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Dynamical stochastic simulation 
of complex electrical behavior 
in neuromorphic networks 
of metallic nanojunctions
F. Mambretti  1,2, M. Mirigliano  1, E. Tentori  1, N. Pedrani  1, G. Martini  1, P. Milani  1*  
& D. E. Galli  1*

Nanostructured Au films fabricated by the assembling of nanoparticles produced in the gas phase have 
shown properties suitable for neuromorphic computing applications: they are characterized by a non-
linear and non-local electrical behavior, featuring switches of the electric resistance whose activation 
is typically triggered by an applied voltage over a certain threshold. These systems can be considered 
as complex networks of metallic nanojunctions where thermal effects at the nanoscale cause the 
continuous rearrangement of regions with low and high electrical resistance. In order to gain a deeper 
understanding of the electrical properties of this nano granular system, we developed a model 
based on a large three dimensional regular resistor network with non-linear conduction mechanisms 
and stochastic updates of conductances. Remarkably, by increasing enough the number of nodes 
in the network, the features experimentally observed in the electrical conduction properties of 
nanostructured gold films are qualitatively reproduced in the dynamical behavior of the system. In the 
activated non-linear conduction regime, our model reproduces also the growing trend, as a function of 
the subsystem size, of quantities like Mutual and Integrated Information, which have been extracted 
from the experimental resistance series data via an information theoretic analysis. This indicates that 
nanostructured Au films (and our model) possess a certain degree of activated interconnection among 
different areas which, in principle, could be exploited for neuromorphic computing applications.

The expression ‘neuromorphic computing’ is a roof under which are gathered several hardware and software 
approaches aiming at overcoming the difficulties of digital computers to respond to the continuously increasing 
demand for complex data processing at low energetic cost1–8. This ambitious objective can be summarized in 
the reproduction of the mammalian brain capabilities of rapidly integrating information from many different 
sources9. Mammalian brains are composed by an extremely high number of electrically active neurons; the syn-
aptic weights regulate the interconnection between neuron pairs and also define the network topology, as they 
control the propagation of signals across the synapses10. These weights are not fixed but can change over time 
depending on their previous history, thus providing the learning capability of the network. The organization of 
structural connections among different regions of the brain largely determines the types of cognitive functions 
that can be supported, including memory, learning, vision and motor control10. Artificial neuromorphic systems 
should be composed by building blocks able to emulate the properties of their biological counterparts: neurons, 
synapses, axons and dendrites, wired with an extremely high degree of inter-connectivity.

The memristor is a non-linear device whose electrical properties are dependent on the history of the cur-
rent and/or voltage it has experienced11; this results in two important synapse-like properties: plasticity and 
retention11,12. Memristors have been successfully embedded into various CMOS architectures, typically organ-
izing them as large arrays or 3D stackings to fabricate artificial systems with neuromorphic behavior12,13. By 
controlling the internal state of single memristors (nodes), memorization, learning and classification can be 
obtained13,14.

An approach to synthetic neuromorphic networks gaining increasing attention, is represented by the self-
assembling of nanoscale building blocks like nanowires15–17, and nanoparticles18 to form complex networks of 
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interconnected nanoscale electrical switching elements that exhibit synapse-like behavior16,17,19,20 and mimic the 
complex network topology of neurons in the brain21,22.

In contrast to thin-film memristors20, the conductance state of a random assembly of resistive switching 
junctions does not only depend on the dynamics of a single element, but also on the topological organization of 
the connected nanoobjects23. The interplay between junction dynamics and network topology produces com-
plex effects, such as self-organization and criticality, also encountered in neuronal systems24,25 with potential 
applications in reservoir computing26. This subtle balance between the non-linear, memristive-like electrical 
properties of nano-objects networks and their topological organization has been recognized as a fundamental 
aspect of the observed neuromorphic behavior19,23,27, in particular, the connection between the topological 
organization and information processing is critical for performing memory and learning tasks22,23,28. Despite 
these fundamental progresses, the influence of the nanoscale switching mechanism on the collective electrical 
properties at different length scales remains elusive19,23. Due to the complexity of networks obtained by the 
self-assembling of nano-objects, it is very difficult to predict the impact of the network structure on their data 
processing capabilities. Among the computational approaches which tackle this issue (see e.g.19,29,30), we recall 
here that state-of-the-art simulations and analysis of information dynamics in micrometric nanowire electrical 
networks are reported in31,32.

Recently we showed that gold nanostructured films resulting from the assembling of metallic clusters 
show complex resistive switching activity, non-linear dynamics, capacity of learning, with the emergence of 
spatially correlated structures of network activity24,33–35. The switching activity and its dependence from the 
flow of electrical current through the nanostructured metallic film36 can be used for neuromorphic comput-
ing applications24,35,37. The nanogranular structure of cluster-assembled Au films consists of an extremely high 
density of nanojunctions with memristive-like behavior24,37. Correlations emerge among the electrical activity 
of different regions of the film under the application of an external electrical stimulus higher than a suitable 
threshold. The degree of correlation can be varied controlling the film geometry and the electrode configuration 
used as input and output37. In Fig. 1a we display two typical measured total resistance series in time, Rtot(t) , 
characterized by the onset of switching activity with a series of discrete and reversible resistance variations, fol-
lowing the application of an external voltage bias �V  . As presented and discussed in detail in24 the data refers 
to cluster-assembled films characterized by different initial resistances: in the case of high initial resistance, we 
observe the onset of a resistive switching activity upon the application of low constant voltages (3 V). At 5 V 

Figure 1.   (a) typical evolution of electrical resistance with time under the application of �V = 5 V(red) or 15 
V (lavender), measurements are taken every 100 ms. Black and dark blue dots correspond to resistance switches. 
(b) Inter-Switch-Interval probability density, plotted collecting the temporal distance tie = ti+1 − ti (the inter-
event time) of consecutive switches. (c) Experimental PSD for measurements taken at 1 V (blue-blue) and at 15 
V (dark purple), as a function of frequency f, in log-log scale. Yellow and blue dashed lines represent 1/f α fitted 
curves. (d) apparently nonlinear I(�V) curve, from -25 V to +25 V, with discrete jumps equal to 1 V.
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the high resistance films show a resistive switching pattern with a small number of events uniformly distributed 
(red dots). In the case of low resistance films, we observe the presence of a pronounced switching activity from 
roughly 15 V (blue dots)24. No decreasing of switching activity has been observed as reported in24,33,57. In Fig. 1a 
resistance data show an initial decreasing trend. This is due to joule heating effect arising from the current flow-
ing through the metallic film used to trigger switching activity33. The concurrent effects of local rearrangement 
phenomena, electromigration and joule heating acting on the cluster assembled of films and resulting in the 
structural reorganization of the cluster-assembled films have been discussed in24,33,35,37. Fig. 1b contains the Inter-
Switch-Interval (ISI) distributions of the total resistance at two different voltages (5 V and 15 V), which have 
been obtained by collecting data from measurements on few samples produced and analyzed under analogous 
experimental conditions. The majority of the RS events are within an interval of 2 s and the ISI distributions are 
characterized by an approximately exponential decay with very extended tails of outliers. Previous investigations 
of ISI distributions in nanoparticle networks have shown different types of trends, including exponential, power-
law and lognormal functions54–56. Figure 1c reports, instead, the measured Power Spectral Density of Rtot(t) for 
two other series at different voltages (1 V and 15 V). The measured electrical signal is characterized by temporal 
correlations with a Power Spectral Density (PSD) featuring a 1/f α trend, being 1 < α < 1.5 . This behavior is 
typical of systems where memory effects are present24,25. The non-linear electrical behavior of cluster-assembled 
Au films is also highlighted by the I(�V) curves reported in Fig. 1d24,33,35.

Cluster–assembled gold films are characterized by the presence of a high density of structural defects such 
as grain boundaries and dislocations: this causes the departure from an ohmic behavior and the appearance of 
non–local effects24,33,34,37. Structural defects are responsible for variation of the local resistance and hence of 
formation of nanoscale regions where the local temperature varies in a very wide range of values, depending on 
the value of the resistance38. This causes defect migration, grain boundaries modification and annealing, local 
re–crystallization phenomena depending to the different nanoparticle dimensions and structures24,34,37. The 
nanostructured film dynamically reorganize in different local crystalline structures following the evolution of 
the temperature distribution caused by the change in local conductivity19. These effects cause a dynamical redis-
tribution of the flowing current through the network of nanojunctions and the resistive switching activity24,34,37.

With the aim to capture the necessary minimal complexity which can effectively describe, at a coarse-grained 
level, the electrical transport phenomena characterizing nanostructured Au films, we have thus conceived a Sto-
chastic Resistor Network (SRN) model. This model couples a stochastic dynamics mimicking various physical 
effects, like thermal dissipation and topological reorganization of the nanogranular structure (and the related 
electrical transport properties, quantum effects included)24,35, to a three-dimensional regular lattice of resistors 
with discrete conductances. Other stochastic approaches have previously appeared in literature. Simple two-
dimensional models based on resistor networks, like the Random Circuit Breaker (RCB) network model, have 
been implemented for a microscopic description of (unipolar) resistive switching phenomena40,41 in the context 
of Resistive Random Access Memory devices, whereas stochastic dynamic versions of the RCB model have been 
also developed42,43. Another stochastic framework present in literature is a continuum percolation model53,54, 
with static probabilities of formation and breaking of atomic scale wires in 2D, which is able to generate ava-
lanches of switching events similar to potentiation mechanism in biological neural systems. More recently, the 
deterministic evolution of random nanowire networks employed for neuromorphic computing applications has 
been simulated at a micrometric scale31,32.

The peculiarity of our SRN model is that some of the stochastic moves, which involve single resistor updates, 
are influenced by the dissipation process of the neighboring resistors, inducing mutual dependencies among the 
simple network elements. The crucial novelty of this approach lies therefore in the attempt to retrieve the key 
features of our complex experimental phenomenology starting from a large 3D resistor network that stochasti-
cally evolves due to the cooperativity of its building blocks, despite each of them can access only a limited number 
of resistance states. Remarkably, beyond a given lattice size, the model gains enough complexity to be able to 
display resistive switching, a nontrivial PSD frequency dependence and a nonlinear I(�V) behavior. Moreover, 
exploiting entropy-based tools typical of neuroscience for measuring brain complexity, the experiment and 
our SRN model both highlight peculiar non-local spatial correlations, displaying many common features with 
biological neuromorphic systems21,39.

Results
A coarse‑grained Stochastic Resistor Network model.  Aiming to describe the electrical behavior of 
macroscopic cluster-assembled metallic films at a coarse-grained level, our Stochastic Resistor Network model 
is essentially based on a large three-dimensional (3D) regular lattice of resistors, each one capable of a discrete 
number of conductive states, which in our work has been fixed to four (see Fig. 2 and Methods). This choice 
is a trade-off between descriptive capability and the need to limit the complexity of our simulation framework. 
Resistors are represented as links ij joining a pair of nodes (i, j), which are coarse-grained representations of large 
sub-regions of the original sample; the links are organized in groups termed layers (which are three in Fig. 2), 
connected to each other by vertical (z-axis) links. The conductance values were established based upon experi-
mental data on nanostructured Au films. As shown in Fig. 2 our resistor network is provided with an input and 
an output node, to which an overall voltage �V  is applied.

For each link connecting nodes i and j, the applied voltage induces the presence of electrical current Iij flow-
ing through it, and also a potential difference �Vij . Applying the spectral theory to the Laplacian matrix of the 
weighted undirected graph associated to our network31,32,45–48, we are able to retrieve Iij and �Vij for each link 
of the network. The set of these Iij and �Vij values constitutes the input for Monte Carlo update moves which 
make the system stochastically evolve. These MC moves are conceived to reproduce the thermal stability of the 
connections and also other non-linear electron conduction mechanisms, due to inter-cluster and intra-cluster 
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atomic rearrangements, which result in the dynamical creation and destruction of conduction pathways and 
trigger the switching events24,33–35. Such physical effects are reflected in our model through the possibility for 
each link ij to either increase its own conductance or decrease it, via stochastic jumps across the available discrete 
conductance levels, due to the heat released by its neighbors ( σij grows with a given probability) or to its thermal 
dissipation ( σij lowers with a given probability), respectively—see Methods. Besides, �Vij is nonlinearly used 
either to stochastically degrade or improve σij , by comparing it with a suitable threshold �V th (see Methods for 
details). The computational cost of the model is highly demanding, since the application of the aforementioned 
stochastic update moves produces a new configuration of the network, which then requires a new complete 
solution in terms of currents Iij and voltages �Vij at each link, to provide the input for the subsequent MC step. 
In view of the computational effort required, our aim has been to find out and focus on a well-founded set of 
parameters capable of reproducing the experimental phenomenology.

Qualitatively reproducing experimental electrical transport properties via the SRN 
model.  Our SRN model is capable of generating a rich and complex electrical transport phenomenology 
which is impossible to forecast in advance; nonetheless, the key ingredients were conceived in the attempt to 
qualitatively retrieve the experimental features of Fig. 1. Remarkably, we see the progressive emergence of all the 
peculiarities observed in the electrical conduction properties of nanostructured gold films, as long as the net-
work size is gradually increased. In particular, the size of our regular 3D lattice has been progressively enlarged, 
up to the size of Nx = 27× Ny = 42× Nz = 3 , which corresponds to 3404 nodes and 8919 links. The simu-
lation of such a large network, endowed with a nontrivial stochastic dynamics, represents an unprecedented 
attempt to study the complexity required to describe electrical conduction phenomena in cluster–assembled 
nanostructured metallic systems. Our results thus indicate the first identification of a minimum complexity 
limit to be considered in order to start achieving such an experimental phenomenology. The simulations of our 
SRN model have required an extensive use of high performance computating facilities. Despite this size and the 
resulting intricacy, our SRN model cannot capture the full complexity of the experimental system; for this reason 
we can only expect a qualitative reproduction of the phenomenology observed in gold nanostructured films. We 
also point out that, keeping the potential difference �V  fixed, the effect of rescaling by a constant factor, Ŵ , all the 
conductances, σij , and correspondingly, adequately rescaling all the model activation thresholds, has as its only 
effect an equivalent stochastic dynamics of the model, characterised by the same �Vij with currents I ′ij = Ŵ × Iij . 
We show in Fig. 3 the analogue quantities displayed in Fig.1, simulated via the SRN model.

Figure 3a shows the evolution of Rtot during a typical simulation of 20000 MC steps (where a MC step is the 
simulation basic time unit) at �V = 15V  for our SRN model. The analysis of the resistance series data for two-
electrode devices (see Fig. 7, Methods section) is carried out following the same protocol used for the experi-
mental data. The qualitative similarity between the experimental and simulated patterns suggest that the SRN 
model is able to capture the main features evidenced in the experiment: a number of distinguished resistance 

Figure 2.   Left: schematization of a node, a link and viem of the layer 1 of the resistor network. Each link can 
assume one of a discrete number of conductance values (namely, in this work, σα = 10−11 1

�
 , σβ = 10−3 1

�
 , 

σγ = 2× 10−3 1
�

 and σδ = 4× 10−3 1
�

 ). In the picture, links with σij = σα , σβ , σγ , σδ are respectively white, 
orange, blue and purple. Right: 3D view of the full network, where only edges with σij = σγ are colored. 
Nx ,Ny ,Nz correspond to the number of nodes along each network direction. Picture realized with NetworkX44.
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levels are repeatedly visited by the system with sudden variations of Rtot and subsequent fluctuations around a 
given resistance value. In the stochastic evolution of Rtot we observe more intense fluctuations with respect to the 
experimental case; the reason for this lies, as discussed below, in the lower complexity of the SRN model com-
pared to the real system and the consequent greater fragility and susceptibility of Rtot to the stochastic dynamics.

We evaluated the Inter-Switch-Interval distribution of Rtot and the the Power Spectral Density of Rtot , i.e. the 
square modulus of the Fourier transform of the signal. The Power Spectral Density of the measured electrical sig-
nal for our SRN model is characterized by a 1/f α trend24, with typical α values between 1.5 and 2. ISI distribution 
is obtained like in the experimental data analysis. The data are plotted in form of probability density distribution 
function in Fig. 3b for devices polarized at 15 V. Notably, the ISI distributions coming from the SRN model are 
characterized by the same trend obtained from the experimental data. Even for the SRN model, at short times 
the data decrease like an exponential with similar timescales for both voltages, while extended tails of outliers 
are present, as also found in the experiments (see Fig. 1b). The majority of the RS events are most frequently 
separated by less than 70 MC steps, with very long tails of the distributions for larger MC steps intervals. The 
comparison of the experimental and simulated ISI distributions allows us to roughly associate to a single MC 
step an equivalent time, for the observed phenomenology, of the order of 0.1 seconds.

In Fig. 3c, a typical PSD of the SRN total resistance is reported in log-log scale, for simulations performed 
at 1 V and at 15 V (lavender and dark read points, respectively). Dashed dark blue and pale red lines represent 
power-law fits of the simulated data, with exponent α . Surprisingly, the simulated PSD associated to Rtot shows 
a 1/f α behavior with 1 < α < 2 (in the particular example shown, α = 1.74 and α = 1.72 at 1 V and and at 15 
V respectively). This behavior evidences a pink-noise memory25, qualitatively similar to the noise generated by 
the cluster-assembled films studied in the experiments24,35.

Our SRN model presents a peculiar I(�V) relation, featuring very small current values at small voltages, a 
markedly different regime with a steep increase in I at intermediate voltages, and a saturation regime at higher 
voltages (see Fig. 3d). The regions at low and intermediate �V  qualitatively resemble the experimental behavior 
displayed in Fig. 1d. Despite its considerable number of links and nodes, the SRN model unveils finite size effects 

Figure 3.   (a) typical evolution of simulated electrical resistance under the application of �V = 1 V (red) or 
15 V (lavender); measurements are taken every MC step. Black and dark blue dots correspond to resistance 
switches. (b) Inter-Switch-Interval probability density, computed as for the experimental data, joining data from 
10 statistically independent simulations. Also here, at 15 V the distribution is approximately monotonically 
decreasing and the majority of the RS events are close in time (within ≈ 1000 MC steps). The data taken 
at 1 V feature a longer tail of the distribution, as in the experiments at low voltage. (c) Simulated PSD for 
measurements taken at 1 V (blue-blue) and at 15 V (dark purple), as a function of frequency f, in log-log 
scale. Yellow and blue dashed lines represent 1/f α fitted curves. d: simulated I(�V) curve, where each point is 
averaged over 20 independent simulations lasting 8000 MC steps each (the dashed line is only a guide for the 
eyes).
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at high voltages: the limited size of the network, jointly with its collective and cooperative dynamics, yields a 
saturation in |I(�V)| values. Given the remarkable qualitative reproduction of the experimental phenomenology, 
our simulations could provide insights about the evolution and modification of the structure of cluster-assembled 
Au films induced by current flow and responsible for the observed switching behavior. We concentrate on the 
effect of high and low voltage application on the modification of the electrical behavior of different junctions24,35.

In Fig. 4, we report the evolution of the fractions of links having σij = σα , σβ , σγ , σδ as a function of the MC 
steps, during a specific simulation where the effect of the application of a high voltage bias ( �V = 15 V) to our 
resistor network has been studied. Initially, a low voltage is applied to a network featuring a purely random con-
ductance distribution. First of all, we notice that, almost independently of the actual initial spatial distribution 
of the conductances, the system reaches a dynamical equilibrium as a consequence of the stochastic evolution of 
the model (see Fig. 4, slightly before 20000 MC steps). The application of a high voltage bias significantly alters 
this steady state, leading the system to a markedly different condition, characterized by a further decrease in the 
amount of the high conductances and a concurrent increase of the fraction of links having σij = σα.

In the subsequent phase, where �V = 1V again, the stochastic evolution leads it to the onset of a novel 
dynamical equilibrium (nonetheless characterized by the persistence of the resistive switching activity, see 
Fig. 3a), in close analogy with what is observed for the physical substrate: the number of highly resistive links 
almost doubles, corresponding to a picture where a significant reduction of the available paths for the current 
occurs. This is confirmed by the analysis of the shortest paths (measured weighting each link with the inverse of 
the current it is traversed by) available for the current from the input to the output, whose number is strongly 
reduced after that the system experiences a high voltage bias (see Supplementary Information). This result 
shows that the SRN model, whose stochastic dynamics is strongly correlated, is highly sensitive to the electrical 
conditioning history of the system, and supports the model based on local rearrangements of grain boundaries 
to explain the non-linear and non-local conduction properties of cluster-assembled Au films24,35.

Information‑theoretic analysis of correlations in the experimental device and the SRN 
model.  In neuroscience, the role of dynamical correlations between different brain areas is recognized as 
fundamental for cognitive and behavioral integration21,39. Statistical measures derived from information theory 
have been proposed to characterize the integration of information among functionally segregated groups of neu-
rons, in particular entropy, Mutual Information (MI) and Integrated Information (IN) have been considered to 
reveal the degree of interconnection/segregation for different regions of the brain or biological neural networks 
in response to external stimuli39.

Aiming to get a deeper insight into the presence and role of spatial correlations in cluster-assembled Au films, 
we performed an experimental analysis exploiting the same MI and IN tools21,39. To investigate the information 
content of the measured and simulated resistance series data, Mutual Information and Integrated Information 
have been computed as detailed below and in the Methods section. The nanostructured cluster films can indeed 
be idealized like networks of smaller units with a proper activity with a stochastic behavior. In literature different 
approaches are used to define the state of such a kind of system22,49. In a general approach, we can consider that 
the intensity of the electrical activity of each unit corresponds to different states of the elemental units.

Let us consider a generic set X of N Random Variables (RVs), whose subsets of size k ≤ N are indicated as 
Xk
j  , where j runs over all the 

N !

k!(N − k)!
 possible choices of a subset of size k. Therefore, the elementary units of 

Figure 4.   Evolution of the fractions of links with: σij = σα = 10−11�−1 (grey), σij = σβ = 10−3�−1 (orange), 
σij = σγ = 2× 10−3�−1 (navy) and σij = σδ = 4× 10−3�−1 (purple) as a function of the MC steps. Black 
dashed vertical lines separate the three simulation phases. At the start of the simulation, one can see the initial 
probability for the abundance of links having conductivity equal to σα , σβ , σγ , σδ . The initial amount of each 
conductance level is chosen in a range of values which allow for a sufficient degree of current percolation.
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X can be referred to as X1
j , j = 1 . . .N . In the following equation, we give the definition of entropy H(Xk

j ) of a 
generic subset Xk

j  , possibly even of X = XN
1 :

being pi(Xk
j ) the probability to find the subset Xk

j  in its i-th state. Exploiting the above general definition of 
entropy, two useful quantities can be introduced: the Mutual Information and the Integrated Information. MI 
takes into account the relationship between a subset Xk

j  and the complementary subset X − Xk
j  , whereas IN 

includes the correlations among the basic units which are part of Xk
j

21,39:

In Eq. (3), the index l runs over all the elements X1
l  belonging to the subset Xk

j  . MI describes the statistical 
dependence between the RVs represented by the subset Xk

j  of X and the complementary X − Xk
j  . Note that 

MI(Xk
j ,X − Xk

j ) = 0 if the two partitions of X are composed by independent RVs, while positive values of MI 
mark the presence of general statistical correlations between two data sets. Integration is, on the other hand, a 
tentative to give a measure of the segregation (independence) or integration (dependence) among the elemen-
tary constituents of the system. IN (Xk

j ) = 0 if the RVs composing the chosen subsystem, Xk
j  , are statistically 

independent one from each other, while IN(Xk
j ) > 0 in presence of correlations among them.

Note that, in principle, one can compute also the average value of MI and IN:

In the case of our multi-electrode cluster-assembled films37, the system X can be thought of as made by elemen-
tary units X1

j  , which are single electrode couples (see Methods, and especially Fig. 7b for a system with 3× 3 = 9 
possible electrode pairs), where an electrode couple includes one of the three input terminals (1,2,3) together 
with one of the three output ones (A, B, C). The probability that the two electrodes selected have a given elec-
trical resistance represents instead the basic ingredient from which we aim to infer entropy-related proper-
ties. Computing entropy for a set of k electrode couples, H(Xk

j ) , using Eq. (1) requires having at disposal an 
approximated probability distribution {pi} , where a probability is associated to a state i, corresponding to a list 
of k resistances simultaneously taken by all the involved electrode couples. More in detail, the time series of the 
resistance between each pair of electrodes is measured for a set of times {t} ; each resistance time series R{t}(X1

j ) 
is normalized dividing by its mean value R̄(X1

j ) and then discretized (see Methods). The entropy related to a set 
Xk
j  of electrodes (and MI and IN as a consequence) can be then obtained computing the joint probability of the 

resistance states of the k electrode couples belonging to the set.
Inspired by Refs.21,39, in order to understand how correlation between different regions of cluster-assembled 

films rises in response to the applied external voltage pulses, we experimentally measured MI and IN using a 
device shown in Fig. 7 and starting from the resistance time series of all the different electrode couples. In the 
following, we focus on data collected at �V = 1 V, after the conditioning stage (i.e. the application of a high 
voltage bias of 15 V). As an example, in Fig. 5a, MI is plotted as function of the number k of electrode couples, 
while applying the voltage bias either to the electrode couples 1-A (azure curves) or to 1-C (orange curves); 
Fig. 5b shows the equivalent result for IN . MI and IN both show an increasing trend as a function of the subset 
size k. In particular, the Mutual Information monotonically increases, reflecting the correlations of a subset 
with its complementary subset. The application of �V  to the electrode couple 1-C produces higher MI values: 
intuitively, in this configuration, the current flows throughout a larger region of the sample, probably enhancing 
reciprocal correlations among the sub-regions. Simultaneously, IN is larger when the voltage is applied to 1-C, 
mirroring the growing internal correlations among the elements of the chosen subset. In both cases, the growth 
of IN is sublinear, whereas a linear growth (represented as a grey dashed line in the picture) would indicate a 
fully correlated system. We observe a remarkable similarity with the trends usually observed in neuroscience 
works, where measurements are taken on animal brains21,39. Note that, in that field, the area comprised between 
the linear growth and the effective IN curve is a measure of the so called neural complexity.

In the complementary analysis of the simulations, the investigation of spatial correlations plays a crucial role 
as well. The topology of the nanostructured film just analyzed (see Fig. 7b) is more structured than the simu-
lated network and it has more electrodes; therefore, the Information-theoretic tools based analysis in the SRN 
model necessarily requires a modification of the notion of Xk

j  , which we choose to correspond to a well-defined 
sub-region of the network (see Fig. S4). In fact the network can be easily divided into N sub-regions (here we 
set N = 7 ), each of them gathering the electrical properties of a number neighboring of links. The resistances of 
each sub-region (averaged over the links belonging to it) are periodically recorded in time, and their distribu-
tion is discretized with the same procedure employed for the experimental data (see Methods). In this way, it 

(1)H(Xk
j ) =

∑

i

pi(X
k
j )log2(pi(X

k
j ))

(2)MI(Xk
j ,X − Xk

j ) = MI(X − Xk
j ,X

k
j ) = H(Xk

j )+H(X − Xk
j )−H(X)

(3)
IN(Xk

j ) =
∑

l :X1
l ∈X

k
j

H(X1
l )−H(Xk

j )

(4)MIk :=
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N !

∑

j
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becomes possible to evaluate MI(k) and IN(k) even in the simulated system. In Fig. 6 we show MI(k) (panel a) 
and IN(k) (panel b) for two statistically independent simulations at �V = 1 V, after the application of a bias of 
15 V. Statistical independence is guaranteed by the different initial configuration of conductances of the two 
SRNs used in simulations 1 and 2, which triggers a different electrical evolution for each of them. Remarkably, 
also MI(k) and IN(k) extracted from the SRN model simulations present some remarkable correlations among 
the various sub-regions of the whole simulated network. The growth trend of MI(k) and IN(k) as a function of 
the subsystem size k is exemplified in Fig. 6, and it is a general feature observed in all our simulations after the 
application of high voltage bias (see Supplementary Information for further discussion). Conversely, without 
the previous application of a high voltage, in experiments and as well in simulations we observe a substantial 
lack of dependence of MI(k) and IN(k) on k. Notably, the voltage which activates such behavior corresponds to 
the one which triggers the switching events, and, in the SRN model, promotes the reduction of the number of 
available shortest paths. Therefore, it turns out that a high �V  bias is crucial to allow the system to visit neatly 
distinguished resistance states in the subsequent phase with a small applied tension. All these results suggest 

Figure 5.   (a) experimental MI(k) for two different electrode couples to which �V = 1 V is applied (1-A: azure 
and 1-C: orange). Data are collected over 275 distinct configurations. (b) IN(k) for the same experimental 
data. Data are collected over 275 distinct configurations. In both cases, errorbars are given by the evaluation 
of these observables over all the different ways of choosing a given k. MI is only measured up to k = 5 , since 
MI(Xk

j ,X − Xk
j ) = MI(X − Xk

j ,X
k
j ) , while IN is measured for any k ∈ [0, 9] . Grey dashed lines represent the IN 

growth in a fully correlated system.

Figure 6.   (a) MI(k) computed from two statistically independent simulations at �V = 1 V (blue and red), as 
a function of the number of subregions, k, considered. (b) IN(k) computed for the same simulations. In both 
cases, data are collected over 200 distinct MC configurations and errorbars are given by the evaluation of these 
observables over all the different ways of choosing a given k. Grey dashed lines represent the IN growth in a fully 
correlated system.
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that the experimental and simulated systems have a complex and collective response to external stimuli, with an 
emerging electrical behavior determined by a subtle balance between the random dynamics and the reciprocal 
influence among different regions.

Discussion
In this work, we have used an innovative approach named Stochastic Resistor Network model, designed at a 
coarse-grained level to reproduce some fundamental properties of cluster-assembled nanostructured gold films 
which can be exploited as neuromorphic devices37. By using a simple set of stochastic update rules for a set of 
electrical resistors arranged in a regular lattice, we were able to qualitatively mimic the complex electrical proper-
ties experimentally observed in cluster-assembled gold films. To achieve this, we found that the number of resis-
tors in the network had to be considerably large. Our study therefore allowed us to obtain also an estimate of the 
minimum complexity needed to qualitatively recover the electrical transport properties in these nanostructured 
metallic films. The network required is particularly large; managing the computational workload to follow and 
characterize the stochastic evolution of the SRN model represents an unprecedented attempt in literature. We 
reported an extended analysis that compares the experimental and simulated resistive switching behavior: the 
trend of Rtot , the ISI distribution, the PSD associated to Rtot . Aiming to achieve a deeper understanding of the 
parallelism between our abstract model and the real system properties, we have gathered information about the 
evolution of current pathways within the network. The emergence of a peculiar behavior of the SRN model was 
interpreted in terms of a neat change in the relative abundance of links featuring each of the conductivity levels 
upon the application of different voltages. Leveraging Information Theory tools based on the information entropy 
related to the system conductive properties21,39, we analyzed both experimental and simulated systems with the 
goal to quantify the nontrivial spatial correlations detected among the different sub-regions. The dependence of 

Figure 7.   In the top panel the deposition process is depicted: the stencil masking allows the patterning of 
cluster assembled film via the interception of the cluster beam. In the bottom one two types of devices and their 
dimensions are depicted: (a) Two-electrode device, consisting of a couple of gold electrodes bridged by a cluster 
assembled Au film; (b) Multi-electrode device consisting of one vertical and three horizontal cluster-assembled 
film stripes linking the six electrodes.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12234  | https://doi.org/10.1038/s41598-022-15996-9

www.nature.com/scientificreports/

the Mutual Information and of the Integrated Information from the size of the considered sub-region show some 
analogies with much more complex biological systems, for example the brain. Our results about the role and 
the evolution of spatial correlations strongly highlight the role non-linearity and non-locality in assemblies of 
simple electrical junctions. The nontrivial correlations emerging from the system dynamics the system dynamics 
suggests that SRN model simulations can be used to design neuromorphic devices based on complex networks 
of metallic nanoparticles37,58.

Methods
Cluster‑assembled film fabrication.  Cluster-assembled gold films were fabricated through Supersonic 
Cluster Beam Deposition (SCBD)50. This approach allows to control both the geometry of the deposited film 
and its electrical resistance, as described in detail in26,37,50,51. A Pulsed Microplasma Cluster Source (PMCS) 
produces neutral clusters in the gas phase by the ablation of a gold rod by a plasma ignited during the injection 
of a high-pressure pulse of Argon. The species resulting from the target ablation condense through collisions 
with the Argon gas forming Au clusters. The cluster-gas mixture is then expanded into a vacuum chamber, form-
ing a supersonic seeded beam26,50. The cluster beam is focused by an aerodynamic lenses system51 and directed 
on an oxidized silicon substrate where gold electrodes are pre-deposited by thermal evaporation37. Two types 
of cluster-assembled films were fabricated: two-electrode and multi-electrodes systems (Fig. 7). Two-electrode 
films (Fig. 7a) consist of a couple of gold electrodes bridged by a cluster-assembled film, whereas multi-electrode 
systems consist of six gold electrodes connected by a cluster-assembled film shaped as a vertical stripe and three 
equally spaced horizontal stripes (Fig. 7b). The desired configuration is obtained by using a stencil mask52. The 
substrate holder is equipped with electrical contacts for the in situ characterization of the evolution of the elec-
trical properties of the film during the deposition process. Cluster–assembled gold films beyond the percolation 
threshold (roughly 10 nm57) were fabricated in the range thickness 20–40 nm. Figure 8 reports a SEM micro-
graph of the typical morphology of a 20 nm thick cluster assembled gold film.

Electrical characterization.  The electrical measurements are carried out in the two probe configuration: 
a voltage bias of known value V is applied to one electrode, the second one being grounded, and the flowing 
current I is measured. The resistance R is computed as the ratio between the voltage and the current R = V/I . In 
the case of two-electrode device, a constant voltage is applied while I is sampled every 50 ms for a total time of 
around 1000 s (i.e., 20,000 points). In the case of multi-electrode devices, the measurement protocol is composed 
by a writing and a reading step. The former consists in an over-threshold pulse voltage train applied to one set of 
electrodes with a pulse amplitude in the range (−35V, 35 V) and width between 0.1 and 0.5 s. The latter comprises 
a train of sub-threshold voltage pulses, (1 V, width 0.05 s), which are applied in order to measure the resistance of 
all electrodes couples. This protocol allows to collect the evolution of resistance values of each electrode couple 
after the application of an over-threshold voltage pulse train. As result of the measurement a series of resistance 
data is associated to each electrode couple connected to the a region of the cluster assembled gold film.

Resistance time series discretization in experiments and simulations.  In both experiments and 
simulations, resistance time series R{t}(X1

j ) are collected. To build a probability distribution (from which entropy, 
MI and IN are computed), R{t}(X1

j ) is first of all normalized by its mean, R′
{t}(X

1
j ) = R{t}(X

1
j )/�R{t}(X

1
j )�t . The 

normalized resistance value R′
t(X

1
j ) measured at time t is assigned to one of four discrete resistance levels, which 

are built considering the largest standard deviation δmax among all those computed for the 
N !

k!(N − k)!
 R′

{t}(X
1
j ) 

series, corresponding to the possible choices of a subset of size k, according to the following scheme:

Figure 8.   Scanning electron microscopy (SEM) micrograph of a cluster-assembled Au film deposited on Si 
substrate.
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The histogram of the relative occurrences in each computed interval for each resistance series is thus built, 
constituting an approximation of the probability distribution of the simultaneous occurrence of the 4 computed 
states for the 9 electrode pairs (or for the 7 network sub-regions).

Simulation methods.  As shown in Fig. 2, our 3D network is modelled as a regular arrangement of resis-
tors, represented as links ij joining pair of nodes (i, j). Links are organized in layers (x, y planes), stacked one on 
the top of each other. The largest network model we have characterized is made of Nz = 3 layers, each one con-
taining Nx × Ny = 42× 27 nodes. There are two special nodes, i.e. the input (source) and output (sink) ones; to 
these nodes it is applied a constant overall voltage �V  . The input/output nodes are connected to all the nodes in 
the first/last column of layer 1, respectively. Our network thus amounts to 3404 nodes and 8919 links, whose 
stochastic dynamics, simulated for tens of thousands of MC steps, necessarily requires massive use of parallel 
computing resources. Similar to31,32, we exploit spectral theory to compute the Laplacian matrix of the weighted 
undirected graph associated to the network45–48: the spectral decomposition of the Laplacian matrix L associated 
to the graph provides �Vij , Rij (and thus Iij ) at each edge and at each MC step, via the knowledge of the eigenval-
ues and eigenvectors of the Laplacian matrix47. Given a network configuration, the stochastic dynamics of the 
SRN model is obtained in the following way: first of all, we loop over all the network’s links, attempting to change 

their conductivity. For any link, its dissipated power W (d)
ij =

�V2
ij

Rij
 and the power that ij absorbs from its Nneigh 

neighbors W (a)
ij ∝

1

Nneigh

∑

Nneigh(kl)
�V2

kl

Rkl
 are computed, being kl the edges which are ij’s neighbors (here, chosen 

as those links which, together with ij, form elementary square plaquettes of the network). Therefore, an upgrade/
downgrade of the conductance level of each link is proposed (and randomly accepted with a given probability); 
in particular, W (a)

ij  ( W (d)
ij  ) is compared with a set of threshold power values, which fixes the smallest amount of 

absorbed (dissipated) power requested for an upgrade (downgrade) transition between two conductance levels. 
The exact thresholds and probabilities are summarized in Supplementary Information. Practically, we loop over 
all the network’s links and for each of them (see Supplementary for details): 

1.	 if σij = σα , any trial modification necessarily attempts to increase σij . If 
∣

∣�Vij

∣

∣ > �V th (being this a threshold 
voltage), try to upgrade σij to σβ with a probability Pnl to accept this nonlinear conductivity update. Other-
wise, if 

∣

∣�Vij

∣

∣ ≤ �V th , try to make σij become σβ/σγ /σδ according to W (a)
ij  , with acceptance probability Pup.

2.	 if σij = σβ and if 
∣

∣�Vij

∣

∣ < �V th , try to downgrade σij to σα with probability Pnl . Else, if the condition for 
applying nonlinear gate is not satisfied, try to downgrade the link according to its W (d)

ij  , with probability 
Pdown . If, at this point, σij is still unchanged (due to the MC moves having been refused or to the low dis-
sipated power), try to promote the link to become either σγ or σδ , with probability Pup.

3.	 if σij = σγ , first try to downgrade the link, down to either σβ or σα , according to its W (d)
ij  . Last, in case the 

move is not accepted, try to upgrade it to σδ , depending on W (a)
ij  value.

4.	 if σij = σδ , the link can only be downgraded to become σα/σβ/σγ , according to its W (d)
ij .

Importantly, we checked that the order of the trial updates is not relevant. With the just described algorithm, the 
conductance of each network edge changes at most once per step.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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