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A B S T R A C T

Vertical Federated Learning (VFL, for short) is a category of Federated Learning that is gaining increasing
attention in the context of Artificial Intelligence. According to this paradigm, machine/deep learning models
are trained collaboratively among parties with vertically partitioned data. Typically, in a VFL scenario, the
labels of the samples are kept private from all parties except the aggregating server, that is, the label owner.
However, recent work discovered that by exploiting the gradient information returned by the server to bottom
models, with the knowledge of only a small set of auxiliary labels on a very limited subset of training data
points, an adversary could infer the private labels. These attacks are known as label inference attacks in
VFL. In our work, we propose a novel framework called KD𝑘 (knowledge distillation with 𝑘-anonymity) that
combines knowledge distillation and 𝑘-anonymity to provide a defense mechanism against potential label
inference attacks in a VFL scenario. Through an exhaustive experimental campaign, we demonstrate that by
applying our approach, the performance of the analyzed label inference attacks decreases consistently, even
by more than 60%, maintaining the accuracy of the whole VFL almost unaltered.
1. Introduction

Federated Learning (FL, for short) has emerged in the last years as a
key technology enabling collaborative model training across different
entities (typically, one aggregator server producing the global model
and multiple local clients) without the need to gather data in a cen-
tral location [1,2]. According to the different data partition strategies
adopted, different main categories of FL have been formulated [3]. For
instance, in Horizontal FL (HFL, for short) all parties hold the same
attribute space but different sample space, whereas, Vertical FL (VFL,
hereafter) is based on the collaborations among non-competing entities
with vertically partitioned data that share overlapping data samples
but differ in the feature space (i.e., a mobile phone company and a
TV streaming service provider).

However, even if raw data are not shared due to the calculation
and exchange of features, combining information between features and
the possible presence of a compromised participant may raise privacy
leakage [4–6]. Possible attacks that represent a significant concern in
this context are Label Inference Attacks, because of the high sensitivity of
the labels that may reveal crucial client information. In these types of
attacks, an adversary tries to infer the labels of data points held by other
participants based on the information exchanged during the FL process.
This attack can compromise the privacy and security of sensitive data
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also in healthcare applications, raising concern that medical images and
electronic health records containing sensitive patient information can
be vulnerable [7]. In this scenario, various organizations frequently
work together to improve diagnostic models and treatment methods
that use VFL to collaboratively train machine learning models with-
out the need to share their raw data [8]. In a VFL setup, different
organizations possess distinct features for the same group of patients.
For instance, one hospital might have demographic information, an-
other could have medical imaging data, and a third one might have
genetic information. A defense mechanism is needed to ensure that
no institution can infer sensitive data from the model updates, thus
maintaining patient confidentiality and complying with the privacy
regulations on health data [9]. Another sector that can be impacted
by such kind of threat is finance, where multiple institutions often
collaborate to improve risk assessment models and fraud detection
systems [10]. In this context, VFL enables the joint training of ML
models without exchanging their raw data. For example, one bank
might have a transaction history, another might have credit scores, and
a third could have investment portfolios.

In our work, we start considering the label inference attacks to VFL
described in the recent paper of Fu et al. [11] to provide a defense
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against them. Our application scenario is the classical VFL scenario
n which two typologies of participants, a server and a set of clients,
ollaboratively train an ML holding different feature spaces. In the

following, we will refer to the server (or active participant) which stores
he labels that are kept private from the other clients, and the clients (or
assive participants). The adversary controls some passive participants
nd aims at discovering the private labels. Fu et al. [11] demonstrate

that various types of label inference attacks are highly successful in this
context, achieving strong accuracy results. They specifically find that
the attacker can successfully carry out a label inference attack by lever-
ging (i) the trained local model held by the malicious participant and
ii) the received gradients of the loss function, which contain hidden
nformation about the labels. They describe three possible categories
f label inference attacks. The first attack is a passive attack, in which,
ith the help of some auxiliary labeled data, the malicious participant

an fine-tune his/her trained bottom model to infer the labels in a semi-
upervised manner. The second type is an active attack, in which the
ttacker tries to scale up the learning rate of her/his bottom model

during the training phase to force the top model to rely more on her/his
odel thus boosting the label inference accuracy. The third type is a
irect attack through which the adversary can infer labels by analyzing
he sign of gradients from the server. In any case, the attacker exploits
he feedback received from the loss function estimated on the top
odel, necessary to perform the backpropagation on the local model,

o extract information on the labels.
Our proposal consists of designing a novel framework called KD𝑘

Knowledge Discovery and 𝑘-anonymity) as a defense mechanism rely-
ing on an additional component for the server (or active) participant.
This includes a Knowledge Distillation step and an obfuscation algorithm.
Specifically, Knowledge Distillation (KD, hereafter) [12] is an ML com-
pression technique that transfers knowledge from a larger teacher
model to a smaller student model. The teacher network produces softer
probability distributions instead of hard labels that can better capture
essential features and relationships in the data.

Therefore, in the active participant, we include a teacher network
hose outputs are soft labels. These are then processed by an algorithm
ased on the concept of 𝑘-anonymity [13] to add a further level of
ncertainty. This step groups the 𝑘 labels with the higher probabilities
aking it hard for the attacker to infer the most probable one. Then

he top model of the server can be fed with these new soft and partly
nonymized labels and the VFL tasks can be executed collaboratively.

Our defense strategy is based on the main intuition that, an attacker,
located on one of the clients, can infer labels from server-returned
gradients only if there is a strong correlation between the gradients
and the labels. Some of the existing approaches, such as the active
ttack proposed in [11], exploit more this relationship by leveraging
he learning rate to amplify the strength of this correlation, thereby
nhancing the signal returned by the server. To contrast this situation,
ur approach employs an obfuscation technique designed to weaken the
orrelation between the gradients and the labels. However, to maintain
he performance of the final global model, such an obfuscation strategy
ust be carefully designed and informed by the likelihood of different

abels being associated with each other. To achieve this objective, we
tilize knowledge distillation, ensuring that the blurring strategy is
ffective in protecting label information while also maintaining the
ccuracy of the global model.

In summary, our framework represents an essential advancement
for (i) safeguarding sensitive information that may be revealed or
xploited by performing label inference attacks, (ii) building trust in
ollaborative environments and reassuring participants that their data
ontributions remain confidential and secure, fostering cooperation and
iii) enhancing model security by protecting against label inference
ttacks, which can also stepping stone for more severe attacks.

Our experimental campaign demonstrates that using our approach
the accuracy of the three types of label inference attacks decreases
ignificantly. The source code of our defense along with the setting to
2

replicate our experiments are publicly available at https://anonymous.
4open.science/r/KDK_Anonymous-CADB.

In summary, the main contributions of this paper are:

• We design a countermeasure for the different types of label
inference attacks proposed by [11].

• We conduct an experimental campaign to demonstrate that the
accuracy of all the analyzed types of label inference attacks
consistently decreases if our complete approach is applied.

• We provide a comparison with existing defense strategies and
show the higher effectiveness of our solution.

The organization of this paper is outlined as follows. Section 2
describes the main works related to our approach. Section 3 delves into
the details about FL, 𝑘-anonymity, and Knowledge Distillation that are
essential to the understanding of our solution. Section 4 presents the
ypes of label inference attacks against which we provide a defense.
ection 6 discusses the experimental campaign, including the setup and

results of our defense mechanisms. Ultimately, Section 7 concludes the
ork and presents possible future directions.

2. Related work

Recent works have shown that FL is vulnerable to multiple types
of inference attacks, such as membership inference, property inference,
and feature inference [14–16]. The objective of a membership inference
is to discriminate whether a specific record is in a party’s training
dataset or not. Nevertheless, this type of attack has no reason to
exist in VFL as every participant knows all the training sample IDs.
Property inference aims to extract some properties about a party’s
training dataset, which are uncorrelated to the training task. In a
feature inference attack, instead, a party tries to recover the samples
used in another party’s training dataset. For example, Luo et al. propose
a feature inference attack for VFL [17], in which the active party tries
to infer the features owned by the passive party. However, the authors
trongly assume that the active party knows the model parameters of
he passive party, which is difficult to achieve in real-world scenarios.
nlike the works cited above, our proposal deals with a different type
f inference attack in VFL, known as a label inference attack, conducted
y the passive party and aimed at leaking the labels owned by the active
articipant. Since labels often contain highly sensitive information, this
ype of attack deserves more and more attention. Although finding
ossible defense strategies against these attacks is crucial, they are still
n open challenge and only a few efforts have been made.

For example, the articles [18,19] study label inference attacks in
FL, but they specifically focus on split learning scenarios. In particu-

ar, [18] formalizes a threat model for label leakage in two-party split
earning in the context of binary classification and proposes a counter-
easure based on random perturbation techniques that minimize the

mount of label leakage of a worst-case adversary. However, the pro-
osal in [19] presents a passive clustering label inference attack for split
earning, in which the adversary (which can be any client or the server)

retrieves the private labels by collecting the exchanged gradients and
smashed data both during and after the training phase. [20] design
the inversion and replacement attacks to reveal private labels from
batch-level messages in a VFL whose communication is protected by
 Homomorphic Encryption mechanism and a confusional autoencoder

(CoAE) method as a possible countermeasure. The proposal in [21]
deals with the design of a label leakage attack from the forward
embedding in two-party split learning and a corresponding defense that
educes the distance correlation between the cut layer embedding and
rivate labels. Kholod et al. [22] propose a parallelization method to

decrease data transmission, and, consequently, both the learning cost
and privacy leakage risk. A framework called LabelGuard has been
designed in [23] to defend against label inference attacks via a cascade
VFL algorithm through a minimization of the VFL task training loss.

https://anonymous.4open.science/r/KDK_Anonymous-CADB
https://anonymous.4open.science/r/KDK_Anonymous-CADB
https://anonymous.4open.science/r/KDK_Anonymous-CADB
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Table 1
Summary of the acronyms used in the paper.

Symbol Description

DL Deep Learning
FCNN Fully Connected Neural Network
FL Federated Learning
FTL Federated Transfer Learning
GC Gradient Compression
HFL Horizontal Federated Learning
KD Knowledge Distillation
ML Machine Learning
NG Noise Gradient
OA Original Architecture
PPDL Privacy-Preserving Deep Learning
VFL Vertical Federated Learning

In this work, we start from the proposals [11]. The authors of [11]
describe three kinds of label inference attack, i.e., passive label infer-
ence attack, active label inference attack, and direct label inference
attack, for VFL. Adversaries could infer the labels of the active party
from both the received plaintext gradients and obtained plaintext final
model weights. Although these attacks are very effective, they make
a strong assumption on auxiliary labels that have to be held for the
adversary.

3. Background

In this section, we describe some concepts useful to understand
our approach. In particular, we examine the key aspects and different
categories of Federated Learning, we recall the concept of 𝑘-anonymity
and we delve into the analysis of the main features of Knowledge
Distillation.

Table 1 summarizes the acronyms used in this paper.

3.1. Federated learning

As stated in the Introduction, FL is a machine-learning method
designed to train a model in a distributed manner across different
devices holding private local data samples. The actors of this protocol
are  devices (‘‘clients’’, hereafter), running local training and holding
private data; and a central server called ‘‘aggregator’’, that coordinates
the whole FL process aggregating the local updates. Specifically, FL
aims to train a global model 𝐰 by uploading the weights of local models
{𝐰𝑖

|𝑖 ∈ } to a parametric server optimizing a loss function:

min
𝐰

𝑙(𝐰) =
𝑛
∑

𝑖=1

𝑠𝑖

𝐿𝑖(𝐰𝑖) (1)

where 𝐿𝑖(𝐰𝐢) = 1
𝑠𝑖

∑

𝑗∈𝐼𝑖 𝑙𝑗 (𝐰
𝑖, 𝑥𝑖) is the loss function, 𝑠𝑖 is the local

data size of the i-th client, and 𝐼𝑖 identifies the set of data indices with
|𝐼𝑖| = 𝑠𝑖, and 𝑥𝑗 is a data point. The basic FL workflow [24] is shown
in Fig. 1.

FL can be classified into different scenarios according to the data
partition strategies adopted [3].

In this paper, we target Vertical FL (VFL, for short) or feature-
based FL, explicitly. According to this FL scheme, the involved entities
own local datasets with overlapping data samples but different feature
spaces. VFL can be with or without model splitting. In the presence
of model splitting, every client runs a bottom (or local) model without
sharing the entire model with other participants and relying on features
locally available at each party. The final top (or global) model is
reconstructed by a server that combines the locally trained model
portions to compute a final output.
3

Fig. 1. The Federated Learning workflow.

3.2. k-anonymity

The concept of 𝑘-anonymity, first described in [13], represents one
foundational principle in database theory for privacy-preserving data
publishing. It aims to safeguard the anonymity of the individuals’ data
by ensuring that each record in the dataset is indistinguishable from at
least 𝑘− 1 other records. Several procedures can be applied to attributes
to obtain 𝑘-anonymity, such as:

• Suppression, which implies removing or cleansing certain infor-
mation.

• Generalization replaces distinctive values with more general ones
(e.g., substituting exact ages with age ranges).

3.3. Knowledge Distillation

Knowledge Distillation (KD, for short) is an ML model compression
technique, in which the knowledge from a complex model, or ‘‘teacher’’
model, is transferred to a smaller and more efficient model, known as
the ‘‘student’’ model without a significant drop in accuracy [12]. The
general idea was first presented by Bucilua et al. in 2006 [25] and
modeled in its current known form in 2014 by Hinton et al. [26] who
found it easier to train a classifier using the outputs of another classifier
as target values than using actual ground-truth labels. The teacher
network outputs are represented by the so-called soft probabilities that
contain more information about a data point than just the class label
(or hard predictions) and are the input of the student network.

In practice, given an input 𝑥 the teacher network produces a vector
of scores 𝑠𝑡𝑥 = [𝑠𝑡1, 𝑠𝑡2,… , 𝑠𝑡𝐾 ] that are converted into probabilities:

𝑝𝑡𝑘(𝑥) =
𝑒𝑠

𝑡
𝑘

∑

𝑗 𝑒
𝑠𝑡𝑗

(2)

Hinton et al. [26] proposed to modify these probabilities in soft
probabilities as following:

𝑝𝑡𝑘(𝑥) =
𝑒𝑠

𝑡
𝑘∕𝜏

∑

𝑗 𝑒
𝑠𝑡𝑗 ∕𝜏

(3)

where 𝜏 is a hyperparameter. A student network will produce a softened
class probability distribution, �̃�𝑠(𝑥). The loss for the student network
is a linear combination of the cross entropy loss, namely 𝑐 𝑙 and a
knowledge distillation loss 𝐾 𝐷:

 = 𝛼𝑐 𝑙 − (1 − 𝛼)𝐾 𝐷 (4)

where 𝐾 𝐷 = −𝜏2 ∑𝑘 �̃�
𝑡(𝑥) log �̃�𝑠(𝑥) and 𝛼 and 𝜏 are hyperparameters.

Fig. 2 shows the generic architecture of the KD using the teacher–
student model. Thanks to the distillation algorithm the student mimics
the teacher network learning the relationship between different classes
discovered by the teacher model that contains information beyond the
ground truth labels.
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Fig. 2. Generic architecture of knowledge distillation using a teacher–student model.

4. Label inference attacks

In this section, we describe the most common label inference attacks
against VFL, which we focus on when designing our defense strategy.
As typically done in the related literature, we make explicit reference
to the more complex scenario in which VFL is combined with model
splitting [27] (see Section 3).

In this setting, as originally proposed by [11], label inference attacks
are carried out by adversaries, controlling one or more of the bottom
models, which aim to infer the private labels for any samples in the
dataset. Recall that, according to the model splitting paradigm, only
the active party, i.e., the server, has the classification layer, whose
objective is the prediction of the correct label for each datapoint in
input. Therefore, labels are available only to this active party of the FL
system and, therefore, are considered sensitive information. To carry
out a label inference attack, adversaries can mainly exploit two main
aspects of VFL that, according to [11], may generate label leakage,
namely: (i) the trained local model that is under the full control of
the malicious participant; or (ii) the received gradients of the loss that
contain hidden information about labels.

In the following, we describe four main types of label inference
attacks, namely: (i) Passive Label Inference attack; (ii) Active Label
Inference attack; and (iii) Direct Label Inference Attack [11].

4.1. Passive Label Inference Attack

Adversaries can perform this attack by exploiting their locally
owned bottom model. It is referred to as passive because the malicious
participant does not perform any active action during the training or
inference phase, but she/he remains honest but curious. This type of
attack assumes that the adversarial can rely on a few auxiliary labeled
data (in [11] only the 0.08% of the labeled training samples have been
used as auxiliary labels in the experimental campaign). If the attacker
can get this additional knowledge, she/he can infer the labels by fine-
tuning her/his bottom model through a further classification layer in
a semi-supervised manner. This step is referred to as model completion
attack. Once the training is completed, the model can predict a label
for every item of the sample of the adversary.

4.2. Active Label Inference Attack

This attack is classified as active because the malicious participant
performs some actions in the training stage, in particular, she/he tries
to scale up the learning rate during the training phase of her/his bottom
model. In this way, she/he aims to accelerate the gradient descent on
her/his bottom model to submit better features to the server in each
iteration. Consequently, she/he can force the top model to rely more on
her/his bottom model than the other participants. Since increasing the
learning rate does not always result in a more efficient gradient descent,
the authors of [11] perform this attack by designing and executing
a malicious local optimizer. This component adaptively scales up the
4

gradient of each parameter in the adversary’s bottom model to avoid
the oscillation phenomenon around the local minimum point, which is
typical of the use of an overly large learning rate for gradient descent.

Using the malicious local optimizer, the attacker can get a trained
bottom model with more hidden information about labels. In addition,
she/he can perform the model completion step of the passive attack
(see Section 4.1) to fine-tune the bottom model with an additional
classification layer and obtain the final label inference model.

4.3. Direct label inference attack

In this attack, the target architecture is slightly modified by re-
moving the top model and directly using the summed outputs of the
bottom models, sized to match the number of classes in the given
task, in the loss calculation to obtain the desired gradients on the
partial embeddings. To carry out this attack the adversary directly
exploits the gradients she/he receives from the active party to infer
the labels of the training examples. This is based on the analysis of the
signs of the gradients of the losses. The authors of [11] demonstrate
through mathematical proof that this method works for label inference
in VFL without model splitting (see Section 3.1 for details about model
splitting).

Since no gradients are available at the inference time, with this
attack, the malicious participant can only infer the labels of training
examples. Nevertheless, these discovered labels can be used as the
auxiliary data necessary to perform a passive label inference attack. In
this way, the attacker can infer the label of an arbitrary sample.

Still in this context, another attack strategy has been also described
in [28]. Both attacks utilize a similar configuration, omitting the top
model and relying solely on the output of the bottom model, which
corresponds to the number of classes. Differently from [11], the attack
described in [28] seeks to match the gradients provided by the active
party with synthetic gradients generated by the attacker. This pro-
cess aims to replicate the training process and leak label information.
Considering that both methods operate within the same architectural
scenario and exploit the gradients returned from the active party, the
approach in [11] achieves exceptional performance reaching 100%
accuracy across all benchmark datasets, therefore we target it as the
representative attack for gradient-based analysis in this paper.

5. Approach description

Our approach aims to provide a countermeasure for all the types of
label inference attacks described in Section 4.

To better present our defense strategy, as done once again in [11],
we will focus on a basic VFL attack scenario shown in Fig. 3. Here, two
participants holding the same set of samples but with features from
different spaces want to train a model collaboratively through VFL.

The first participant, that is the server, runs both the top 𝑇𝑀 and the
bottom 𝐵𝐴 models, hence it is the label owner 𝐻 𝐿 and holds part of the
vertically partitioned data 𝑋𝐴. For this reason, it is also referred to as
an active participant. Its objective is to enhance the model performance
by combining its features with the ones of other entities coming from
different business domains.

The second party in our example is the adversarial, that is a passive
participant or client who aims at inferring the labels from the training
process and has access only to its bottom model 𝐵𝑃 and its part
vertically partitioned data 𝑋𝑃 . At each training round, the bottom
model outputs 𝐻 = {𝐻𝐴, 𝐻𝑃 } are sent to the server running the top
model 𝑇𝑀 , which, hence, returns the correspondent partial gradients
∇𝐻𝐴 and ∇𝐻𝑃 of the loss 𝑙. These are used to update the clients’ bottom
model parameters 𝑊𝐴 (𝑊𝑃 ). The local models updates ∇𝑊𝐴 and ∇𝑊𝑃
are calculated as follows (𝐶 𝐸 = cross-entropy, 𝑆 𝑀 = softmax):

𝐻 = 𝐶 𝑂 𝑁 𝐶 𝐴𝑇 (𝐻𝐴, 𝐻𝑃 ), 𝑝𝑟𝑒𝑑 𝑠 = 𝑇𝑀 (𝐻) (5)
𝑙 = 𝐶 𝐸(𝑆 𝑀(𝑝𝑟𝑒𝑑 𝑠), 𝑆 𝑀(𝐻 𝐿))
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Fig. 3. Label inference attack scenario against VFL.

∇𝑊𝐴 =
∑ 𝜕 𝑙

𝜕 𝐻𝐴
⋅
𝜕 𝐻𝐴
𝜕 𝐵𝐴

. (6)

∇𝑊𝑃 =
∑ 𝜕 𝑙

𝜕 𝐻𝑃
⋅
𝜕 𝐻𝑃
𝜕 𝐵𝑃

. (7)

Although the private labels 𝐻 𝐿 never leave the first participant’s
storage, the adversary can exploit the received partial gradients and
the trained bottom model to conduct a label inference attack.

In particular, to perform the first attack, or Passive Label Inference
Attack, the adversary relies on a small set of auxiliary labels. If she/he
manages to obtain this set she/he can fine-tune her/his bottom model
through a further classification layer in a semi-supervised manner to
infer the training labels. To conduct the other attacks (i.e., the Active
and the Direct Label Inference Attacks), instead, the malicious partic-
ipant exploits the fact that, even though she/he does not have direct
access to the label, her/his bottom model implicitly holds information
about them, because of the training step. With these last strategies, the
adversary cannot obtain all the private labels, but he/she can, then, run
a subsequent passive attack to improve the attack performance.

At this point, we are ready to present our defense mechanism
against the above-cited types of label inference attacks. In particular,
we include in the active participant architecture an additional com-
ponent comprised of a fine-tuned teacher network that performs a
Knowledge Distillation 𝐾 𝐷 step to output soft labels 𝑆 𝐿 instead of
hard ones 𝐻 𝐿. The output vector of a given data point contains the
probabilities that it belongs to each class represented by the private
labels. The output from this layer is then processed by an algorithm
based on the concept of 𝑘-anonymity (see Section 3.2 for detail) to
add a second level of uncertainty. Through this further step, instead
of selecting a single label for each sample, we select a set of 𝑘 labels in
𝑆 𝐿 with the highest probability. Hence, as shown in Algorithm 1, if the
label is the one associated with the highest confidence it is scaled by 𝜖
(where 𝜖 is a smoothing parameter), otherwise, if the label belongs to
the 𝑘− 1 highest probability labels (excluding the maximum) a 𝜖∕(𝑘− 1)
factor is applied to scale up their final probability value. At this point,
since the correct label for each item is obfuscated in a group of 𝑘 labels,
as we will demonstrate in the experiments, the attacker can no longer
easily infer the most probable one performing any of the above-cited
attacks. The VFL process changes as follows:

𝑆 𝐿 ← 𝐾 𝐷 𝑘(𝐻 𝐿, 𝑘, 𝜖) (8)

𝐾 𝐷 𝑘(𝐻 𝐿, 𝑘, 𝜖) =
⎧

⎪

⎨

⎪

1 − 𝜖 if 𝐿𝑖 ∈ max(𝐾 𝐷(𝐻 𝐿))
𝜖

𝑘−1 if 𝐿𝑖 ∈ 𝑡𝑜𝑝𝑘(𝐾 𝐷(𝐻 𝐿)) (9)
5

⎩

0 otherwise
𝑙𝑘𝑑 𝑘 = 𝐶 𝐸(𝑆 𝑀(𝑝𝑟𝑒𝑑 𝑠), 𝑆 𝑀(𝑆 𝐿)) (10)

∇𝑊𝑃 =
∑ 𝜕 𝑙𝑘𝑑 𝑘

𝜕 𝐻𝑃
⋅
𝜕 𝐻𝑃
𝜕 𝐵𝑃

. (11)

Here 𝐾 𝐷(𝐻 𝐿) contains the soft labels (a probability vector) re-
turned by the knowledge distillation model for each datapoint in the
original training set. The function max(𝐾 𝐷(𝐻 𝐿)) returns the labels
with the highest probability for each data point. Whereas, the function
𝑡𝑜𝑝𝑘(𝐾 𝐷(𝐻 𝐿)) returns the set of the 𝑘− 1 labels having the highest val-
ues following the maximum (i.e., once again, the highest probabilities
of being the correct label of the target datapoint as estimated by the
KD model) for each data point.

Algorithm 1 Soft Label Algorithm.
Require:
1: 𝐻 𝐿: set of Hard Labels
2: 𝐾: set of top-k labels with higher confidence
3: 𝑘: |𝐾| cardinality of 𝐾
4: 𝜖: smoothing parameter
5: 𝑛: number of classes
6: 𝑇 𝑜𝑝𝐾 𝐼 𝑛𝑑 𝑒𝑥𝑒𝑠, 𝑀 𝑎𝑥𝑉 𝑎𝑙 𝑢𝑒 ← 𝑔 𝑒𝑡𝑇 𝑜𝑝𝐾 𝐼 𝑛𝑑 𝑒𝑥𝑒𝑠(𝐻 𝐿,K)
7: 𝑆 𝐿 ← 𝑧𝑒𝑟𝑜𝑠(𝑛)
8: for 𝑖 in 𝑇 𝑜𝑝𝐾 𝐼 𝑛𝑑 𝑒𝑥𝑒𝑠 do
9: if 𝐻 𝐿[𝑖] == 𝑀 𝑎𝑥𝑉 𝑎𝑙 𝑢𝑒 then

10: 𝑆 𝐿[𝑖] ← 1 − 𝜖
11: else
12: 𝑆 𝐿[𝑖] ← 𝜖∕(𝑘 − 1)
13: end if
14: end for

5.1. Defense strategy analysis

This section focuses on explaining the core rationale behind the
proposed defense KD𝑘. Specifically, using soft labels instead of their
one-hot encoded versions, the active client introduces a level of un-
certainty into the base models of the passive participants. Although
this strategy obfuscates the label information from potential attackers,
it may also impact the overall effectiveness of the vertical federated
model in the primary task. To mitigate this issue, Knowledge Distilla-
tion is employed to identify the most related classes, using a teacher
model trained with data from the same feature space. In the field
of Knowledge Distillation [26], this technique has been demonstrated
to maintain or even enhance the performance of the student net-
work. This dual-component approach helps incorporate noise into the
attacker’s base model while minimizing disruption to the federated
model’s ultimate accuracy.

Consider now the passive and active attacks mentioned above. In
both cases, the attack strategy employs a semi-supervised approach to
refine the bottom model by leveraging a limited number of auxiliary
known labels and the pseudo-labels produced by the model itself. Our
defense significantly influences the model’s confidence in delivering
accurate predictions since the bottom model is now trained only on
our anonymized labels, thus leading to the following situation:

𝑀 𝐶 = 𝐵𝑘𝑑 𝑘
𝑃 + 𝐹 𝐶 , 𝑃 𝐿 = 𝑀 𝐶(𝑈 𝐷), (12)

𝑙 = 𝐶 𝐸([𝐾 𝐷 , 𝑈 𝐷], [𝐾 𝐿, 𝑃 𝐿]) (13)

𝑀 𝐶 ←
∑ 𝜕 𝑙

𝜕 𝑀 𝐶 , 𝑀 𝐶(𝑈 𝐷) → 𝐼 𝑓 𝑒𝑟𝑒𝑑 𝐿 (14)

Where 𝑈 𝐷 and 𝑃 𝐿 are respectively the unknown data and their asso-
ciated pseudo-labels, 𝐾 𝐷, and 𝐾 𝐿 are the known auxiliary data with
labels and 𝑀 𝐶 is the bottom model. 𝑀 𝐶 is composed of a feature
extraction part 𝐵𝑘𝑑 𝑘

𝑃 trained with our anonymized labels and, then,
an 𝐹 𝐶 classification layer is added and trained. The attack strategy
relies mainly on the confidence of the obtained bottom model, which
is trained on our controlled and anonymized labels. As a matter of fact,
for the unknown data, the pseudo-labels derived by the bottom model
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are used to fine-tune the 𝑀 𝐶 model in a semi-supervised manner. In
particular, the availability of a small set of known data, for which the
corresponding labels are available, is used to evaluate the cross-entropy
between the labels of the known data and the ones generated by the
bottom model (Eq. (13)). Now, the produced 𝑙 is used to fine-tune the
classification layer of the bottom model to make it capable of predicting
the labels for the unknown data. However, the cross-entropy estimated
in Eq. (13) is now compromised by the fact that 𝑃 𝐿 is anonymized by

D𝑘.
The direct attack, instead, relies on the sign of the gradients on the

artial representation 𝐻𝑝 as follows:

𝑔adv
𝑖 =

𝜕loss(𝑥, 𝑐𝐾 𝐷 𝑘)
𝜕 𝑦adv

𝑖

= −
𝜕 log 𝑒𝑦adv

𝑐 − 𝜕 log
∑

𝑗 𝑒
𝑦adv
𝑗

𝜕 𝑦adv
𝑖

(15)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1 + 𝑒𝑦
adv
𝑖

∑

𝑗 𝑒
𝑦adv
𝑗

, if 𝑖 = 𝑐 ,

𝑒𝑦
adv
𝑖

∑

𝑗 𝑒
𝑦adv
𝑗

, if 𝑖 ≠ 𝑐 .
(16)

Where 𝑔adv
𝑖 is the logit corresponding to the 𝑖th label, while 𝑐𝐾 𝐷 𝑘 is the

soft label mapped with the 𝑖th data point by our defense. The attack
ooks at the sign of the logits and if 𝑔adv

𝑖 < 0 the 𝑖th label is considered
s the ground-truth target. However, since 𝑐𝐾 𝐷 𝑘 is now controlled by
D𝑘 and is computed by using a soft label strategy, the fundamental

premise of the attack is undermined. The significance of the primary
abels is now spread among the secondary ones, thus leading to a
hange in the sign of their logit.

This analysis highlights that the main strength point for our defense
relies on its capability of obfuscating and, hence, anonymizing the
original labels. Therefore, no matter the attack variant, the defense will
always be effective if the attack strategy tries to exploit the indirect
knowledge acquired by the bottom model and reverse-engineer it to
extract the original labels. As a matter of fact, by design, bottom models
will not have access to usable information on the correct mapping
between the classes and the data points, as this information is blurred
in k-anonymous sets of equally probable soft labels.

5.2. Time complexity analysis

The time complexity of our defense is analyzed in this section.
Our defense does not include any variation on the activities of passive
clients; instead, the protection strategy is entirely executed on the
active participant. As explained in the previous section, the main idea
behind our approach is to replace the original labels for each data
point of the training set, with a group of 𝑘 labels. The selected 𝑘
labels preserve the property of being highly plausible, each with a
high probability of representing the specific data point. To meet this
condition, a Knowledge Distillation (KD) step is carried out to transform
the labels from hard to soft ones.

As visible in Algorithm 1, the loop is bounded by the value of 𝑘,
which is constant and typically less than the total number of available
classes; therefore, the main computational cost of our solution concerns
only the KD step. This step typically requires the exploitation of a
eacher network trained to output label probabilities for each data
nput. The training complexity of this network strictly depends on its
rchitecture, which, on the other hand, is defined according to the type
f target training data (e.g., images, textual data, audio, and so forth).
owever, this training step is not part of the federated learning task, as

t can be carried out in advance and offline. Actually, in our solution,
ven a pre-trained teacher network can be successfully employed, since
ts only objective is to map each label to the probability that it belongs
o the input data. To reach this goal, the teacher network has to be
ble to build rich latent representations (embeddings) for the input
ata points, which can be obtained with sufficiently large general-
urpose pre-trained networks (for instance, a pre-trained ResNet-50
6

would be adequate to work with image data input, whereas a pre-
trained BERT model can be successfully employed for textual data).
Once the teacher network is available, our defense can be deployed
and executed during an FL task. The teacher network is only exploited
during the first epoch to obtain the soft labels for each data point.

bserve that, importantly, this step can even be carried out as a pre-
rocessing before the FL task is even started. This would reduce to

practically almost zero the impact of our defense on the time complex-
ity of the FL task. Estimating the inference cost of a teacher network
can be complex, as it heavily depends on its specific design, which is
ypically tailored to the characteristics of the input data. To provide
he reader with a sense of scale, we describe here a concrete example,
llowing for an understanding of the order of magnitude involved.

This gives a more tangible reference point, even though the actual
cost can vary depending on the network’s architecture and data. In
particular, suppose the input data is composed of images. A possible
eacher network can be obtained by relying on a pre-trained ResNet-
0 network [29]. This network is based on convolution layers that

represent the most relevant computations. The complexity for a single
convolution layer in Big  notation is approximately:

(𝐶𝑖𝑛 ⋅ 𝐶𝑜𝑢𝑡 ⋅𝐾 ⋅𝐻 ⋅𝑊 )

where 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 are the input and output channels, respectively,
is the kernel size, 𝐻 and 𝑊 are the dimensions of the input. The

ernel size is a constant, while the number of channels (both input and
utput) is typically much smaller than the input dimensions. Therefore,
e might simplify the overall complexity of a ResNet-50 (i.e, with
0 layers) as bounded by (50 ⋅ 𝐻 ⋅ 𝑊 ), which for a squared image
𝑠 × 𝑠) becomes (𝑠2). This cost is then repeated for each training
nput data point, say 𝑁 times. Hence, the overall cost is bounded by
(𝑁 ⋅ 𝑠2). In many real-life application contexts, the size of images
an be considered negligible compared to the size of the overall input
ataset. For instance, the tiny Imagenet dataset [30] contains 100,000

images, each of size 64 × 64. In this case, it is evident how the size of an
image is almost negligible compared to the overall size of the dataset
(64 × 64 = 4096 ≪ 100, 000). Therefore, in this case, the overall cost can
be considered bounded by a linear cost against the input dataset (𝑁).
As a final remark, we observe that, since to obtain the soft labels, this
cost is only required once at the beginning or right before the FL task,
the cost introduced by our defense can be assumed negligible in most
concrete application scenarios.

6. Experimental results

In this section, we illustrate the experiments carried out to assess the
performance of our defense mechanism. Specifically, in Section 6.1, we
describe the dataset, the evaluation metrics, and the environment used
for our experiments. The remaining sections are devoted to analyzing
the results and the performance of our defense approach against the
ifferent types of analyzed label inference attacks and the comparison

with other defense mechanisms.

6.1. Testbeds description

To evaluate the robustness of our approach against label inference
attacks we adopt some of the datasets used by [11], namely:

• CIFAR-10 dataset [31] consisting of 60,000 32 × 32 color images
divided into 10 classes with 6000 images per class. There are
50,000 in training images and 10,000 in test images.

• CIFAR-100 [31] dataset that is similar to CIFAR-10, but it has 100
classes containing 600 images each with 500 training images and
100 testing images per class.

• CINIC-10 [32], which is a large dataset and an extended alterna-
tive for CIFAR-10 with 270,000 images, (i.e., 4.5 times more that
of CIFAR-10).
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Fig. 4. KD𝑘 main components.

• Yahoo! Answers topic classification dataset [33] is formed by 10
main categories and each class contains 140,000 training samples
and 6000 testing samples.

• Criteo [34] is a real-world dataset related to commerce for pre-
dicting ad click-through rates. In this dataset, composed of only
2 classes, categorical and continuous features are employed.

To assess the effectiveness of our defense approach, we adopt the
following evaluation metrics:

• Top-1 Accuracy, is the conventional accuracy or ratio of correctly
predicted samples to the total number of samples in the dataset.
It measures how often the network has predicted the correct label
with the highest probability.

• Top-5 Accuracy, is a metric that indicates how many times the
correct label appears in the network’s top five predicted classes.
It is useful for large-scale datasets with numerous classes and for
cases in which a degree of flexibility is acceptable and the exact
class cannot be predicted with high confidence [35].

• Top-1 Attack Success Rate (Top-1 ASR) is the percentage of
labels correctly extracted by attacks.

• Top-5 Attack Success Rate (Top-5 ASR) measures how often the
label correctly extracted by attacks appears in the network’s top
five predicted classes.

For our experimental campaign, we refer to an Original Architecture
(OA, hereafter) that represents a VFL scenario without any defense
mechanism as presented by [11]. This architecture, shown in Fig. 3,
employs different types of networks for each of the above-described
datasets. In particular, as visible in Table 2, the top model of the
VFL is implemented through a pre-trained ResNet-18 (i.e., an 18-layer
convolutional neural network pre-trained on general data and fine-
tuned on the active participant data) for the CIFAR-10, CIFAR-100, and
CINIC-10 datasets; a fine-tuned BERT model [36] for Yahoo! Answer
(that includes textual data); and a 3-layer Fully Connected Neural
Network (FCNN-3) to process samples in the Criteo dataset.

Moreover, we implemented our KD𝑘 solution whose components
are illustrated in Fig. 4. Compared to the Original Architecture, KD𝑘
includes a preliminary processing step executed only by the active
participant to anonymize the labels. This step is realized through (i)
a teacher network that shares the same or a scaled-up version of the
7

Table 2
Original model architectures.

Dataset Top model architecture Bottom model architecture

CIFAR-10 FCNN-4 ResNet-18
CIFAR-100 FCNN-4 ResNet-18
CINIC-10 FCNN-4 ResNet-18
Yahoo! Answers FCNN-4 Bert
Criteo FCNN-3 FCNN-3

Table 3
Teacher network architectures for KD𝑘.

Dataset Teacher network architecture

CIFAR-10 ResNet-50 + FCNN-1
CIFAR-100 ResNet-50 + FCNN-1
CINIC-10 ResNet-50 + FCNN-1
Yahoo! Answers Bert + FCNN-1
Criteo FCNN-4

OA architecture (bottom+top model) trained just on their partial data
implementing the Knowledge Distillation and (ii) an algorithm that
obfuscates the 𝑘 labels with higher confidence based on 𝑘-anonymity.
As we will see in the following sections, the 𝑘 value can be used to
solve a trade-off between the performance of the main model and the
effectiveness of our defense against attacks, this makes it a tunable
parameter used to tune the strength of the proposed defense. The
teacher network architectures that have been implemented for each
dataset are visible in Table 3.

All experiments have been performed on a workstation equipped
with a AMD(R) Ryzen(R) 7 CPU 5800x @ 3.80 GHz, 32 GB RAM, and
an NVIDIA RTX 3070Ti GPU card.

6.2. Label inference attacks performance comparison

In this section, we report the performance results of our defense
mechanism against the four types of Label Inference attacks described
in Section 4.

For each analyzed attack, we chose the appropriate configuration of
the two anonymization parameters 𝜖 and 𝑘, where 𝜖 is the smoothing
parameter and 𝑘 is the number of the highest labels considered for each
data point to build our soft label solution.

6.2.1. Passive Label Inference Attack
We carried out the Passive Label Inference Attack with a 0.08% of

auxiliary labeled data (as proposed in [11]) and we tested it against
our KD𝑘 framework with the two anonymization parameters 𝜖 and 𝑘
set for each dataset as are reported in Table 4. This table reports also
the accuracy results of the attack against the original model proposed
by [11] and against our defense mechanism. These values show that
the performance of the attack against KD𝑘 is drastically reduced and,
in most cases, halved compared to the performance against the original
model of [11]. It is worth observing that, in the results obtained on
the Yahoo!Answer dataset we can see a smaller reduction in the attack
performance, which is caused by the fact that the bottom model is an
already pre-trained Bert model. The knowledge included in the Bert
model is already enough to obtain a basic classification of the text
(i.e., information on the labels), even if the attacker does not infer
additional information from the top model. Therefore the performance
of the attack does not decrease as much as in the other cases.

6.2.2. Active Label Inference Attack
To perform the Active Label Inference Attack, we executed the ma-

licious local optimizer in the training stage of our KD𝑘 model and then
we performed the completion step of the passive inference attack to
get the final label inference model as done in [11]. The configurations
of the two anonymization parameters 𝜖 and 𝑘 chosen for each dataset
are reported in Table 5. Similarly to the previous experiment, when we
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Table 4
Passive Label Inference Attack performance against OA and KD𝑘.

Attack success rate (ASR)

Dataset Type of ASR 𝜖 𝑘 OA KD𝑘

Training set Test set Training set Test set

CIFAR-10 Top-1 0.45 3 80.6% 61.7% 43.9% 35.8%
CIFAR-100 Top-1 0.50 3 31.3% 18.0% 15.9% 10.5%
CIFAR-100 Top-5 0.50 3 62.2% 41.0% 40.3% 29.7%
CINIC-10 Top-1 0.45 3 65.2% 49.0% 32.0% 26.0%
Yahoo! Answers Top-1 0.35 3 63.3% 63.7% 47.5% 47.4%
Criteo Top-1 0.40 2 71.2% 71.9% 50.6% 50.3%
Table 5
Active Label Inference Attack performance against OA and KD𝑘.

Attack success rate (ASR)

Dataset Type of ASR 𝜖 𝑘 OA KD𝑘

Training set Test set Training set Test set

CIFAR-10 Top-1 0.50 3 84.8% 63.4% 40.5% 35.1%
CIFAR-100 Top-1 0.60 3 39.3% 21.4% 17.6% 12.2%
CIFAR-100 Top-5 0.60 3 72% 47.4% 43.3% 32.7%
CINIC-10 Top-1 0.50 3 73.5% 50.5% 34.5% 29.3%
Yahoo! Answers Top-1 0.40 3 64.2% 64.1% 52.2% 52.1%
Criteo Top-1 0.40 2 71.2% 71.9% 50.0% 50.0%
Table 6
Active Label Inference Attack performance with different levels of strength against KD𝑘.

Attack success rate (ASR)

Datasets Malicious lr 𝜖 𝑘 OA KD𝑘

Training set Test set Training set Test set

CIFAR10
0.05 0.50 3 84.8% 63.4% 40.5% 35.1%
0.01 0.60 3 92.4% 69.6% 40.67% 35.1%
0.005 0.60 3 94.3% 70.9% 41.3% 36.8%

CIFAR100 (Top-5)

0.05 0.60 3 39.3%
(72%)

21.4%
(47.4%)

17.6%
(43.3%)

12.2%
(32.7%)

0.01 0.70 5 68.1%
(92.9%)

28.4%
(55.4%)

31.5%
(67.5%)

17.3%
(41.7%)

0.005 0.70 5 72.8%
(95.5%)

28.4%
(56.7%)

35.3%
(71.9%)

20.0%
(47.1%)

CINIC10
0.05 0.50 3 65.2% 49.0% 32.0% 26.0%
0.01 0.60 3 81.5% 56.6% 42.8% 37.4%
0.005 0.60 3 82.9% 58.3% 44.4% 37.9%
t
s
t
b
c

performed an active label inference attack against our KD𝑘 framework
the ASR consistently decreased compared to the ASR of the attacked
OA. Observe that, the attack strategy of increasing the learning rate on
the controlled client to promote more informative feedback from the
server does not result in an advantage, because thanks to our defense
the received signal is heavily obfuscated. Also in this case, the results
from the Yahoo! Answer dataset present a smaller reduction in the
attack performance, which is, once again, caused by the fact that the
bottom model is an already pre-trained Bert model.

To further assess the capability of our approach against an active
attacker we performed additional experiments that test our defense
against different levels of ‘‘aggressiveness’’ compared to the baseline
presented in [11]. In particular, we try to make the entire system rely
radually more on the attacker’s model changing its local learning rate.

As we can see from Table 6, the attack without any countermeasure
erforms significantly better but still, against our approach, its effect is
itigated and the attack accuracy is almost reduced to half even in the
ost complex scenarios.

6.2.3. Direct Label Inference Attack
We carried out the Direct Label Inference Attack described in [11]

nd we tested it against our KD𝑘 framework with the two anonymiza-
ion parameters 𝜖 and 𝑘 set for each dataset as are reported in Table 7.

In this table, we report the ASR results of the Direct Label Inference
ttack against OA and our KD𝑘 framework. Since no gradients are
8

Table 7
Direct Label Inference Attack performance against OA and KD𝑘.

Attack success rate (ASR)

Dataset Type of ASR 𝜖 𝑘 OA KD𝑘

Training set

CIFAR-10 Top-1 0.45 3 100% 38.5%
CIFAR-100a Top-1 0.5 3 100% 32.6%
CINIC-10 Top-1 0.45 3 100% 38.3%
Yahoo! Answers Top-1 0.35 3 100% 39.6%
Criteo Top-1 0.4 2 100% 80%

a In this case, we do not consider the Top-5 accuracy because the Top-1 is already
100%.

available at the inference time, this attack can be conducted only at the
raining step hence we report the ASR values referred to the training
et. As we can observe, in general, our defense mechanism can reduce
he ASR of the attack by more than 60% except for the Criteo dataset
ecause the number of classes is equal to 2 and therefore a random
hoice of the target label would lead to an ASR result higher than 0.5.

6.3. Models performance comparison

The main idea behind our approach, as presented in Section 5, is
to obfuscate the information of the real label to add uncertainty in
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Table 8
Performance on KD𝑘 compared to OA for the used datasets.

Model accuracy

Dataset Accuracy OA KD𝑘

CIFAR-10 Top-1 81% 79%
CIFAR-100 Top-1 49.1% 49.4%
CIFAR-100 Top-5 78.5% 79.9%
CINIC-10 Top-1 66.7% 64.3%
Yahoo! Answers Top-1 71.1% 67.5%
Criteo Top-1 71.3% 69.9%

the bottom model of the attacker to inhibit the effectiveness of the
attacks presented in Section 4. Inevitably, this approach will affect
he performance of the model on the original task, though we try
o minimize it by obfuscating the real information in a set of highly
robable alternatives (and, therefore, possibly avoiding heavily impact-
ng the performance of the top model). The results in the previous
ection have been obtained by setting the anonymization parameters to
uarantee the preservation of the original global model performance.
he accuracy performance of our KD𝑘 model compared to OA (the
riginal architecture proposed in [11]), is shown in Table 8 for each

analyzed dataset. As we can see the performance of the original model
is mostly preserved with small drops of 4% at maximum. Observe that
for the CIFAR-100 dataset, the accuracy result is even higher, because
of the effect of KD. Indeed, for large datasets, our model benefits from
the generalization capabilities of the teacher network [37,38]. As said
ur approach can impact the model accuracy according to the strength

level of the parameters 𝑘 and 𝜖. In the following Section 6.4, we
present a detailed analysis combining parameters with different levels
of strength and recording the model accuracy in model and the attack
success rate.

6.4. Performance with different values of the anonymization parameters

In this experiment, we analyze how both the ASR and the per-
formance of the model (in terms of accuracy) change in relation to
igher values of the anonymization parameters 𝜖 and 𝑘. For this study,
e considered only three datasets, namely CIFAR-10, CIFAR-100, and
INIC-10 because they have at least 10. Criteo has not been considered
ince it is a dataset with binary labels making it impossible to test our
olution with 𝑘 higher than 2. Yahoo instead is omitted since it relies

on a pre-trained Bert model and, as we already stated in Section 6.2.1,
its accuracy is intrinsically guaranteed by the performance of such
underlying model, hence it cannot decrease lower than the values
presented in Table 4 with any parameter combination.

That said, we studied the performance for different values of 𝑘
i.e., 𝑘 = 3, 𝑘 = 5, and 𝑘 = 10). As typically done in the literature [11,

20], for CIFAR-100 we consider only the Top-5 accuracy that provides
 more nuanced evaluation because of the large number of classes.

As visible in Fig. 5, using higher 𝜖 values results in balancing the
probabilities of the classes, and this affects the overall performance
of both the attack and the KD𝑘 model. Instead, using different 𝑘
values does not affect our defense mechanism. Interestingly, setting
𝑘 = 10 and using a dataset composed of 10 classes make the defense
ineffective. This result confirms our intuition behind the logic that
makes our proposal work. Our approach is effective because it relies on
the uncertainty instilled in the bottom models obtained by anonymizing
the real label between 𝑘 additional and related ones (as indicated by
our knowledge distillation component). In the case of 𝑘 = 10, we set all
the secondary labels to the same probability. This breaks the main logic
behind our approach. Setting all the secondary labels to the same value
produces similar (with the addition of an offset) loss values compared
to the scenario using hard labels, directly. In this case, the offset added
to the cross-entropy loss is not sufficient to properly obfuscate the
labels, thus resulting in a small decrease in the accuracy of the attack
9

Fig. 5. Analysis of the performance of the attack and the performance of KD𝑘 for
ifferent 𝜖 and 𝑘 values.

in the case of the CINI10 dataset or can even be ineffective in the case
f CIFAR-10. To be effective with 𝑘 = 10, our approach must push the 𝜖

value to extreme values. This setting is effective against the attack but
also prevents the model from training using the probability distribution
balanced across all the labels, thus resulting in an accuracy close to
random guessing.

6.5. Comparison with other defense mechanisms

In the proposal of [11] several defensive strategies are applied
to the gradients to prevent information leakage from the server and
try to mitigate the different label inference attacks. In this section
we compare our defense mechanisms with the following approaches
n [11]:

• Noisy Gradients (NG). To perform this defense in VFL, the server
adds a Laplacian noise to gradients before sending them to passive
participants. The metric we analyze to compare this approach
with our KD𝑘 is the noise scale, which represents several scales
of the used Laplacian noise.

• Gradient Compression (GC). This strategy used for communi-
cation efficiency and privacy protection consists of sharing fewer
gradients with the largest absolute values. The metric we consider
to compare this approach with our KD𝑘 is the compression rate,
which is the ratio between the uncompressed size and compressed
size of the gradient values.

• Privacy-Preserving Deep Learning (PPDL). In each iteration,
the server (i) randomly selects one gradient value and adds noise
to this gradient; (ii) sets to zero the gradient values smaller than a
threshold value 𝜏; (iii) repeats the first two steps until 𝛩𝑢 fraction
of gradient values are collected. Both 𝜏 and 𝛩𝑢 are hyperparam-
eters to balance the trade-off between model performance and
defense performance. We evaluate the performance of this type
of defense by analyzing different settings of the hyperparameter
𝛩𝑢.

• DiscreteSGD a customized version of signSGD [39] thought for
VFL. The defense mechanism proceeds as follows. (i) In the
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Fig. 6. Comparison with other Defense Mechanisms against passive and active label inference attacks.
Table 9
Comparison with other Defense Mechanisms against direct label inference attacks using CIFAR datasets.

CIFAR-10 CIFAR-100

Noisy
gradients

Noise scale Model accuracy Attack accuracy Model accuracy Attack accuracy

1e−4 81.4% 80.6% 82.4% 12.2%
1e−3 81.1% 49.1% 83.1% 2.0%
1e−2 71.9% 24.5% 5.1% 2.0%
1e−1 10.0% 12.7% 5.0% 0.6%

Gradient
compression

Compression rate Model accuracy Attack accuracy Model accuracy Attack accuracy

75% 80.4% 99.9% 82.4% 100%
50% 80.5% 99.3% 83.1% 100%
25% 78.4% 92.4% 82.4% 99.9%
10% 10.0% 0.1% 73.8% 99.9%

Privacy-
preserving DL

𝛩𝑢 Model accuracy Attack accuracy Model accuracy Attack accuracy

0.75 79.8% 39.0% 81.9% 4.6%
0.50 80.5% 38.9% 81.7% 4.5%
0.25 19.9% 0.1% 5.2% 1.1%
0.10 10.0% 0.1% 5.0% 0.9%

Discrete
SGD

N Model accuracy Attack accuracy Model accuracy Attack accuracy

24 81.0% 96.7% 11.2% 99.9%
18 80.8% 94.3% 8.8% 99.9%
12 78.7% 94.7% 7.1% 99.9%
6 74.3% 91.5% 7.3% 99.7%

KD𝑘

k 𝜖 Model accuracy Attack accuracy Model accuracy Attack accuracy

3 0.45 79.0% 38.5% 80.6% 32.6%
5 0.70 71.1% 23.0% 80.5% 19.2%
5 0.75 66.7% 21.7% 79.7% 19.1%
5 0.85 37.5% 14.2% 76.7% 18.8%
i

l
m

first epoch, the server observes the distribution of the shared
gradients. Following the three-sigma rule [40], the server sets
an interval as [𝜇 − 2𝜎 , 𝜇 + 2𝜎] (where 𝜇 is the mean and 𝜎 is
the standard deviation). The gradients outside of the interval are
regarded as outliers and not considered. (ii) The server slices
the interval into 𝑁 sub-intervals. (iii) Before transmitting the
gradients to all the participants, the server first rounds each
gradient value to the nearest endpoint of the sub-intervals. The
hyperparameter 𝑁 controls how much magnitude information of
the shared gradients is preserved.
10
We evaluate the four defense approaches introduced above and we
compare them with our KD𝑘 approach.

For this experiment, we performed both passive and active label
nference attacks on three datasets: CIFAR-10, CIFAR-100, and CINIC-

10. Observe that, once again, as typically done in the related literature,
for CIFAR-100 we considered only Top-5 accuracy to cope with the
arge number of classes. As for the setting of the different defense
echanisms, we considered the following parameters: Laplacian noise

level ∈ {10−1, 10−2, 10−3, 10−4}, gradient compression percentage ∈
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Table 10
Comparison with other Defense Mechanisms against direct label inference attacks using
CINIC-10 dataset.

CINIC-10

Noisy
gradients

Noise scale Model accuracy Attack accuracy

1e−4 70.5% 84.3%
1e−3 69.9% 49.7%
1e−2 55.5% 24.3%
1e−1 10.3% 12.6%

Gradient
compression

Compression rate Model accuracy Attack accuracy

75% 70.9% 99.8%
50% 69.1% 99.3%
25% 54.7% 92.5%
10% 10.0% 0.01%

Privacy-
preserving DL

𝛩𝑢 Model accuracy Attack accuracy

0.75 69.4% 38.9%
0.50 68.4% 38.6%
0.25 20.8% 0.10%
0.10 12.9% 0.04%

Discrete
SGD

N Model accuracy Attack accuracy

24 63.1% 97.9%
18 59.6% 95.6%
12 45.8% 94.3%
6 43.6% 90.3%

KD𝑘

k 𝜖 Model accuracy Attack accuracy

3 0.45 67.7% 38.3%
5 0.70 62.2% 24.1%
5 0.75 56.7% 22.2%
5 0.85 34.5% 15.3%

{75%, 50%, 25%, 10%}, PPDL 𝛩𝑢 fraction ∈ {10%, 25%, 50%, 75%}, Disc-
reteSGD number of intervals 𝑁 ∈ {6, 12, 18, 24}. The parameters of our
pproach instead are set as follows: 𝑘 = 3 and 𝜖 varying between the

values ∈ {0.25, 0.3, 0.45, 0.5, 0.66}.

6.5.1. Passive and active attacks
The results of the defenses against the model completion attack

re reported in Fig. 6. As visible in Figs. 6, for noisy gradients (NG),
e experimented using several scales of Laplacian noise to evaluate

its defense performance against model completion inference attack.
Obviously the greater the value of the noise scale the more successful
re all the mitigation techniques. To be effective this defense must
pply to the gradients an extremely high level of noise that disrupts
he performance of the model on the original task. With lower levels of
oise, it is interesting to see how this approach can even help obtain

higher attack performance.
In the second column of sub-figures in Fig. 6, we evaluate Gradient

ompression (GC) techniques for different compression rates. Also from
hese figures, we can notice that for greater compression rates both the

model and the attack performance decrease. We can see how between
the selected defenses compared to ours, gradient compression is the
best preserving the original accuracy of the model but only slightly
affecting the performance of the attack, especially with lower values
of compression. As for the PPDL mechanism, from the sub-figures in
the third column in Fig. 6 we can notice that for all three analyzed
datasets, the defense can mitigate label inference attacks with the
hyperparameter 𝛩𝑢 set to 0.25 or lower (i.e., the accuracy result is
lower than 40% for 1 − 𝛩𝑢 = 0.75). Even in this case, we can notice
how the defense is effective only with a high level of manipulation
of the gradient resulting in a heavy loss in terms of performance on
the original task for both CIFAR-10 and CINIC-10. As for CIFAR-100,
instead, PPDL represents the best-performing defense we are comparing
with.

Finally, similarly to the previous defenses, we can notice how
DiscreteSGD is not capable of affecting the attack preserving the func-
ionality of the original model. This defense can achieve slightly high

performance only for CIFAR-10.
11
Looking at our solution compared to the others we can see how we
can prevent the attack from decreasing its success rate to almost the
same as a random guess value on CIFAR-10 and CINIC-10 using extreme
values for 𝜖 while preserving most of the accuracy of the main model. It
is also interesting to see how, even with lower defense intensity values,
our approach affects the attack more than the other solutions.

6.5.2. Direct Label Inference Attack
In Tables 9 and 10, we analyze the performance of the three ana-

lyzed defense mechanisms and KD𝑘 against the direct label inference
attack. The employed datasets are, once again, CIFAR-10, CIFAR-100
(see Table 9), and CINIC-10 (see Table 10). As we can see, the behavior
of the defenses we are comparing is similar to the one witnessed
for the passive and active attacks. Indeed, especially for CIFAR-10
and CINIC-10, the defenses are effective only when the alteration is
such that the impact on the main task accuracy is not negligible. The
only countermeasure capable of matching our solution in terms of
preservation of the original model accuracy and detriment of the attack
erformance is the Noisy Gradients defense. Looking at CIFAR-100,

instead, we can see how also the PPDL defense is capable of achieving
good results. Compared to the others, our defense is equally effective
on the three considered datasets. In this case, though, a more powerful
setting is required to counter the more powerful Direct Attack.

In summary, from the above experiments, we can conclude that our
defense strategy is the only one obtaining good performance against all
the different attacks and for all the analyzed datasets. Generally, most
of the other defenses failed to protect against label inference attacks.
Only the PPDL and Noisy Gradients succeeded in some of the considered
attack scenarios but, as visible in our results, they cannot be used as
a general defense because they do not provide adequate protection
against all the possible attack settings.

6.5.3. Comparison between defenses using defense score
In the previous sections, we showed how our defense is capable of

itigating the attacks across all the different settings, even when the
xisting related defenses drastically fail. To further prove the advantage
ntroduced by our defense, we define here a Defense Score (𝐷 𝑆, for

short) metric that gives global information about the quality of our
efense when compared to existing defenses in the different scenarios

considered above. The metric is defined as follows:

𝐷 𝑆 =
(1 − (𝐵 𝑇 𝐴 − 𝑇 𝐴𝐷)) + (𝐵 𝐴𝐴 − 𝐴𝐴𝐷)

2
(17)

The metric is composed of two parts. The first checks the defense’s
capability of preserving the accuracy of the model on the main task
by subtracting to 1 the difference between the baseline task accuracy
(𝐵 𝑇 𝐴) and the task accuracy with the defense (𝑇 𝐴𝐷). The second
contribution, instead, is obtained by computing the difference between
the baseline attack accuracy (𝐵 𝐴𝐴) and the accuracy of the attack with
the defense in place (𝐴𝐴𝐷). The two contributions are then averaged
to obtain a score between 0 and 1 for each experiment. In Table 11,
we display all the obtained scores for different datasets and attack
types. Bold values indicate the highest score, while underlined values
represent the second highest. Our solution consistently outperforms
other defenses across all scenarios, with competitors only achieving
second-best values in certain cases but failing in others. Finally, Fig. 7
presents the aggregate scores for all reviewed defenses, further reinforc-
ing that our proposed approach delivers the best overall performance
in comparison to others.

7. Conclusion

Federated Learning (FL) is a novel paradigm aiming to train ML
models in a privacy-preserving and collaborative way. Differently from

orizontal FL, in Vertical FL (VFL) participants share the same sample
pace, but their local private data differ in the feature space. Moreover,

in standard VFL, the labels of the samples contain sensitive information
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Table 11
Comparison of defenses in different attack scenarios using the Defense Score metric
(Bold values=best performance, Underlined values=second best performance).

CIFAR-10 CIFAR-100 CINIC-10

Active/passive
attack

Direct
attack

Active/passive
attack

Direct
attack

Active/passive
attack

Direct
attack

Noisy
gradients 0.47 0.69 0.38 0.80 0.50 0.71

Gradient
compression 0.52 0.54 0.50 0.51 0.51 0.56

Privacy-
preserving DL 0.49 0.73 0.45 0.81 0.45 0.78

Discrete
SGD 0.52 0.53 0.47 0.15 0.48 0.46

KD𝑘 0.58 0.79 0.55 0.89 0.57 0.82

Fig. 7. Average performance comparison of defense strategies using the Defense Score
metric.

and should be protected from honest-but-curious parties. Hence, only
the aggregating server (or active actor) knows them, whereas they are
kept secret from all the other parties (passive actors). Nevertheless,
recent works have started to describe label leakage issues in this context
proposing strategies for label inference attacks, namely passive, active,
and direct attacks. In this paper, we analyzed such existing attacks
and proposed a novel defense mechanism, called KD𝑘, able to protect
VFL from all the known types of label inference attacks with very
high performance. Our approach modifies the active participant model,
integrating both a Knowledge Distillation teacher network and a 𝑘-
anonymity processing step to obtain a group of 𝑘 most probable soft
labels for each item instead of a single hard label. This adds a level of
uncertainty that prevents the attacker from performing label inference
successfully. We tested the performance of our solution with a thorough
experimental campaign, whose objective was to demonstrate that our
approach can effectively inhibit the attacker from being able to perform
label inference (attack success rate reduced, in some cases, even more
than 60% compared to its performance in the absence of our defense),
still maintaining an almost unaltered accuracy of the federated global
model (less than 2% performance decrease on average). Finally, we
demonstrated the superiority of our proposal compared to the most
recent and state-of-the-art existing defenses, which proved to be either
ineffective against the attack or, in some cases, effective against only
some attack variants, often at the cost of an extremely high, and hence
not acceptable, impact on the federated global model performance.

The proposal and results described in this paper must not be seen as
the conclusion of this research. In fact, in the future, we plan to develop
our proposed KD𝑘 defense method further to provide enhanced protec-
tion for other kinds of FL and attacks, designing a complete protection
framework. For instance, we intend to focus also on Horizontal FL. Due
to the peculiarities of this variant, a thorough examination must be
12
conducted to comprehend how our defense mechanism can be adjusted
accordingly.
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