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Abstract
Introduction  In refining drug safety signals, defining the object of study is crucial. While research has explored the effect 
of different event definitions, drug definition is often overlooked. The US FDA Adverse Event Reporting System (FAERS) 
records drug names as free text, necessitating mapping to active ingredients. Although pre-mapped databases exist, the 
subjectivity and lack of transparency of the mapping process lead to a loss of control over the object of study.
Objective  We implemented the DiAna dictionary, systematically mapping individual free-text instances to their correspond-
ing active ingredients and linking them to the World Health Organization Anatomical Therapeutic Chemical (WHO-ATC) 
classification.
Methods  We retrieved all drug names reported to the FAERS (2004–December 2022). Using existing vocabularies and 
string editing, we automatically mapped free text to ingredients. We manually revised the mapping and linked it to the ATC 
classification.
Results  We retrieved 18,151,842 reports, with 74,143,411 drug entries. We manually checked the first 14,832 terms, up 
to terms occurring over 200 times (96.88% of total drug entries), to 6282 unique active ingredients. Automatic unchecked 
translations extend the standardization to 346,854 terms (98.94%). The DiAna dictionary showed a higher sensitivity com-
pared with RxNorm alone, particularly for specific drugs (e.g., rimegepant, adapalene, drospirenone, umeclidinium). The 
most prominent drug classes in the FAERS were immunomodulating (37.40%) and neurologic drugs (29.19%).
Conclusion  The DiAna dictionary, as a dynamic open-source tool, provides transparency and flexibility, enabling research-
ers to actively shape drug definitions during the mapping phase. This empowerment enhances accuracy, reproducibility, and 
interpretability of results.

1  Introduction

1.1 � The Need for Transparency in Data 
Pre‑Processing

Spontaneous reporting systems (SRSs) are public and 
private services collecting individual case safety reports 
(ICSRs) of suspected adverse drug reactions to timely 
detect potential drug safety issues [1, 2]. These ICSRs 
come from various regional, national, and manufacturer 
databases, each with different languages, rules, and forms 
for data storage. Additionally, SRSs collect ICSRs from 
different kinds of reporters (e.g., manufacturers, health-
care professionals, lawyers, consumers) and use both paper 
and electronic forms. Consequently, ICSRs vary greatly 
in quality and completeness and may include duplicates. 
To facilitate the exchange of ICSRs among different 

Michele Fusaroli and Valentina Giunchi are equally contributed to 
this work.

 *	 Michele Fusaroli 
	 michele.fusaroli2@unibo.it

1	 Unit of Pharmacology, Department of Medical and Surgical 
Sciences, University of Bologna, Bologna, Italy

2	 Department of Biomedical and Clinical Sciences, 
Pharmacovigilance and Clinical Research, International 
Centre for Pesticides and Health Risk Prevention, ASST 
Fatebenefratelli-Sacco, Università degli Studi di Milano, 
Milan, Italy

3	 Pharmacovigilance Unit, Grenoble Alpes University 
Hospital, Grenoble, France

4	 HP2 Laboratory, Inserm U1300, University of Grenoble 
Alpes, Grenoble, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s40264-023-01391-4&domain=pdf
http://orcid.org/0000-0002-0254-2212


272	 M. Fusaroli et al.

Key Points 

An exhaustive definition of the object of study should 
consider drug names-to-ingredient mapping.

DiAna dictionary provides a transparent and modifiable 
mapping, improving reproducibility and interpretability 
of results.

stakeholders, the International Council for Harmoniza-
tion (ICH) has established standards for data storage and 
transmission formats (E2B-R3, last updated 17 January 
2023) [3], providing leads to uniform the collection of 
data and simplify pharmacovigilance activities; however, 
transitioning to the new standard is expected to be chal-
lenging. Moreover, free text fields (with misspellings, out-
of-context information, and the use of different languages 
and lexicons) remain significant challenges. Before con-
ducting any statistical analysis, it is crucial to address this 
heterogeneity by coding the data into standardized lexi-
cons, deduplicating entries, and potentially filling missing 
information.

In a recent meta-epidemiological study, the United 
States Food and Drug Administration (US FDA) Adverse 
Event Reporting System (FAERS) and the World Health 
Organization (WHO) VigiBase emerged as the two SRSs 
most commonly used in disproportionality analysis—a 
quantitative method to identify potential unknown adverse 
drug reactions—in 40% and 20% of the studies, respec-
tively [4]. The wide use of the FAERS is due to its free 
access and its large catchment area mirroring the entire 
world (even if with a large representativity for the US). 
There are two ways the FDA provides free access to the 
FAERS data, with notable differences. First, the FDA 
provides pre-processed data that are available through an 
online public dashboard [5]. The dashboard was developed 
for transparency reasons and to promote higher-quality 
reporting. However, this tool utilizes an undisclosed and 
partial cleaning procedure, lacking duplicate detection and 
providing only partial access to ICSR information. The 
public dashboard is therefore unsuitable for complex anal-
yses. Second, the FDA provides raw quarterly data (both 
in ASCII and XML format) [6] that allows to knowingly 
perform and document the entire pre-processing proce-
dure. This cleaning and normalization procedure requires 
the researchers a conspicuous effort and multiple opera-
tive choices; for example, how to deal with duplicates, 
how to deal with dates that up to 2012 were completed 

automatically when partial, how to deal with unclear 
entries (e.g., in 2019 ‘RN’ was often recorded as a reporter 
type; while this entry may refer to registered nurses, it 
is not documented in the ‘readme’ file of the FAERS). 
For this reason, multiple tools have been made available 
to access already cleaned versions of the FAERS [7, 8], 
where the choices necessary in the pre-processing have 
already been implemented. Nonetheless, these choices are 
seldom driven by objectivity alone and must be considered 
in both the design and interpretation [9], because the same 
database cleaned with different procedures may give dif-
ferent results [10]. The lack of transparency in the pre-pro-
cessing, and subsequently the lack of replicability, heav-
ily impacts the credibility of SRSs, already diminished 
due to their inherent bias (e.g., underreporting, notoriety 
bias, channeling bias [2]), which hinders any interpreta-
tion of disproportionality analysis beyond the generation 
of hypotheses [11].

Over time, researchers have developed various tools for 
accessing, standardizing, and deduplicating data from SRSs. 
These efforts have predominantly focused on the WHO 
VigiBase, which is accessible only via subscription or by 
accredited centers. However, there has been less coopera-
tion and consensus regarding similar initiatives for the most 
commonly used SRS in research, namely the FAERS. Given 
the extreme rawness and heterogeneity of FAERS data, a 
meticulous cleaning process guided by clinical and pharma-
cological reasoning is necessary before conducting any anal-
ysis [12]. Throughout each stage of this process, it is crucial 
to uphold collaboration among multiple professionals and 
maintain an understanding of the data collection features and 
the relevant underlying theory for the phenomenon under 
investigation [13]. Additionally, it is of utmost importance 
for researchers to not only be in control and knowledgeable 
of the pre-processing procedure but also to be transparent 
about their operational choices, allowing for external assess-
ment and interpretation [9].

1.2 � Drug Nomenclature Issues

Each study centers on defining its object of study. In phar-
macovigilance, this involves precisely defining the drugs and 
the adverse events under investigation. Varying definitions 
can lead to different cases being identified and yield differ-
ent results in disproportionality analysis. This discrepancy 
affects the study's sensitivity, specificity, and accuracy; it is 
essential for result interpretation that the definitions adopted 
are transparent. It is therefore not surprising that the first 
aspect addressed in IMI PROTECT, a project aiming to 
establish best practices for analyzing SRSs, focused on the 
effect of adopting different definitions of the adverse events 
being studied [14]. These events are usually automatically 
coded in SRSs using the Medical Dictionary for Regulatory 
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Activities (MedDRA). IMI PROTECT therefore focused 
on the benefits and costs of grouping different terms denot-
ing the same phenomenon (e.g., ‘hepatitis’, ‘liver injury’, 
‘transaminases increased’).

Contrary to the events, coded using MedDRA, the FAERS 
raw data provide drug information only in free text format. 
In fact, drugs can be recorded in the FAERS using their 
brand names, active ingredients, international nonpropri-
etary names (INNs, as defined by the WHO), United States 
adopted names (USANs, defined by the USAN council), 
terms from different languages or abbreviations. Misspell-
ings might easily occur, and the drug name is sometimes 
followed by dose, route, and formulation details. Therefore, 
defining the drug of interest should not only involve group-
ing together various active ingredients but also assessing 
whether the mapping of raw drug names to active ingre-
dients aligns appropriately with the specific inquiry of the 
study.

An exhaustive objective standardization of these entries 
is unattainable; for example, the same brand name may refer 
to different compositions in different countries, or two brand 
names may be just one letter apart, thus being extremely 
susceptible to misspellings. The inconsistencies that derive 
from the multiple operative options and the researcher’s 
personal choices can affect case retrieval and impair repli-
cability among studies. Nonetheless, no comprehensive drug 
name dictionary is routinely used for published FAERS anal-
yses, and no consensus on the various dictionaries produced 
for FAERS has been achieved. Already-published analyses 
using FAERS data are rarely transparent on the cleaning 
choices adopted, lacking documentation on whether and 
how the FAERS was prepared for statistical analyses. The 
FAERS system itself, which does have a formal dictionary 
through which it cleans the data for the public dashboard, 
does not make it publicly available.

To better contextualize this work, we performed a small 
meta-research study to identify the practices of drug names 
standardization in published FAERS analyses. Among the 
17 studies conducted using the FAERS quarterly data and 
published in February 2023 (accessed on PubMed on 15 
March 2023), 10 did not state any drug standardization 
process, six used an automatic translation via dictionaries, 
and one performed a manual translation but did not make it 
publicly available (Table S1 in the electronic supplementary 
material [ESM]). This lack of transparency in drug names-
to-ingredient mapping also affects some free ready-to-use 
pharmacovigilance databases that provide already pre-pro-
cessed FAERS data [7, 8]. Moreover, many ready-to-use 
databases standardize drugs only according to US dictionar-
ies of drug names (e.g., RxNorm, orange book), thus failing 
to identify foreign drug names, misspellings, and other free 
text issues that were described above.

Other tools have been developed to standardize FAERS 
drug names by automatically detecting potential misspell-
ings. While this approach saves time, it can lead to mis-
translations when similar drug names refer to formulations 
with different active ingredients [16]. Another attempt to 
standardize FAERS drug names was made by Wong et al. 
[17], who produced a manually revised translation of the 
LAERS drug names (the FAERS system up to 2012), with 
transparent explanations of their choices. Nonetheless, this 
dictionary is not publicly available and has not been adopted 
for use.

Pre-mapped databases prove highly valuable for signal 
detection, especially when achieving precise control over 
the definition of the study object is challenging due to the 
extensive number of drugs and events under investigation. 
However, the inherent subjectivity and insufficient transpar-
ency in the mapping process impact the level of control over 
defining the study object, which is a critical aspect in signal 
refinement.

1.3 � Aim of the Study

In this work, we follow the efforts of Wong et al. [17] and 
extend their work to consider previously unattended nomen-
clature issues. We propose a collaborative and open-source 
drug name-to-ingredient dictionary for standardizing the 
FAERS updated to December 2022, together with a trans-
parent report of the data cleaning protocol to identify and 
resolve drug nomenclature issues. This pharmacovigilance 
tool enriches DiAna, an R package for Disproportionality 
Analysis, with a pre-mapped dataset for signal detection. 
Unlike conventional pre-mapped datasets, the DiAna dic-
tionary, providing access to drug mapping and linked to the 
ATC, empowers researchers with increased control over the 
definition of the object of study, a crucial element in signal 
refinement. The DiAna dictionary can thus enhance repli-
cability and accuracy of disproportionality analyses, and a 
more appropriate interpretation of their results.

2 � Methods

2.1 � The US FDA Adverse Event Reporting System 
(FAERS) Database

We downloaded FAERS Quarterly Data (trimestral) Extract 
Files [6] in ASCII format from 04Q1 to 22Q4. These files are 
composed of five tables linked through a primary key (‘pri-
maryid’) identifying a specific version of a report: DEMO 
(demographic and administrative information), DRUG 
(information on reported medications), REAC (adverse 
events), OUTC (outcomes), and RPSR (report sources).
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DRUG is also linked through ‘primaryid’ and a secondary 
key (‘drug_seq’), identifying a specific medication within 
a report, to another two tables: THER (start dates and end 
dates for the reported medications) and INDI (indications 
for using the reported medications).

2.2 � Automatic Setup of the Dictionary

We combined all DRUG quarters into one database. We 
focused on three columns used to identify the medicinal 
product:

•	 Drugname, recording the name of the medicinal product.
•	 Prod_ai, recording the product's active ingredients, when 

available.
•	 Val_vbm, recording whether the source of drug name 

was a validated trade name (value = 1) or a verbatim 
name (value = 2).

Since our aim was the translation to active ingredients, we 
did not consider the column ‘val_vbm’. We instead retrieved 
all the unique terms from the other two columns (i.e., Prod_
ai and Drugname), lowered upper cases, and removed multi-
ple spaces, leading and trailing spaces and punctuation, and 
spaces between parentheses. We merged these pre-formatted 
unique terms with brand names and ingredients recorded 
in the RxNorm (https://​www.​nlm.​nih.​gov/​resea​rch/​umls/​
rxnorm/) and WHO-ATC substances [18] to create a starting 
dictionary with automatic translations of medications sold 
in the US market to their active ingredients. The merging 
process was also repeated after several rounds of text edit-
ing, during which we removed leading or trailing spaces and 
specific terms or symbols such as chirality indicators (e.g., 
‘+’, ‘−’, ‘d’, ‘s’) and text between brackets or caret symbols 
(see Fig. 1).

2.3 � Manual Revision

We manually revised all the automatic translations start-
ing with the most frequently reported ones up to the terms 
recorded in a minimum of 200 reports (and beyond, ongo-
ing). After an initial pilot study, seven operators indepen-
dently revised translations, requiring a consensus with the 
two leading authors in cases of doubt or difficult translations. 
The operators consisted of the two leading authors, MF and 
VG, along with an interdisciplinary group of trained opera-
tors experienced in pharmacovigilance, including VB, SP, 
CB, MB, and LP.

When automatic translation failed to translate drug 
names, we attempted to code them to active ingredients 
that were already part of the initial set of active ingredi-
ents. If new ingredients were encountered, we expanded the 
set accordingly. We conducted manual searches for foreign 

drug names using online databases (e.g., DrugBank.com 
[19] and Drugs.com [20]), manufacturer websites, and 
websites storing information from foreign package labels 
(e.g., Kusuri-no-Shiori –drug information sheets– from the 
Japanese regulatory agency, accessed at https://​www.​rad-​ar.​
or.​jp/​siori/​engli​sh/).

2.4 � Nomenclature Issues

Multiple issues were identified in the process of translat-
ing drug names, including brand names and abbreviations) 
to active ingredients (e.g., ‘Zantac’ was translated into 
‘ranitidine’).

•	 A drug may include multiple ingredients. We translated 
the drug to all its ingredients and ordered them alpha-
betically, separating them by a semicolon. For example, 
‘Entresto’ was translated into ‘sacubitril;valsartan’.

•	 The spelling of an active ingredient can be different 
between the USAN and the INN; for example, acetami-
nophen (USAN) = paracetamol (INN); amphetamine 
(USAN) = amfetamine (INN); dimethicone/simethi-
cone (USAN) = simeticone (INN); cysteamine (USAN) 
= mercaptamine (INN). We gave preference to the INN.

•	 The active ingredient may be recorded in languages dif-
ferent from English (e.g., acide folique). We translated 
everything into the English INN.

•	 Typing mistakes can occur (e.g., ‘zoplicone’ instead of 
‘zopiclone’; ‘Diavan®’ instead of ‘Diovan®’). We manu-
ally fixed the mistakes taking into account the INN.

•	 The same drug name may contain different ingredients in 
different countries (e.g., Gaster® contains famotidine in 
the US, omeprazole in Japan, cromoglicic acid in Italy; 
Previscan® contains fluindione in the US, pentoxifylline 
in Italy and Spain; Furix® contains furosemide in the 
US, cefuroxime in India). In these cases, we translated 
the brand name to the active ingredient contained in the 
US packaging, assuming that the US is more represented 
in the FAERS than other countries. When the brand name 
of interest was not sold in the US, we checked the most 
reported country in the FAERS for that specific brand 
name.

•	 The drug name may be missing or underspecified.

o	 When there was no medication, we translated the 
drug name field to ‘no medication’.

o	 When the medication was unspecified, we translated 
the drug name field as ‘unspecified’.

o	 Unspecified drug-class terms were translated to 
the most specific term possible (e.g., ‘water pills’ 
as ‘diuretics, unspecified’, ‘antihypertensives’ as 
‘antihypertensives, unspecified’).

https://www.nlm.nih.gov/research/umls/rxnorm/
https://www.nlm.nih.gov/research/umls/rxnorm/
https://www.rad-ar.or.jp/siori/english/
https://www.rad-ar.or.jp/siori/english/
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•	 We specified when drug (or placebo) consumption 
occurred in a clinical trial (such as when blinding 
was specified, or when the investigational name was 
used, e.g., cc-223 for onatasertib) translating the drug 

name as ‘[active ingredient], trial’, ‘placebo, trial’, or 
‘unspecified, trial’.

•	 Additionally, we decided to standardize terms other than 
drugs to broader categories, since specific details are sel-
dom provided: minerals (e.g., calcium), vitamins (e.g., 

Fig. 1   Translation pipeline method. Flowchart showing the procedure to translate drug names to active ingredients. FAERS US FDA adverse 
event reporting system, ATC​ anatomical therapeutic chemical
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vitamin B5, independent of the route of administration; 
vitamin B12, independent of the form, e.g., cyanocobala-
min, mecobalamin–), devices (e.g., intrauterine contra-
ceptive device), vaccines (e.g., coronavirus disease 2019 
[COVID-19] vaccine), and phytotherapies (e.g., Plantago 
spp).

•	 If a drug name was reported followed by a non-coherent 
active ingredient in square brackets, we assumed that an 
error was made during the compilation by the pharma-
covigilance expert. In this case, we translated the entry 
based on the drug name alone, considering incorrect the 
active ingredient listed in square brackets.

The whole list of standardized names is available in the 
open-source repository https://​osf.​io/​zqu89/, together with 
the pre-mapped dataset.

2.5 � Linkage to the Anatomical Therapeutic 
Chemical (ATC) Classification

Furthermore, we performed data linkage between the 
DiAna dictionary and the hierarchical ATC classification, 
which was downloaded from the WHO Collaborating 
Centre for Drug Statistics and Methodology website [18] 
using the R package ‘rvest’. Since this classification is 
mainly a tool for drug utilization research, the same active 
ingredient may be given more than one ATC code if it is 
available in multiple strengths or routes of administration 
with clearly different therapeutic uses [21]. We linked the 
final list of individual active ingredients from our trans-
lation with the ATC classification, manually integrating 
different choices in the nomenclature (e.g., ‘vitamin B9’ 
[folic acid] to B03BB01), for classes of drugs (e.g., ‘anti-
hypertensives, unspecified’ to C02), and drugs recorded 
in the ATC only in combination (glecaprevir and pibren-
tasvir both to J05AP57). We have here linked each active 
ingredient to all its ATC codes (most of the time it is not 
possible to discriminate between the different ATC codes 
based only on the drug name), but since sometimes it is 
important to count each ingredient only once, we also pro-
posed a unique primary ATC code for each ingredient. To 
this end, we prioritized the first level in the following order 
(‘H’, ‘J’, ‘P’, ‘L’, ‘M’, ‘N’, ‘C’, ‘G’, ‘R’, ‘B’, ‘D’, ‘A’, ‘S’, 
‘V’). Some exceptions did not fit the selected prioritization 
order and we manually corrected them, i.e., vitamin C was 
automatically classified as G and we moved it to A, sex 
hormones having both a genitourinal and an immunomod-
ulating code were classified in H and we moved them to 
G, and sodium and calcium chloride were classified in B 
and we moved them to A. Importantly, linking the DiAna 
dictionary with WHO-ATC is useful to define or visualize 
drugs of interest as grouped in ATC classes, but it may not 

be suitable for identifying specific drug formulations due 
to the often insufficient information provided by SRS data.

3 � Results

We downloaded the FAERS quarterly data up to 22Q4 
and retrieved 18,151,842 ICSRs, for a total of 74,143,411 
drug entries (92.81% allegedly recorded using a validated 
trade name) and 955,778 unique Drugname and Prod_ai 
terms (see Fig. 2). After the initial formatting, we reduced 
them to 793,274 unique entries. The automatic proce-
dure involved the translation of 346,854 terms (98.94% 
of total drug entries) and the manual validation covered 
the first 14,832 terms (96.88%) up to 174 occurrences 
(<0.00015%, ongoing).

A total of 6282 unique ingredients were included in the 
DiAna dictionary, of which 3209 were linked to the ATC 
classification. The most common primary ATC classes in the 
FAERS, after translation with the DiAna dictionary, were 
antineoplastic and immunomodulating (reported in 37.40% 
of FAERS reports), nervous system (29.19%), alimentary 
tract (25.18%), and cardiovascular agents (20.17%) [see 
Fig. 3]. The most frequently reported medicinal products 
were paracetamol (5.45%), acetylsalicylic acid (4.62%), 
adalimumab (3.81%), etanercept (3.35%), levothyroxine 
(3.17%), and ranitidine (3.13%) [see Table 1]. When com-
pared with the untranslated formatted FAERS and with the 
FAERS translated according to RxNorm, the translation 
based on the DiAna dictionary showed clear advantages in 
case retrieval (98.94% of total drug entries against 76.32% 
by RxNorm). Among the most reported medicinal products, 
DiAna allowed retrieving more cases than RxNorm, from a 
ratio of 1.01 for etanercept (638,427 vs. 632,130) to a ratio 
of 8.55 for ranitidine (69,883 vs. 597,604). Due to differ-
ences in nomenclature, some ratios were not calculated (e.g., 
paracetamol is translated to acetaminophen and acetylsali-
cylic acid to aspirin by RxNorm). For some drugs, the added 
value of DiAna translation for case retrieval was extremely 
high; for example, rimegepant (ratio = 277.91; 6392 vs. 23), 
adapalene (122.60; 174,711 vs. 1425), drospirenone (108.49; 
86,356 vs. 796), and umeclidinium (105.66; 45,751 vs. 433; 
not shown in the table). For example, products in RxNorm 
that contain adapalene include adapalene, Differin, and 
Epiduo. However, 96% of the cases of adapalene identified 
in the FAERS using the DiAna dictionary were related to 
the drug name Proactiv MD. The translation also took into 
account information about placebo and experiments, thus 
identifying 50,967 reports as generated within trials (0.28%).

https://osf.io/zqu89/
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4 � Discussion

4.1 � The DiAna Dictionary

The sensitivity of case retrieval and the relevant dispro-
portionality analysis results may vary depending on the 
drug cleaning procedures used in SRSs. Disproportionality 
analysis is mostly performed on public dashboards or other 
analytical tools with no access to underlying data, ready-to-
use databases with partial or non-transparent translation, or 
individually cured undisclosed databases. While these tools 
provide easy access to disproportionality analysis, they also 
pose a risk of inappropriate analyses and interpretation due 

to users’ unawareness of the nature of data [9]. Common 
drug translation procedures involve automatic linkage to 
existing dictionaries (offering only partial translation) and 
automatic algorithms dealing with misspellings (potentially 
introducing errors). While the resulting pre-mapped data-
sets prove highly valuable for signal detection, for effective 
signal refinement it is recommended a higher control over 
the definition of the study object already at the drug name-
to-ingredient mapping stage.

To address these concerns, a dictionary for drug name-
to-ingredient mapping was developed through an automatic 
procedure that was manually checked and extended. This 
dictionary, called the DiAna dictionary, has required a 

Fig. 2   Translation pipeline results. Flowchart showing the proce-
dure to translate drug names to active ingredients. Some examples of 
the processing of entries are provided in the background. The color 

remains constant across the steps, and within each step, the dimen-
sion is proportional to the number of occurrences
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time-consuming effort and is made available open source 
for everyone to use it and propose changes. The use of the 
DiAna dictionary will allow authors to better define studied 
drugs, and the pharmacovigilance community to propose 
more appropriate definitions, contributing to the achieve-
ment of an agreement on the best possible drug names-to-
ingredient mapping.

The DiAna dictionary is already implemented in a pre-
mapped dataset for signal detection accessible through the 
R DiAna package. The innovative feature and added value 
of this pre-mapped dataset, compared with previously pub-
lished attempts of drug name standardizations [7, 16, 17, 
17], is its ability to translate almost 99% of drug names 

reported to the FAERS. The only other dictionary with the 
same translation percentage was developed by Wong et al. 
[17], but it was not publicly available. Additionally, the 
mapping of free text to active ingredient is freely acces-
sible for easy inspection, update, and modification accord-
ing to the specific research question in signal refinement 
activities (see Table 2). A greater control on data cleaning 
and focusing on the definition of the studied drugs, and not 
only of the studied events, will result in improved repli-
cability and accuracy of signals and more conscious and 
appropriate interpretation of results, with relevant benefit 
for the scientific community.

Fig. 3   Distribution of medicinal products in the FAERS. Drugs most 
frequently reported in the FAERS, after translation, according to 
ATC class. Each step is a first level, starting from the most reported 
one. Within each level, a tree map shows how ATC levels 2 and 4 are 
reported in FAERS reports. The three most reported active ingredi-
ents of each 1st level are also shown. FAERS US FDA adverse event 

reporting system, ATC​ anatomical therapeutic chemical, IUD intrau-
terine device, PD-1 programmed death-1, PD-L1 programmed death-
ligand 1, VEGF vascular endothelial growth factor, VEGFR vascular 
endothelial growth factor receptor, TNF tumor necrosis factor, GLP1 
glucagon-like peptide 1, ARBs angiotensin receptor blockers, ACE 
angiotensin-converting enzymes
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4.2 � Better Retrieval for Higher Sensitivity

We were able to translate 98.94% of total drug entries to 
6282 unique active ingredients using the DiAna dictionary, 
compared with 76.32% using only RxNorm. When con-
sidering unique drug entries, we translated 346,854 terms 
over 793,274 (43.72%). We manually checked the first 
14,832 terms (up to 174 occurrences), which were respon-
sible for the translation of 96.88% of total drug entries. We 
believe that this is a good starting point to share our work 
with the pharmacovigilance community and enable more 
participative use and development of the DiAna dictionary. 
In contrast to the previous work by Wong et al. [17], made 

on the FAERS up to 2012, we made our dictionary (up to 
2022) open source. We chose to design the translation so 
that a new column is produced with only active ingredi-
ents while keeping the original verbatim text in a separate 
column for more in-depth analyses. We have also decided 
not to translate to salts as this is rarely taken into account 
in disproportionality analysis and can lead to confusion 
about whether the same ingredient with unspecified salt 
should be considered among cases or non-cases. Instead, 
we have included the linkage to the ATC classification. In 
some cases, underspecified drug names were translated to 
higher ATC classes such as ‘antihypertensives, unspeci-
fied’, as this information can be important for adjusting 

Table 1   Performance of DiAna 
translation.

Drugs most frequently reported in the FAERS, after DiAna translation, relative to simple formatting and 
the merging with RxNorm. The number of occurrences in the three translations is reported together with 
the ratio of occurrences between DiAna and the others. In some cases, differences in the nomenclature 
resulted in empty cells
FAERS US FDA adverse event reporting system

Active substance Formatting (n 
occurrences)

RxNorm (n 
occurrences)

DiAna (n 
occur-
rences)

DiAna/RxNorm DiAna/formatting

Paracetamol 112,939 (–) 1,040,051 (–) 9.21
Acetylsalicylic acid 61,652 (–) 942,051 (–) 15.28
Adalimumab 21,403 699,331 727,730 1.04 34.00
Etanercept 19,332 632,130 638,427 1.01 33.02
Levothyroxine 55,115 288,916 604,688 2.09 10.97
Ranitidine 69,874 69,883 597,604 8.55 8.55
Methotrexate 224,467 230,866 553,011 2.40 2.46
Prednisone 177,872 181,092 552,531 3.05 3.11
Omeprazole 132,069 273,775 539,760 1.97 4.09
Insulin 73,619 (–) 539,088 (–) 7.32
Metformin 279,461 320,567 534,234 1.67 1.91
Atorvastatin 210,528 421,702 529,453 1.26 2.51
Calcium 150,507 (–) 513,772 (–) 3.41
Amlodipine 250,232 347,454 508,501 1.46 2.03
Furosemide 99,789 269,463 472,999 1.76 4.74
Oxycodone 98,512 287,818 462,109 1.61 4.69
Salbutamol 40,326 (–) 435,816 (–) 10.81
Pantoprazole 182,322 288,211 421,710 1.46 2.31
Metoprolol 76,981 104,124 420,331 4.04 5.46
Magnesium 68,548 (–) 414,166 (–) 6.04
Fluticasone 12,549 91,204 397,614 4.36 31.68
Lenalidomide 27,201 370,133 380,151 1.03 13.98
Hydrochlorothiazide 72,069 (–) 380,068 (–) 5.27
Gabapentin 77,949 170,801 372,316 2.18 4.78
Dexamethasone 91,353 131,730 365,042 2.77 4.00
Lisinopril 125,376 150,113 361,929 2.41 2.89
Vitamin B9 100 (–) 356,564 (–) 3,565.64
Simvastatin 101,474 163,417 341,174 2.09 3.36
Vitamin D3 142,967 (–) 327,770 (–) 2.29
Hydrocodone 55,669 56,140 325,467 5.80 5.85
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the analysis and assessing individual cases. The most fre-
quently observed higher classes to which unspecified drug 
names were mapped were vitamins, immunoglobulins, 
and estrogens, appearing in 1.7%, 0.8%, and 0.6% of the 
FAERS reports, respectively. Retrieving information about 
estrogen exposure is crucial due to its significance as a risk 
factor for conditions such as thrombosis. This information, 
not detected by standardization procedures focusing on 
active ingredients alone, is essential for conducting a more 
thorough evaluation of relevant cases.

The DiAna dictionary translates a higher proportion of 
the database, enabling a higher sensitivity in case retrieval, 
and a higher number of identified cases. This results in better 
specificity in the definition of non-cases and higher accuracy 
in signal detection, leading to earlier and clearer signals, as, 
in specific products, the number of retrieved reports signifi-
cantly increased. For example, for rimegepant, the DiAna 
dictionary identifies 278 times more reports than RxNorm 
alone.

In addition to identifying active ingredients, the drug 
name information enabled us to identify reports derived 
from clinical trials (0.28% of total reports), as they recorded 
placebo, blinding, or drug codes. This information can help 
researchers exclude evidence already taken into account in 

other steps of drug safety characterization from the dispro-
portionality analysis.

Finally, the linkage between the DiAna dictionary and 
the ATC classification can help in the retrieval of drug 
classes and visualization. The information on the distribu-
tion of drug classes in the database is particularly useful 
for the design of future disproportionality analyses, as it 
provides insight into the representativeness of the popula-
tion chosen for comparison. Over one-third of the database 
consists of reports with anticancer and immunomodulating 
drugs. The large contribution from these agents is in line 
with recent global reporting patterns observed for serious 
and fatal events [23, 24]. Moreover, the remarkable number 
of reported cases for paracetamol and acetylsalicylic acid 
underscores once more the relationship between drug con-
sumption and adverse event reporting [25]. Recent observa-
tions, specifically in the context of the extensive rollout of 
COVID-19 vaccines, have reignited attention to the possibil-
ity that this uneven distribution of drugs in the SRS should 
be considered during study design since it may lead to mask-
ing/cloaking bias, thus potentially hiding disproportionality 
signals [26].

The DiAna dictionary and its linkage to the ATC clas-
sification are freely available online for everyone to use  

Table 2   Comparison between the standardization steps performed to create DiAna and other published versions of the FAERS.

Steps followed are descripted together with the authors’ declared percentage of drug names standardized. It is also reported whether the diction-
ary is currently updated and whether it is open access
FAERS US FDA adverse event reporting system, INN international nonproprietary name, USAN United States adopted name, LAERS legacy 
adverse event reporting system, Qx quarter x, ATC​ anatomical therapeutic chemical

Standardization procedure Reference 
nomencla-
ture

Percentage 
translated 
(declared)

Updated Open access dictionary

Wong et al. (2015) [17] INN 99% (lim-
ited to 
LAERS)

No (last known version, presented in the 
article, limited to the LAERS and not 
updated after 2012)

No: In the manuscript, it is specified the 
standardized database will be made 
available on request. Nothing is specified 
for the final drug name-to-ingredient 
mapping

Banda et al. (2016) [7] USAN 93% No (last activity on GitHub repository on 
January 2020)

No: The code to obtain the automatic 
mapping is available together with the 
translated database. The final drug 
name-to-ingredient mapping is not 
available.

Khaleel et al. (2022) [8] USAN 97% No (last updated September 2021 on the 
Mendeley Data repository)

No: The code to obtain the automatic 
mapping is available together with the 
translated database. The final drug 
name-to-ingredient mapping is not 
available.

DiAna INN 99% Yes (last update 2023 Q1, 2023 Q2 ongo-
ing)

Yes: The final drug name-to-ingredient 
mapping and the linkage to the ATC 
are available. Also available are the 
database cleaned with its step-by-step 
documentation and an R package for 
performing disproportionality analysis 
and retrieving the drug names coded to 
the ingredient of interest
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(https://​osf.​io/​zqu89/) and can be corrected and expanded by 
experts in the field. Changes can be proposed in the GitHub 
repository (https://​github.​com/​fusar​olimi​chele/​DiAna) 
under the issue DiAna dictionary, and will be periodically 
validated and integrated into the existing dictionary. This 
collaborative effort will improve the quality and reproduc-
ibility of pharmacovigilance research. The dictionary can 
be downloaded in Microsoft Excel (Microsoft Corporation, 
Redmond, WA, USA) and csv formats and can be imported 
into any data management software, such as R, to automati-
cally translate drug names to active ingredients before con-
ducting analyses. Users can also easily modify the transla-
tion of specific terms for their analyses, which is not possible 
with ready-to-use FAERS databases.

4.3 � Higher Control on the Mapping for Signal 
Refinement

The DiAna dictionary has also already been implemented 
in the DiAna open-source R package [22], which, together 
with other functions for disproportionality analysis, allows 
to import a cleaned and documented version of the FAERS 
preserving the possibility of adjusting drug-names transla-
tion. In particular, the drug names coded to a specific active 
ingredient of interest can be retrieved with the function ‘get_
drugnames()’ (see ESM Table S2 for an example), and, if 
deemed necessary, they can be modified.

For example, when investigating systemic reactions to 
ingredients that can be administered topically or systemi-
cally, we may want to exclude the topical formulations from 
the drug definition. One approach is to consider the variable 
storing information about route of administration, but these 
data are often unavailable. For instance, gentamicin might 
be treated differently depending on whether it is adminis-
tered systemically, topically as a cream (e.g., rinderon-vg), 
or in eye/ear drops (e.g., garasone). Similarly, when studying 
aripiprazole, the long-acting injectable form (e.g., Aristada) 
might be handled differently. This flexibility is lost in data-
bases that have already mapped ingredients without preserv-
ing drug name information.

4.4 � Identification of Medicinal Products, Towards 
Higher Standardization in the Collection 
and Management of Drug Information

In the future, a higher standardization of drug information 
could already be achieved in the collection, management, 
and storage of spontaneous reports, following E2B-R3 
recommendations to use the Identification of Medicinal 
Products (IDMP) system developed by the International 
Organization for Standardization (ISO)—a set of codes 
unambiguously identifying not only the active ingredients 
but also the strength and the route of administration of the 

product. Nonetheless, the E2B-R3 still allows for a free text 
field for the name of drugs as reported.

The WHO Vigibase, following E2B-R3 recommenda-
tions, is embedded with a tool for drug name standardiza-
tion, i.e., the WHODrug Dictionary. This dictionary com-
piles extensive drug information, including information 
about herbal medicines, links drug names to the Anatomical 
Therapeutic Chemical (ATC) classification, and automati-
cally deals with misspellings and new entries [15]. Nonethe-
less, this dictionary is only available upon subscription and 
therefore it cannot be used for, and linked to, an open-source 
database aiming for complete transparency. Additionally, 
even if employing a database where drug names are pre-
standardized to active ingredients simplifies the process of 
defining the object of study, as it only requires grouping the 
active ingredients of interest, it makes it challenging to rec-
ognize that different raw drug names translated to the same 
active ingredient might vary in their suitability for inclusion 
in the definition.

4.5 � Limitations, Strengths, and Further Goals

The DiAna dictionary is not designed as a static dictionary 
but as a living one—it will require ongoing efforts to keep 
up with new drugs and terms. We are recursively extend-
ing our translation to reach and maintain a fully checked 
translation of any entry with over 100 co-occurrences. Users 
of the DiAna dictionary should be aware of this limitation 
(which is even more impairing in other pre-mapped data-
sets), especially with less frequent terms that may not be 
included in the dictionary. It is recommended that before any 
signal refinement activity concerning a specific drug, inher-
ent terms are checked in the dictionary and any new transla-
tions are shared to integrate into the DiAna dictionary for 
everyone to benefit in their signal detection and refinement 
activities. The translation will plausibly never be complete, 
since some terms are not easily translated (e.g., ‘chinese 
food’) and many choices are partly subjective. However, 
these choices can be defined in agreement with the entire 
pharmacovigilance community.

The translation of ambiguous terms was also noted as a 
challenge, especially with over-the-counter cold, cough, and 
flu agents (multiple ingredients changing over the years). 
When we were not certain, we used the higher-level term 
(e.g., ‘cough preparations, unspecified’). The lack of exper-
tise in supplements and phytotherapies may have resulted 
in the dictionary being excessively generic (for example, 
referring to Plantago spp instead of individual species, and 
COVID 19 vaccines instead of specific types), and it could 
benefit from refinement by experts for higher specificity and 
coverage of entries provided to other spontaneous report 
databases (CAERS and VAERS are more appropriate to 
investigate the safety profile of these medicinal products). 

https://osf.io/zqu89/
https://github.com/fusarolimichele/DiAna
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For example, mapping herbals using the Medicinal Plant 
Names Service would significantly improve their standardi-
zation (cfr. Medicinal Plant Names Services Portal, Royal 
Botanic Gardens, Kew; https://​mpns.​scien​ce.​kew.​org/​
mpns-​portal/).

Since lack of completeness is a known problem in 
spontaneous reports, and other information is not always 
available, we implemented sharp-cut operative choices to 
retrieve active ingredients based only on the drug name. The 
use of additional columns such as country, year of occur-
rence, dose, indication, and route of administration could 
help discriminate between mistranslations when the same 
drug name may be translated to multiple active ingredients. 
Moreover, information from the drug name column could be 
used to impute information into other columns. For example, 
‘nizoral a-d’ is translated to ketoconazole and refers spe-
cifically to an anti-dandruff shampoo (i.e., the indication, 
formulation, and route of administration could be imputed if 
missing), while ‘hypersal’ refers to a sodium chloride nebu-
lizer solution, and ‘jinarc’ refers to a formulation of tolvap-
tan specifically indicated for autosomal-dominant polycystic 
kidney disease. By incorporating a drug name-to-product 
translation feature, for example, referring to the WHO Drug 
Global or to the IDMP, we could streamline the process of 
the imputation of structured fields using free text, thereby 
enhancing the value of the DiAna dictionary.

Highlighting the importance of transparency in drug 
standardization and drug definition and increasing the sensi-
tivity of case retrieval were our two main goals. Nonetheless, 
it would be interesting to compare accuracy of dispropor-
tionality analysis using different drug name standardization 
strategies.

Linking INN names to ATC codes was a complex task 
due to the existence of combination products (e.g., gle-
caprevir and pibrentasvir), medicinal products with ingre-
dients that do not have an ATC code yet, and experimental 
substances that are missing even the INN. The linkage will 
be annually updated according to changes in the ATC clas-
sification to preserve its utility.

With the recent advent of Natural Language Process-
ing (NLP) techniques, tailored tools have also been imple-
mented to extract information from free text sources such as 
medical records, as exemplified by Apache cTAKES [27]. 
Nonetheless, named entity recognition techniques’ accuracy 
decreases in the lack of context and when having to deal with 
many possible entities. Given that the FAERS drug name 
fields often do not provide more than one word and given 
the high number of active ingredients (i.e., entities), we 
have chosen to employ existing drug name dictionaries and 
manual revision as a more sensitive method for translation. 
Nevertheless, the use of NLP techniques, particularly taking 

into account multiple variables of the FAERS (e.g., route 
of administration, dose, indication, country) is a promising 
endeavor to further improve drug names standardization, 
particularly for instances in which the ambiguity of a drug 
name may be solved taking into account additional fields, 
and to extend the automatic translation to drug names with 
few occurrences. The subscription based UMC WHODrug 
Koda service (https://​www.​who-​umc.​org/​whodr​ug/​whodr​
ug-​portf​olio/​whodr​ug-​koda/), for example, is an AI tool that 
takes into account multiple information and helps drug map-
ping, even if requiring a manual validation.

5 � Conclusion

We offer the DiAna dictionary as an open-source tool for 
the pharmacovigilance community to standardize drug 
names in the FAERS database and as a means to improve 
awareness into the importance of the definition of studied 
drugs. Its public accessibility, transparency, and flexibility 
provide a foundation for ongoing improvement and refine-
ment through input from experts in the field. With periodic 
updates, this living project can drive a common effort toward 
a more transparent and cleaner shared pre-mapped FAERS 
database, leading to more replicable and reliable research in 
signal detection. Moreover, it allows higher control on drug 
definition for signal refinement activities. These function-
alities are already implemented and made available in the 
DiAna R package for disproportionality analysis, through 
which we aim to promote collaboration and develop a com-
mon pharmacovigilance toolbox, sharing not only pre-pro-
cessing procedures and cleaned data but also consolidated 
and innovative analyses functions, pipelines, and knowledge, 
thus promoting drug safety and improving the accuracy, rep-
licability, reliability, and interpretability of pharmacovigi-
lance studies.
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