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ABSTRACT
In this paper we propose a new technique for checking whe-
ther the bottom-up evaluation of logic programs with func-
tion symbols terminates. The technique is based on the def-
inition of mappings from arguments to strings of function
symbols, representing possible values which could be taken
by arguments during the bottom-up evaluation. Such map-
pings can be computed by transforming the original program
into a unary logic program whose termination is decidable.
Starting from mappings we can identify mapping-restricted
arguments, a subset of limited arguments, that is, arguments
which can take values from finite domains. The class of
mapping-restricted programs, consisting of programs whose
arguments are mapping-restricted, is terminating under the
bottom-up computation as all its arguments can take val-
ues from finite domains. We study the complexity of the
presented approach and compare it with other techniques
known in the literature. The presented technique is relevant
as it individuates as terminating programs not detected by
other criteria proposed so far and can be combined with
other techniques to further enlarge the class of programs
recognized as terminating under the bottom-up evaluation.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages—program analysis

General Terms
Languages

Keywords
Logic programming with function symbols, bottom-up exe-
cution, program termination, stable models.
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Recent developments of answer set solvers have seen sig-
nificant progress towards providing support for function sym-
bols. The interest in this area is justified by the fact that
function symbols make languages more expressive and of-
ten make modeling easier and the resulting encodings more
readable and concise. The main problem with the intro-
duction of function symbols is that common inference tasks
become undecidable. A significant body of work has been
done on termination of logic programs under top-down eval-
uation [28, 32, 20, 24, 9, 29, 23, 26, 25, 27, 22, 4, 3, 2]
and in the area of chase termination [16, 17, 13]. In this
paper, we consider logic programs with function symbols
under the stable model semantics [11, 12], and thus, as al-
ready discussed in [5, 6, 1, 14], all the excellent works above
referred cannot straightforwardly be applied to our setting.
Considering this context, recent years have witnessed an in-
creasing interest in the problem of identifying logic programs
with function symbols for which a finite set of finite stable
models exists and can be computed. The class of finitely
ground programs, guaranteeing the aforementioned property,
has been proposed in [5]. Since membership in the class
is semi-decidable, recent research has concentrated on the
identification of sufficient conditions, that we call termina-
tion criteria, for a program to be finitely ground. Efforts in
this direction are ω-restricted programs [30], λ-restricted pro-
grams [10], finite domain programs [5], argument-restricted
programs [19], safe programs [18], Γ-acyclic programs [18],
and bounded programs [14].

Current techniques analyze how values are propagated
among predicate arguments, to understand whether such
arguments are limited, i.e. whether the set of values which
can be associated with an argument is finite. However, these
methods have limited capacity to analyze the propagation
of function symbols during the bottom-up evaluation and
they often cannot understand that recursive rules cannot
be activated starting from exit rules. Consequently, cur-
rent techniques are not able to identify as terminating even
simple programs whose bottom-up evaluation always termi-
nates. Below is an example.

Example 1. Consider the following program P1

r1 : p(X, f(X)) ← b(X).
r2 : p(f(X), X) ← b(X).
r3 : q(f(X), g(X)) ← p(X, X).
r4 : q(f(X), f(X)) ← q(X, X).

where b is a base predicate, whereas p and q are derived
predicates. The program is not recognized as terminating

239

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2505879.2505883&domain=pdf&date_stamp=2013-09-16


by current criteria that cannot understand that arguments
q[1] and q[2] are limited, that is, during the bottom-up eval-
uation predicate q can take only a limited set of values for
both its arguments. Indeed, for all instances of predicate b,
rule r3 cannot be activated as it requires that arguments in
the body atom must have the same value. Consequently, the
recursive rule r4 can never be activated and P1 has a finite
minimum model for every possible database instance. �

Thus, in this paper we present a new technique for check-
ing termination of the bottom-up evaluation of logic pro-
grams with function symbols. Although we concentrate on
positive, normal programs, the technique can be immedi-
ately applied to general programs with negation and head
disjunction.

Contribution.
We introduce the concept of mapping to describe the form

of atoms derivable during the bottom-up evaluation of the
program and use it to identifymapping-restricted arguments,
a subset of limited arguments, that is, arguments which can
take values from finite domains. We show that mapping-
restricted arguments are limited and can be computed by
transforming the original program into a unary logic pro-
gram, belonging to DatalognS , a class of Datalog programs
studied in the early 1990s whose finiteness of the minimum
model is decidable [8].

We also show that mapping-restricted arguments of the
original program correspond to the limited arguments of
the transformed program and, using results obtained for
DatalognS , we show that their identification is space poly-
nomial in the size of the original program in the presence of
just one function symbol.

We discuss the relationship between the class of argument-
restricted programs and the class of programs recognized by
the new criterion and show that it generalizes previous pro-
posed techniques (e.g. argument-restricted criterion) and is
not captured by none of previous techniques.

Finally, we present a modified version of the safe function
introduced in [18] to define the classes of safe and Γ-acyclic
programs. We show that the refined safe function can be
used to further enlarge the set of arguments recognized as
limited. We also discuss a combined use of the new technique
with other approaches previously proposed.

Organization.
The paper is organized as follows. In Section 2 we cover

preliminaries on logic programs with function symbols and
DatalognS programs. Section 3 covers current termination
criteria, even though they are not required for understand-
ing the technique proposed in this paper. Then, we present
the new technique in Section 4 showing also how it relates
to other termination criteria. Finally, we show further im-
provements and complexity results in Section 5 and Section
6, then we conclude.

2. LOGIC PROGRAMS

Syntax.
We assume to have infinite sets of constants, variables,

predicate symbols and function symbols. Predicate and func-
tion symbols have associated a fixed arity. Predicates sym-
bols are partitioned into two different classes: base (or ex-

tensional) and derived (or intensional). The arity of a pred-
icate or function symbol g will be denoted by arity(g). For
a predicate p of arity n, we denote by p[i], for 1 ≤ i ≤ n, its
i-th argument.

A term is either a constant, a variable or a complex term
of the form f(t1, ..., tm), where t1, ..., tm are terms and f is
a function symbol of arity m; each term ti, for 1 ≤ i ≤ m,
is a (proper) subterm of f(t1, ..., tm). The subterm relation
is reflexive (each term is subterm of itself) and transitive
(if ti is subterm of tj and tj is subterm of tk, then ti is
subterm of tk). An atom is of the form p(t1, ..., tn), where
t1, ..., tn are terms and p is a predicate symbols of arity n.
A literal is either a (positive) atom A or its negation ¬A. A
(disjunctive) rule r is a clause of the form:

a1 ∨ · · · ∨ am ← b1, · · · , bk,¬c1, · · · ,¬cn

wherem > 0, k, n ≥ 0 and a1, · · · , am, b1, · · · , bk, c1, · · · , cn
are atoms. The disjunction a1∨· · ·∨am is called the head of
r and is denoted by head(r) while the conjunction b1, · · · , bk,
¬c1, · · · ,¬cn is called the body and is denoted by body(r). If
m = 1, then r is normal (i.e. ∨-free), whereas if n = 0, then
r is positive (i.e. ¬-free). With a little abuse of notation we
often use body(r) (resp. head(r)) to also denote the set of
literals appearing in the body (resp. head) of r. We also
denote the positive body of r by body+(r) = {b1, . . . , bk} and
the negative body of r by body−(r) = {c1, . . . , cn}.

We assume that rules are range restricted [31], i.e. vari-
ables appearing in the head or in negated body literals are
range restricted, that is they also appear in some positive
body literal1. A term (resp. an atom, a rule) is said to be
ground if no variables occur in it. The depth of a term t is
defined as follows: depth(t) = 0 if t is a constant or a vari-
able, and depth(t) = 1 + max

1≤i≤n
{depth(ti)} if t is a complex

term of the form f(t1, . . . , tn). A ground normal rule with
an empty body is also called fact. The definition of a predi-
cate symbol p consists of all rules and facts having p in the
head. Base predicates are defined by facts, whereas derived
predicates are defined by rules. Given a set of rules and
facts, we denote with D the database consisting of all facts
defining base predicates and with P the program consist-
ing of all rules defining derived predicates. Without loss of
generality, we also assume that constants appearing in rules
defining derived predicates also appear in database facts and
that complex terms do not appear in database facts. The
program consisting of rules defining derived predicates and
facts defining base predicates is denoted by PD (equal to
P ∪D). The set of all arguments of a program P is denoted
by arg(P). The set of base arguments of P, i.e. arguments
of base predicates of P, is denoted by argb(P). Given a pro-
gram PD, a predicate p depends on a predicate q if there is
a rule r in P such that p appears in the head and q in the
body, or there is a predicate s such that p depends on s and
s depends on q. A predicate p is said to be recursive if it
depends on itself, whereas two predicates p and q are said
to be mutually recursive if p depends on q and q depends on
p.

Semantics.

1Range restricted programs are often called safe programs.
We will use the term safe to denote further restricted pro-
grams.
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The Herbrand universe HPD of a program PD is the pos-
sibly infinite set of ground terms which can be built using
constants and function symbols appearing in PD. The Her-
brand base BPD of a program PD is the set of ground atoms
which can be built using predicate symbols appearing in PD

and ground terms of HPD . A rule r′ is a ground instance of a
rule r, if r′ is obtained from r by replacing every variable in r
with some ground term in HP ; ground(P) denotes the set of
all ground instances of the rules in P. An interpretation of
a program PD is any subset of BPD . The value of a ground
atom L w.r.t. an interpretation I is valueI(L) = L ∈ I,
whereas valueI(¬L) = L �∈ I. The truth value of a con-
junction of ground literals C = L1, . . . , Ln is valueI(C) =
true ∧ valueI(L1) ∧ · · · ∧ valueI(Ln), while the truth value
of a disjunction D = L1 ∨ · · · ∨ Ln is valueI(D) = false ∨
valueI(L1)∨· · ·∨valueI(Ln), where true and false are built-
in truth values such that false < true. A ground rule r is
satisfied by I if valueI(head(r)) ≥ valueI(body(r)). Thus, a
rule r with an empty body is satisfied by I if valueI(head(r))
= true. An interpretation M for PD is a model of PD if M
satisfies all the rules in ground(PD). Given an interpreta-
tion M and a ground rule r, we write M |= r if M satisfies
r, and M �|= r if M does not satisfy r.
The model-theoretic semantics for a positive program PD

assigns the set of its minimal models MM(PD). A model
M for PD is minimal if no proper subset of M is a model for
PD [21]. The more general disjunctive stable model seman-
tics generalizes stable model semantics previously defined
for normal programs [11] and also applies to programs with
(unstratified) negation [12].

The set of stable models of PD is denoted by SM(PD).
It is well known that stable models are minimal models
(i.e. SM(PD) ⊆ MM(PD)) and that for negation-free
programs minimal and stable model semantics coincide (i.e.
SM(PD) = MM(PD)) and that positive normal programs
have a unique minimal model, called minimum model.

In the presence of function symbols, logic programs may
be non terminating, i.e. may have stable models of infinite
size. Given a program PD and one of its models M , an
argument q[i] in arg(P) is said to be limited in M iff the set
{ti | q(t1, ..., ti, ..., tn) ∈ M} is finite. An argument q[i] in
arg(P) is said to be limited iff for every finite set of database
facts D and for every stable model M of PD, q[i] is limited
in M .

Datalog.
Datalog [31] is the class of function-free logic programs,

where predicates are partitioned into base and derived and
the only terms are constants or variables, called data terms.
Different extensions of Datalog have been studied in the lit-
erature, including programs with stratified and general nega-
tion, programs with disjunctive heads and programs with
negation and disjunctive heads. It is well known that the
complexity of computing the minimum model for Datalog
programs is polynomial in the size of the input databases.

DatalognS (Datalog with n successors), proposed twenty
years ago in [8], is an extension of Datalog with a limited
use of function symbols capable of representing infinite phe-
nomena like flow of time, state transitions, construction of
plans, etc. An example of a DatalognS program is reported
below.

Example 2. Consider the following program P2:

r : meets(T+ 1, Y) ← follows(X, Y), meets(T, X).

where T + 1 is a shorthand for +1(T ) and +1 is a function
symbol. Rule r schedules the meetings of graduate students
with their common advisor, where meets(t, x) means that x
meets her/his advisor in day t. �

The problem of checking the finiteness of the minimum
model of DatalognS programs is decidable [8]. Predicates in
DatalognS can have an arbitrary number of function symbols
and they can appear in one fixed argument. Without loss
of generality we assume that function symbols are all unary
since in DatalognS every k-ary symbol has k− 1 positions in
which only data terms can occur, and then can be rewritten
into many unary function symbols. We also assume that the
distinguished argument of a predicate, where function sym-
bols may occur, is the first one. This argument is called func-
tional, in addition to usual data arguments, and corresponds
to a state (in Example 2 each state represents a particular
moment of time), whereas function symbols map a state to
another. Predicates containing a functional argument are
called functional too. Functional arguments contain func-
tional terms, which are built from a distinguished functional
constant 0, functional variables and function symbols. Other
(data) arguments of an atom can only contain data terms.
A data term by itself is not a functional term. This implies
that every functional term contains either 0 or a single oc-
currence of a single functional variable. We also assume that
a functional variable in a rule is unique and is denoted by
T . For instance, in the program P2 of Example 2, terms 0,
T and T + 1 are functional terms, meets[1] is a functional
argument, whereas follows[1], follows[2],meets[2] are data
arguments.

Other syntactical restrictions of DatalognS programs hold:
i) rules are range restricted, ii) equality and inequality op-
erators are only applied to data terms iii) rule bodies are
nonempty, iv) rules do not contain ground terms, and v)
functional terms in rules are of depth at most 1.

Datalog1S is a particular subclass of DatalognS admitting
exactly one unary function symbol (+1), so that functional
ground terms can simply be seen as numbers representing
time. For the sake of presentation, in the following we will
briefly review the semantics of Datalog1S programs.

Example 3. Consider the program P3 obtained from P2

of Example 2 plus the rule:

meets(T, Y) ← start(T, Y).

and the following database D3:

start(0, emma).
follows(emma, kathy).
follows(kathy, emma).

The minimal modelM3 of this program is composed by facts

follows(emma, kathy) follows(kathy, emma)
start(0, emma) meets(0, emma)

and the following regularly repeating functional facts:

meets(1, kathy) meets(2, emma)
meets(3, kathy) meets(4, emma)
meets(5, kathy) meets(6, emma)
. . . . . .
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where 1 is an abbreviation for 0+1, 2 is an abbreviation for
(0+1)+1, and so on. �

Let PD be a Datalog1S program,M be the model of PD and
t a ground functional term, the state M [t] of M is M [t] =
{p(ā) | p(t, ā) ∈ M}; the snapshot M(t) of M is M(t) =
{p(t, ā) | p(t, ā) ∈ M}; the data part Md ofM is the set of all
the data facts inM . The period ofM is a pair (t1, t2), where
ground functional terms t1 and t2 are such that t1 < t2 and
represent the smallest different times with the same state.
It has been shown in [8] that M [t1 + k] = M [t2 + k] for all
k ≥ 0.

Example 4. Consider the program P3 and the database
D3 from previous examples. Let M3 be the minimal model
of P3 ∪ D3. Examples of state, snapshot and data part
of M3 are M3[0] = {start(emma), meets(emma)}, M3(0) =
{start(0, emma), meets(0, emma)} andMd = {follows(emma,
kathy), follows(kathy, emma)}. Intuitively,M3 repeats with
period (1, 3), i.e. M3[1 + k] = M3[3 + k] for every k ≥ 0. �

It has been shown in [8] that every Datalog1S program has
a “periodic” minimal model and the finiteness of the model
of a Datalog1S program PD can be checked in polynomial
space in the number of facts of PD.

Activation and argument graphs.
Let P be a program and r1, r2 be (not necessarily distinct)

rules of P. We say that r1 activates r2 iff there exist two
ground rules r′1 ∈ ground(r1), r

′
2 ∈ ground(r2) and a set of

ground atoms D such that (i) D �|= r′1, (ii) D |= r′2, and (iii)
D ∪ head(r′1) �|= r′2. This intuitively means that if D does
not satisfy r′1, D satisfies r′2, and head(r′1) is added to D to
satisfy r′1, this causes r′2 not to be satisfied anymore (and
then to be “activated”).

The activation graph of a program P, denoted Ω(P), is a
directed graph whose nodes are the rules of P, and there is
an edge (ri, rj) in the graph iff ri activates rj .

The argument graph of a program P, denoted G(P), is a
directed graph whose nodes are arg(P) (i.e. the arguments
of P), and there is an edge from q[j] to p[i], denoted by
(q[j], p[i]), iff there is a rule r ∈ P such that i) an atom
p(t1, ..., tn) appears in head(r), ii) an atom q(u1, ..., um) ap-
pears in body+(r) and iii) terms ti and uj have a common
variable.

In the following we will also consider labelled graphs, i.e.
graphs with labelled edges. In this case we represent an edge
from a to b as a triple (a, b, l), where l denotes the label.
A path ρ from a1 to bm in a possibly labelled graph is a

non-empty sequence (a1, b1, l1), . . . , (am, bm, lm) of its edges
s.t. bi = ai+1 for all 1 ≤ i < m; if the first and last nodes
coincide (i.e., a1 = bm), then ρ is called a cyclic path. In
the case where the indication of the starting edge is not
relevant, we will call a cyclic path a cycle. A cycle is basic if
it does not contain two occurrences of the same edge. Given
a cycle π consisting of n (labelled) edges e1, ..., en, we can
derive n different cyclic paths starting from each of the ei’s—
we use τ(π) to denote the set of such cyclic paths. As an
example, if π is a cycle consisting of edges e1, e2, e3, then
τ(π) = {(e1, e2, e3), (e2, e3, e1), (e3, e2, e1)}.

We say that a node p[i] depends on a node q[j] in a graph
iff there is a path from q[j] to p[i] in that graph. Moreover,
we say that p[i] depends on a cycle π iff it depends on a node
q[j] appearing in π. Clearly, nodes belonging to a cycle π
depend on π.

3. TERMINATION CRITERIA
As we discussed in the introduction, the problem of iden-

tifying finitely ground logic programs, having a finite set of
finite stable models, is semi-decidable. Different decidable
criteria proposed in the literature [30, 10, 5, 19, 18, 14] allow
to determine the termination of logic programs by consider-
ing the propagation of complex terms among arguments of
the program. In particular, they detect a subset of limited
arguments, so that if all arguments are in the set, program
termination is guaranteed. The sets of programs satisfy-
ing criterion C define the corresponding class of terminating
programs C. In the following we briefly describe some of the
known termination criteria proposed in the literature that
are relevant to the technique proposed in this paper.

Argument-restricted programs [19]. For every atom A
of the form p(t1, ..., tn), A

0 denotes the predicate symbol p,
and Ai denotes term ti, for 1 ≤ i ≤ n. The depth d(X, t)
of a variable X in a term t that contains X is recursively
defined as follows:

d(X,X) = 0,
d(X, f(t1, ..., tm)) = 1 + max

i : ti containsX
d(X, ti).

Definition 1. An argument ranking for a program P is
a partial function φ from arg(P) to non-negative integers
such that, for every rule r of P, every atom A occurring
in the head of r, and every variable X occurring in a term
Ai, if φ(A0[i]) is defined, then body+(r) contains an atom B
such that X occurs in a term Bj , φ(B0[j]) is defined, and
the following condition is satisfied

φ(A0[i])− φ(B0[j]) ≥ d(X,Ai)− d(X,Bj).

The set of restricted arguments of P is AR(P) = {p[i] | p[i] ∈
arg(P) ∧ ∃φ s.t. φ(p[i]) is defined}. A program P is said to
be argument restricted iff AR(P) = arg(P). The class of
argument restricted programs is denoted by AR. �

Bounded Programs [14]. The definition of bounded
programs relies on the notion of labelled argument graph.
This graph, denoted GL(P), is derived from the argument
graph by labelling edges as follows: for each pair of nodes
p[i], q[j] ∈ arg(P) and for every rule r ∈ P such that (i) an
atom p(t1, ..., tn) appears in head(r), (ii) an atom
q(u1, ..., um) appears in body+(r), (iii) terms ti and uj have
a common variable X, there is an edge (q[j], p[i], 〈α, r, h, k〉),
where h and k are natural numbers denoting the positions
of p(t1, ..., tn) in head(r) and q(u1, ..., um) in body+(r), re-
spectively2, whereas α = ε if ti = uj , α = f if uj = X and
ti = f(..., X, ...), α = f̄ if uj = f(..., X, ...) and ti = X.
Moreover, it is also assumed that if the same variable X ap-
pears in two terms occurring in the head and body of a rule
respectively, then only one of the two terms is a complex
term and that the nesting level of complex terms is at most
one.

Given a path ρ = (a1, b1, 〈α1, r1, h1, k1〉), . . . , (am, bm, 〈αm,
rm, hm, km〉), we define λ1(ρ) = α1 ...αm, λ2(ρ) = r1, ..., rm,
and λ3(ρ) = 〈r1, h1, k1〉 ... 〈rm, hm, km〉. Given two cycles π1

and π2, we write π1 ≈ π2 iff ∃ρ1 ∈ τ(π1) and ∃ρ2 ∈ τ(π2)
such that λ3(ρ1) = λ3(ρ2).

2We assume that literals in the head (resp. body) are or-
dered with the first one being associated with 1, the second
one with 2, etc.
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Given a program P, we say that a cycle π in GL(P)
is active iff ∃ρ ∈ τ(π) such that λ2(ρ) = r1, ..., rm and
(r1, r2), ..., (rm−1, rm), (rm, r1) is a cyclic path in the acti-
vation graph Ω(P).

Given a program P and a path ρ in GL(P), we denote with

λ̂1(ρ) the string obtained from λ1(ρ) by iteratively eliminat-
ing pairs of the form γγ̄ from the string until the resulting
string cannot be further reduced.

Given a program P, a cycle π in GL(P) can be classified
as follows. We say that π is i) balanced if ∃ρ ∈ τ(π) s.t.

λ̂1(ρ) is empty, ii) growing if ∃ρ ∈ τ(π) s.t. λ̂1(ρ) does not
contain a symbol of the form γ̄, iii) failing otherwise.

Definition 2. Given a program P, the set of bounded ar-
guments bounded(P) is computed by first setting bounded(P)
= AR(P) and next iteratively adding each argument q[k]
such that for each basic cycle π in GL(P) on which q[k] de-
pends, at least one of the following conditions holds:

1. π is not active or is not growing;

2. π contains an edge (s[j], p[i], 〈f, r, l1, l2〉) and, letting
p(t1, ..., tn) be the l1-th atom in the head of r, for
every variable X in ti, there is an atom b(u1, ..., um)
in body+(r) s.t. X appears in a term uh and b[h] is
bounded;

3. there is a basic cycle π′ in GL(P) s.t. π′≈π, π′ is not
balanced, and π′ passes only through bounded argu-
ments.

A program P is said to be bounded if all its arguments are
bounded. The class of bounded programs is denoted by
BP. �

A relevant aspect that distinguishes this technique from
other works, including the presented proposal, is that this
technique analyzes how groups of arguments are related to
each other. This aspect is illustrated by the below example.

Example 5. Consider the logic program P5 below:

r0 : count([a, b, c], 0).
r1 : count(L, I+ 1) ← count([X|L], I).

The bottom-up evaluation of P5 terminates yielding the
set of atoms count([a, b, c], 0), count([b, c], 1), count([c], 2),
and count([ ], 3). The query goal count([ ], L) can be used to
retrieve the length L of list [a, b, c].3 �

Basically, after having established that argument count[1]
is limited, by analyzing the two cycles involving arguments
count[1] and count[2], respectively, using Condition 3 of Def-
inition 2 it is possible to detect that also argument count[2]
is limited. Consequently, program P5 is bounded.

4. MAPPING-RESTRICTED PROGRAMS
In this section, we present a new technique for checking

termination of the bottom-up evaluation of logic programs

3Notice that P5 has been written so as to count the number
of elements in a list when evaluated in a bottom-up fashion,
and therefore differs from the classical formulation relying
on a top-down evaluation strategy. However, programs rely-
ing on a top-down evaluation strategy can be rewritten into
programs whose bottom-up evaluation gives the same result.

with function symbols. In particular, we denote the concept
ofmapping and use it to describe the form of atoms derivable
during the bottom-up evaluation of the program. We next
introduce the notion of mapping-restricted arguments and
show that these arguments are limited. Moreover, the set
of mapping-restricted arguments of a given program P can
be computed by transforming the original program into a
unary DatalognS program Pτ , whose predicates correspond
to the arguments of P.

We consider normal positive programs since results ob-
tained for such programs can be easily extended to general
disjunctive programs with negation. We assume that i) the
nesting level of complex terms is at most one, ii) there are no
function symbols appearing in the extensional database, and
iii) no constants appear in rules. There is no real restriction
in such assumptions as every program and database could
be rewritten into an equivalent program satisfying such con-
ditions. For instance, a rule of the form p(f(h(X))) ←
q(X) could be rewritten into two rules: p(f(X)) ← p′(X),
p′(h(X)) ← q(X). A rule of the form p(X) ← b(f(X), X),
whose extensional database is b(f(0), 0) could be rewritten
into the two rules p(X) ← b′(Y,X) and b′(f(X), X) ←
b(X,X), with the extensional database b(0, 0). Every rule
of the form p(a) ← body(X), where a is a constant, could
be rewritten as p(Y ) ← body(X), p′(Y ) with the addition of
p′(a) to the extensional database.

We start by introducing notations and terminology used
hereafter.

Definition 3. Given a program P, an m-set UP is a set
of pairs p[i]/s, called mappings, such that p[i] ∈ arg(P) and
s ∈ F ∗P , where i) FP denotes the alphabet consisting of all
function symbols occurring in P, and ii) F ∗P denotes the set
of all strings plus the empty string denoted by ε. �

Intuitively, a pair p[i]/s means that during the bottom-up
evaluation of the program, considering all possible databases,
argument p[i] could take values whose structure, in terms of
nesting of function symbols, is described by s. For instance,
let p(f(g(c1)), c2) be a ground atom derivable through the
bottom-up evaluation of the input program, the mappings
for its arguments are p[1]/fg and p[2]/ε. Let M be a model
of P ∪ D, we denote by UM the m-set derivable from all
ground atoms occurring in M .

Given an m-set UP and an atom p(t1, ..., tn) occurring in
P, we say that an occurrence of a variable X in ti has a
mapping to a string s in UP if p[i]/s ∈ UP ∧ ti = X or
p[i]/gs ∈ UP ∧ ti = g(...X...). For instance, considering an
atom p(f(X)) and UP = {p[1]/fg}, an occurrence of X in
f(X) has a mapping to a string g in UP .

Definition 4. Let P be a program and let UP be an m-
set. We say that UP is supported if it can be built iteratively
as follows:

1. q[j]/ε ∈ UP for every argument q[j] ∈ argb(P), and

2. for every rule r ∈ P and for every variable X in r, if
all occurrences of variable X in the body of r have a
mapping to a string s in UP , then all occurrences of X
in the head of r also have a mapping to s in UP . �

Intuitively, for any supported UP of P, for every database
D there exists a modelM of P∪D such that UM ⊆ UP , that
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is UP is an overestimation of UM . The number of supported
m-sets for a given program P could be infinite, and there
can be supported m-sets of an infinite size.

Given a program P, a supported m-set UP is minimal if
there is no supported m-set U ′P such that U ′P ⊂ UP . It is
simple to note that every program P has a unique supported
minimal m-set, called minimum supported m-set, denoted in
the following by U∗P . The minimum supported m-set can
be obtained as the intersection of all supported m-sets of P
and, for any database D, it gives the best overestimation of
UM∗ , where M∗ is the minimum model of PD (remember
that we assume that D does not contain function symbols).

Example 6. Consider the program P1 of Example 1 and
the database D composed by a fact b(a). The minimum
model of P1 ∪D and the corresponding m-set are

M∗ = {b(a), p(a, f(a)), p(f(a), a)},
UM∗ = {b[1]/ε, p[1]/ε, p[2]/f, p[1]/f, p[2]/ε}.

The minimum supported m-set of this program is

U∗P1
= {b[1]/ε, p[1]/ε, p[2]/f, p[1]/f, p[2]/ε,

q[1]/f, q[2]/g, q[1]/ff, q[2]/gf},
that is a finite proper superset of UM∗ . �

Definition 5. Given a program P, an argument p[i] ∈
arg(P) is mapping-restricted (briefly m-restricted) iff U∗P
contains a finite set (possibly empty) of mappings p[i]/s.
MR(P) denotes the set of all m-restricted arguments of P.
A program P is m-restricted if MR(P) = arg(P), i.e. it
admits a finite supported m-set. The set of m-restricted
programs is denoted by MR. �

From the discussion above it follows that each program
whose minimum supported m-set is finite, has a finite min-
imum model for every database D. Moreover, it can be
shown that every m-restricted argument is limited.

Theorem 1. Every program P admitting a finite sup-
ported m-set is terminating.

Proof. (Sketch) Straightforward from the observation
that for any database D, let M∗ = MM(PD), UM∗ ⊆
U∗P .

Proposition 1. Given program P, every m-restricted ar-
gument is limited.

Proof. (Sketch) Let p[i] be a m-restricted argument of
P and D be a database. Then, U∗P contains a finite set of
mappings p[i]/s. Since UMM(PD) ⊆ U∗P , then p[i] is limi-
ted.

In order to analyze the termination of a given program P,
we introduce a transformed program Pτ having the following
properties:

- the termination of Pτ is decidable;

- U∗Pτ = UM∗ , where M∗ = MM(Pτ );

- There is a bijection h from arg(P) to arg(Pτ ) s.t.
h(U∗P) = U∗Pτ , i.e. p[i]/s ∈ U∗P iff h(p[i])/s ∈ U∗Pτ .

Definition 6. Let P be a program. Then Pτ denotes
the program, where all predicates are unary, derived from P
as follows:

• for every base predicate symbol b with arity n in P,
and for every i ∈ {1...n}, Pτ contains a fact bi(0);

• for every rule r = p(t1, . . . , tn) ← body in P, for every
variable X occurring in p(t1, . . . , tn), and for every
term ti where X occurs, Pτ contains a rule:

pi(t
X
i ) ← ∧

q(u1,...,uk) in body
∧ X occurs in uj

qj(u
X
j )

where tX denotes the following expression:

tX =

{
X if t = X

f(X) if t = f(. . . , X, . . . ).

We denote the set of facts defining predicates pi, where p
is a base predicate symbol, by D̂τ and the set of remaining
rules by P̂τ . �

Example 7. Consider the following program P7:

p(X, X) ← b(X).
q(f(X), f(X)) ← p(X, X).
p(f(X), X) ← q(X, X).

The minimum supported m-set of this program is

U∗P7
= {b[1]/ε, p[1]/ε, p[2]/ε, q[1]/f, q[2]/f, p[1]/ff, p[2]/f}.

The transformed unary program Pτ
7 is:

b1(0).
p1(X) ← b1(X).
p2(X) ← b1(X).
q1(f(X)) ← p1(X), p2(X).
q2(f(X)) ← p1(X), p2(X).
p1(f(X)) ← q1(X), q2(X).
p2(X) ← q1(X), q2(X).

The minimum model of Pτ
7 is M∗ = {b1(0), p1(0), p2(0),

q1(f(0)), q2(f(0)), p1(f(f(0))), p2(f(0))}, whereas UM∗ =
{b1[1]/ε, p1[1]/ε, p2[1]/ε, q1[1]/f, q2[1]/f, p1[1]/ff, p2[1]/f}.
It is easy to see that UM∗ = U∗Pτ7 . �

The following proposition states that for every program
P the m-sets of Pτ and P coincide (up to the bijection h)
and are derivable from the minimum model of Pτ .

Proposition 2. Let P be a program andM∗ = MM(Pτ )
be the minimum model of the transformed program Pτ , then
U∗Pτ = UM∗ and there is a bijection h s.t. h(U∗P) = U∗Pτ .

Proof. The relation U∗Pτ = UM∗ is straightforward from
the construction of Pτ . The existence of h follows from Def-
inition 4 of supported m-set and the construction of Pτ : h
is defined as h(p[i]) = pi[1] for every p[i] ∈ arg(P).

Moreover, since Pτ is unary and uses only unary func-
tion symbols, it is a DatalognS program. Consequently, the
problem of checking the finiteness of its minimum model
is decidable [8], implying that the problem of checking the
finiteness of U∗P for a given program P is decidable as well.

Let us now compare the presented technique with the
argument-restricted technique, that generalizes ω-restricted,
λ-restricted and finite domain techniques.
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Intuitively, the argument-restricted (AR) technique de-
rives the set of restricted arguments estimating the depth
of complex terms that can be associated with an argument
during the bottom-up evaluation. In particular, it considers
the depth of terms in the body and in the head of rules, but
it does not test the real possibility to activate a rule start-
ing from a feasible database instance and does not distin-
guish different function symbols. The new MR technique
overcomes these limitations by introducing the concept of
supported m-set, which allows us to describe the form of
argument values that are derivable during bottom-up eval-
uation of the program, starting from any database instance
and use this information to simulate the evaluation process.
Furthermore, to compute strings associated with head ar-
guments, the current technique also checks that rules can
be effectively activated. The following theorem states that
the class of m-restricted programs generalizes the class of
argument restricted programs.

Theorem 2. AR � MR
Proof. Let P be a program. We denote by Pf the logic

program obtained from P by replacing every function sym-
bol occurring in P with the symbol f , admitting that a
function symbol does not have fixed arity. Note that P is
argument restricted iff Pf is argument restricted. Let φ be
the argument ranking of both P and Pf . We denote by sk

the string of length k of the form sk = fsk−1, where s0 = ε.
Let UPf = {p[i]/sk | p[i] ∈ arg(P) ∧ 0 ≤ k ≤ φ(p[i])}. Note
that such an m-set is a finite supported m-set for Pf . As-
sume that ∃p[i]/s ∈ U∗P such that |s| > φ(p[i]), then, any
supported m-set of Pf would contain a pair p[i]/s′ such that
|s′| > φ(p[i]), which contradicts the existence of UPf . Then,
U∗P is finite and P is in MR. In order to prove the strict in-
clusion, observe that program P1 from Example 1 is in MR
but not in AR.

The inclusion is proper even if the program contains only
one function symbol. For instance, program P7 from Exam-
ple 7 is in MR but not in AR.

It is worth noting that although both AR and MR tech-
niques are used to identify decidable subclasses of finitely
ground programs, they can also be used to detect, for a
given program P, subsets of limited arguments of P. The
following proposition states that, given a program P, the set
AR(P) of restricted arguments of P is a subset of the set of
MR(P) of m-restricted arguments of P.

Proposition 3. For any program P, AR(P) ⊆ MR(P)

Proof. Straightforward from the proof of Theorem 2.

Thus, the estimation of the set of limited arguments pro-
vided by the MR technique is better than the one provided
by the AR technique. Detecting subsets of limited argu-
ments is relevant even when the input program is not reco-
gnized as terminating by a given criterion, as in such cases
it is possible to combine different techniques to detect the
finiteness of the minimum model.

Theorem 3. BP and MR are not comparable

Proof. To prove the theorem it is sufficient to show that
i) BP �⊆ MR, that is there is a program belonging to BP
and not belonging to MR, and ii) MR �⊆ BP, that is there
is a program belonging to MR and not belonging to BP.
Indeed, P1 is mapping-restricted, but not bounded, whereas
program P5 is bounded, but not mapping-restricted.

Figure 1: Activation graphs of P8 (left) and P9 (right).

5. FURTHER IMPROVEMENTS
As shown in the previous section, the MR criterion gen-

eralizes the AR criterion and is uncomparable with other
termination criteria so far proposed, including bounded pro-
grams. However, the MR technique does not analyze the
activation graph and the dependencies among arguments.
These aspects are captured by the safe function proposed
in [18] to define safe and Γ-acyclic programs and also used
in the definition of bounded programs [14]. Consequently,
it could be useful to combine the presented technique with
other tools and techniques such as the safe function.

Thus, in this section we propose a variation of the safe
function which will be used to extend the set of mapping-
restricted arguments. While the original safe function pro-
posed in [18] was used to establish termination of the input
program, the safe function presented next takes as input a
set of limited arguments and returns as output a possibly
enlarged set of limited arguments.

Definition 7. For any program P, let A be a subset of
arg(P), the safe function ΨP(A) denotes the set of argu-
ments q[i] occurring in P such that for all rules r ∈ P where
q appears in the head

1. r does not depend on a cycle of Ω(P), i.e. there is no
path from some node belonging to a cycle to r, or

2. let t be the term corresponding to argument q[i], for
every variable X appearing in t, X also appears in
some argument in body+(r) belonging to A. �

In order to understand the behavior of the safe function,
consider the following example.

Example 8. Consider the set A = {b[1]} and the follow-
ing program P8, where b is a base predicate:

r1 : p(X, X) ← b(X).
r2 : p(f(X), g(X)) ← p(X, X).
r3 : q(f(X)) ← b(X), q(X).

The activation graph Ω(P8), shown in Figure 1 (left), has the
unique cycle involving r3. ΨP8(A) contains all arguments of
P8. In fact, b[1], p[1] and p[2] satisfy the first condition of
Definition 7, whereas q[1] satisfies the second one. �

The following propositions show that for every set of limi-
ted arguments A occurring in P, ΨP(A) contains only limi-
ted arguments, the sequence ΨP(A),Ψ2

P(A) . . .Ψ
i
P(A) . . . is

monotonic and converges in a finite number of steps, that
is, there is some finite n such that Ψn

P(A) = Ψn+1
P (A).

Proposition 4. Let P be a program and let A be a set
of limited arguments of P, then all arguments in ΨP(A) are
also limited.
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Proof. Let p[i] ∈ ΨP(A), 1) if p[i] satisfies Condition 1
of Definition 7, every rule r where p[i] appears in head(r)
does not depend on a cycle in Ω(P), then r can be activated
a finite number of times, thus, r cannot cause p[i] to be non
limited; 2) if p[i] satisfies Condition 2 of Definition 7, then
p[i] is trivially limited.

Proposition 5. Let P be a program and let A be a set of
limited arguments of P, then the sequence ΨP(A),Ψ2

P(A) . . .
Ψi
P(A) . . . is monotonic and converges in a finite number of

steps.

Proof. Straightforward from Definition 7 and from ob-
servation that arg(P) is finite.

The next proposition ensures that, the application of the
safe function ΨP to the set MR(P) of mapping-restricted
arguments of a given program P returns all arguments in
MR(P).

Proposition 6. MR(P) ⊆ ΨP(MR(P)), for any logic
program P.

Proof. Let q[i] ∈ MR(P), 1) if q[i] is a base argument,
q[i] trivially satisfies Condition 1 of Definition 7; 2) if q[i] is a
derived argument, by definition of supported m-set, for every
rule r with q[i] in head(r), for every variable X appearing
in q[i], X obviously appears in some argument in body+(r)
of MR(P), thus satisfying Condition 2 of Definition 7.

Propositions 4, 5 and 6 ensure that, once the setMR(P) of
limited arguments is computed, a (possibly proper) superset
of MR(P) of limited arguments can be computed iteratively
applying the function ΨP starting from the set MR(P) until
the fixpoint is reached. Let us now define a new class of
terminating programs based on the use of the safe function.

Definition 8. Given a program P, the set MRS(P) =
Ψ∞P (MR(P)) denotes the set of MR-safe arguments of P. A
program P is said to be MR-safe if all arguments are MR-
safe. The class of MR-safe programs is denoted by MRS. �

The use of the safe function allows to extend the MR class
of terminating programs. Example 9 illustrates this result
and shows that the application of the safe function to the set
of mapping-restricted arguments gives better results w.r.t.
the set of restricted arguments.

Example 9. Consider the following program P9, where
b is a base predicate:

r1 : s(f(X), g(X)) ← b(X).
r2 : s(f(X), f(X)) ← s(X, X).
r3 : q(f(X), h(Y)) ← s(X, g(Y)).
r4 : q(f(X), l(Y)) ← q(X, h(Y)).

The activation graph of P9 is reported in Figure 1 (right).
The set of restricted arguments AR(P9) = {b[1]}, whereas
the set of mapping-restricted argumentsMR(P9) = {b[1], s[1],
s[2], q[2]}. P9 is not in MR and even the set of limited
arguments obtained by Ψ∞P9

(AR(P)) = {b[1], q[1], q[2]} �=
arg(P9). However, Ψ∞P9

(MR(P)) = arg(P9), then P9 is in
MRS. �

The following theorems confirm that MRS strictly ex-
tends MR and show the soundness of the proposed ap-
proach.

Theorem 4. MR � MRS.
Proof. Inclusion is straightforward from Proposition 5

and Proposition 6. To prove the strong inclusion note that
program P9 is MR-safe but not in MR.

Theorem 5. Every MR-safe program P is terminating.

Proof. Straightforward from Definition 7 and Proposi-
tions 4, 5 and 6.

The above results and comments suggest that the MR cri-
terion is orthogonal with respect to other criteria. Therefore,
it could be used to compute a base set of limited arguments
which can be enlarged by next applying other tools such as
the safe function. Similarly, starting from the set of limi-
ted arguments MR(P), detected by the mapping-restricted
technique, it is possible to apply the bounded argument tech-
nique to identify a possibly larger set of limited arguments.
The combination of the two techniques can be immediately
obtained by using in Definition 2, as initial set of limited
arguments, the set MR(P) instead of the set AR(P). By de-
noting the resulting criterion with MBP and with MBP the
class of MR-bounded programs, we have reason to believe
that the class of MR-bounded programs generalizes both
mapping-restricted and bounded programs.

6. COMPUTATIONAL COMPLEXITY
In this section we will study the computational complexity

of the problem of computing the set MR(P) of m-restricted
arguments for a given program P. This set gives us an
underestimation of the set of limited arguments of P, and,
when it coincides with arg(P), the program P is in MR
and, consequently, is terminating.
From Proposition 2 it follows that the set MR(P) can be

computed by first transforming P into the DatalognS pro-
gram Pτ and next by determining the limited arguments of
MM(Pτ ).

Observe that by construction, all predicates of Pτ are
unary and functional, the number of facts in D̂τ is equal
to the number of base arguments of P, and the number of
function symbols in P and Pτ coincide.

We consider two different cases on the base of whether
the input program P contains only one or more than one
function symbols, that is whether Pτ is a Datalog1S or a
DatalognS program. Thus, in this section we present an
algorithm computing the set of m-restricted arguments for
a program P containing only one function symbol, i.e. Pτ is
a Datalog1S program.

We point out that, as the complexity of checking whe-
ther a DatalognS program terminates may be higher than
that of checking termination of a Datalog1S program, we
could apply a less expensive (and less general) technique for
checking program termintion, by considering a target pro-
gram Pτ where all function symbols are replaced by a single
function symbol.

We start by introducing some definitions and results used
hereafter to define the complexity of our algorithms.

Assuming that simple terms have constant size, the size
of a program P, denoted by size(P), is bounded by O(n · p ·
ap · af ), where n is the number of rules in the program, p is
the maximum number of predicates in the body of rules, ap
is the maximum arity of predicates in the program and af
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is the maximum arity of function symbols in the program.
The size of a database D, denoted by size(D), is bounded
by O(d · ap), where d is the number of facts in the database.
Finally, the size of PD is size(PD) = size(P) + size(D).
The following lemma shows the relation between the size

of a given program P and the size of the transformed pro-
gram Pτ .

Lemma 1. Given a program P, size(Pτ ) = O(size(P)2).

Proof. By definition of Pτ , the number of facts in D̂τ is
equal to the number of base arguments of P and the number
of rules in P̂τ is at most n · ap · af . Moreover, the maximum

number of predicates in the body of rules in P̂τ is p · ap and
the maximum arity of predicates and function symbols of
P̂τ is 1. Then, we have that size(P̂τ ) = O((n · ap · af ) ·
(p · ap)) = O(size(P)2) and size(D̂τ ) = O(size(P)), conse-
quently size(Pτ ) = O(size(P)2).

Programs with only one function symbol.

The main function of the algorithm computing the set
of m-restricted arguments for programs containing only one
function symbol is ComputeMRestricted. It takes as input a
program P and returns as output the set of its m-restricted
arguments.

Theorem 6. For any program P,

MR(P) = ComputeMRestricted(P). �

The function starts by computing the transformed pro-
gram Pτ (line 2). Next it computes the period (t1, t2) of the
model of Pτ (lines 3-15). In particular, since Pτ is a unary
Datalog1S program, the number of states of Pτ is bounded
by 2fsize, where fsize is the number of predicates in Pτ .
Note that all arguments not limited in M = MM(Pτ ) oc-
cur in predicates belonging to the states ranging from M [t1]
to M [t2]. Then, the function computes these states and
deletes from the output set all the corresponding arguments
(lines 16-21).

The computation of a stateM [t] ofM is done by means of
function ComputeState. It takes as input the transformation
Pτ of a program P and a ground term t and returns as output
the state of the model of Pτ evaluated in t. Computing a
state M [t] is performed by checking whether Pτ |= p(t), for
every predicate p occurring in Pτ . Function Models is in
charge of checking whether Pτ |= p(t) and it is a simplified
version of the function proposed in [7], specific for unary
programs with functional predicates only. This function is
based on the following lemma: the notation P{u} denotes
the program obtained by replacing every occurrence of the
functional variable T in P with a ground functional term u.

Lemma 2. [7] Let PD be a Datalog1S program, Q(t, ā) a
ground atomic query. Then, M is a model of PD ∪ ¬Q(t, ā)
iff the following conditions hold:

- D ⊆ M and Q(t, ā) �∈ M(t);

- M(u) ∪M(u+ 1) ∪Md |= P{u} for any ground func-
tional term u. �

Let us start by presenting the complexity of functionModels.

Function ComputeMRestricted

input : A positive normal program P.
output: The set MR(P).

1: MR(P) := arg(P);

// Constructing Pτ with only one function symbol.
2: Pτ := ComputePτ (P);

// Computing the period.
3: t1 := 0;
4: t2 := 1;
5: while true do
6: M [t2] := ComputeState(Pτ , t2);

7: for t′ := t2-1 to 0 do
8: M [t′] := ComputeState(Pτ , t′);
9: if M [t′] = M [t2] then

10: t1 = t′;
11: break while;
12: end
13: end
14: t2 := t2 + 1;

15: end

// Finding m-restricted arguments.
16: t∗ := t1;
17: repeat
18: M [t∗] := ComputeState(Pτ , t∗);
19: MR(P) := MR(P)− {p[i] | pi() ∈ M [t∗]};
20: t∗ := t∗ + 1;

21: until t∗ = t2;

22: return MR(P);

Proposition 7. Let Pτ be the transformation of a pro-
gram P with one function symbol and Q(t) be a ground
atomic query, Function Models performs in polynomial space
w.r.t. size(Pτ ) and in polylogarithmic space w.r.t. depth(t).

Proof. The size of every state of the model M of Pτ

depends on the number of different ground atoms that can
occur in one state; this number, denoted by fsize, is poly-
nomial in size(Pτ ). In a similar way, a snapshot M(t) can
be encoded as a pair (t,M [t]), requiring polynomial space
w.r.t. size(Pτ ) and logarithmic space w.r.t. depth(t) (recall
that t is a number that can be encoded in binary).
Function Models is a non deterministic algorithm which

implements Lemma 2 with some simplifications due to the
syntactical form of Pτ (all predicates are unary and func-
tional). The application of Lemma 2 consists in verify-
ing whether Pτ ∪ ¬Q(t) admits a model, that is whether
Pτ |= Q(t). Moreover, it first guesses the initial snapshot
of the minimal Herbrand model of Pτ . Guessing a snapshot
is obviously space polynomial in size(Pτ ) and logarithmic
space in the depth of the given term. Verifying whether
CurSnap |= D̂τ ∪ ¬Q(t) can be done in polynomial space

w.r.t. size(Pτ ) since it simply needs to check whether D̂τ ⊆
CurSnap ∧ Q(t) �∈ CurSnap. The cycle in the algorithm per-
forms at most m iterations, which is exponential in size(Pτ )
but can be encoded in binary, requiring polynomial space.
Moreover, the ground functional term v and the ground
functional term t appearing in the query Q can be encoded
in binary too, requiring a polynomial amount of memory for
v in size(Pτ ) (because v < m) and a logarithmic amount
of space for t in depth(t). Again, at each iteration, guess-
ing the snapshot M(v + 1) is space polynomial in size(Pτ )
and logarithmic space in depth(v+ 1), but since v < m, the
space for storing v + 1 is at most polynomial in size(Pτ ).
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Function Models
input : The transformation Pτ of a program P.

A ground atomic query Q(t).
output: Truth value of Pτ |= Q(t).

1: m := 2fsize;
2: v := 0;
3: CurSnap := Guess M(0);
4: NextSnap := null;

5: satisf := CurSnap |= D̂τ ∪ ¬Q(t);

6: while satisf and v < m do
7: NextSnap := Guess M(v + 1);

8: satisf := CurSnap ∪NextSnap |= P̂τ{v} ∪ ¬Q(t);
9: CurSnap := NextSnap;

10: v := v + 1;

11: end

12: return not satisf ;

Function ComputeState

input : The transformation Pτ of a program P.
A ground functional term t.

output: The state M [t].

1: M [t] := ∅;
2: foreach predicate p do
3: if Models (Pτ ,p(t)) then
4: M [t] := M [t] ∪ {p()};
5: end
6: end

7: return M [t];

Answering to CurSnap∪NextSnap |= P̂τ{v}∪¬Q(t) can be
done in polynomial space in size(Pτ ) and polylogarithmic
space w.r.t. depth(t). Finally, by Savitch’s theorem, every
non deterministic space polynomial algorithm can be rewrit-
ten into a deterministic one which performs in quadratically
more space.

Since predicates in Pτ are unary, the number of different
atomic queries to be answered in Function ComputeState is
polynomial in the size of the program. Then, computing a
state has the same complexity of the Function Models.

Lemma 3. Let Pτ be the transformation of a program P
with one function symbol. Computing the state of the model
of Pτ at the given time t requires polynomial space w.r.t.
size(Pτ ) and polylogarithmic space w.r.t. depth(t).

Proof. Straightforward from previous proposition and
considerations.

We can now present the main complexity result stating
that computing the set of m-restricted arguments of a pro-
gram P with one function symbol is space polynomial w.r.t.
size(P).

Theorem 7. Given a program P containing only one func-
tion symbol, the complexity of computing MR(P) is space
polynomial w.r.t. size(P).

Proof. In Function ComputeMRestricted, ComputePτ (P)
requires polynomial space in size(P), from Lemma 1. The
next phase of the algorithm computes the period of the
model of Pτ which is crucial for finding the m-restricted

arguments of P. The whole operation takes at most polyno-
mial space w.r.t. size(Pτ ) since by Lemma 3 ComputeState

requires polynomial space in size(Pτ ) and polylogarithmic
space in depth(t2). Note that depth(t2) is at most expo-
nential in the maximum size of a state of Pτ (i.e. fsize),
then “polylogarithmic space in depth(t2)”means polynomial
space w.r.t. size(Pτ ). Checking whether M [t′] = M [t2] re-
quires obviously polynomial space in size(Pτ ). Finally, stor-
ing variables t1, t2, t

′ requires polynomial space in size(Pτ ).
From Lemma 1, the whole phase requires polynomial space
w.r.t. size(P). The last phase computes the set MR(P).
From the previous considerations, the last phase requires
polynomial space w.r.t. size(P) too.

Corollary 1. Given a program P, the complexity of
checking whether P ∈ MR is space polynomial w.r.t. size(P)
if P contains at most one function symbol.

Proof. Straightforward from Theorem 7.

Finally, for the class of MR-safe programs, the complex-
ity of checking whether a given program P ∈ MRS depends
on the complexity of computing MR(P) and the complexity
of computing the fixpoint of safe function. The safe func-
tion can be applied at most |arg(P)| times and needs the
construction of the activation graph Ω(P).
The next proposition introduces a bound on the complex-

ity of computing the activation graph of a program P.

Proposition 8. For any program P, the activation graph
of P can be constructed in time O(size(P)2).

Proof. We denote by m the maximum size of the body
of rules in P, i.e. m = p · ap · af . Given two rules ri, rj ∈ P,
checking whether ri activates rj can be done in time O(m2).
In fact, checking whether two atoms unify can be done in
time O(m).

In order to check if ri activates rj it is sufficient to prelim-
inarly substitute each variable in ri with a unique dummy
constant ξ, obtaining the new ground rule r′i (time O(m))
and then checking i) for each atom A in the body of rj , whe-
ther A unifies with head(r′i) (by computing the mgu θ of A
and head(r′i) and its extension θ′, obtained by assigning ξ to
variables of rj not appearing in θ (time O(m))); ii) whether
head(rj)θ �∈ body+(r′i) (time O(m)).

To construct Ω(P) we have to check, for every possible
pair of rules ri, rj , whether ri activates rj . Since the activa-
tion graph has at most n2 edges, the construction of Ω(P)
can be done in O(n2 ·m2), i.e. in O(size(P)2).

Corollary 2. Given a program P, the complexity of
checking whether P ∈ MRS is space polynomial w.r.t. size(P)
if P contains at most one function symbol.

Proof. Straightforward from Theorem 7 and Proposi-
tion 8.

Programs with more than one function symbol.

So far we have considered programs with only one func-
tions symbol. As said before, whenever programs contain
more than one function symbol, we can perform a less accu-
rate analysis, by replacing all function symbols with a unique
symbol, even if they have different arities. The resulting
unary program uses only one function symbol. This means
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that there could be mapping-restricted programs which are
not recognized to be in MR.

To enlarge the class of MR and MRS programs we can
take into account the fact that programs may contain more
than one function symbol rewriting them into a DatalognS
program. The counterpart of this growth of expressivity is
obviously a greater computational complexity.

Indeed, as the complexity of checking whether a DatalognS
program terminates is exponential, we conjecture that for
any program P with more than one function symbol, the
complexity of both computingMR(P) and checking whether
P ∈ MR is time exponential w.r.t. size(P). Consequently,
as the complexity of computing the safety function is polyno-
mial, we can conjecture that the computational complexity
of checking whether P ∈ MRS is time exponential w.r.t.
size(P) as well.

7. CONCLUSIONS
In this paper we have presented a new technique for check-

ing whether the bottom-up evaluation of logic programs with
function symbols terminates. The technique is based on the
definition of mappings from arguments to strings of function
symbols representing possible values which could be taken
by arguments during the bottom-up evaluation. Such map-
pings can be computed through the evaluation of a unary
program Pτ derived from the input program P. As termi-
nation of Pτ is decidable, its fixpoint evaluation gives us a
set of limited arguments, here called m-restricted.

We have shown that this technique overcomes previous
techniques, such as AR and is uncomparable with other
techniques so far proposed. The technique can be easily
combined with other techniques such as safety and the ones
recently proposed [18, 14]. Moreover, it is possible to fur-
ther improve our results by applying the recently proposed
orthogonal rewriting based technique [15], that transforms
a program into an adorned one. The idea is to apply the
termination criteria to the adorned program rather than to
the original one, (strictly) enlarging the class of programs
recognized as finitely-ground.

Concerning the computational complexity, we point out
that termination checking is a compile time operation and
the high complexity results are with respect to the size of
the program which, usually, is much smaller than the size of
the database.

Finally, it would be interesting to investigate algorithms
(and complexity results) for the computation of the mapping-
restricted arguments of general logic programs. Further-
more, the combination of the presented technique with the
bounded criterion is a relevant topic that also deserves a
more formal and accurate analysis in terms of the class of
logic programs recognized as terminating and in terms of
computational complexity.
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