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ABSTRACT: 

 

Temporal analysis of deformations Time Series (TS) provides detailed information of various natural and humanmade displacements. 

Interferometric Synthetic Aperture Radar (InSAR) generates millimetre-scale products, indicating the chronicle behaviour of detected 

targets via TS products. Deep Learning (DL) can handle a massive load of InSAR TS to categorize significant movements from non-

moving targets. To this end, we employed a supervised Convolutional Neural Network (CNN) model to distinguish five deformations 

trends, including Stable, Linear, Quadratic, Bilinear, and Phase Unwrapping Error (PUE). Considering several arguments in a CNN 

model, we trained numerous combinations to explore the most accurate combination from 5000 samples extracted from a Persistent 

Scatterer Interferometry (PSI) technique and Sentinel-1 images over the Granada region, Spain. The model overall accuracy exceeds 

92%. Deformations of three cases of landslides were also detected over the same area, including the Cortijo de Lorenzo, El Arrecife, 

and Rules Viaduct areas. 

 

 

1. INTRODUCTION 

Ground deformations are physical events caused by natural or 

human activities, that can be analyzed to provide the status of 

natural and anthropic hazards. Remote sensing provides tools to 

investigate the temporal and spatial analysis of ground 

deformation. The extensive archive of Synthetic Aperture Radar 

(SAR) images, such as Sentinel-1, provides a rich data source for 

Interferometric SAR (InSAR) techniques, which can measure 

ground deformations at millimeter-scale. InSAR is generated 

from the interferometric phase of at least two SAR images for a 

certain area of interest (Crosetto et al., 2016; Minh et al., 2020). 

Advanced Differential InSAR (DInSAR) techniques, like 

Persistent Scatterer Interferometry (PSI) generate deformation 

Time Series (TS), which are extracted by multiple consecutive 

SAR acquisitions over the same area (Crosetto et al., 2016). This 

product offers deformations history over observed targets, which 

can recognize various types of natural hazards and artifacts 

(Crosetto et al., 2016; Minh et al., 2020). 

Considering the availability of big InSAR datasets, data 

management tools are required to efficiently utilize them for 

long-term monitoring (Minh et al., 2020). The Deep Learning 

(DL) framework, the developed version of Neural Networks 

(NN), and more specifically Artificial Neural Networks (ANN), 

poses great opportunities regarding the management of large-size 

data to aid in earth environmental applications (Yuan et al., 

2020). Convolution Neural Network (CNN) has been widely 

used in various remote sensing applications, including image 

classification, object detection, and targets recognition (Ma et al., 

2019; Yuan et al., 2020; Zhu et al., 2017). Due to the robust 

functionality of CNN in the recognition task (Yuan et al., 2020), 

it has been recently proposed to investigate ground deformation 

using satellite images. For example, Mohan et al. (2021) 

reviewed the advantages of remote sensing data and machine 

learning techniques (e.g., DL) in landslide detection. Different 
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studies were also conducted on the CNN algorithm to improve 

the landslide susceptibility evaluation (Shibao and Jie, 2021), 

volcanic surface deformation (Sun et al., 2020), land subsidence 

(Radman et al., 2021; Shimosato and Ukita, 2021), and 

deformations of built regions (Anantrasirichai et al., 2021) using 

InSAR datasets.  

Classification of ground deformations TS to identify moving and 

non-moving targets can decrease the burden of big InSAR data 

analysis and provide detailed information of various natural and 

humanmade displacements. DL models can handle a massive 

load of InSAR TS to categorize the significant movements by 

deformations TS classification from non-moving targets. DL 

strategies also employ various frameworks to improve models for 

the most accurate outcomes, such as CNN. In this paper, we train 

a supervised CNN model to distinguish five deformations trends, 

including Stable, Linear, Quadratic, Bilinear, and Phase 

Unwrapping Error (PUE) using 5000 labeled samples of Granada 

dataset. Additionally, the proposed model is employed to identify 

ground motions over three cases of landslides in Granada, Spain. 

These trends were so far proposed as the dominant types of 

deformations TS by Berti et al. (2013). 

The remainder of the paper is structured as follows: Section 2 

describes the dataset and study areas and defines five 

deformation classes. Section 3 presents the proposed 

methodology, architecture of the CNN model, and accuracy 

assessment procedure. In Section 4, we examined the proposed 

methodology and discussed the obtained results. Finally, main 

conclusions are presented in Section 5. 

 

2. STUDY AREA AND DATA 

In this section, first the study area is described, then the 

characteristics of the DInSAR dataset is provided. Additionally, 

five deformation trends are explained by visual examples.  
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Class Trend Description 

Stable 

 

No deformation occurs. The TS 

consists of small random variations. 

Linear 

 

A constant slope characterizes TS. 

Quadratic 

 

The displacements follow a quadratic 

law and a continuous movement. 

Bilinear 

 

TS is divided by a breakpoint into two 

segments with different linear rates. 

PUE 

 

There could be one or more jumps due 

to phase unwrapping errors inside one 

TS. 

Table 1. Descriptions and visual examples of five deformation classes based on definitions provided by (Berti et al., 2013; 

Mirmazloumi et al., 2022). 
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2.1 Study area 

The Rules Reservoir is located in Granada, southern Spain, where 

collects water from the south and western regions. In addition to 

Rules Dam, there are two important transport infrastructures in 

this region, affected by three landslides (Reyes-Carmona et al., 

2020): Cortijo de Lorenzo area (A), the El Arrecife Landslide 

(B), and the Rules Viaduct Landslide (C) (see Figure 2). 

 

2.2 Dataset and Reference Samples  

To analyze the unstable areas of Rules Reservoir region, 139 

Sentinel-1A and Sentinel-1B images from March 2015 to 

September 2018 were processed through the PSI chain of the 

Geomatics Division (PSIG) of the Centre Tecnològic de 

Telecomunicacions de Catalunya (CTTC) (Devanthéry et al., 

2014). The estimated deformation TSs are along the satellite Line 

of Sight (LoS) direction. In this study, we utilize the deformation 

TS product of the study area to classify stable and unstable targets 

focusing on the temporal behavior of ground motions.  

Deformation TS are categorized into two types of movements: 

stable and unstable. Stable TSs indicate small and random 

fluctuations, containing areas without significant movements. On 

the other hand, unstable TSs can be expanded to various trends 

based on velocities of deformations and changes in velocities. 

Berti et al. (2013) comprehensively described different 

deformations TSs in seven trends. This study proposes five 

deformations trends as labeled samples to train and test the 

proposed model. The description and visual example of all five 

classes are provided in Table 1. One thousand samples per class 

were selected from the InSAR TS of Granada dataset as reference 

samples to classify deformations of the study areas.  

 

 

3. METHODOLOGY 

DL is a potential tool for conducting complex tasks due to its 

demonstrated skill to approximate the complicated nonlinear 

relationship between various environmental variables, multi-

layer learning, multiscale and multilevel feature extracting, and 

outperforming traditional methods with advanced analysis (Yuan 

et al., 2020). CNNs are feed-forward deep neural networks 

comprising a series of convolutional layers between the input and 

output layers (Trinh et al., 2021). The convolutional layers 

include kernels, pooling, and activation units. Each kernel 

consists of a number of weights convolving across the input 

dataset to enhance the network's connectivity and reduce 

computational complexity. Additionally, the pooling layers (e.g., 

max and average pooling) operate the input data dimensions 

reduction toward the next layers. Activation layers (or functions) 

increase the capability of non-linear fitting of CNN models. 

Figure 1 shows the proposed CNN architecture that we designed 

to classify deformation TSs. Initially, the representation of input 

samples is changed to a machine learning-based data preparation, 

one-hot encoding, to avoid poor performance of DL models and 

unexpected results. This encoding changes the natural ordered 

form of categorical data to improve prediction accuracy 

(Brownlee, 2020). 

After the input data preparation, the first convolutional layer, 

Conv_1, uses 138 kernels with 5 sample sizes to filter and process 

input TSs using the ReLU activation function. The second block, 

Conv_2, also includes similar characteristics using 64 kernels. 

Max pooling is separately applied to the outputs of Conv_1 and 

_2 with kernel sizes of 2 to decrease their dimensionality. In the 

fully connected Conv_3 layer, an average pooling is 

implemented to the convolutional layer with a 0.4 dropout rate to 

control the overfitting. In the last layer, a Leaky ReLU activation 

function is applied to the fully connected layer to reduce the 

computation time. Afterward, the classes probabilities are 

estimated by the softmax activation function to assign the most 

probable label to training datasets. In this study, 5000 reference 

samples are divided into training, validation, and testing sets with 

a split ratio of 70% - 10% - 20%. 

The classification performance is assessed by the following 

metrics: 

 

1- Confusion matrix: includes the number of 

correctly classified to the total number of samples 

in each class. 

 

Figure 1. The proposed CNN architecture proposed in this study. 
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2- Precision: the ratio between true positives 𝑇𝑝 and 

the sum of true positives with false positives 𝐹𝑝: 

𝑃 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 (1) 

3- Recall: the ratio of 𝑇𝑝 to the sum between 𝑇𝑝 and 

𝐹𝑛: 

𝑅 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 (2) 

4- F-Score: measures the harmonic mean of 

precision and recall: 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2
𝑅𝑃

𝑅 + 𝑃
 (3) 

 

 

 

4. RESULTS 

The methodology was implemented in Python using tensorflow 

(keras framework) and sklearn libraries. The method was also 

carried out using an Intel Core i7 machine with 32 GB of RAM 

and an Intel UHD Graphics 630 GPU card. 

Figure 2 shows the classified map of the Rules Reservoir by the 

CNN model in five deformation trends. The area includes three 

landslides, where most unstable trends (e.g., Linear, Quadratic, 

and Bilinear) occur. The figure also indicates the capability of the 

CNN model in identifying ground motions over unstable areas. 

Three landslides include the Cortijo de Lorenzo area (A), the El 

Arrecife Landslide (B), and the Rules Viaduct Landslide (C). The 

dominant number of targets (approximately 73%) were classified 

as Stable points. However, several unstable classes were detected 

over three landslides, of which around 26% of targets were 

identified as unstable targets (i.e., Linear, Quadratic, and 

Bilinear) among 4459 points measured in this area. Furthermore, 

56 points with PU errors were classified by the CNN model. 

Moreover, most deformations were found in western regions of 

the study area, located close to a national road and within the El 

Arrecife Landslide, including Linear and Quadratic TSs. A set of 

Linear and Quadratic targets were also detected nearby a 

highway in the east, called the Rules Viaduct Landslide. 

Additionally, several Bilinear deformations occurred in the 

Cortijo de Lorenzo area, where the displacements were less 

significant than in other regions. Moreover, a few unstable targets 

were found in the north of this region, indicating instabilities due 

to the unstable slopes.  

Table 2 summarizes the performance of CNN in the classification 

of test datasets. The overall accuracy was derived 92.30%, 

indicating the proposed model reasonable capability in 

identifying deformation TS. The estimated values in Table 2 also 

show that the classifier performed efficiently for categorizing all 

classes. The most precise classification was reported in the Stable 

class, which was expected due to the uncomplex behavior of this 

trend. Although the precision of the PUE class was 0.95, the 

estimated recall (0.76) and F-Score (0.84) values demonstrated 

that the model was not able to classify this class as accurate as 

other classes. Furthermore, the proposed model was able to 

identify unstable classes with more than 0.85 in all metrics, 

showing an accurate tool to detect ground movements.   

 

 

 

 

Figure 2. Ground deformation TS classified map of the Rules Reservoir, including Cortijo de Lorenzo area (A), the El Arrecife 

Landslide (B), and the Rules Viaduct Landslide (C) in red circles. The pie chart shows the portion of each deformation trend over 

the study area. 
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Class P R F1-Score  

Stable 0.97 0.96 0.97  

Linear 0.89 0.99 0.94  

Quadratic 0.86 0.91 0.88  

Bilinear 0.96 0.97 0.96  

PUE 0.95 0.76 0.84  

   OA 92.30% 

Table 2. The CNN classifier performance. 

 

The confusion matrix of the proposed CNN architecture is shown 

in Figure 3, preparing a deeper look at the model performance. 

The rows and columns present true and predicted samples, 

respectively, whereas 0 to 4 are the predicted classes. Except in 

the PUE class, a few samples were confused (i.e., misclassified) 

with other classes. Approximately 24% of the PUE class was 

confused by other trends, while the confusion rate of the rest of 

the classes was less than 9%. It is worth mentioning that the 

amount of noise highly affects the vertical jumps in PUE, which 

can cause misclassification of this trend. Furthermore, the PUE 

class is categorized as a non-linear trend, similar to Quadratic and 

Bilinear, where most confusions occurred. Among unstable 

classes, the most misclassification rates were founded between 

Quadratic and Linear classes (7.11%), which can be those 

quadratic TSs with lower curvatures. 

 

Figure 3. The confusion matrix of the proposed CNN. The 

predicted numbers stand as Stable:0, Linear:1, Quadratic:2, 

Bilinear:3, and PUE:4. 

 

 

5. CONCLUSION 

In this work, we tailored a supervised CNN model to classify five 

deformation trends over a study area in Granada, Spain. The 

CNN model was selected due to DL ability to handle big data and 

accurate performance. Deformation TSs were provided by the 

PSIG technique from 139 Sentinel-1 images, and 5000 samples 

were labeled among the measured points. The proposed 

architecture was able to classify labeled deformation TS with 

92.30% accuracy and reasonable values of other performance 

metrics for each class. The proposed CNN was also applied over 

a region including three landslides to detect moving TSs 

characterized by unstable trends. Around 1170 unstable points 

were classified as moving targets, where the dominant number 

was found over landslides. Finally, it is worth mentioning that 

DL algorithms can provide valuable tools to conventional InSAR 

techniques for ground motion monitoring. We showed the ability 

of the CNN model in the accurate classification of moving and 

non-moving targets. As a future research direction, the efficiency 

of DL frameworks in big InSAR data can be addressed by 

adopting DL models on large-scale regions and numerous SAR 

images. 
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