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A B S T R A C T   

Patient care workflows are highly multimodal and intertwined: the intersection of data outputs provided from 
different disciplines and in different formats remains one of the main challenges of modern oncology. Artificial 
Intelligence (AI) has the potential to revolutionize the current clinical practice of oncology owing to advance-
ments in digitalization, database expansion, computational technologies, and algorithmic innovations that 
facilitate discernment of complex relationships in multimodal data. Within oncology, radiation therapy (RT) 
represents an increasingly complex working procedure, involving many labor-intensive and operator-dependent 
tasks. In this context, AI has gained momentum as a powerful tool to standardize treatment performance and 
reduce inter-observer variability in a time-efficient manner. 

This review explores the hurdles associated with the development, implementation, and maintenance of AI 
platforms and highlights current measures in place to address them. In examining AI’s role in oncology work-
flows, we underscore that a thorough and critical consideration of these challenges is the only way to ensure 
equitable and unbiased care delivery, ultimately serving patients’ survival and quality of life.   

1. Introduction 

Although advances in cancer prevention, screening, and treatment 
have improved cancer survival rates – especially for high-income 
countries [1] –, nearly 10 million cancer-related deaths occurred in 
2020 [2]. The last two decades have been marked by significant efforts 

in the development of patient-centered approaches, implementing 
multimodal treatment strategies, inclusive of surgery, systemic treat-
ments, and radiation therapy (RT) [3–5]. Specifically, recent techno-
logical improvements in precisely delivering patient-specific radiation 
treatments impacted on the complexity of the RT workflow, increasingly 
time-consuming, and reliant on human-machine interactions 
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responsible for added variability in care quality. Hence, artificial intel-
ligence (AI) has gained growing attention as a tool to provide faster, 
higher quality, and safer RT delivery by optimization and automation in 
the clinical workflow [6,7]. 

In this narrative review, the progress of AI in oncology is outlined 
from a workflow perspective, taking RT as a practical example. Key 
concepts of AI methods are introduced. For each stage, opportunities, 
applicability, and efficiency of novel AI solutions are considered. Special 
emphasis is placed on discussing the challenges, recommendations, and 
future implications of AI-powered cancer care. 

2. AI methods in cancer care 

AI refers to computers’ capability to perform tasks mimicking human 
intelligence, such as visual perception and pattern recognition for 
decision-making and problem-solving purposes [8]. Machine learning 
(ML) is a sub-field of AI and deep learning (DL), in turn, a sub-field of ML 
(Fig. 1). 

ML algorithms are operated by computer programs to learn from 
data, especially unstructured data. By extracting patterns from a set of 
provided data objects, the class of future data can be revealed, thus data- 
driven predictions or decisions can be performed [9,10]. In this context, 
artificial neural network (ANN) models consist of a group of related 
input/output nodes, representative of neuron-like units, organized in 
input, hidden and output layers. Their connection is expressed by a 
weighted edge, adjusted in the learning stage based on the agreement 
between predicted output and labeled data. ANN models with multiple 
self-learning hidden layers herald the modern era of DL. The hierarchical 
structure of deep networks, with information flowing through successive 
hidden layers, simulate the hierarchical processing of information in the 
human brain 9,10. 

The inventive learning approach of DL differs from that of "non-deep" 
ML, which is more dependent on human intervention. In general, a 
feature hierarchy process is necessary to differentiate categories of data 
and create structured inputs, required by the learning process. In su-
pervised ML, human intervention is required to determine the hierarchy 
of features ("hand-crafted" features [11]) and label input data. The 
hidden layers of DL architectures can instead automate much of the 
feature extraction process and accept unstructured raw data. Moreover, 
DL models can effectively leverage partially labeled data [12,13] 
(Fig. 2). While traditional ML methods encounter limitations in gener-
alizing across diverse input data and achieve variable degrees of clinical 
utility [14], DL techniques, by learning features over multiple modalities 
and perceiving complex and non-linear relationships [15], offer better 
algorithm generalizability [6,7]. Besides, natural language processing 
(NLP) is an adjacent field within AI, involved in converting unstructured 
free data (e.g., electronic health records, EHRs) into discrete data ele-
ments [16,17]. In this field, further development is represented by large 
language models (LLMs), a type of DL trained on NL input data to 
generate text that closely resembles human responses [18] (e.g., 
ChatGPT, generative pre-training transformer (GPT) model [19]). 

The digitalization of health care data and the enhanced parallel 
computing and cloud storage allow for the advent of AI-based applica-
tions in oncology (Fig. 2) [20]. 

3. AI in the cancer care workflow: from screening to diagnosis, 
staging, prognosis, treatment decision-making, and follow-up 

The clinical cancer therapy workflow starts with the oncologist’s 
assessment of the patient’s medical history, symptoms and functional 
status, patient and tumor genomic data, diagnostic and staging imaging, 
and prior treatment response, to define a tailored treatment decision 
strategy (Fig. 3). 

AI methods in cancer-related image analysis and omic data analysis 
proved efficient applications for tumor screening [21–33], diagnosis 
[34–46], classification and grading [47–56] (Fig. 2). In image analysis, 

AI applications for radiology [21–26,31–36,43–48], endoscopy [37–39, 
49], and pathology [30,41,42,50–54] outperformed conventional 
computer-aided detection systems in many cases [16], simplifying the 
pipelines and reducing false positives [57]. In radiology, Mirai is one of 
the most promising DL-based tools for cancer screening [31]. Mirai 
obtained 5-year areas under the curve (AUCs) of 0.76, 0.81, and 0.79 
across multi-institutional validation sets of 128,793 mammograms from 
Massachusetts General Hospital, Karolinska, and Chang Gung Memorial 
Hospital, respectively [32]. Similarly, Sybil, a three-dimensional con-
volutional neural network (3D CNN)-based model, predicts lung cancer 
risk from a single low-dose computed tomography (LDCT). Sybil ach-
ieved 1-year AUCs of 0.92, 0.86, and 0.80 on a held-out dataset of 27, 
383 LDCTs from National Lung Screening Trial (NLST), MGH, and 
CGMH, respectively, further lateralizing future cancers’ location and 
likelihood of high-risk score [33]. Besides, DL-based tools for cancer 
diagnosis such as QuantX [43], Koios DS [44,45], ProFound [45], and 
Transpara [46], some of the most advanced in development, are already 
adopted by some United States-based institutions for breast and thyroid 
cancer. As for pathology, a successful GoogLeNet-based algorithm for 
breast cancer diagnosis, developed in the Cancer Metastases in Lymph 
Nodes Challenge 2016 (CAMELYON16), detects lymph nodes in whole 
slide imaging (WSI) stained with hematoxylin-eosin (HE). The model 
outperformed pathologists’ interpretation with an AUC of 0.99 vs 0.88 
[41]. Furthermore, DeepPATH, an Inception-v3 architecture-based 
model, distinguishes lung cancer types in WSIs of HE-stained lung tissue. 
DeepPATH classified images from The Cancer Genome Atlas (TCGA) 
into lung adenocarcinoma, lung squamous cell carcinoma or normal 
lung tissue with an AUC of 0.97 [50]. In molecular-omic data analysis, 
AI techniques unlocked new opportunities for genome and tran-
scriptome sequencing [55,56]. Notably, SCOPE, a Supervised Cancer 
Origin Prediction Using Expression algorithm trained on TCGA, iden-
tifies the closest match for a tumor from among 40 cancer types and 26 
adjacent-normal tissues from whole-transcriptome RNA sequencing 
data. The classifier achieved an overall mean accuracy of 99% on pri-
mary cancers and 86% for metastatic disease [55]. 

Subsequently, AI approaches for patient prognosis [58,59] and 
treatment response [60–67] prediction may offer tools to support indi-
vidual treatment decision-making (Fig. 2). Specifically, applications in 
systemic [60–64] and RT [65–67] response assessment have the po-
tential to develop clinical decision support systems (CDSSs) [68–71]. In 
radiomics, AI-driven advancements in pattern recognition allow for the 
automated extraction of discriminating quantitative features that cap-
ture properties of the tumor phenotype which correlate with clinical 
outcomes [72]. Typically, a feature selection step reduces a pre-defined 
set of features to a subset suitable for the intended purpose, ultimately 
fed into a predictive or prognostic ML model. Novel DL strategies 
leverage DNNs to create deep features, eventually interpreted by the 
final layer of the network as likelihood of a therapeutic outcome [73]. AI 
tools in radiogenomic methods correlate imaging and genomic data to 
develop predictive biomarkers reflective of tumor’s genotype [74]. 
AI-supported dosiomic analysis employs radiomics approaches to esti-
mate patient-specific spatial dose distributions and allow for toxicities 
prediction [75–77]. Although findings are encouraging, these ap-
proaches are currently restricted to inconsistent implementation and 
retrospective studies, thus limited to research settings [78–80]. Ran-
domized controlled trials, comparing patient’s care workflow assisted 
and unassisted by CDSSs, are warranted. 

Lastly, AI methods in ‘shape radiomics’ analysis, which refers to any 
feature characterizing the 3D shape of a tissue, may provide tools for 
patient surveillance [7,16,73] (Fig. 2). Beyond traditional metrics such 
as The Response Evaluation Criteria in Solid Tumors (RECIST), which 
accounts for the tumors’ change in size over the course of treatment, 
shape radiomics enables sophisticated morphological measurements 
able to better assess whether a tumor is stable, progressing or responding 
[73,81]. 

For next-generation precision oncology, the required combination of 
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information available with image and omic data analysis, and whole- 
EHR data elements is orders of magnitude beyond the cognitive capac-
ity of a single oncologist [16,70]. The multitasking and multimodal 
nature [71] of DL techniques have the potential to synthesize the 

amount and interdependence of diverse data that need to be explored to 
provide accurate interpretation of a patient’s cancer features [16,69, 
82]. 

Fig. 1. Classification of ML algorithms. (A) Classification based on learning style. According to input data in the learning process, machine learning (ML) algorithms 
can be classified into three categories. (1) Supervised Learning: input data are labeled (training set). The model is constructed through training of the training dataset, 
improved by receiving feedback predictions (validation set, part of the training set), and tested through incoming data (without known labels, test set) [9,10]. (2) 
Unsupervised Learning: input data are not labeled (no training set). The model is constructed by exploring the structures in the input data to extract general rules [9, 
10]. (3) Other Learning. Semi-supervised Learning: mixture between supervised and unsupervised learning, input data are both labeled and unlabeled (incomplete 
training set). The model learns the structures to organize the data to make predictions and different assumptions are made to model the unlabeled data [9]. 
Reinforcement Learning: the correct input/output pairs are never presented. The agent takes proactive actions to strengthen the quality of the input data to promote 
prediction accuracy (performance reward). The algorithm is rewarded with positive/negative reinforcement for each correct/incorrect action, learning through 
experience which actions need/do not need to be performed [9]. Representation/Feature Learning: useful features learning through raw input data transformation 
into a representation (pre-processing) that can finally improve the prediction model. The design of efficient feature learning techniques aims to automate the learning 
process employing supervised feature learning, based on labeled input data, or unsupervised/self-supervised feature learning, generating features with unlabeled 
input data [9]. (B) Classification based on similarity testing in learning. According to the similarity testing functions adopted in the learning process, ML algorithms 
can be classified into twelve categories. Namely, (1) regression relies on statistical learning, (2) instance-based learning (or memory-based learning) methods apply 
similarity measures stored in the database, (3) tree-based methods employ tree-structured decision models, (4) Bayesian methods are based on statistical decision 
theory, (5) clustering analysis relies on similarity tests to group data, (6) neural networks are based on cognitive models, inspired by the structure and function of 
biological neurons to model the complex relationships in between, (7) ensemble methods are composed of multiple weaker independently trained models, whose 
prediction results are combined, and (8) deep learning methods are based on much deeper and complex neural networks [9,10]. Deep learning (DL) is often applied to 
semi-supervised learning problems, where large datasets contain very little labeled data. Being the acquisition of labeled data and feature extraction a challenging 
and resource-intensive process, partially labeled data, along with self-supervised feature extraction, can lead to powerful and cost-effective DL solutions. For each 
category, model examples are listed. 

Fig. 2. . Currently investigated AI applications in cancer care. Artificial Intelligence (AI) applications in the three main domains of cancer care workflow: (1) 
diagnosis and follow-up, (2) multi-modal treatment strategy, (3) radiotherapy workflow. For each domain, AI is employed by different data analysis approaches: (I) 
imaging of different modality (radiology, microscopy, and visible light photography), and (II) omics, distinguished in molecular omics, excellent in high-dimensional 
data analysis but limited in spatial information and imaging omics, capable of rich spatial information but limited in capturing very fine molecular level detail. Omic 
approaches involve different data types: (a) genomics, single nucleotide polymorphism and copy number variations, (b) epigenomics, DNA methylation, (c) tran-
scriptomics, microarray and RNA-seq (d) proteomics, protein expression, (e) metabolomics, metabolite abundances, (f) radiomics, texture analysis, shape features 
and first and higher order statistics data, and (g) dosiomics, dose metrics features, dose-volume histogram metrics, spatial dose features and dose shape features. 
Novel DL approaches provide tools to handle large amounts of different data types and play a key role to support decision-making tasks oriented to a preci-
sion oncology. 
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4. AI in the radiation treatment workflow 

If the multidisciplinary team directs the patient to RT, a precise 
workflow follows. To design the RT plan, the radiation oncologist pre-
scribes radiation doses that balance tumor coverage and control, 
contextualized in established dose constraints for normal structures (i.e., 
organs-at-risk, OARs), guided by imaging and radiobiological principles 
[6,7,83] (Fig. 3). AI approaches in image analysis provide applications 
for the required tasks of multimodal image simulation and onboard 
imaging [84–96], image registration [97–99], and tumor-organ seg-
mentation [100–110] (Fig. 2). 

As for image simulation, AI platforms have been developed to reduce 
the imparted dose to the patient’s healthy tissues. In computed tomog-
raphy (CT) imaging, AI tools timely act on the image reconstruction 
timeline of LDCTs to guarantee suitable image quality for treatment 
planning, degraded by increased noise due to reduced exposure. Either 
denoising after image reconstruction (image-to-image approaches) or 
during the reconstruction process (iterative-learning approaches) are 
performed [83]. Among image-to-image approaches, deep CNN 
methods have been used to map LDCT images toward their corre-
sponding normal-dose counterparts [84,85]. In iterative-learning ap-
proaches, prior functions for image smoothness and edge maintenance 
are learned for iterative reconstruction from sinograms [86]. Currently, 
prior functions are manually designed or learned with conventional ML 
algorithms, assuming that reconstructed images lie within a linear 

manifold model trained from normal-dose images; however, the mani-
fold is usually highly non-linear. Recently, DL methods have been 
adopted for appropriate modeling, improving the LDCT image recon-
struction quality [86,87]. Also, commercial DL-based solutions, such as 
Precise Image [111], True Fidality™ [112], and AiCE [113], have 
already been integrated into diagnostic imaging devices. 

In contrast to CT, magnetic resonance imaging (MRI) does not 
involve additional radiation exposure for the patient but lacks electron 
density information for direct dose calculation. In MRI, AI has been 
investigated to create synthetic CT (sCT) images [114]. Novel DL algo-
rithms have outperformed conventional voxel, atlas, or hybrid-based 
methods, limited in terms of nonstandard sequences, atypical anato-
mies, and related complex workflow, respectively. Architectures such as 
encoder-decoder (ED) networks, U-Net, and generative adversarial 
networks (GANs) proved improved accuracy and computation speed 
[91,92]. Notable, cycle-GANs, a particular derivation of GANs, opened 
the era of sCT generation from unpaired image dataset [93]. Further-
more, many DL methods have been employed for image motion 
correction [94–96]. Namely, Moco-SToRM is a motion-compensated 
reconstruction approach for high-resolution free-breathing lung MRI 
data, which models the deformation map at each time instant (0.1 s 
interval) as the output of a CNN-based generator driven by a motion 
vector [96]. 

Next, medical physicists and dosimetrists carry out image registra-
tion to optimize alignment of multimodal data (simulation images) in 

Fig. 3. AI in the cancer care workflow: radiation oncology here stands as an example of integrating AI into clinical practice, given its heavy reliance on human- 
machine interaction. Schematic overview conceptually divided into: (1) assessment, (2) treatment planning and delivery, (3) follow-up. The workflow begins 
with the patient consult: useful information derived from screening and diagnostic tools are evaluated. To assess the potential benefit and feasibility of a treatment, 
tumor stage, gene signatures, and overall patient status (e.g., age, comorbidities, functional status, tumor, and critical healthy tissues proximity) need to be 
considered. If the patient is directed to RT, simulation medical images are acquired for treatment planning. Subsequently, the treatment plan is created and subjected 
to approval and quality assurance (QA) measures prior to RT delivery. Finally, the patient receives follow-up care. Many clinical figures are involved, such as ra-
diation oncologists, medical physicists, and dosimetrists. AI tools have the potential to shift their focus from repetitive and laborious tasks, such as tumor and organ 
segmentation, plan design, and QA, respectively, towards the management of non-routine, high-risk issues and the development and implementation of solutions that 
require human insight. 

M. Cobanaj et al.                                                                                                                                                                                                                               



European Journal of Cancer 198 (2024) 113504

6

the treatment planning stage or, later on, of longitudinal data in the pre- 
delivery steps and in computing dose accumulation through the course 
of the treatment (on-board images) (Fig. 3). To deal with image modality 
variability, some investigational DL methods employ learning algo-
rithms either to construct a shared latent representation of anatomical 
structures across different modalities, or to synthetize cross-modal im-
ages (e.g., sCTs), reducing the task to a monomodal registration [115]. 
In the context of quantifying registration error for treatment margins 
definition, DL models in area-based methods allow for superior similarity 
metrics by learning the patch-wise correspondences of registered images 
[97]. To address the image content variability, DL models in featur-
e-based methods allow for deformable image registration (DIR) [98, 
116]. DL approaches have been adopted to rapidly predict the defor-
mation field that aligns the images to be registered: VoxelMorph proved 
a DIR accuracy comparable to state-of-the-art methods, while operating 
up to 150 times faster [99]. 

Regarding delineation of targets and structure avoidance, the radi-
ation oncologist delineates tumor and OARs on the aligned simulation 
images (Fig. 3). Semi-automatic segmentation methods for OARs in 
clinical practice, such as atlases, integrate prior knowledge from 
segmented reference images and are affected by associated uncertainties 
in the registration procedure, selection strategy, and required subse-
quent manual iterations. AI methods more efficiently incorporate prior 
knowledge in the form of parameterized models by considering each 
voxel contribution in the learning process [83]. Current DL-based ap-
proaches mainly rely on U-Nets, a CNN architecture characterized by an 
encoding path to capture context, a decoding path to generate 
high-resolution segmentations, and skip connections to retain 
fine-grained structural information [117]. Many AI-based commercial 
tools have already been adopted to support a more efficient and stan-
dardized RT workflow [118] and several more have been announced 
[119]. Lately, VBrain, an ensemble NN based on DeepMedic and 3D 
U-Net architecture for brain metastases segmentation on CT and MR 
images, has received the Food and Drug Administration (FDA) clearance 
as the first AI-powered tumor auto-contouring solution [120,121]. 
VBrain proved improved sensitivity in lesion detection (12.2% increase 
in sensitivity), contouring accuracy (0.028 increase in dice similarity 
coefficient) and efficiency (30.8% decrease in treatment planning time) 
with respect to unassisted clinicians’ performance [100]. AI applications 
in genomic analysis provide prescription doses based on 
genomic-adjusted tumor radiosensitivity [122]. Moreover, AI methods 
in image analysis can predict patient-specific dose distributions 
[123–127] and, by means of optimization approaches, offer tools to 
automate treatment planning [128,129] (Fig. 2). 

Manual treatment planning is a time-consuming task, influenced by 
the operator’s expertize: the physician selects an appropriate treatment 
technique and fractionation schedule and, with a trial-and-error 
approach based on clinical guidelines and personal experience, the 
dosimetrist iteratively adjusts positioning, distribution, and other ma-
chine parameters to optimize the dose trade-offs between the target and 
OARs, according to approved dose prescriptions (Fig. 3). 

Automated rule implementation and reasoning techniques implement 
clinical guidelines as hard-coded rules, by means of a binary logic (“if- 
then”), to simulate manual treatment planning and allow for iterative 
adjustments after performance evaluation [130]. To assist the adjust-
ment process, knowledge-based (KB) planning considers a selection of 
successful previous treatment plans defined with best clinical knowledge 
for cases with similar OARs/target geometry, to predict suitable plan-
ning parameters to incorporate in the planning process of the current 
case. Recently, multicriteria optimization approaches have been 
implemented to generate, instead of a single plan, multiple plans 
simultaneously (so-called Pareto surface), allowing real-time evaluation 
of results for different planning parameters [83,130]. While these ap-
proaches lack spatial information and remain suboptimal, AI techniques 
can implement a voxel-based prediction for optimal patient-specific 
dose distribution [123–127]. For instance, HD U-net, a hierarchically 

densely connected U-Net architecture, has been proposed for 3D dose 
distribution prediction of H&N RT127. During its initial clinical 
deployment on over 840 patients, the model significantly improved the 
percentage of first plan acceptance from 63% to 90%[131]. Moreover, 
DL methods have been explored to predict dosimetrically suitable ma-
chine parameters for clinical treatment plan generation [130,132,133]. 
Finally, reinforcement learning and GANs algorithms have been sug-
gested to simulate the decision-making process for the dosimetric 
trade-off definition, forecasting AI-enabled fully automated treatment 
planning in the near future [128–130]. 

AI approaches have been applied in expediting the current iterative 
treatment planning process, which involves evaluation of simulations 
based on dose calculation algorithms that trade speed (e.g., pencil- 
beam) with accuracy (e.g., Monte Carlo, MC). DL-based models have 
been applied to either correct fast dose calculations to improve the 
simulation accuracy [134,135], or to replace dose calculations with fast 
and accurate simulations [136–139]. Recently, DoTA, a DL-based 
calculation algorithm combining CNN and transformers, has been 
implemented to predict proton doses with MC-level accuracy (1%, 
3 mm gamma pass rate of 99.37 ± 1.17%) while operating even faster 
than pencil-beam algorithms (around 100 times, speed of 5 
± 4.9 ms)139. 

The plan is then sent to the radiation oncologist for approval and 
then finalized together with the medical physicist, who’s also respon-
sible of QA activities to ensure proper setting and performance of ele-
ments involved in the treatment delivery stage (Fig. 3). AI applications 
address repetitive manual tasks to expedite QA procedures, detecting 
rare errors and potential contributing factors, which would otherwise 
require further investigation [140,141]. 

In the treatment delivery phase, AI methods in image analysis for on- 
board image guidance can support motion management [142–148] and 
treatment planning adaptations [149–154] to ensure a correct treatment 
plan delivery (i.e., image-guided radiotherapy, IGRT) (Fig. 2). Patient or 
organ motion during treatment delivery (i.e., intra-fractional motion 
[155]) is assessed to preserve precision. Current motion management 
methods either limit or monitor the respiratory and abdominal motion 
range in a passive or active (i.e., gating techniques) manner to contin-
uously adapt the beam delivery[156]. AI-based methods have been 
applied in patient-specific markerless target tracking [142–144] and 
motion modeling for real-time motion estimation [145–148]. 

Additionally, anatomical changes between simulation imaging and 
delivery of treatment fraction (i.e., inter-fractional motion[155]) need to 
be considered (adaptive RT, ART)83. AI-based approaches have been 
implemented to improve the image quality of on-board cone-beam CT 
(CBCT) images to CT level for treatment planning adaptation 
[157–159]. Also, DL has been adopted to automatically adapt the 
treatment plan based on daily changes in anatomy (i.e., online ART, 
oART) in CBCT-guided151 and MR-guided [152–154] RT. For instance, 
Ethos is a novel commercially available CBCT-guided and AI-driven 
solution for oART [160]. In a pre-release study, automated treatment 
planning of 39 pelvic treatment cases proved clinically acceptable 
AI-segmentation (no further editing for 75% of cases) and auto-planning 
(selected for 88% of the cases instead of the pre-treatment plan) with 
reasonable adaptive procedure duration for the first 5 treated pa-
tients151. Importantly, defining whether a re-planning stage is beneficial 
in the treatment is a pivotal aspect in the RT workflow. Such a decision 
should consider not only the anatomical deviation range, but also 
patient-specific characteristics and, on the other hand, the impact of a 
treatment delivery delay. Finally, DL methods can be investigated to 
combine a multitude of data and automatically adapt dose according to 
individual responses, defined as KB response-ART[161]. With a rein-
forcement learning-based approach, a set of algorithms can be trained to 
learn the RT environment and search for the optimal adapted dose based 
on their knowledge of clinical, dosimetric and radiomics data [162]. 
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5. Challenges and adoption barriers of AI models in oncology 

Despite the AI applications proposed, the transition to clinical 
practice poses challenges. Large, top-notch datasets for training models, 
along with rigorous validation, are prerequisite to improve performance 
in clinical settings [163]. Conversely, substantial investments of time 
and resources are imperative to acquaint clinicians with this technology 
– both in terms of utility and limitations – and ensure safe and appro-
priate clinical use [164]. 

5.1. Database construction 

The reliability of AI hinges on extensive data training to prevent 
overfitting, which can otherwise compromise model performance when 
applied to external validation datasets [16,70]. The modernization of 
the healthcare setting is already promoting a full digitalization of patient 
medical information, with the volume of data to be collected and 
managed rapidly growing. To effectively leverage these datasets for 
research purposes [16,17,163], it is crucial to establish translational 
research platforms that ensure secure storage, anonymization, and 
regulated access [17]. 

However, different challenges need to be addressed. First, the 
plethora of generated data often requires laborious curation and clean-
ing, particularly for unstructured EHRs that may contain substantial 
noise and inconsistencies [7]. In this context, data standardization plays 
a pivotal role in generating high-quality data and facilitating the inte-
gration of diverse features for automatic multicentric data extraction 
and integration. The Observational Medical Outcomes Partnership 
(OMOP) and the Common Data Model (CDM) are actively working to 
provide standardized disease codes and vocabulary to structure obser-
vational health records into easy-to-use databases [82]. Approximately 
440 biomedical ontologies, such as SNOMED, NCI Thesaurus, CTCAE, 
the ROO, and the UMLS meta-thesaurus have already been established 
to regulate terminology in EHR, treatment procedures, RT, and genomic 
annotations [17,165]. Moreover, the multi-institutional Image 
Biomarker Standardization Initiative has made efforts to define 
nomenclature and pre-processing image workflow for 172 important 
radiomic features, providing a benchmark dataset for calibration of 
radiomic softwares and guidelines for radiomic studies publication 
[166]. Second, given the concerns of real data protection and patient 
control over their sensible medical records, data are usually confined as 
property of individual institution, with limited adoption of data-sharing 
platforms. 

The restricted data availability leads to smaller training datasets, 
increasing chances of model overfitting, especially for DL architectures 
based on a huge number of features. Moreover, the significant hetero-
geneity in medical data across institutions decreases model’s perfor-
mance and generalizability across different centers and populations [16, 
17,82,163,167]. To avoid biases related to data collection, data-sharing 
solutions that enable contributions and learning across institutional 
borders should be promoted in view of a medical and scientific interest. 
Some progress is on course with the establishment of privacy-preserving 
distributed DL (DDL) [165,168] and multicenter data-sharing agree-
ments [169,170]. DDL, for instance, allows multiple research groups to 
cooperatively implement a common DL model without actually sharing 
local datasets [171]. 

Efforts have also been made to develop open-source and open-access 
archives for cancer-related data collections, such as The Cancer Imaging 
Archive and TCGA. However, inherent biases toward certain minoritized 
racial and ethnic groups persist, with databases like TCGA being pre-
dominantly composed of individuals of European ancestry, mainly 
featuring primary tumors, and having limited representation of meta-
static tumors [82]. Addressing these biases is an ongoing challenge in 
the pursuit of more inclusive and representative healthcare data. 

5.2. Model commissioning 

Beside dataset-related limitations, a rigorous experimental design is 
mandatory when developing AI models. Commissioning of a model in-
volves two stages: an initial algorithm training and (internal) validation 
phase to tune the model to the clinical necessity, followed by a test phase 
(external validation) to ensure reproducibility prior to clinical use [164]. 
The training/validation phase implies a partition of the available dataset 
into a training set and a validation set (typically 80–20%, respectively). 
The test phase involves an independent evaluation of the final perfor-
mance to investigate model’s robustness. 

To prevent model development from introducing biases, the datasets 
should reflect the population the model will serve, considering demo-
graphical, genotypical and socio-economical diversities [163,172]. 
Neglecting representativeness might have hazardous consequences, as 
in the case of a hypertrophic cardiomyopathy genetic test built on a 
dataset characterized by mostly White Americans [173,174]. With 
mutations being significantly more common among Black Americans 
than White Americans, the test misclassified benign variants as patho-
genic for patients of African ancestry [173]. It turns out that instead of 
disease features, the model might learn the dataset distribution (i.e., 
shortcut learning) [175]. Detecting these shortcuts and removing dis-
parities in race and subsequent patterns of health service utilization to 
ensure not codified or exacerbated algorithms is not an easy task. Even 
balancing dataset classes (e.g., majority class down-sample or minority 
class up-sample) might not be sufficient and lead to poor performance, 
since included cohorts might not reflect populations that did not access 
the healthcare system at all. The problem is not only AI-related, and 
local practices need to be considered. 

Additionally, in the current status quo, despite great improvements 
in internal validation practices, external validation is still infrequent and 
limited by huge costs and lack of proper protocols and regulation. 
Usually, single-institution clinical data, limited in confounder informa-
tion, are employed. Biases cannot be detected in such a test set, and the 
model fails when applied to different clinical setting (i.e., out-of- 
distribution data) during the test phase [172]. 

The reproducibility of the model output is challenging even within 
the same clinical environment it was developed for: AI models are 
subject to data drift over time, caused by changes in data formatting, 
clinical practice (equipment and protocols) [164] or natural drift not 
present during model commissioning, and change in features’ relation-
ship (covariate shift) [16,17,82,172]. A feedback system is required to 
monitor models’ validity and advise for the necessity of model 
re-training [16,164,172]. For what concerns the employed dataset, 
precision medicine demands the integration of diverse data types (e.g., 
clinical, laboratory, imaging, and epidemiological data) [82,167], along 
with follow-up data collection to support treatment decisions and to 
predict and manage adverse events [17]. 

Beside dataset-related aspects, the patient-per-feature ratio is 
another critical factor in model commissioning, particularly in DL 
models combining thousands of information (e.g., genomics). A small 
ratio might result in model overfitting and training dataset noise 
description [17]. In addition, algorithm selection is essential, with the 
best-performing ML techniques to be preferred. Only about 17% of the 
published AI studies in oncology were estimated to compare the 
outcome of more than one ML method [17]. 

As a last note, a collaborative ecosystem systematically reporting 
algorithm source codes and training conditions is crucial to ensure 
transparency, reproducibility and quality-checks in similar healthcare 
systems and populations, ultimately supporting novel algorithm devel-
opment and best practices refinement [82,172]. Therefore, the 
data-sharing agreements for publicly available datasets, should also 
require users to share their queries, git hubs, collabs, and Jupiter note-
books upon publication of their work. 
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5.3. Clinical implementation 

Despite advancements, many AI tools remain at the proof-of-concept 
stage. Improved resolving power comes at the cost of our understanding 
capacity and ability to predict failures, especially for DL algorithms, 
which rely on convoluted hidden layers of data interaction and 
numerous parameters ("black box") [163,172]. AI systems urges the 
need for trust through interpretability (understanding what an algorithm 
is doing) and explainability (elucidating the underlying mechanics) of 
models. Explanatory AI is an evolving field striving to provide some level 
of transparency to the decision process beneath complex algorithms. 
Although research is still ongoing, there is promising progress in 
explanation of deep network data processing and representation, and in 
creating explanation-producing systems [176]. While challenges related 
to interpretability exist, a rigorous model implementation based on 
active monitoring of model’s performance and regular assessment of 
suitable training data can prevent errors and systematic biases. Imple-
mentation into clinical reality would also require a dedicated multidis-
ciplinary team of experts, with insight into the specific model, including 
the target patient cohorts. This team’s responsibilities include con-
ducting a risk analysis of the model and identifying potential malfunc-
tions, ultimately improving model’s robustness. Additionally, they 
would take on the crucial role of providing training and instructions to 
end-users on the appropriate utilization and interpretation of the 
model’s output [164]. 

From a regulatory standpoint, both the FDA and the European Union 
currently classify AI technologies as "software as a medical device", 
providing regulations and draft guidance for medical practice and 
clinical workflows [177,178]. Ethically, AI applications are grappling 
with inherent issues of racial bias. Legally, patients’ right to explana-
tions of algorithms’ output and data protection compliance are points to 
be addressed [179]. Moreover, the ever-increasing reliance on AI may 
turn the patient-doctor relationship into a patient-healthcare system 
relationship, necessitating a reevaluation of the doctor’s personal re-
sponsibility and the liable party for incorrect AI-based decisions [7167]. 
Some frameworks have recently been established by the Medical Device 
Regulation (MDR) on liabilities related to in-house created models and 
the 2013/59/EURATOM directive on obligation to perform risk analysis 
for AI-based software [164]. Also, the General Data Protection Regula-
tion (GDPR) provisions on preventive measures concerning privacy 
compliance [180] and the Health Insurance Portability and Account-
ability Act (HIPAA) Privacy Rule provides standards for maintaining 
patient confidentiality [181]. To ensure the regulatory observance, 
secure data storage systems with encryption protocols are being adopted 
as on-premises, cloud-based or hybrid solutions. 

6. Conclusions and future perspectives 

AI gains in accuracy, reproducibility, and consistency are poised to 
redefine the roles of clinical figures involved in the cancer treatment 
workflow (Fig. 1). The automatization of repetitive tasks requiring 
labor-intensive input is expected to unhamper the clinical workforce and 
transfer their responsibilities to quality control of AI output and high- 
value activities, such as complex decision-making tasks and clinical 
management 7. To assist the implementation of AI solutions, the training 
of some physicians will need to shift from lengthy apprenticeships, 
meant to gain expertize in performing manual activities, to education in 
integrating and interpreting information from extensive datasets [7,16, 
17,163]. An example is the Information Exchange and Data Trans-
formation (INFORMED) Fellowship in Oncology Data Science [182, 
183]. Furthermore, promoting extracurricular engagement in datathon 
competitions, which team up clinicians and data scientists to analyze 
real-world health-related data, can provide clinicians with valuable in-
sights into data curation and model development and foster a deeper 
understanding of the clinical context among data scientists. Of note, 
novel generative AI tool such as ChatGPT show great potential in further 

streamlining the cancer care workflow [184,185]. However, considering 
the chatbox was (so far) not programmed as a medical bot, strict 
guidelines on appropriate use need to be established. 

These benefits hold significant value in the current global health 
scenery, especially for resource-constrained clinical settings [6,7,16]. 
While more than half of all cancer patients live in low- or middle-income 
countries, according to the World Health Organization comprehensive 
treatment is available in less than 15% of low-income countries [186]. 
AI may address shortages by providing specialized knowledge across 
disease sites and by optimizing the utilization of available devices. 

The enthusiasm around AI and big data is justified, but many chal-
lenges need to be stressed. The little inclination for multi-institutional 
data sharing must be surmounted to benefit from the use of distributed 
learning. Well-intentioned privacy-preserving policies turn into detri-
mental procedures for marginalized and under-represented populations 
when neglecting the risk of data privatization [16,82,172,187]. Efforts 
in the current legal framework need to be reinforced for the purpose of 
privacy, equity, and safety. To promote health equity, the FDA should 
ask developers of AI solutions to transparently disclose the patient 
dataset composition and mandate, rather than recommend, validation 
on diverse patient populations [187]. Besides, model performance needs 
to be continuously monitored and recalibrated to address shifts in 
dataset caused by changes in clinical practice, patient demographic 
variation, and advancements in data capture technology. In this regard, 
the FDA announced the need for a regulatory approach that spans the 
entire lifecycle of AI-based software [188]. To guarantee a safe opera-
tion of AI-based medical devices, re-evaluation plans which address 
differences in outputs from those reviewed prior to approval need to be 
clearly defined. A list of safe allowable changes for models’ adjustment 
to new data should be established, either through safeguards or periodic 
reviews [189]. Equally important, algorithm retraining on patient status 
changes, either in real-time or scheduled slots (e.g., nightly runs), should 
be envisioned [16,17]. Finally, clinical evidence supporting initial ap-
provals should be made publicly accessible in plain language and 
distributed through peer-reviewed literature [189]. 

In conclusion, the oncology field is highly algorithmic and data 
centric. AI-based models can fail during multiple phases of the AI life-
cycle: biases might be introduced during data collection, model devel-
opment, evaluation and test, implementation. Model’s fairness requires 
clinicians, AI engineers, data scientists, social scientists, and industry 
partnership in a common goal-oriented cooperation [172,190]. In a time 
marked by socio-economic disparities, benefits of AI solutions can shift 
the healthcare model from fee-for-service to a quality-based care 
approach. To realize the full potential of AI, a synergy of the interna-
tional oncology community is necessary for coordination of talent, 
training, investment, and resources. The road ahead is challenging, but 
the transformation of cancer care holds significant promise. 
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