Gpc3h—3, wide-angle effects in the monopole can be safely neglected.
The bispectrum dipole could instead be detected by surveys probing volumes larger than 50
Gpc® h3. Note that these numbers will change accordingly if the effective redshift of the
sample changes.

Future direction which we have not explored in this work include a numerically efficient
implementation of wide-angle effects in the presence of a window function, and the general-
ization of our method to include relativistic effects. We plan to return to these interesting
problems in a future work.
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A Derivation of the bispectrum wide-angle formulation

In this appendix we explicitly compute the ensemble average of the bispectrum estimator
beyond the plane-parallel approximation. From the definition of the bispectrum multipoles
including the window functions W (x) we have

(Bu(ky, ko, ks))
= (20 + 1)/6@%’)/d3$13/d3$23 (0g(x1)0g(x2)d4(x3))
X W(Xl)W(Xg)W(Xg)efikl'xweiik?x%ﬁg(f{l . )A(3>

Brz [ 5 3 —iki-x13 —ikax
:(2@4—1)/7‘/ /dxlg/d:ligge 113 g iR RS

Bp; d3 : . N
8 / (2:)13 (2:)23 P15 e!P2 X F(py, po, X1, K2, X)W (x1) W (x2) W (x3) Lo (ki - X3),
(A1)

where we have used eq. (2.9) and eq. (2.10). Taking X3 as the line of sight, we can expand
the F kernels as in eq. (2.12).

(Bo(k1, k2, k3))
Bars [ 4 3 —iky-x13 —ikax
:(2f+1)/?/d$13/d1’236 L1s g2t

3 3
/ d’p1 d’ps eP1°X13 oiP2-X23

(2m)3 (2m)3
DY > > ]:e(22£546e7e839410411 (p1,p2) (?) (x%)J
ij otlr+Ls<i lo+L10+11<] £3,0a,05 3 x3
Loy (D1 - P2) Loy (P1 - X3) Lo (P2 - X3)
L (D1 - X13) Lo, (D2 - X13) Lo (X13 - X3)
L1, (P1 - %23) Loy (P2 - X23) Loy, (o3 - %3) Lo(ky - %3) W (x1) W (x2) W (x3),  (A.2)
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which can be further organized in terms of Legendre polynomials by expanding the plane
wave using the Rayleigh expansion identity eq. (E.2)

(By(k1, k2, k3))

_ 2(6"‘ 1 / d$3.%'3 /dx13$13/dx23$23/dp1p1/dp2p2
Y Y 2

1] Le+Lr+Lg<iLo+L10+L11<] l1,02,03,04,05,012,013
2=t (90, 4 1)(20y + 1)(2010 + 1)(2013 + 1)

. . . . i T13 T23
ey (P1213) 0, (P223) 15 (K1213) 0y (K223) F, gﬁzseﬁmgegemen(phpz) <x3> (%)

/d2$3/d2$15/d25€23/d2m/d2p2

(D1 - X13) Lo, (P2 - %23) Loy, (K - X13)£z13(k2 X23)
L, (D1 - D2) Lo, (D1 - %X3) Lo (P2 - X3)

(D1 - %X13) Lo, (P2 - X13)Log(X13 - X3)

(

Ly (D1 - %03) Loy, (D2 - X23) Loy, (Raz - X3) Lo(ky - %3)W (x1) W (x2) W (x3) - (A.3)
Let us then define the 3PCF of the window as follows

d
Q™ (x13,%23,%3) / s 23" W (1) W (x2) W (x3)

> QJ1J2J3(9613,9023)£J1(ﬁla'ﬁ23)£J2(>A<13'>A<3)£J3(>A<23'f<3), (A.4)
J1,J2,J3

so that now

(Bo(ky, ko, k3))
20+ 1
= P /d$13$%3/d$23$§3/dp1p%/dp2pg

DD 2 D

ij Le+Lr+Lg<iLg+L1o+011<] €1,02,03,04,05,012,013
ittt =ha (90, 4 1)(209 + 1)(2012 + 1) (2013 4 1)

(i5)
Jer (P1713) e, (P223) Jiyo (R1713) Jiy 5 ( k2$23)]'—5344%@647@8[9[10[11 (p17p2)l‘13$23

/d2$3/d29€13/d 1725/61 Pl/d2p2
(D1 - %13) Loy (P2 - K23) Ly, (k7 - X13)££15(k2 X23)
Lo, (D1 - P2)Le, (D1 - X3) Lo (P2 - X3)
Lo (D1 - X13) Lo, (D2 - X13) L (X13 - X3)
Ly (D1 - %23) Loy (D2 - K23) Loy, (X3 - %3) Lo(ky - X3)

> QL(;:]JQJB (213, 223) L7, (X13 - X23) L7, (X13 - X3) L 75 (X23 - X3)
A
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20+ 1
= (QW)G/d$13x%3/d9€23$§3/dp1p%/dp2pg

DD 2 2 2

ij Le+Llr+L8<ilo+Li0+L11<j £1,02,03,04,05,012,013 J1,J2,J3
=t =hs (90, 1 1)(20 + 1)(2012 + 1)(2613 + 1)7g, (p12:13) e, (P223)

(i5)
J€1z(k1$13 Jas <k2x23)]:g3e4z Cebrlslol10011 (p17p2)QJ1J2J3 (x13,x23)x133323

/d2$3/dl‘13/d$23/dp1/dp2

2
/ / J2 KB ES JS 611 5/11
Z(2€8+1)(2£11+1)<0 0 0> (0 0 0

by,0

Lo (D1 - %13) Loy (D2 - %23) L1, (f(l - X13) Loy (122 - Xo3)

Loy (D1 - D2) Loy (D1 - X3) Lo (P2 - X3)

L (D1 - X13) Lo, (P2 - X13) Loy (X13 - X3)

L (P1 - %23) Loy (P2 - X23) Lor (R - X3) Lo(ky - %3) L, (K13 - R3), (A.5)

where we have used the product of Legendre polynomials identity eq. (E.7). Expanding the
Legendre polynomials in terms of spherical harmonics, eq. (E.3), we can collect the angular
integrations in terms of the matrices defined in eq. (2.15)

(By(k1, ko, ks))

1
_ (27)6 /dl‘lgﬂj%g/dl‘zgl‘%g/dplp%/dpgp%

D D > > > it =hs 5, (pr3y3) e, (P2zos)

1j Lo+Lr4-Ly<ilo+Li0+£11<j 1 ,02,03,04,05,012,013 J1,J2,J3

: : (i5) (i+7) i
Jers (k1213) 01 (k2$23)]:egz4e5z6z7esegzmzu (p1,p2)QJ1 JoJs (213, 023) 713793

/ 225 / %315 / 2893 / d%p, / d2py

2 2
Z Jo Lg U4 J3 011 0 (4m)15
oz N0 00/ X0 0 0/ Nepyes NegeregNeyo.rn0
8711

Z 1/;;ml(151)}/417711()A(1i3)1/4>'2<f)12(152)}/@27712()A(23)
m7ml7m;7jl
}/;;217112(El)w12m12(ﬁlg)ntgmlg(122)}/2137%13()223)
Yams (P1)Yegms (2) Y, (P1)Yeuma (X3) Yy (D2) Yesms (X3)
X13)Ye7m, (P2) Yermy (R13) Yy s (RX13) Yoy my (X3)

Yime (B1)Yegme (
Yigmeo (P1)Yegmo (X23)Ye10m10 (P2) Yeromao (X23) Yy (X23)Yer it (X3)

Y (K1) Yo (%3) Y, 5, (%13) Y7, (R23)
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1
= (27T)6/d$13$%3/d$23$§3/dplpf/dPQP%

x> D > > ST ifterteThsg, (piaas) s, (poxas)

tj Lo+Lr+la<ilo+Ll10+l11 <] l1,02,03,04,05,012,013,014 €5 07 J1,J2,J3

. . ij i+
Jers (K1213) e (k2f'323)]‘“e(;%ieg)%&esegeweu (1 7P2)Q§1 N ])3 (213, %23) 75320
2 2
Jo ls Eé Js 11 6/11 (47")15 Z Z(_l)m3+mé+m/11+j1+M
000 0 0 0 ) NpyesNegentoNeryo

;.

/N ’ .
g 4mMgm1m5 4MEMmg AM2,—M3MsM7Mm1g HM1M12MEMT,—MgJ1 »M2M13M9M10,— M1, ]J1
L40L

0103040609 L2l3lsl7l10 l181286b7Lg 1 lalizlolioly; J1
Mmsmgmiy ammigmaia * ’
gL£5f/ f/ gfé12£14 }/Z14m14 <k1>1/ﬁ13m13 (k2)7 (AG)

where we have used eq. (E.8) in the last step. Eq. (2.13) is a special case of eq. (A.6) in the
case of uniform window functions W (x) = 1.

B Evaluation of the Bessel integrals

We are interested in solving integrals of the following kind

/d9613i€%3/d962396‘§3/dp12?%/dp2p3 Jey (k1213)de, (k2w23) jes (P12213) Jey (p2$23)f(P1,P2)$§3$§3-
(B.1)

In the case of ¢3 = ¢1 £ ny (and similary ¢4 = ¢5 4 ng) for some integers nq, no these integrals
can be solved analytically. Consider the following building block of eq. (B.1)

Al v (p, k /dxx Je(px)je (kx). (B.2)

In the case of n = 0, the couplings of the main eq. (2.13) only allows ¢/ = ¢. In this case
eq. (B.2) is simply the orthogonality of spherical Bessel identity

Ape(p, k) = 5.50p(k = p). (B.3)

2k2
When n = 1, the couplings in the main equation eq. (2.13) only allows ¢ = ¢+ 1. In
this case we have [115]

2 20 e<e+1

A%,eﬂ(p, k) =— <5.pg + o 2 ) /dl‘l’ Je(px) jes1 (k)

:_<82+23 W+1)>{ 2O(k—p)p'k*2 W =t+1

ap2 ]gaip - p2 g@ (p o k) kfflpfffl . El —/—-1

w0+ " k26 p(p — k) + Tk 20 (p— k) 1 =+ 1
= —0—27.0—1 fe 17.6—1 (B4
wlp E~top(p—k)—5p Etohp—Fk) 0/ =0-1
where 0%,(r) = 0,0p(r) and the following identity has been used (see e.g. [108, 109])
2 20 LU+1) 9.
S AR - : B.
< o2 pop e Je(pz) = x”jo(pz) (B.5)
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In the case of n = 2, the couplings in the main eq. (2.13) allows for ¢/ = ¢,¢ + 2. For
¢ = {, we have

92 20 £(£+ 1)
Aié(ﬁ k) = — (8])2 + 179879 — > /dxx Je px)]e(kx)
_ 2lp4 (20~ 2)6D(p —B) 200~ k)~ P~ k). (B6)

where 8% (r) = 025p(r). For ¢ = { + 2, we have
A?,EiZ(I% k)

82 208 (t+1) o
_ <6p?+p8p_ >/dxx2je(p$).7€i2(k$)

2
_ <3+2 0 W“ >/dxx jo(pz) ((2€+1i2)‘7&1 (k)

op? pop

__<82+26 WH)) (20+3) (30(k—p)k~"=3p — 3 0p(p—F)) ' =E+2
-\ pop P (20-1)(50(p—k)p ‘Hkm—ﬁép(p—k:)) =02

(— L 1 (34504 202)mpt k) 6p (p— k)

(5 E200 k) T (0 k) gy k) =042

= (_%M(_H%)w—f—%“?) op(p—k)

+ CHO20 U B (k) B (k) =2

(B.7)

Now defining

PLAY 4, (p1, k1) = ao(pr, k1)dp(p1 — k1) + a1 (p1, k1)0p (p1 — k1) + az(p1, k1)Sh (p1 — k),

a
p%AZQ,Q (p2, k2) = bo(p2, k2)dp(p2 — k2) + bi(p2, k2)dp(p2 — k2) + ba(p2, k2)0D (D2 — k),
(B.8)

for some functions ag(p, k), a1(p, k), az(p, k), bo(p, k), b1(p, k), b2(p, k), the integral eq. (B.1)
for the cases that we considered before, namely (n = 0,¢/ = ¢), (n = 1,0/ = £ £+ 1),
(n=2,0 =/{,£+2), can be evaluated as follows

/d331333%3/d$23$%3/dplp%/dmp% Jo, (k1213) e, (K2223) jes (P12013) e, (p2$23)}-(p17p2)$§3$%3
= |aoboF — (aob) F +aob10p, F) + (2a0by,0p, F +aobo0s, F) — (a bo F +a1bydyp, F)
[(alap2f+alap18p2f>bl+(a1f+alaplf)bl]
—[(a} 82, F +a10p, 0y, F )ba —2(a} Op, F + a10p, Op, F ) b))
+(2a2b08p1f—|—a2b0621}")
—[(2a50p, F + a0y, F)V; + (250, 0py F+a202, 8p, F b1
[(

(2009, 05, F+0203, 05, F oo+ 2(2050p, 0, F a0, FO3)| o (BY)
1=R1,P2=R2

—

where for example a}(p, k) = 9pa)(p, k) and similarly for the other a(p, k)’s and b(p, k)’s
function.
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Figure 6. Dependence of the results to the £3 max which is the multipoles associated to p; - p2. The
result is shown as a function of angle between the two wave-vectors 8, where cos 6 = k; - k. Increasing
03 max 10 €3 max = 10 gives a maximum percent level deviations with respect to the default ¢35 ax = 6
used in this work.

C Convergence test

In this section we show the dependence of the results to the maximum value of ¢35 (which is
the multipoles associated to the angle between two wave-vectors of the bispectrum p; - P2).
From figure 6, we found that a sufficiently large ¢3 max = 10 gives a maximum percent level
deviations for most triangle configurations with respect to the default /3 ax = 6 used in this
work. Generally, the squeezed configurations required a smaller /3 max.

D Flat-sky limit

Here we compute the flat-sky limit of the bispectrum starting from eq. (2.13). In flat-sky we
have ¢ = 5 = 0 which implies fg = {7 = fg = lg = {19 = £11 = 0. This leads to

0 L1 4+-ly—Ll12—4
Bé(k‘l,kg,]{ig) — Z Jatte—tia—tis
41,€2,03,04,05,012,013

1 dxsr?
X [(%)6/ ‘3} 3 /dmsxfg/dxgsx%g/dplp%/dprg

Jey (P1713) e, (P2223) 15 (K1213) e 5 (k2$23)]:g(;2e5000000 (p1, PQ)]

« l(47‘r)14 Z Z(—l)m3+MgZ§£nM

Nestats i 131

gm1m3m400gm2 —mgm500gm1m12000gm2m13000g—Mms 00
01434400 £203£500 1412000 £2£13000 L¢500

A

Y7 s (K1) Yo (K1) YE oy, (2) | (D.1)
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Then using the identities
géléz&g

Glrtals00 _ Fmamams
mimoms00 — An
142000 ( )
gm1m2000 ( )3/2 651425m1, —ma2
010500 (-pm™
142
gmlmQOO - A 631425m1,—m2 (D2)

we have

B?(kla k?a k3)

1 dxsx?
27T)6/ v : /d9513$%3/d$23$53/dp1p%/dp2p§

Jey (pll'IS)sz (p2x23)j£1 (kll'll%)jﬁg (k2$23)]:g§;2g5000000 (pl ) pZ)]

L1,02,03,04,05 l(

8
X (47) ( 1)m3+m5g mmsg 1Mm3mgq 2M2—Mm3ms (_1)m1+m2+m5
N, L4005 l1430y lol3ls
038405 1y m,;

Yy, (k1) Y (K1) Y7 o, (ﬁz)]

drsx?
/ °F 3265000000(]?17 kQ)]

01,02 f3,€4 V43 [

47T _ ~ N N
- |j7£ff 1274 Z gzgggmsg;?é3égm4ggjsf:l3m5 (_1)m3 Yv&rm (kl)YVEm(kl)Yvﬁzmz (k2) . (D.3)
38485 mom,

The sum over ¢; and ¢o run over the Gaunt factors and spherical harmonics only, therefore by
using
Z ggfé2€2m3n3m3 }/Z;mlyz’;mg (D4)

L3ms

we obtain

BY (K1, ka2, k3)

drsz?
= Z / % ‘Ff(3€1£5000000(k17k2)
l3,04,05

(4m)* o
x lNe 240 Z ngng (_1)m3 }/Z:sms(kl)n4m4(k1)nm(kl)}/€3—m3 <k2>1/(5m5(k2)
3€als m.m;

diL‘3x3 (i5)
= Z / % ‘F€3€4£5000000(k17k2)
£3,04,05

U S e ¥ i ) ()|
00485 m;

dw3x? .
B Z/ 27, 4e5oooooo(k1>k‘2,k1 - ko)
Ly s

(47T mamm
X [N Z g&j& 5Y[4m4(k1)}/€m(k1)}/£5m5(k2) (DS)
00405 m m;
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The sum over m can be simplified as follows

D Gt Y i, (k1) Y (k1) Y, (k2)

mmams

= [ Y (@) Yirn (@ Yina (@)Y, (k1) Vi (k1) Y, ()

mmams

- J(\Zf)@? / daL, (a ki) Lo (a ki) Lo, (a-ko)
2
= f(%)e; . (261 +1) (%‘ g %) /dqggl (q : 1;1) Lo, (q , 122)

2
~ Nuggos (£4 0 U5 c
 (4r)? (0 0 0) Les (k1 k2) (D-6)

which leads to

dzsx? A
B (F1, ko, k) = Z/ S, iioooooo(khk%kl‘kﬁ
04,05

2
X A7 (204 1) (% g %’) Ly (121 : 122) . (D.7)

In particular for the monopole £ =0

dxsz? N 1;1.122
BY(k1, ka,ks) —4772/ T, 4é4oooooo(klvk2’k1 'k2)42§4+1)

E Useful identities

In this appendix we collect several well-known mathematical identities employed in the
derivation of the main results. Our convention for the spherical harmonics is such that

Yio(0,6) = /(20 + 1) /4 Ly(9), (E1)

where £4(0) is Legendre polynomial of order /.

Rayleigh expansion of a plane wave:
X =" i8(20 + 1) jo(kw) Lo(k - 7). (E.2)
¢
Addition of spherical harmonics:
47

L2 9) = gy 2 VimdE)Yin ) (E:3)
Orthogonality of Legendre polynomials:
Pk o
(25+1)/E£z(k'$)ﬁz'(7€' §) = e Lo(2 - 9) (E.4)
which implies that
dzk zkx 7. 5L
ey () = ijulka) Lol ). (E.5)
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Gaunt’s integral:
[ @2k Yo (B Yo (R) Yoy () = G122 (E.6)

Product of Legendre polynomials:

2

AP b by 0 o

Egl(k-a:)ﬁgz(k-:n):§:<01 02 03> (203 + 1)Ly, (k- 2) . (E.7)
L3

Product of spherical harmonics:

Yflml (ﬁ)Yézﬂw Z g?fz}:;;ms l3ms3 (ﬁ) : (E8)

£3,ms3
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