
VIETORIS ENDOFUNCTOR FOR CLOSED RELATIONS
AND ITS DE VRIES DUAL

MARCO ABBADINI, GURAM BEZHANISHVILI, AND LUCA CARAI

Abstract. We generalize the classic Vietoris endofunctor to the category of compact Haus-

dorff spaces and closed relations. The lift of a closed relation is done by generalizing the

construction of the Egli-Milner order. We describe the dual endofunctor on the category of

de Vries algebras and subordinations. This is done in several steps, by first generalizing the

construction of Venema and Vosmaer to the category of boolean algebras and subordina-

tions, then lifting it up to S5-subordination algebras, and finally using MacNeille completions

to further lift it to de Vries algebras. Among other things, this yields a generalization of

Johnstone’s pointfree construction of the Vietoris endofunctor to the category of compact

regular frames and preframe homomorphisms.
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1. Introduction

Hyperspace constructions are among classic constructions in topology [Eng89] with nu-

merous applications [GHK+03]. One of the most famous such is taking the Vietoris space

V(X) of a compact Hausdorff space X. It is well known [Joh82, Sec. III.4] that this de-

fines an endofunctor V on the category KHaus of compact Hausdorff spaces and continuous

functions.

In recent years there has been some work on generalizing KHaus to the category KHausR of

compact Hausdorff spaces and closed relations [Tow96, JKM01, Mos04, BGHJ19, ABC23a].

One advantage of KHausR is that it is more symmetric. In particular, KHausR is a dagger
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category (see, e.g., [BGHJ19, Rem. 3.7]). It is then natural to try to generalize the Vietoris

endofunctor to an endofunctor VR : KHausR → KHausR. This is one of the aims of the present

paper.

If f : X → Y is a continuous function between compact Hausdorff spaces, then its lift

V(f) : V(X) → V(Y ) is defined by Vf(F ) = f [F ], where F is a closed subset of X and f [F ]

is the f -image of F in Y . We observe that if R ⊆ X × Y is a closed relation, then the lift

VR(R) can be defined by generalizing the well-known Egli-Milner order, which originates in

domain theory (see, e.g., [Smy91, p. 224]). More precisely, if F ⊆ X and G ⊆ Y are closed

sets, then we define VR(R) by

F VR(R) G ⇐⇒ G ⊆ R[F ] and F ⊆ R−1[G],

where R[F ] is the R-image of F in Y and R−1[G] is the R-inverse image of G in X. We

show that this defines an endofunctor VR : KHausR → KHausR, which restricts to the Vietoris

endofunctor V : KHaus → KHaus (see Section 2).

In pointfree topology there is a well-known duality between KHaus and the category KRFrm

of compact regular frames [Isb72] (see also [BM80] and [Joh82, Sec. III.1]), known as Isbell

duality. It is obtained by associating with each compact Hausdorff space X the frame O(X)

of opens of X. In [Joh82, Sec. III.4] (see also [Joh85]) Johnstone described an endofunctor

J : KRFrm → KRFrm dual to V : KHaus → KHaus.

Isbell duality extends to a duality between KHausR and the category KRFrmP of compact

regular frames and preframe homomorphisms [Tow96, JKM01]. While it is possible to extend

Johnstone’s endofunctor to an endofunctor JP : KRFrmP → KRFrmP that is dual to VR, the

construction is less elegant. Indeed, for L ∈ KRFrm, the frame J(L) is constructed as the

quotient of the free frame over the set {□a,♢a | a ∈ L} by appropriate relations [Joh82,

p. 112]. Then J(L) is a compact regular frame and the functoriality of J follows since

every frame homomorphism preserves arbitrary joins and finite meets [Joh82, pp. 113–115].

Since KRFrmP is a wide subcategory of KRFrm, to define JP(L) we don’t need to change

the construction of J(L), but the functoriality of JP becomes a non-trivial issue because

preframe homomorphisms don’t preserve arbitrary joins (see Remark 8.15). We instead take

a different route.

There is another duality for KHaus that is closely related to Isbell duality. It is obtained

by associating with each compact Hausdorff space X the boolean frame RO(X) of regular

opens of X equipped with the proximity relation given by U ≺ V iff cl(U) ⊆ V . This yields

a duality between KHaus and the category of pairs (B,≺) where B is a boolean frame and

≺ is a proximity relation on B. These pairs are known as de Vries algebras, the resulting

category is denoted by DeV, and the duality between KHaus and DeV is known as de Vries

duality [dV62] (see also [Bez10]).

Since both KRFrm and DeV are dually equivalent to KHaus, the two categories are equiva-

lent, and the equivalence is obtained through the booleanization B : KRFrm → DeV [Bez12].

The endofunctor J : KRFrm → KRFrm then gives rise to an endofunctor on DeV that is dual

to the Vietoris endofunctor on KHaus. A direct pointfree construction of this endofunctor,
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without utilizing J, remained an open problem [BBH15, p. 375]. The approach we develop

in this paper, among other things, will lead to a solution of this problem (see Remark 8.10).

In [ABC23a] we extended de Vries duality to KHausR. For this we worked with subordina-

tion relations, which originate in [BBSV17]. We introduced the category BAS whose objects

are boolean algebras and whose morphisms are subordination relations between them (see

Section 3). Let StoneR be the full subcategory of KHausR consisting of Stone spaces. Then

Stone duality extends to an equivalence between BAS and StoneR [Cel18, KMJ23, ABC23a].

Using the machinery of allegories [FS90] yields an equivalence between KHausR and the cat-

egory whose objects are pairs (B, S) where B is a boolean algebra and S is a subordination

relation on B satisfying axioms that generalize the axioms of an S5-modality, which plays a

prominent role in modal logic [BdRV01]. Because of this connection, we termed such pairs

(B, S) S5-subordination algebras and denoted the resulting category by SubS5S [ABC23a,

p. 8]. The category DeVS is a full subcategory of SubS5S consisting of de Vries algebras.

It turns out that DeVS is equivalent to KHausR, and hence to SubS5S [ABC23a, p. 12]. In

fact, the equivalence between SubS5S and DeVS is obtained by generalizing the well-known

MacNeille construction to S5-subordination algebras [ABC22].

In this paper we define an endofunctor on SubS5S which is dual to the Vietoris endofunctor

VR on KHausR. This we do as follows. In [VV14] the authors define the endofunctor K on

the category BA of boolean algebras that is dual to the Vietoris endofunctor V on the

category Stone of Stone spaces. One of our main technical results lifts this endofunctor to

the endofunctor KS on BAS (see Section 5). In Section 7 we show that KS is equivalent to VR

on StoneR. Finally, in Section 8 we lift KS to an endofunctor on SubS5S which is equivalent

to VR on KHausR. We then show that composing the MacNeille completion functor with this

endofunctor yields an endofunctor LS on DeVS which is also equivalent to VR.

This resolves the problem mentioned above in the more general setting of the category

SubS5S, and its full subcategory DeVS. In [ABC23b] we show how this yields a solution of

the problem for the category DeV by utilizing the technique developed in [ABC23a].

2. The Vietoris endofunctor on KHausR

We start by recalling the classic Vietoris construction.

Definition 2.1. Let X be a compact Hausdorff space and O(X) the frame of opens of X.

The Vietoris space of X is the space V(X) of closed subsets of X topologized by the subbasis

{□U | U ∈ O(X)} ∪ {♢U | U ∈ O(X)}, where

□U = {F ∈ V(X) | F ⊆ U} and ♢U = {F ∈ V(X) | F ∩ U ̸= ∅}.

For a continuous function f : X → Y between compact Hausdorff spaces, define the func-

tion V(f) : V(X) → V(Y ) by V(f)[F ] = f [F ] for each F ∈ V(X). It is well known (see,

e.g., [Joh82, p. 112]) that this defines an endofunctor on KHaus which we denote by V.
The following useful lemma is well known (see [Joh82, p. 112]):
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Lemma 2.2. Let X ∈ KHaus and U ⊆ O(X). Then

□⋂
U =

⋂
{□U | U ∈ U} U finite,

□⋃
U =

⋃
{□U | U ∈ U} U directed,

♢⋃
U =

⋃
{♢U | U ∈ U} U arbitrary,

□U∪V ⊆ □U ∪ ♢V , □U ∩ ♢V ⊆ ♢U∩V .

As a simple consequence of Lemma 2.2 we obtain:

Lemma 2.3. {□U ∩ ♢V1 ∩ · · · ∩ ♢Vn | U, V1, . . . , Vn ∈ O(X) and V1, . . . , Vn ⊆ U} is a basis

for V(X).

We recall that a relation R : X → Y between compact Hausdorff spaces is closed if it is

a closed subset of X × Y . Let KHausR be the category of compact Hausdorff spaces and

closed relations between them. Identity morphisms in KHausR are identity relations and

composition is relation composition. Our goal is to lift V to an endofunctor on KHausR. For

this we generalize the definition of the Egli-Milner order [Smy91, p. 224].

Definition 2.4. Let R : X → Y be a closed relation between compact Hausdorff spaces.

Define R□,R♢, and REM from V(X) to V(Y ) as follows:

(1) F R□ G iff G ⊆ R[F ],

(2) F R♢ G iff F ⊆ R−1[G],

(3) REM = R□ ∩R♢.

In order to show that these relations are closed, we utilize the following lemma (see, e.g.,

[BBSV17, Lem. 2.12]).

Lemma 2.5. For a relation R : X → Y between compact Hausdorff spaces, the following are

equivalent:

(1) R is closed,

(2) R[F ] is closed for each closed F ⊆ X and R−1[G] is closed for each closed G ⊆ Y ,

(3) (x, y) /∈ R implies the existence of two open neighborhoods Ux and Uy such that

R[Ux] ∩ Uy = ∅.

To simplify notation (see Propositions 2.6 and 7.1), for E ⊆ Z we write −E to denote the

complement of E in Z.

Proposition 2.6. R□, R♢, and REM are closed relations.

Proof. To see that R□ is a closed relation, it is enough to show that Lemma 2.5(3) is

satisfied. Let (F,G) /∈ R□. Then G ̸⊆ R[F ]. Therefore, there is x ∈ G such that x /∈ R[F ].

Since R[F ] is closed, there are disjoint open sets U, V such that x ∈ U and R[F ] ⊆ V .

Thus, F ⊆ −R−1 − V , so F ∈ □−R−1−V . Also, G ∩ U ̸= ∅, so G ∈ ♢U . We show

that R□[□−R−1−V ] ∩ ♢U = ∅. If K ∈ R□[□−R−1−V ] ∩ ♢U , then K ∩ U ̸= ∅ and there

is H ∈ □−R−1−V such that H R□ K. Therefore, H ⊆ −R−1 − V and K ⊆ R[H]. From

H ⊆ −R−1−V it follows that R[H] ⊆ V , so K ⊆ V , which together with K∩U ̸= ∅ implies

that U, V aren’t disjoint, a contradiction. Thus, R□ is closed.



VIETORIS ENDOFUNCTOR FOR CLOSED RELATIONS AND ITS DE VRIES DUAL 5

To see that R♢ is a closed relation, we again show that Lemma 2.5(3) is satisfied. Let

(F,G) /∈ R♢. Then F ̸⊆ R−1[G]. Therefore, there is x ∈ F such that x /∈ R−1[G]. Since

R−1[G] is closed, there are disjoint open U, V such that x ∈ U and R−1[G] ⊆ V . Thus,

F ∩ U ̸= ∅ and G ⊆ −R − V . This implies that F ∈ ♢U and G ∈ □−R−V . We show that

R♢[♢U ] ∩ □−R−V = ∅. If K ∈ R♢[♢U ] ∩ □−R−V , then K ⊆ −R − V and there is H ∈ ♢U

such that H R♢ K. Therefore, R−1[K] ⊆ V , H ∩ U ̸= ∅, and H ⊆ R−1[K]. Thus, H ⊆ V

and H ∩ U ̸= ∅, which contradicts that U, V are disjoint. Consequently, R♢ is closed.

Finally, since both R□ and R♢ are closed relations, so is their intersection, hence REM is

a closed relation. □

Definition 2.7. For a morphism R : X → Y in KHausR define

VR
□(R) = R□, VR

♢(R) = R♢, and VR(R) = REM .

We next show that VR
□,VR

♢ are semi-functors, while VR is an endofunctor on KHausR.

We recall that, given two categories C and D, a semi-functor F : C → D is an assignment

that maps objects of C to objects of D, morphisms of C to morphisms of D, and preserves

composition (see, e.g., [Hay85, Hoo93]). The notion of a semi-functor is weaker than that of

a functor since identity morphisms are not required to be preserved.

Theorem 2.8.

(1) VR
□,VR

♢ : KHaus
R → KHausR are semi-functors.

(2) VR is an endofunctor on KHausR which restricts to the Vietoris endofunctor V on

KHaus.

(3) Each of the three restricts to StoneR.

Proof. (1). That VR
□,VR

♢ are well defined follows from Proposition 2.6. Let R1 : X1 → X2,

R2 : X2 → X3 be morphisms in KHausR and F ⊆ X1, G ⊆ X2, H ⊆ X3 closed subsets. If

F VR
□(R1) G and G VR

□(R2) H, then G ⊆ R1[F ] and H ⊆ R2[G]. Therefore,

H ⊆ R2[G] ⊆ R2[R1[F ]] = (R2 ◦R1)[F ].

Thus, F VR
□(R2 ◦R1) H. Conversely, if F VR

□(R2 ◦R1) H, then H ⊆ R2[R1[F ]]. Let

G = R1[F ]. Then G is a closed subset of X2 such that G ⊆ R1[F ] and H ⊆ R2[G].

Therefore, F VR
□(R1) G and G VR

□(R2) H. Thus, VR
□(R2 ◦ R1) = VR

□(R2) ◦ VR
□(R1). The

proof for VR
♢ is similar.

(2). That VR is well defined follows from Proposition 2.6. It is an immediate consequence of

the definition of REM that VR preserves identity relations. If F VR(R1) G and G VR(R2) H,

then

G ⊆ R1[F ], F ⊆ R−1
1 [G], H ⊆ R2[G], and G ⊆ R−1

2 [H].

The same argument as in (1) yields that F VR(R2 ◦R1) H. Conversely, let F ⊆ X1 and

H ⊆ X3 be closed subsets such that F VR(R2 ◦R1) H. Then H ⊆ R2[R1[F ]] and F ⊆
R−1

1 [R−1
2 [H]]. Since R1 and R2 are closed relations, G := R1[F ] ∩ R−1

2 [H] is a closed subset

of X2. We show that F VR(R1) G and G VR(R2) H. The definition of G yields that

G ⊆ R1[F ] and G ⊆ R−1
2 [H]. Since H ⊆ R2[R1[F ]], for each z ∈ H there are x ∈ F

and y ∈ X2 such that x R1 y and y R2 z. Therefore, y ∈ R1[F ] ∩ R−1
2 [H] = G. Thus,
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H ⊆ R2[G]. Similarly, F ⊆ R−1
1 [R−1

2 [H]] implies F ⊆ R−1
1 [G]. Consequently, F VR(R1) G

and G VR(R2) H. This shows that VR preserves compositions, and hence is an endofunctor

on KHausR.

If f : X1 → X2 is a continuous function, then F ⊆ f−1[G] iff f [F ] ⊆ G. Therefore,

F VR(f) G iff G = f [F ], and so VR(f) is the function that maps F ∈ V(X1) to f [F ] ∈ V(X2).

Thus, VR extends the Vietoris endofunctor on KHaus.

(3). It is well known (see [Mic51, Sec. 4]) that if X is a Stone space, then V(X) is also a

Stone space. Consequently, VR
□,VR

♢,VR restrict to StoneR. □

Remark 2.9. The semi-functors VR
□ and VR

♢ do not preserve identity. Indeed, if R is the

identity relation on X, then F R□ G iff G ⊆ F and F R♢ G iff F ⊆ G. Therefore, if X ̸= ∅,

then neither R□ nor R♢ is the identity on V(X) in KHausR.

We recall (see, e.g., [HV19, p. 74]) that a dagger on a category C is a contravariant functor

(−)† : C → C that is the identity on objects and the composition (−)† ◦ (−)† is the identity

functor on C. It is well known and easy to see that mapping a closed relation R : X → Y to

its converse, which is clearly a closed relation, defines a dagger on KHausR. We conclude the

section by observing that VR
□ and VR

♢ are definable from each other using (−)†, and that VR

commutes with (−)†.

Proposition 2.10.

(1) VR
□ ◦ (−)† = (−)† ◦ VR

♢ and VR
♢ ◦ (−)† = (−)† ◦ VR

□.

(2) VR ◦ (−)† = (−)† ◦ VR.

Proof. Since VR
□,VR

♢,VR coincide on objects and (−)† fixes the objects, we only need to show

that the compositions agree on the morphisms.

(1). We only prove the first equality since the second is proved similarly. Let R : X → Y

be a morphism in KHausR. For F ∈ V(X) and G ∈ V(Y ) we have

G VR
□(R

†) F ⇐⇒ F ⊆ R†[G] ⇐⇒ F ⊆ R−1[G] ⇐⇒ F VR
♢(R) G ⇐⇒ G VR

♢(R)† F.

(2). Let R : X → Y be a morphism in KHausR. If F ∈ V(X) and G ∈ V(Y ), then (1)

implies

G VR(R†) F ⇐⇒ G VR
□(R

†) F and G VR
♢(R

†) F ⇐⇒ G VR
♢(R)† F and G VR

□(R)† F

⇐⇒ F VR
♢(R) G and F VR

□(R) G ⇐⇒ G VR(R)† F. □

Remark 2.11. We point out that Proposition 2.10(1) simplifies the proof of Proposition 2.6.

Indeed, if R : X → Y is a closed relation, then VR
♢(R) = VR

□(R
†)†, and so is closed. Thus, it

is enough to prove that VR
□(R) is closed.

3. Closed relations and subordinations

In this section we recall the definition of subordination relations and the results connecting

them to closed relations between compact Hausdorff spaces. Subordinations on boolean

algebras were introduced in [BBSV17]. They are closely related to precontact relations

[DV06, DV07] and quasi-modal operators [Cel01].
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Definition 3.1. [BBSV17, Def. 2.3] We call a relation S : A → B between boolean algebras

a subordination relation if it satisfies the following axioms, where a, b ∈ A and c, d ∈ B:

(S1) 0 S 0 and 1 S 1,

(S2) a, b S c implies (a ∨ b) S c,

(S3) a S c, d implies a S (c ∧ d),

(S4) a ≤ b S c ≤ d implies a S d.

Boolean algebras and subordination relations between them form a category, which we

denote by BAS. The identity on B ∈ BAS is the order ≤ on B and the composition is

relation composition. We have the following generalization of Stone duality, which was

obtained in [ABC23a, Cor. 2.6] by utilizing a result of Celani [Cel18, Thm. 4]. It is also a

consequence of a more general result of Jung, Kurz, and Moshier [KMJ23, Thm. 5.5.9].

Theorem 3.2. The categories StoneR and BAS are equivalent.

Remark 3.3. The functors Clop : StoneR → BAS and Uf : BAS → StoneR yielding the above

equivalence are defined as follows. On objects they act as the clopen and ultrafilter functors

of Stone duality. On morphisms they act as follows. If R : X → Y is a closed relation

between Stone spaces, then Clop(R) is the subordination relation SR : Clop(X) → Clop(Y )

given by

U SR V ⇐⇒ R[U ] ⊆ V.

If S : A → B is a subordination relation between boolean algebras, then Uf(S) is the closed

relation RS : Uf(A) → Uf(B) given by

x RS y ⇐⇒ S[x] ⊆ y.

Definition 3.4. [ABC23a, p. 7] An S5-subordination space is a pair (X,E) where X is a

Stone space and E is a closed equivalence relation on X. A closed relation R ⊆ X1 × X2

between S5-subordination spaces (X1, E1) and (X2, E2) is compatible if R◦E1 = R = E2 ◦R.

We let StoneER be the category of S5-subordination spaces and compatible closed relations.

Theorem 3.5. [ABC23a, Cor. 3.12] The categories StoneER and KHausR are equivalent.

Remark 3.6. The above equivalence is established by the functor Q : StoneER → KHausR

that maps (X,E) ∈ StoneER to the quotient space X/E and a morphism R : (X1, E1) →
(X2, E2) in StoneER to the closed relation Q(R) := π2 ◦ R ◦ π†

1, where π1 : X1 → X1/E1

and π2 : X2 → X2/E2 are the projection maps. A quasi-inverse of Q is defined by utilizing

the well-known Gleason cover construction (see, e.g., [Joh82, Sec. III.3]). For a compact

Hausdorff space X let G(X) = (X̂, E) where gX : X̂ → X is the Gleason cover of X and

x E y iff gX(x) = gX(y). For a closed relation R : X → Y let G(R) : G(X) → G(Y ) be given

by G(R) := g†Y ◦R◦gX . This defines the Gleason cover functor G : KHausR → StoneER, which

is a quasi-inverse of Q [ABC23a, Thm. 4.6].

Definition 3.7.

(1) We say that a subordination S on a boolean algebra B is an S5-subordination if S

satisfies the following axioms, where a, b ∈ B:
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(S5) a S b implies a ≤ b,

(S6) a S b implies ¬b S ¬a,
(S7) a S b implies there is c ∈ B such that a S c and c S b.

(2) An S5-subordination algebra is a pair (B, S) where B is a boolean algebra and S is

an S5-subordination on B.

(3) A subordination T ⊆ B1×B2 between S5-subordination algebras (B1, S1) and (B2, S2)

is compatible if T ◦ S1 = T = S2 ◦ T .
(4) Let SubS5S be the category of S5-subordination algebras and compatible subordina-

tions.

De Vries algebras are special S5-subordination algebras:

Definition 3.8.

(1) A de Vries algebra is an S5-subordination algebra (B, S) such that B is complete and

S satisfies

(S8) b ̸= 0 implies that there is a ̸= 0 such that a S b.

(2) Let DeVS be the full subcategory of SubS5S consisting of de Vries algebras.

Theorem 3.9. [ABC23a, Cor. 3.14, 4.7] The categories KHausR, StoneER, SubS5S, and DeVS

are equivalent.

The equivalence of StoneER and SubS5S was obtained by utilizing the machinery of alle-

gories and splitting equivalences. As we observed in the previous section, KHausR is a dagger

category and VR commutes with the dagger. In addition, ordering the hom-sets by inclu-

sion turns KHausR into an order enriched category (meaning that each hom-set is partially

ordered and composition preserves the order; see, e.g., [ST14, p. 105]).

An allegory [FS90, Joh02] is an order-enriched dagger category such that

(1) each hom-set has binary meets,

(2) (−)† preserves the order on the hom-sets,

(3) the modular law holds: gf ∧ h ≤ (g ∧ hf †)f for all f : C → D, g : D → E, and

h : C → E.

We already saw that VR commutes with the dagger and it is straightforward to see that

VR preserves inclusions of relations. Therefore, VR is a morphism of ordered categories with

involution (see [TGR84, Lam99]). However, as we will see in the next example, VR does not

preserve the meet, and hence is not a morphism of allegories (see [Joh82, ABC23a]).

Example 3.10. Since VR preserves inclusions of relations, VR(R1 ∩R2) ⊆ VR(R1)∩VR(R2)

for any pair of closed relations R1, R2 : X → Y . We show that the other inclusion does

not hold in general. Let X be a finite discrete space with at least two elements. We let

R1 : X → X be the identity and R2 : X → X its complement. Clearly X is compact

Hausdorff and R1, R2 are closed. Moreover, R1 ∩R2 = ∅. Thus, X VR(R1 ∩R2) X does not

hold. However, X = R−1
1 [X] = R1[X] and X = R−1

2 [X] = R2[X] because X has at least two

elements. Therefore, X (VR(R1) ∩ VR(R2)) X holds.
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Our goal is to describe an endofunctor on SubS5S that corresponds to the Vietoris endo-

functor VR on KHausR, and then lift it to an endofunctor on DeVS. For this we first generalize

the functor K : BA → BA dual to V : Stone → Stone (see the Introduction).

4. The endofunctor K on BA

We recall the definition of the endofunctor K on BA. There are several equivalent ap-

proaches to defining K. We will follow the one given in [VV14], which in turn relies on

[Joh85].

Definition 4.1. For B ∈ BA let X = {□a | a ∈ B} ∪ {♢a | a ∈ B} be a set of symbols and

define K(B) as the quotient of the free boolean algebra over X by the relations

□1 = 1, ♢0 = 0,

□a∧b = □a ∧□b, ♢a∨b = ♢a ∨ ♢b,

□a∨b ≤ □a ∨ ♢b, □a ∧ ♢b ≤ ♢a∧b.

With a small abuse of notation, we write □a and ♢a also for the equivalence classes [□a]

and [♢a] in K(B).

Remark 4.2.

(1) The last two inequalities in Definition 4.1 can be replaced by the equation □a = ¬♢¬a,

which is equivalent to ♢a = ¬□¬a. Indeed, the two inequalities imply

1 = □1 = □a∨¬a ≤ □a ∨ ♢¬a and □a ∧ ♢¬a ≤ ♢a∧¬a = ♢0 = 0.

Therefore, ¬□a = ♢¬a, and hence □a = ¬♢¬a. Conversely, since

□a∨b ∧□¬b = □a∧¬b ≤ □a and ♢b ≤ ♢b∨¬a = ♢a∧b ∨ ♢¬a,

it follows that

□a∨b ≤ □a ∨ ¬□¬b and ¬♢¬a ∧ ♢b ≤ ♢a∧b.

Thus,

□a∨b ≤ □a ∨ ♢b and □a ∧ ♢b ≤ ♢a∧b.

(2) Equivalently, K(B) can be defined as the quotient of the free boolean algebra over

the set {□a | a ∈ B} by the relations □1 = 1 and □a∧b = □a ∧ □b (see [KKV04,

Rem. 3.13] and [VV14, Rem. 1]). Alternatively, K(B) can be defined as the quotient

of the free boolean algebra over the set {♢a | a ∈ B} by the relations ♢0 = 0 and

♢a∨b = ♢a ∨ ♢b (see [Abr88, Sec. 7] and [BK07, Def. 2.4]).

Definition 4.3. LetA,B be boolean algebras and α : A → B a boolean homomorphism. The

mapK(α) : K(A) → K(B) is the unique boolean homomorphism satisfyingK(f)(□a) = □α(a)

and K(f)(♢a) = ♢α(a).

It is straightforward to see that this defines an endofunctor on BA (see [VV14, p. 122]).

Proposition 4.4. K is an endofunctor on BA.
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As suggested by the notation, there is a close connection between K(B) and modal opera-

tors on B. We recall that a modal operator on B is a function □ : B → B satisfying □1 = 1

and □(a ∧ b) = □a ∧ □b (equivalently, □ preserves finite meets). A modal algebra is a pair

(B,□) where □ is a modal operator on B. Let MA be the category of modal algebras and

modal homomorphisms (i.e. boolean homomorphisms preserving □).

Remark 4.5. Modal algebras can alternatively be defined as pairs (B,♢) where ♢0 = 0 and

♢(a ∨ b) = ♢a ∨ ♢b (equivalently, ♢ preserves finite joins). The two operators □ and ♢ are

interdefinable by the well-known identities ♢a = ¬□¬a and □a = ¬♢¬a.

The next result is well known; see [VV14, Fact 3]. For the definition of algebras for an

endofunctor see, e.g., [AHS06, Def. 5.37].

Theorem 4.6.

(1) For a boolean algebra B, there is a bijection between modal operators on B and boolean

homomorphisms K(B) → B.

(2) This bijection extends to an isomorphism between MA and the category Alg(K) of

algebras for the endofunctor K : BA → BA.

Remark 4.7.

(1) The bijection of Theorem 4.6(1) is obtained by associating to each modal operator □
on B the boolean homomorphism α : K(B) → B defined by α(□a) = □a; and to each

boolean homomorphism α : K(B) → B the modal operator □ given by □a = α(□a).

(2) An analogous bijection holds if we replace □ by ♢.

The next result is well known (see [Abr88], [KKV04], or [VV14]). For the definition of

coalgebras for an endofunctor see, e.g., [Ven07, Def. 140].

Theorem 4.8. The following diagram is commutative up to natural isomorphism.

Stone BA

Stone BA

Clop

V

Uf

K

Clop

Uf

In other words, there are natural isomorphisms Clop ◦ V ≃ K ◦ Clop and Uf ◦ K ≃ V ◦ Uf.

Consequently, Stone duality extends to a dual equivalence between Alg(K) and the category

Coalg(V) of coalgebras for the Vietoris endofunctor V : Stone → Stone.

5. The semi-functors KS
□ and KS

♢

In this section we describe how to lift a subordination S : A → B to the subordinations

S□,S♢ : K(A) → K(B) which are the algebraic counterparts of R□ and R♢. In the next

section we use S□ and S♢ to define S , which is the algebraic counterpart of REM . To define

S□ and S♢, we first introduce the conjunctive and disjunctive normal forms of elements of

K(B).
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Definition 5.1. Let x ∈ K(B).

(1) We say that x is in disjunctive normal form if it is written as a finite join

x =
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
),

where 0 ̸= bij ≤ ai for each i, j.

(2) We say that x is in conjunctive normal form if it is written as a finite meet

x =
n∧

i=1

(♢ci ∨□di1 ∨ · · · ∨□dini
),

where ci ≤ dij ̸= 1 for each i, j.

Since we allow n = 0, the empty join and meet yield disjunctive and conjunctive normal

forms for 0 and 1, respectively.

Lemma 5.2. Any element of K(B) can be written in disjunctive and conjunctive normal

form.

Proof. Let x ∈ K(B). We only prove that x can be written in disjunctive normal form

because the proof for the conjunctive normal form is similar. Since K(B) is generated by the

elements of the form □a and ♢b, we may write x ∈ K(B) as a finite join of finite meets of

□a, ♢b or their negations (see, e.g., [Sik69, p. 14]). As ¬□a = ♢¬a and ¬♢b = □¬b, we have

x =
n∨

i=1

(□ai1 ∧ · · · ∧□aiki
∧ ♢bi1 ∧ · · · ∧ ♢bini

).

Let ai = ai1 ∧ · · · ∧ aiki . It follows from the definition of K(B) that

□ai = □ai1 ∧ · · · ∧□aiki
.

Therefore,

x =
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
).

The definition of K(B) also yields that □a ∧ ♢b = □a ∧ ♢a∧b for each a, b ∈ B. Thus, by

replacing each bij with ai ∧ bij, we may assume that bij ≤ ai for each i, j. Since ♢0 = 0, we

can suppress every disjunct □ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
with bij = 0 for some j. □

The next definition is motivated by Proposition 7.1.

Definition 5.3. Let S : A → B be a subordination, x ∈ K(A), and y ∈ K(B).

(1) We set x S□ y if it is possible to write x in disjunctive normal form and y in con-

junctive normal form

x =
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
), y =

m∧
j=1

(♢cj ∨□dj1 ∨ · · · ∨□djmj
),

so that for each i ≤ n and j ≤ m there exists k ≤ mj with ai S djk.
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(2) We set x S♢ y if it is possible to write x in disjunctive normal form and y in conjunc-

tive normal form

x =
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
), y =

m∧
j=1

(♢cj ∨□dj1 ∨ · · · ∨□djmj
),

so that for each i ≤ n and j ≤ m there exists l ≤ ni such that bil S cj.

The following technical lemma characterizes the order on K(B) in terms of normal forms.

Lemma 5.4. Let x, y ∈ K(B) be written in disjunctive and conjunctive normal form

x =
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
), y =

m∧
j=1

(♢cj ∨□dj1 ∨ · · · ∨□djmj
).

Then x ≤ y iff for each i ≤ n and j ≤ m there exists k ≤ mj such that ai ≤ djk or there

exists l ≤ ni such that bil ≤ cj.

Proof. The inequality
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
) ≤

m∧
j=1

(♢cj ∨□dj1 ∨ · · · ∨□djmj
)

holds iff for each i, j

□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
≤ ♢cj ∨□dj1 ∨ · · · ∨□djmj

.

Thus, it is sufficient to show that for a, b1, . . . , bn, c, d1, . . . , dm ∈ B such that bi ≤ a and

c ≤ dj for every i, j, the following two conditions are equivalent:

(1) □a ∧ ♢b1 ∧ · · · ∧ ♢bn ≤ ♢c ∨□d1 ∨ · · · ∨□dm ,

(2) there exists j such that a ≤ dj or there exists i such that bi ≤ c.

(2) ⇒ (1). It follows from Definition 4.1 that a ≤ dj implies □a ≤ □dj and bi ≤ c implies

♢bi ≤ ♢c. Thus, (1) holds.

(1) ⇒ (2). Suppose (1) holds, so □a∧♢b1 ∧· · ·∧♢bn ≤ ♢c∨□d1 ∨· · ·∨□dm . Let A = {0, 1}
be the two-element Boolean algebra. Define two functions ♢,□ : B → A by

♢e =

{
0 if e ∧ (a ∧ ¬c) = 0,

1 if e ∧ (a ∧ ¬c) ̸= 0

and

□e =

{
1 if ¬e ∧ (a ∧ ¬c) = 0,

0 if ¬e ∧ (a ∧ ¬c) ̸= 0

for each e ∈ B. It is straightforward to see that ♢ preserves finite joins and that □e = ¬♢¬e
for each e ∈ B. Therefore, there is a unique boolean homomorphism α : K(B) → A such

that α(□e) = □e and α(♢e) = ♢e for each e ∈ B. Therefore,

α(□a ∧ ♢b1 ∧ · · · ∧ ♢bn) = □a ∧ ♢b1 ∧ · · · ∧ ♢bn,

α(♢c ∨□d1 ∨ · · · ∨□dm) = ♢c ∨□d1 ∨ · · · ∨□dm.
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Since □a ∧ ♢b1 ∧ · · · ∧ ♢bn ≤ ♢c ∨□d1 ∨ · · · ∨□dm and α is order preserving,

□a ∧ ♢b1 ∧ · · · ∧ ♢bn ≤ ♢c ∨□d1 ∨ · · · ∨□dm.

We have □a = 1 because ¬a ∧ (a ∧ ¬c) = 0, and ♢c = 0 because c ∧ (a ∧ ¬c) = 0. Thus,

♢b1 ∧ · · · ∧ ♢bn ≤ □d1 ∨ · · · ∨□dm.

Consequently, ♢b1 ∧ · · · ∧♢bn = 0 or □d1 ∨ · · · ∨□dm = 1. In the former case, there is i ≤ n

such that ♢bi = 0, so bi ∧ (a ∧ ¬c) = 0, and hence bi ∧ ¬c = 0 (since bi ≤ a). Therefore,

bi ≤ c. In the latter case, there is j ≤ m such that □dj = 1, so ¬dj ∧ (a∧¬c) = 0, and hence

¬dj ∧ a = 0 (since c ≤ dj). Thus, a ≤ dj. □

The next proposition says that the definitions of S□ and S♢ are independent of the nor-

mal forms used to write x and y. This fact will be useful in proving that S□ and S♢ are

subordinations in Theorem 5.6.

Proposition 5.5. Let S : A → B be a subordination. If x ∈ K(A) and y ∈ K(B) are written

in disjunctive and conjunctive normal form

x =
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
), y =

m∧
j=1

(♢cj ∨□dj1 ∨ · · · ∨□djmj
),

then

(1) x S□ y iff for all i, j there exists k ≤ mj such that ai S djk.

(2) x S♢ y iff for all i, j there exists l ≤ ni such that bil S cj.

Proof. We only prove (1) since the proof of (2) is similar. The right-to-left implication follows

immediately from the definition of S□. To prove the left-to-right implication, assume that

x S□ y. The definition of S□ implies that it is possible to write x and y in conjunctive and

disjunctive normal form

x =
t∨

r=1

(□er ∧ ♢fr1 ∧ · · · ∧ ♢frtr ), y =
u∧

s=1

(♢gs ∨□hs1 ∨ · · · ∨□hsus
),

so that for any r, s there exists q ≤ us with er S hsq. Fix i ≤ n and j ≤ m. We show that

there is k ≤ mj such that ai S djk. Clearly

□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
≤

t∨
r=1

(□er ∧ ♢fr1 ∧ · · · ∧ ♢frtr ),

u∧
s=1

(♢gs ∨□hs1 ∨ · · · ∨□hsus
) ≤ ♢cj ∨□dj1 ∨ · · · ∨□djmj

.

(1)

Thus,

□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
≤

t∨
r=1

(□er ∧ ♢fr1 ∧ · · · ∧ ♢frtr ) ≤ ♢0 ∨□e1 ∨ · · · ∨□et .

We claim that there is r′ ≤ t such that ai ≤ er′ . If er = 1 for some r, then we can take

r′ = r. Otherwise, er ̸= 1 for every r, and hence the expression ♢0 ∨ □e1 ∨ · · · ∨ □et is
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in conjunctive normal form (with a unique conjunct). Therefore, since ai ̸= 0, Lemma 5.4

implies that there is r′ ≤ t such that ai ≤ er′ , proving our claim.

By our assumption, for each s ≤ u there exists qs such that er′ S hsqs . Consequently,

er′ S
∧u

s=1 hsqs and Equation (1) yields

□∧u
s=1 hsqs

= □h1q1
∧ · · · ∧□huqu

≤
u∧

s=1

(♢gs ∨□hs1 ∨ · · · ∨□hsus
) ≤ ♢cj ∨□dj1 ∨ · · · ∨□djmj

.

By Lemma 5.4, there exists k ≤ mj such that
∧u

s=1 hsqs ≤ djk. Thus, we have found k ≤ mj

such that

ai ≤ er′ S
u∧

s=1

hsqs ≤ djk,

and so ai S djk. □

Theorem 5.6. If S : A → B is a subordination, then S□ and S♢ are subordinations.

Proof. We only prove that S□ is a subordination because the proof for S♢ is similar. For

this we must show that S□ satisfies the axioms (S1)–(S4) of Definition 3.1.

(S1). Write 0 in disjunctive normal form as the empty join and in conjunctive normal

form as 0 = ♢0. Then 0 S□ 0 holds trivially. That 1 S□ 1 is proved similarly.

(S2). Suppose x S□ z and y S□ z. Write x, y in disjunctive normal form and z in

conjunctive normal form

x =
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
), y =

m∨
j=1

(□cj ∧ ♢dj1 ∧ · · · ∧ ♢djmj
),

z =
t∧

r=1

(♢er ∨□fr1 ∨ · · · ∨□frtr ).

By Proposition 5.5(1), for all i, r there exists k ≤ tr such that ai S frk and for all j, r there

exists l ≤ tr such that cj S frl. Since x ∨ y can be written in disjunctive normal form as

x ∨ y =
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
) ∨

m∨
j=1

(□cj ∧ ♢dj1 ∧ · · · ∧ ♢djmj
),

it follows from the definition of S□ that (x ∨ y) S□ z.

The proof of (S3) is similar to that of (S2).

(S4). Let x ≤ y S□ z ≤ w. By the definition of S□, we can write x, y in disjunctive normal

form and z, w in conjunctive normal form

x =
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
), y =

t∨
r=1

(□er ∧ ♢fr1 ∧ · · · ∧ ♢frtr ),

z =
u∧

s=1

(♢gs ∨□hs1 ∨ · · · ∨□hsus
), w =

m∧
j=1

(♢cj ∨□dj1 ∨ · · · ∨□djmj
),
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so that for all r, s there exists q ≤ us with er S hsq. By arguing as in the proof of Proposi-

tion 5.5 we obtain that for any i, j there exists k ≤ mj such that ai S djk. Therefore, x S□ w

by Proposition 5.5(1). □

We are ready to define the semi-functors KS
□,KS

♢ : BA
S → BAS.

Definition 5.7. For a boolean algebra B, let KS
□(B) = KS

♢(B) = K(B). For a morphism S

in BAS, let KS
□(S) = S□ and KS

♢(S) = S♢.

Theorem 5.8. KS
□,KS

♢ : BA
S → BAS are semi-functors.

Proof. We show that KS
□ is a semi-functor. That KS

♢ is a semi-functor is proved similarly.

Let S : B1 → B2 and T : B2 → B3 be subordinations, x ∈ KS(B1), and y ∈ KS(B3). Suppose

that x and y are written in disjunctive and conjunctive normal form

x =
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
), y =

m∧
j=1

(♢cj ∨□dj1 ∨ · · · ∨□djmj
).

We show that x KS
□(T ◦ S) y iff x

(
KS

□(T ) ◦ KS
□(S)

)
y. To prove the left-to-right implication,

suppose that x KS
□(T ◦ S) y, which means that for every i ≤ n and j ≤ m there exists

kj ≤ mj such that ai (T ◦ S) djkj . Thus, there is fij ∈ B2 such that ai S fij T djkj , and so

□ai KS
□(S) □fij KS

□(T ) □djkj
. It follows from the properties of subordinations that for each

i we have

□ai KS
□(S)

(
m∧
j=1

□fij

)
KS

□(T )

(
m∧
j=1

□djkj

)
,

and hence

x ≤

(
n∨

i=1

□ai

)
KS

□(S)

(
n∨

i=1

m∧
j=1

□fij

)
KS

□(T )

(
m∧
j=1

□djkj

)
≤ y.

Let z =
∨n

i=1

∧m
j=1 □fij ∈ KS(B2). Then x KS

□(S) z KS
□(T ) y. This shows that KS

□(T ◦ S) ⊆
KS

□(T ) ◦ KS
□(S). To prove the other inclusion, suppose that x

(
KS

□(T ) ◦KS
□(S)

)
y, and

that x, y are written in disjunctive and conjunctive normal form as above. Then there is

z ∈ KS(B2) such that x KS
□(S) z KS

□(T ) y. Write z in conjunctive normal form

z =
t∧

r=1

(♢er ∨□fr1 ∨ · · · ∨□frtr ).

Fix i ≤ n and j ≤ m. Since x KS
□(S) z, for each r ≤ t there is lr ≤ tr such that ai S frlr .

Because

□∧t
r=1 frlr

≤ z KS
□(T ) y,

there exists s ≤ mj such that
(∧t

r=1 frlr
)
T djs. Then ai S

(∧t
k=1 fklk

)
T djs, and so

ai (T ◦ S) djs. Therefore, x KS
□(T ◦ S) y. This shows that KS

□ is a semi-functor. □
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6. The endofunctor KS on BAS

In this section we utilize S□ and S♢ defined in the previous section to lift a subordination

S : A → B to the subordination S : K(A) → K(B), which is the algebraic counterpart of

REM . This allows us to extend the endofunctor K : BA → BA to the endofunctor KS : BAS →
BAS.

For boolean algebras A and B, we denote by BAS(A,B) the poset of subordinations

S : A → B ordered by inclusion.1 Our goal is to define S as the join of S□ and S♢ in

BAS(K(A),K(B)). For this we need to show that joins exist in BAS(K(A),K(B)). In fact,

we will show that BAS(A,B) is always a frame, where we recall (see, e.g., [PP12, p. 10]) that

a complete lattice L is a frame if it satisfies a ∧
∨
E =

∨
{a ∧ b | b ∈ E} for each a ∈ L and

E ⊆ L.

We also recall (see, e.g., [PP12, p. 10]) that a complete lattice is a coframe if its order-

dual is a frame. Let X be the Stone dual of A and Y the Stone dual of B. It is clear that

(StoneR(X, Y ),⊆) is the poset of closed subsets of X×Y , and so is a coframe. By [ABC23a,

Thm. 2.14], (BAS(A,B),⊆) is dually isomorphic to (StoneR(Uf(A),Uf(B)),⊆). Therefore,

BAS(A,B) is a frame. However, this proof uses Stone duality. As promised in [ABC23a,

Rem. 2.15], we give a choice free proof of this result.

Theorem 6.1. BAS(A,B) is a frame, where meets are given by intersections and the join

of {Sα} ⊆ BAS(A,B) is given by x (
∨
Sα) y iff there exist finite subsets F ⊆ A and G ⊆ B

such that x =
∨

F , y =
∧

G and for all a ∈ F and b ∈ G there is α with a Sα b.

Proof. It is straightforward to see that the intersection of a family of subordinations is

a subordination. Therefore, BAS(A,B) is a complete lattice, where meets are given by

intersections. Let {Sα} ⊆ BAS(A,B). Define S : A → B by x S y iff there exist finite

subsets F ⊆ A and G ⊆ B such that x =
∨
F , y =

∧
G and for all a ∈ F and b ∈ G there is

α with a Sα b. It is clear that S contains Sα for each α. We show that S is a subordination.

(S1). Since 0 =
∨

∅ and 1 =
∧

∅, it trivially holds that 0 S 0 and 1 S 1.

(S2). Suppose that x S y and x′ S y. Then there exist F, F ′ ⊆ A and G,G′ ⊆ B such that

x =
∨

F , x′ =
∨

F ′, y =
∧

G =
∧

G′ and for all a ∈ F and b ∈ G there exists α with a Sα b

and for all a′ ∈ F ′ and b′ ∈ G′ there exists β with a′ Sβ b′. Since B is a boolean algebra,

by distributivity we obtain that y =
∧
G′′, where G′′ = {b ∨ b′ | b ∈ G and b′ ∈ G′}. Let

F ′′ = F ∪ F ′. Then x ∨ x′ =
∨

F ′′. Let a′′ ∈ F ′′ and b′′ ∈ G′′. Then b′′ = b ∨ b′ with b ∈ G

and b′ ∈ G′. Therefore, if a′′ ∈ F , there is α such that a′′ Sα b ≤ b∨ b′. If a′′ ∈ F ′, there is β

such that a′′ Sβ b′ ≤ b ∨ b′. In either case, a′′ S b′′. Thus, x S y.

(S3) is proved similarly to (S2).

(S4). Suppose x′ ≤ x S y ≤ y′. Then x =
∨

F , y =
∧
G, and for all a ∈ F and b ∈ G

there is α with a Sα b. Let F ′ = {a ∧ x′ | a ∈ F} and G′ = {b ∨ y′ | b ∈ G}. Then x′ =
∨

F ′

and y′ =
∧

G′. Moreover, if a′ ∈ F ′ and b′ ∈ G′, there exist a ∈ F and b ∈ G such that

a′ = a ∧ x′ and b′ = b ∨ y′. Therefore, a′ = a ∧ x ≤ a Sα b ≤ b ∨ y′ = b′. Thus, x′ S y′.

1This is in contrast to [ABC23a], where BAS(A,B) was ordered by reverse inclusion to guarantee that

BAS was an allegory.
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It remains to prove that S is the least upper bound of {Sα}. Let T : A → B be such that

Sα ⊆ T for each α and let x S y. Then x =
∨
F , y =

∧
G for some finite F and G such that

for all a ∈ F and b ∈ G there is α with a Sα b. Therefore, a T b. Since T satisfies (S2) and

(S3), it follows that x = (
∨

F ) T (
∧
G) = y. Thus, S ⊆ T .

It is left to show that T∩
∨

Sα =
∨
(T∩Sα) for each T ∈ BAS(A,B) and {Sα} ⊆ BAS(A,B).

The right-to-left inclusion is clear since BAS is a complete lattice. To show the left-to-right

inclusion, let x ∈ A and y ∈ B such that x (T ∩
∨
Sα) y. Then x T y and x (

∨
Sα) y. So

there exist finite subsets F ⊆ A and G ⊆ B such that x =
∨
F , y =

∧
G and for all a ∈ F

and b ∈ G there is α with a Sα b. For all a ∈ F and b ∈ G we have a ≤ x T y ≤ b, which

implies that a T b. Therefore, for all a ∈ F and b ∈ G there is α with a (T ∩ Sα) b, and

hence x
∨
(T ∩ Sα) y. Thus, BA

S(A,B) is a frame. □

Definition 6.2. Let S : A → B be a subordination between boolean algebras. We define S
to be the join S□ ∨ S♢ in BAS(K(A),K(B)).

We thus have the following description of S , which is an immediate consequence of Defi-

nition 5.3 and Theorems 5.6 and 6.1.

Corollary 6.3. S is a subordination and x S y iff it is possible to write x and y in disjunctive

and conjunctive normal form

x =
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
), y =

m∧
j=1

(♢cj ∨□dj1 ∨ · · · ∨□djmj
)

so that for all i, j there exists k ≤ mj with ai S djk or there exists l ≤ ni with bil S cj.

The description of S given in Corollary 6.3 is similar to Definition 5.3. In Proposition 5.5

we showed that the definitions of S□ and S♢ are independent of the normal forms used to

represent elements. The same is true for S and the proof is similar, so we skip it.

Proposition 6.4. Let S : A → B be a subordination. If x ∈ K(A) and y ∈ K(B) are written

in disjunctive and conjunctive normal form

x =
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
), y =

m∧
j=1

(♢cj ∨□dj1 ∨ · · · ∨□djmj
),

then x S y iff for all i, j there exists k ≤ mj with ai S djk or there exists l ≤ ni with bil S cj.

Definition 6.5. For a boolean algebra B, let KS(B) = K(B); and for a morphism S in BAS,

let KS(S) = S .

Theorem 6.6. KS is an endofunctor on BAS.

Proof. We show that KS preserves composition; that is, KS(T ◦ S) = KS(T ) ◦ KS(S).

We first show the left-to-right inclusion. By Definition 6.2, KS
□(S),KS

♢(S) ⊆ KS(S) and

KS
□(T ),KS

♢(T ) ⊆ KS(T ). It then follows that

(KS
□(T ) ◦KS

□(S)) ⊆ (KS(T ) ◦KS(S)) and (KS
♢(T ) ◦KS

♢(S)) ⊆ (KS(T ) ◦KS(S)).
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Since KS
□ and KS

♢ are semi-functors, we have

KS(T ◦ S) = KS
□(T ◦ S) ∨KS

♢(T ◦ S) = (KS
□(T ) ◦KS

□(S)) ∨ (KS
♢(T ) ◦KS

♢(S)).

Thus, KS(T ◦ S) ⊆ KS(T ) ◦ KS(S). To prove the other inclusion, let x ∈ KS(B1) and

y ∈ KS(B3) be written in disjunctive and conjunctive normal form as above, and assume

that x
(
KS(T ) ◦KS(S)

)
y. Then there exists z ∈ KS(B2) such that x KS(S) z KS(T ) y.

Write z in conjunctive normal form

z =
t∧

r=1

(♢er ∨□fr1 ∨ · · · ∨□frtr ).

Fix i ≤ n and j ≤ m. We can reorder the conjuncts in the conjunctive normal form of z in

such a way that there is t′ ≤ t such that r ≤ t′ implies that there is lr ≤ tr with ai S frlr
and r > t′ implies that there is s ≤ ni such that bis S er. We also allow t′ = 0 for the case

in which the first condition never holds. Let f =
∧t′

r=1 frlr . Then

□f ∧ ♢(et′+1∧f) ∧ · · · ∧ ♢(et∧f) = □f1l1
∧ · · · ∧□ft′lt′

∧ ♢(et′+1∧f) ∧ · · · ∧ ♢(et∧f)

≤ z KS(T ) y ≤ ♢cj ∨□dj1 ∨ · · · ∨□djmj
.

Thus, there exists k ≤ mj such that f T djk or there exists r > t′ such that (er ∧ f) T cj. In

the first case, ai S
∧t′

r=1 frlr = f T djk, and hence ai (T ◦ S) djk. In the second case, there

is s ≤ ni such that bis S er. Since x is written in conjunctive normal form, bis ≤ ai S f , and

hence bis S f . Thus, bis S (er ∧ f) T cj, which implies that bis (T ◦ S) cj. In either case, we

have that x KS(T ◦ S) y.
Recall from Section 3 that the identity on B ∈ BAS is the partial order ≤. By Lemma 5.4,

KS(≤) is the partial order ≤ on K(B). Therefore, KS preserves identities, hence is an

endofunctor on BAS. □

The dagger (−)† : KHausR → KHausR introduced before Proposition 2.10 clearly restricts

to StoneR. The corresponding dagger (−)† on BAS is given by mapping a subordination

S : A → B to the subordination S† : B → A defined by b S† a iff ¬a S ¬b (see [ABC23a,

Thm. 2.14]). Since (−)† : BAS(A,B) → BAS(B,A) preserves inclusion, it gives an order-

isomorphism between BAS(A,B) and BAS(B,A). We conclude this section by observing

that KS
□ and KS

♢ are definable from each other using (−)† and that KS commutes with (−)†.

Proposition 6.7.

(1) KS
□ ◦ (−)† = (−)† ◦KS

♢ and KS
♢ ◦ (−)† = (−)† ◦KS

□.

(2) KS ◦ (−)† = (−)† ◦KS.

Proof. Since KS
□,KS

♢,KS coincide on objects and (−)† fixes the objects, we only need to show

that the compositions agree on the morphisms.

(1). We only prove the first equality because the second is proved similarly. Let S : A → B

be a morphism in BAS. Suppose that x ∈ K(A) and y ∈ K(B) are written in disjunctive and
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conjunctive normal form

x =
n∨

i=1

(□ai ∧ ♢bi1 ∧ · · · ∧ ♢bini
), y =

m∧
j=1

(♢cj ∨□dj1 ∨ · · · ∨□djmj
).

As ¬□a = ♢¬a and ¬♢b = □¬b, we obtain that ¬x and ¬y can be written in conjunctive and

disjunctive normal form

¬x =
n∧

i=1

(♢¬ai ∨□¬bi1 ∨ · · · ∨□¬bini
), ¬y =

m∨
j=1

(□¬cj ∧ ♢¬dj1 ∧ · · · ∧ ♢¬djmj
).

By Proposition 5.5, x KS
□(S

†) y iff for all i, j there exists k such that ai S
† djk, which means

that ¬djk S ¬ai. Applying Proposition 5.5 again, this is equivalent to ¬y KS
♢(S) ¬x, which

means that x KS
♢(S)

† y.

(2). Since (−)† : BAS(A,B) → BAS(B,A) is an order-isomorphism, (S1 ∨ S2)
† = S†

1 ∨ S†
2

for each S1, S2 ∈ BAS(A,B). Therefore, by (1), for each subordination S : A → B we have

KS(S†) = KS
□(S

†) ∨KS
♢(S

†) = KS
♢(S)

† ∨KS
□(S)

† = (KS
♢(S) ∨KS

□(S))
† = KS(S)†. □

Remark 6.8. By Proposition 6.7(2), KS commutes with the dagger on BAS. It follows

from Corollary 6.3 that KS preserves inclusions of subordinations. Thus, KS is a morphism

of order-enriched categories with involution. However, like VR, the functor KS is not a

morphism of allegories. This follows from Example 3.10 and Theorems 3.2, 7.3(3).

7. Connecting KS and VR

In this section we show that, under the equivalence between StoneR and BAS, the end-

ofunctor VR on StoneR corresponds to the endofunctor KS on BAS. Analogous results are

obtained for VR
□ and KS

□ as well as for VR
♢ and KS

♢.

Proposition 7.1. Suppose that R : X → Y is a closed relation between Stone spaces. Let

U ∈ Clop(V(X)) and W ∈ Clop(V(Y )) be written in disjunctive and conjunctive normal

form

U =
n⋃

i=1

(□Ui
∩ ♢Vi1

∩ · · · ∩ ♢Vini
), W =

m⋂
j=1

(♢Wj
∪□Zj1

∪ · · · ∪□Zjmj
)

with clopen sets ∅ ̸= Vil ⊆ Ui for each i, l, and Wj ⊆ Zjk ̸= Y for each j, k.

(1) U SR□
W iff ∀i, j ∃k ≤ mj : Ui SR Zjk,

(2) U SR♢ W iff ∀i, j ∃l ≤ ni : Vil SR Wj,

(3) U SREM
W iff ∀i, j ((∃k ≤ mj : Ui SR Zjk) ∨ (∃l ≤ ni : Vil SR Wj)).

Proof. (1). Since SR□
is a subordination, it is enough to prove the case n = m = 1, i.e. that

(□U ∩ ♢V1 ∩ · · · ∩ ♢Vp) SR□
(♢W ∪□Z1 ∪ · · · ∪□Zq) iff U SR Zk for some k ≤ q,

under the assumption that ∅ ̸= Vi ⊆ U and W ⊆ Zj ̸= Y .

To prove the right-to-left implication, suppose that U SR Zk. Then R[U ] ⊆ Zk. Let

F ∈ □U ∩ ♢V1 ∩ · · · ∩ ♢Vp and G ∈ V(Y ) with F R□ G, so G ⊆ R[F ]. Since F ∈ □U , we
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have F ⊆ U , and hence G ⊆ R[F ] ⊆ R[U ] ⊆ Zk. Thus, G ∈ □Zk
⊆ ♢W ∪ □Z1 ∪ · · · ∪ □Zq ,

and so (□U ∩ ♢V1 ∩ · · · ∩ ♢Vp) SR□
(♢W ∪□Z1 ∪ · · · ∪□Zq).

To prove the other implication, suppose that U ̸SR Zk for each k ≤ q, so there are xk ∈ U

and yk ∈ −Zk such that xk R yk. Then

{x1, . . . , xq} ∪ V1 ∪ · · · ∪ Vp ∈ □U ∩ ♢V1 ∩ · · · ∩ ♢Vp ,

{y1, . . . , yq} /∈ ♢W ∪□Z1 ∪ · · · ∪□Zq , and

{y1, . . . , yq} ⊆ R[{x1, . . . , xq}] ⊆ R[{x1, . . . , xq} ∪ V1 ∪ · · · ∪ Vp].

Therefore, {x1, . . . , xq} ∪ V1 ∪ · · · ∪ Vn R□ {y1, . . . , yq}, proving the failure of

(□U ∩ ♢V1 ∩ · · · ∩ ♢Vp) SR□
(♢W ∪□Z1 ∪ · · · ∪□Zq).

(2). Since SR♢ is a subordination, it is enough to prove the case n = m = 1, i.e. that

(□U ∩ ♢V1 ∩ · · · ∩ ♢Vp) SR♢ (♢W ∪□Z1 ∪ · · · ∪□Zq) iff Vl SR W for some l ≤ p,

under the assumption that ∅ ̸= Vi ⊆ U and W ⊆ Zj ̸= Y .

For the right-to-left implication, suppose that Vl SR W . Then R[Vl] ⊆ W . Let F ∈
□U ∩ ♢V1 ∩ · · · ∩ ♢Vp and G ∈ V(Y ) with F R♢ G, so F ⊆ R−1[G]. Since F ∈ ♢Vl

, we have

F ∩ Vl ̸= ∅. Therefore, R−1[G] ∩ Vl ̸= ∅, and hence G ∩ R[Vl] ̸= ∅. Thus, G ∩ W ̸= ∅.

Consequently, G ∈ ♢W , which implies that G ∈ ♢W ∪ □Z1 ∪ · · · ∪ □Zq . This shows that

(□U ∩ ♢V1 ∩ · · · ∩ ♢Vp) SR♢ (♢W ∪□Z1 ∪ · · · ∪□Zq).

For the left-to-right implication, suppose that Vl ̸SR W for each l ≤ p, so there are xl ∈ Vl

and yl ∈ −W such that xl R yl. Then

{x1, . . . , xp} ∈ □U ∩ ♢V1 ∩ · · · ∩ ♢Vp ,

{y1, . . . , yp} ∪ −Z1 ∪ · · · ∪ −Zq /∈ ♢W ∪□Z1 ∪ · · · ∪□Zq , and

{x1, . . . , xp} ⊆ R−1[{y1, . . . , yp}] ⊆ R−1[{y1, . . . , yp} ∪ −Z1 ∪ · · · ∪ −Zq],

which implies that {x1, . . . , xp} R♢ {y1, . . . , yp} ∪ −Z1 ∪ · · · ∪ −Zq, proving the failure of

(□U ∩ ♢V1 ∩ · · · ∩ ♢Vp) SR♢ (♢W ∪□Z1 ∪ · · · ∪□Zq).

(3). Since SREM
is a subordination, it is enough to prove the case n = m = 1, i.e. that

(□U ∩ ♢V1 ∩ · · · ∩ ♢Vp) SREM
(♢W ∪□Z1 ∪ · · · ∪□Zq) iff ∃k : U SR Zk or ∃l : Vl SR W,

under the assumption that ∅ ̸= Vi ⊆ U and W ⊆ Zj ̸= Y .

For the right-to-left implication, suppose that U SR Zk for some k ≤ q or Vl SR W for

some l ≤ p. Then, by (1) and (2), (□U ∩ ♢V1 ∩ · · · ∩ ♢Vp) SR□
(♢W ∪ □Z1 ∪ · · · ∪ □Zq) or

(□U ∩ ♢V1 ∩ · · · ∩ ♢Vp) SR♢ (♢W ∪□Z1 ∪ · · · ∪□Zq). Thus,

(□U ∩ ♢V1 ∩ · · · ∩ ♢Vp) SREM
(♢W ∪□Z1 ∪ · · · ∪□Zq).

For the other implication, suppose that for each k ≤ q there are xk ∈ U and yk ∈ −Zk

such that xk R yk, and that for each l ≤ p there are x′
l ∈ Vl and y′l ∈ −W such that x′

l R y′l.
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Therefore,

{x1, . . . , xq, x
′
1, . . . , x

′
p} ∈ □U ∩ ♢V1 ∩ · · · ∩ ♢Vp ,

{y1, . . . , yq, y′1, . . . , y′p} /∈ ♢W ∪□Z1 ∪ · · · ∪□Zq ,

{y1, . . . , yq, y′1, . . . , y′p} ⊆ R[{x1, . . . , xq, x
′
1, . . . , x

′
p}], and

{x1, . . . , xq, x
′
1, . . . , x

′
p} ⊆ R−1[{y1, . . . , yq, y′1, . . . , y′p}].

Thus, {x1, . . . , xq, x
′
1, . . . , x

′
p} REM {y1, . . . , yq, y′1, . . . , y′p}, proving the failure of

(□U ∩ ♢V1 ∩ · · · ∩ ♢Vp) SREM
(♢W ∪□Z1 ∪ · · · ∪□Zq). □

We next recall the notions of a natural transformation and natural isomorphism between

semi-functors.

Definition 7.2 ([Hoo93, Sec. 2.2]). Let D,E be categories and F,G,H : D → E semi-functors.

(1) A natural transformation (called “semi natural transformation” in [Hoo93, Def. 2.4])

α from F to G is a function which assigns to each object D ∈ D a morphism

αD : F (D) → G(D) in E such that for every morphism f : D → D′ in D the fol-

lowing square commutes

F (D) G(D)

F (D′) G(D′)

αD

F (f) G(f)

αD′

and for every D ∈ D the following diagram commutes (under the hypotheses above,

the commutativity of one triangle implies the commutativity of the other triangle).

F (D) G(D)

F (D) G(D)

F (idD)
αD

αD

G(idD)

αD

(2) The composition β ◦α : F → H of natural transformations α : F → G and β : G → H

is the natural transformation defined by (β ◦ α)D = βD ◦ αD for D ∈ D.

(3) The identity natural transformation 1F : F → F on F has components (1F )D :=

F (idD). (Note that, in general, (1F )D ̸= idF (D).)

(4) F and G are naturally isomorphic (denoted F ≃ G) if there are natural transforma-

tions α : F → G and β : G → F such that α ◦ β = 1G and β ◦ α = 1F .

Theorem 7.3. We have the following natural isomorphisms:

(1) Clop ◦ VR
□ ≃ KS

□ ◦ Clop and Uf ◦KS
□ ≃ VR

□ ◦ Uf.
(2) Clop ◦ VR

♢ ≃ KS
♢ ◦ Clop and Uf ◦KS

♢ ≃ VR
♢ ◦ Uf.

(3) Clop ◦ VR ≃ KS ◦ Clop and Uf ◦KS ≃ VR ◦ Uf.
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Therefore, the following three diagrams commute up to natural isomorphism.

StoneR BAS

StoneR BAS

Clop

VR
□

Uf

KS
□

Clop

Uf

StoneR BAS

StoneR BAS

Clop

VR
♢

Uf

KS
♢

Clop

Uf

StoneR BAS

StoneR BAS

Clop

VR

Uf

KS

Clop

Uf

Proof. (1). We only prove that Clop ◦VR
□ ≃ KS

□ ◦ Clop; that Uf ◦KS
□ ≃ VR

□ ◦ Uf follows since
Clop and Uf are quasi-inverses. By [VV14, Fact 1], for each X ∈ Stone, there is a boolean

isomorphism fX : Clop(V(X)) → K(Clop(X)), which maps, for every clopen U of X, the

clopen □U of V(X) to the formal symbol □U ∈ K(Clop(X)), and the clopen ♢U of V(X)

to the formal symbol ♢U ∈ K(Clop(X)).2 For each X ∈ StoneR, we define two relations

αX : Clop(VR
□(X)) → KS

□(Clop(X)) and βX : KS
□(Clop(X)) → Clop(VR

□(X)) by setting

U αX fX(V) ⇐⇒ fX(U ) βX V ⇐⇒ U Clop(VR
□(idX)) V

for each U ,V ∈ Clop(VR
□(X)). For the sake of completeness, we give its explicit formulation:

U αX fX(V) ⇐⇒ fX(U ) βX V ⇐⇒ ∀F ∈ U ∀G ∈ V(X) (G ⊆ F ⇒ G ∈ V),

We prove that α and β are natural transformations. Since Clop(VR
□(1X)) is a subordination

and fX a boolean isomorphism, αX and βX are subordinations. Let R : X → Y be a

morphism in StoneR. We prove that the following square commutes.

Clop(VR
□(X)) KS

□(Clop(X))

Clop(VR
□(Y )) KS

□(Clop(Y ))

αX

Clop(VR
□(R)) KS

□(Clop(R))

αY

For this we require the following claim.

Claim 7.4. For U ∈ Clop(VR
□(X)) and W ∈ Clop(VR

□(Y )) we have

U Clop(VR
□(R)) W ⇐⇒ fX(U ) KS

□(Clop(R)) fY (W).

Proof of claim. Write U and W in disjunctive and conjunctive normal form

U =
n⋃

i=1

(□Ui
∩ ♢Vi1

∩ · · · ∩ ♢Vini
), W =

m⋂
j=1

(♢Wj
∪□Zj1

∪ · · · ∪□Zjmj
)

with clopen sets ∅ ̸= Vil ⊆ Ui for each i, l, and Wj ⊆ Zjk ̸= Y for each j, k. Since

Clop(VR
□(R)) = SR□

, Proposition 7.1(1) yields

U Clop(VR
□(R)) W ⇐⇒ ∀i, j ∃k ≤ mj : Ui SR Zjk.

2We have a conflict of notation here since, on the one hand, □U denotes a clopen subset of V(X), and on

the other hand, a formal symbol in K(Clop(X)). This will come up again in Claim 7.4, but nowhere else.
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On the other hand, since fX is a boolean homomorphism,

fX(U ) =
n∨

i=1

(□Ui
∧ ♢Vi1

∧ · · · ∧ ♢Vini
) and fX(W) =

m∧
j=1

(♢Wj
∨□Zj1

∨ · · · ∨□Zjmj
).

Since KS
□(Clop(R)) = KS

□(SR), Proposition 5.5(1) yields

fX(U ) KS
□(Clop(R)) fX(W) ⇐⇒ ∀i, j ∃k ≤ mj : Ui SR Zjk.

Thus, U Clop(VR
□(R)) W iff fX(U ) KS

□(Clop(R)) fY (W). □

To prove the commutativity of the square, let U ∈ Clop(VR
□(X)) and W ∈ Clop(VR

□(Y )).

On the one hand,

U (αY ◦ Clop(VR
□(R))) fY (W)

⇐⇒ ∃Z ∈ Clop(VR
□(Y )) : U Clop(VR

□(R)) Z αY fY (W)

⇐⇒ ∃Z ∈ Clop(VR
□(Y )) : U Clop(VR

□(R)) Z Clop(VR
□(idX)) W

⇐⇒ U (Clop(VR
□(idX)) ◦ Clop(VR

□(R))) W
⇐⇒ U Clop(VR

□(idX ◦R)) W
⇐⇒ U Clop(VR

□(R)) W .

On the other hand,

U (KS
□(Clop(R)) ◦ αX) fY (W)

⇐⇒ ∃V ∈ Clop(VR
□(X)) : U αX fX(V) KS

□(Clop(R)) fY (W)

⇐⇒ ∃V ∈ Clop(VR
□(X)) : U αX fX(V), V Clop(VR

□(R)) W by Claim 7.4

⇐⇒ ∃V ∈ Clop(VR
□(X)) : U Clop(VR

□(idX)) V Clop(VR
□(R)) W

⇐⇒ U (Clop(VR
□(R)) ◦ Clop(VR

□(idX))) W
⇐⇒ U Clop(VR

□(R ◦ idX)) W
⇐⇒ U Clop(VR

□(R)) W .

Thus, αY ◦ Clop(VR
□(R)) = KS

□(Clop(R)) ◦ αX . Moreover, when X = Y and R = idX , the

calculation in the second to last display above and the definition of αX give

U (αX ◦ Clop(VR
□(idX))) fX(V) ⇐⇒ U Clop(VR

□(idX)) V ⇐⇒ U αX fX(V).

Therefore, the following triangle commutes for every X ∈ StoneR.

Clop(VR
□(X))

Clop(VR
□(X)) KS

□(Clop(X))

Clop(VR
□(idX))

αX

αX

Thus, α is a natural transformation. That β is a natural transformation is proved similarly.
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Let X ∈ StoneR. We prove that βX ◦ αX = Clop(VR
□(idX)). For U ,V ∈ Clop(VR

□(X)) we

have

U (βX ◦ αX) V ⇐⇒ ∃W ∈ Clop(VR
□(X)) : U αX fX(W) βX V

⇐⇒ ∃W ∈ Clop(VR
□(X)) : U Clop(VR

□(idX)) W Clop(VR
□(idX)) V

⇐⇒ U Clop(VR
□(idX)) ◦ Clop(VR

□(idX)) V
⇐⇒ U Clop(VR

□(idX ◦ idX)) V
⇐⇒ U Clop(VR

□(idX)) V .

This proves that βX ◦ αX = Clop(VR
□(idX)). We next prove that αX ◦ βX = KS

□(Clop(idX)).

For U ,V ∈ Clop(VR
□(X)) we have

fX(U ) (αX ◦ βX) fX(V)
⇐⇒ ∃W ∈ Clop(VR

□(X)) : fX(U ) βX W αX fX(V)
⇐⇒ ∃W ∈ Clop(VR

□(X)) : U Clop(VR
□(idX)) W Clop(VR

□(idX)) fX(V)
⇐⇒ U Clop(VR

□(idX ◦ idX)) V
⇐⇒ U Clop(VR

□(idX)) V
⇐⇒ fX(U ) KS

□(Clop(idX)) fX(V) by Claim 7.4.

Therefore, αX ◦ βX = KS
□(Clop(idX)). Thus, α and β yield a natural isomorphism between

Clop ◦ VR
□ and KS

□ ◦ Clop.
(2) and (3) are proved similarly. For the sake of completeness, we describe the natural

isomorphisms. For (2), the natural isomorphism is given by the natural transformations

α : Clop ◦ VR
♢ → KS

♢ ◦ Clop and β : KS
♢ ◦ Clop → Clop ◦ VR

♢ defined by

U αX fX(V) ⇐⇒ fX(U ) βX V ⇐⇒ U Clop(VR
♢(idX)) V

⇐⇒ ∀F ∈ U ∀G ∈ V(X) (G ⊆ F ⇒ G ∈ V).

For (3), the natural transformations α : Clop ◦VR → KS ◦Clop and β : KS ◦Clop → Clop ◦VR

witnessing the natural isomorphism are defined by

U αX fX(V) ⇐⇒ fX(U ) βX V ⇐⇒ U Clop(VR(idX)) V ⇐⇒ U ⊆ V . □

8. Extending KS to SubS5S, DeVS, and KRFrmP

In this section we lift the endofunctor KS on BAS to an endofunctor on SubS5S. We then

use MacNeille completions of S5-subordination algebras developed in [ABC22] to obtain

an endofunctor LS on DeVS, and prove that LS is dual to the Vietoris endofunctor VR

on KHausR. We conclude by utilizing ideal completions of S5-subordination algebras to

obtain an endofunctor on KRFrmP, thus generalizing Johnstone’s construction of the Vietoris

endofunctor on KRFrm.

We recall (see [ABC23a, Rem. 3.11]) that the equivalence between SubS5S and StoneER is

obtained by lifting the functors Uf and Clop establishing the equivalence between BAS and

StoneR. We next lift VR : StoneR → StoneR to an endofunctor on StoneER and KS : BAS →
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BAS to an endofunctor on SubS5S. We slightly abuse notation and denote the lift of a functor

by the same letter.

Definition 8.1.

(1) Define VR : StoneER → StoneER by sending (X,E) to (VR(X),VR(E)) and a mor-

phism R : (X1, E1) → (X2, E2) to VR(R).

(2) Define KS : SubS5S → SubS5S by sending (B, S) to (KS(B),KS(S)) and a morphism

T : (B1, S1) → (B2, S2) to KS(T ).

To show that VR and KS are well defined, we require the following two lemmas.

Lemma 8.2.

(1) If (X,E) ∈ StoneER, then VR(E) is a closed equivalence relation on VR(X) and

VR(X)/VR(E) ∼= VR(X/E).

(2) If R : (X1, E1) → (X2, E2) is a morphism in StoneER, then VR(Q(R)) = Q(VR(R)).

Proof. (1). Since E = E†, it follows from Proposition 2.6 that VR(E) is a closed equivalence

relation. Therefore, if π : X → X/E is the quotient map, then for F,G ∈ VR(X) we have

F VR(E) G ⇐⇒ E[F ] = E[G] ⇐⇒ π−1π[F ] = π−1π[G] ⇐⇒ π[F ] = π[G].

Thus, VR(E) is the kernel of V(π), and hence VR(X)/VR(E) is homeomorphic to VR(X/E).

(2). Since VR is a functor and commutes with the dagger, we have

Q(VR(R)) = VR(π) ◦ VR(R) ◦ VR(π)† = VR(π ◦R ◦ π†) = VR(Q(R)). □

Lemma 8.3. Let S be an S5-subordination on a boolean algebra B.

(1) S□ and S♢ satisfy (S5) and (S7).

(2) S is an S5-subordination.

Proof. (1). That S□ and S♢ satisfy (S5) is an immediate consequence of Definition 5.3

and Lemma 5.4. We prove that S□ satisfies (S7). Since KS
□ preserves inclusion of subordi-

nations and composition, S□ ◦ S□ = KS
□(S) ◦KS

□(S) = KS
□(S ◦ S) ⊆ KS

□(S) = S□. Thus, S□

satisfies (S7). That S♢ satisfies (S7) is proved similarly.

(2). By (1), to show that S satisfies (S5) and (S7), it is sufficient to prove that if S, T ∈
BAS(B,B) satisfy (S5) and (S7), then so does their join. Since (S5) holds for S, T , we have

that S and T are contained in ≤, where ≤ is the partial order on B. Thus, S∨T is contained

in ≤, and so S ∨ T satisfies (S5). Since S, T satisfy (S7), S ⊆ S ◦ S and T ⊆ T ◦ T . Thus,

S ∨ T ⊆ (S ◦ S) ∨ (T ◦ T ) ⊆ (S ∨ T ) ◦ (S ∨ T ),

where the last inclusion follows from the fact that both S ◦ S and T ◦ T are contained in

(S ∨ T ) ◦ (S ∨ T ) because S, T ⊆ S ∨ T . Therefore, S ∨ T satisfies (S7).

It remains to show that S satisfies (S6). We have that S† = S because S satisfies (S6).

By Proposition 6.7, S† = KS(S)† = KS(S†) = KS(S) = S . Thus, S satisfies (S6). □
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Theorem 8.4. VR : StoneER → StoneER and KS : SubS5S → SubS5S are well defined functors

and the following diagram commutes up to natural isomorphism.

KHausR StoneER SubS5S

KHausR StoneER SubS5S

VR

G Clop

VR

Q Uf

KS

G Clop

Q Uf

Proof. That VR is well defined follows from Lemma 8.2(1), and that KS is well defined

from Lemma 8.3(2). By Lemma 8.2, VR ◦ Q = Q ◦ VR, and since G is a quasi-inverse

of Q (see Remark 3.6), the left square commutes. Finally, because VR and KS are defined

componentwise (see Definition 8.1), Theorem 7.3(3) yields commutativity of the right square.

□

To obtain an endofunctor on DeVS, we recall the definition of the MacNeille completion

of an S5-subordination algebra. For a subset E of a poset, we write Eu for the set of upper

bounds and Eℓ for the set of lower bounds of E.

Definition 8.5. Let (B, S) be an S5-subordination algebra.

(1) [ABC22, Def. 3.1] An ideal I of B is an S-ideal (subordination ideal) if for each a ∈ I

there is b ∈ I such that a S b.

(2) [ABC22, Thm. 4.8] An S-ideal I is normal if I = S−1[(S[Iu])ℓ].

For (B, S) ∈ SubS5S, let NI(B, S) be the set of normal S-ideals of (B, S) ordered by

inclusion. Following [ABC22, Def. 4.6], we call NI(B, S) the MacNeille completion of

(B, S).

Theorem 8.6. [ABC22, Prop. 4.4, Thm. 4.12] If (B, S) is an S5-subordination algebra, then

NI(B, S) is a de Vries algebra. Moreover, the assignment (B, S) 7→ NI(B, S) extends to

a functor M : SubS5S → DeVS, which is an equivalence whose quasi-inverse is the inclusion

∆: DeVS → SubS5S.

Definition 8.7. Define LS : DeVS → DeVS to be the composition M ◦KS ◦∆.

Clearly LS is a well-defined endofunctor on DeVS. Moreover, since M : SubS5S → DeVS is

an equivalence whose quasi-inverse is ∆: DeVS → SubS5S, we have:

Theorem 8.8. The following diagram commutes up to a natural isomorphism.

SubS5S DeVS

SubS5S DeVS

M

KS LS

M
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We recall from [ABC23a, Def. 4.10] that the functor D : KHausR → DeVS sends each

compact Hausdorff space X to the de Vries algebra RO(X) of its regular opens and a

closed relation R : X1 → X2 to the compatible subordination D(R) : RO(X1) → RO(X2)

defined by

U D(R) V ⇐⇒ R[cl(U)] ⊆ V.

By [ABC22, Thm. 5.11], M ◦ Clop is naturally isomorphic to D ◦Q. Therefore, combining

Theorems 8.4 and 8.8, we obtain:

Theorem 8.9. The following diagram commutes up to natural isomorphism.

KHausR StoneER SubS5S DeVS

KHausR StoneER SubS5S DeVS

VR

D

Clop

VR

Q M

KS LS

D

ClopQ M

Remark 8.10. We thus obtain that the Vietoris endofunctor VR on KHausR can be dually

described either as the endofunctor KS on SubS5S or as the endofunctor LS on DeVS. The

usefulness of the latter description stems from the fact that, unlike in SubS5S, isomorphisms

in DeVS are given by structure-preserving bijections [ABC23a, Thm. 5.4].

In [BBH15, p. 375] it was left as an open problem to give a direct description of an

endofunctor on DeV that is dual to the Vietoris endofunctor V on KHaus. Our result above

solves a similar problem by showing that it is the endofunctor LS that is dual to the Vietoris

endofunctor VR on KHausR. In [ABC23b] we show how to modify our result to obtain a

solution of [BBH15, p. 375].

We conclude the paper by developing the dual endofunctor VR for KRFrmP. For this

we recall from [ABC22, Thm. 3.11] that associating with each S5-subordination algebra

(B, S) the frame SI(B, S) of S-ideals of (B, S) defines a contravariant functor I : SubS5S →
KRFrmP. To describe its quasi-inverse, we recall that for a frame L, the pseudocomplement

of a ∈ L is given by a∗ =
∨
{x ∈ L | a∧x = 0}. The well-inside relation on L is then defined

by a ≺ b iff a∗∨ b = 1. The booleanization of L is the boolean frame BL = {a ∈ L | a = a∗∗}
(see, e.g., [BP96]), and restricting ≺ to BL yields a de Vries algebra (BL,≺) [Bez12]. This

defines a contravariant functor B : KRFrmP → DeVS [ABC22, Prop. 4.2], and we have:

Theorem 8.11. [ABC22, Thm. 4.16(1)] The functors I and ∆ ◦B form a dual equivalence

between SubS5S and KRFrmP.

Definition 8.12. Define JP : KRFrmP → KRFrmP to be the composition I ◦KS ◦∆ ◦B.

Clearly JP is a well-defined endofunctor on KRFrmP. Moreover, since I : SubS5S → KRFrmP

is an equivalence whose quasi-inverse is ∆ ◦B : KRFrmP → SubS5S, we obtain:
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Theorem 8.13. The following diagram commutes up to natural isomorphism.

SubS5S KRFrmP

SubS5S KRFrmP

I

KS JP

I

For a compact Hausdorff space X, let O(X) be the compact regular frame of opens of X.

For a closed relation R : X → Y , let □R : O(Y ) → O(X) be given by □RU = −R−1 − U .

This defines a contravariant functor O : KHausR → KRFrmP, which is a dual equivalence

[Tow96, JKM01]. By [ABC22, Thm. 5.7], O ◦Q is naturally isomorphic to I ◦ Clop. Thus,

putting Theorems 8.4 and 8.13 together yields:

Theorem 8.14. The following diagram commutes up to natural isomorphism.

KHausR StoneER SubS5S KRFrmP

KHausR StoneER SubS5S KRFrmP

VR

O

Clop

VR

Q I

KS JP

O

ClopQ I

Remark 8.15. We thus obtain an endofunctor on KRFrmP that is dual to VR. This extends

Johnstone’s endofunctor J on KRFrm that is dual to the Vietoris endofunctor V on KHaus.

Alternatively, one could generalize Johnstone’s construction directly, but the difficulty would

be in lifting the morphisms. Indeed, Johnstone writes each element of J(L) as a join of finite

meets of the generators {□a,♢a | a ∈ L}. Since every frame homomorphism f : L → M pre-

serves arbitrary joins and finite meets, it lifts to a frame homomorphism J(f) : J(L) → J(M).

On the other hand, preframe homomorphisms only preserve directed joins, so the above lift

could be modified as follows. Write each element as a directed join of finite meets of finite

joins of the generators {□a,♢a | a ∈ L}. Then the hard part is in proving that the natural

lift of f : L → M to JP(f) : J(L) → J(M) is well defined. This issue disappears in our

alternate construction of JP as the composite I ◦KS ◦∆ ◦B.
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Milano (MI), Italy

Email address: luca.carai.uni@gmail.com


	1. Introduction
	2. The Vietoris endofunctor on KHaus^R 
	3. Closed relations and subordinations
	4. The endofunctor K on BA
	5. The semi-functors K^S_Box and K^S_Diamond
	6. The endofunctor K^S on BA^S
	7. Connecting K^S and V^R
	8. Extending K^S to SubS5^S, DeV^S, and KRFrm^P
	References

