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ABSTRACT
◥

In the evolving molecular treatment landscape of metastatic
colorectal cancer (mCRC), the identification of druggable altera-
tions is pivotal to achieve the best therapeutic opportunity for each
patient. Because the number of actionable targets is expanding,
there is the need to timely detect their presence or emergence to
guide the choice of different available treatment options. Liquid
biopsy, through the analysis of circulating tumor DNA (ctDNA),
has proven safe and effective as a complementarymethod to address
cancer evolution while overcoming the limitations of tissue biopsy.
Even though data are accumulating regarding the potential for
ctDNA-guided treatments applied to targeted agents, still major
gaps in knowledge exist as for their application to different areas of
the continuum of care. In this review, we recapitulate how ctDNA

information could be exploited to drive different targeted treat-
ment strategies in mCRC patients, by refining molecular selection
before treatment by addressing tumor heterogeneity beyond
tumor tissue biopsy; longitudinally monitoring early-tumor
response and resistance mechanisms to targeted agents, poten-
tially leading to tailored, molecular-driven, therapeutic options;
guiding the molecular triage towards rechallenge strategies with
anti-EGFR agents, suggesting the best time for retreatment; and
providing opportunities for an “enhanced rechallenge” through
additional treatments or combos aimed at overcoming acquired
resistance. Besides, we discuss future perspectives concerning the
potential role of ctDNA to fine-tune investigational strategies
such as immuno-oncology.

Introduction
The idea to detect and monitor tumor evolution in the blood of

cancer patients through liquid biopsy started back in the 20th centu-
ry (1). This opportunity progressively gained increasing relevance in
several cancers, asmany advantages over tissue biopsy became evident,
likeminimal invasiveness and lower costs (2). Several biological cancer
footprints can be isolated from blood, such as circulating tumor DNA
(ctDNA), circulating tumor cells (CTC), etc (2). Interestingly, the
amount of these biomarkers depends on the shedding capacity of
different tumor types (3). Among others, colorectal cancer is one of the

major ctDNA shedders, whereas CTCs are rare and challenging to
collect hampering their integration in clinical practice (4).

Colorectal cancer ranks third among tumors worldwide (5).
The prognosis of patients diagnosed with metastatic colorectal
cancer (mCRC) is poor as only 10% to 15% are alive at 5 years
from diagnosis (5). During the last two decades, several targeted
agents emerged for subsets of mCRC patients, starting from but not
limited to anti-EGFR agents for RAS and BRAF wild-type dis-
ease (6, 7). In precision oncology, the identification of drug targets
and resistance alterations is key to refine patients’ selection towards
the best opportunity, and the dynamic evaluation through ctDNA
could offer the chance to timely pick up the optimal targeted option
within the continuum of care (8, 9). In this review (Fig. 1), we discuss
the role of ctDNA in guiding a timely comprehensive treatment
choice in mCRC patients, focusing on but not limited to EGFR-
targeted treatments.

Refining Molecular Selection Beyond
Tissue Biopsy with ctDNA

Cancers are characterized by the concomitant occurrence of
different gene alterations leading to the phenomenon of spatial and
temporal heterogeneity, that is particularly relevant in mCRC (2, 4).
Tissue biopsy can recapitulate neither one nor the other, since it
allows the molecular retrieval of only a tiny tumor area at a precise
time. On the opposite, ctDNA offers a broader view of molecular
features by allowing the analysis of DNA fragments that are shed
from different tumor cells from all cancer lesions at specific time
frames (2, 4).

Several studies demonstrated that ctDNA can effectively recapitu-
late tumor molecular findings with high concordance with tissue
analysis and shorter turnaround times (8, 10–13). When large cohorts
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of colorectal cancer patients were genotyped both on tumor tissue and
plasma, the overall concordance ranged between 85% and 100%. In
addition, ctDNA could unveil low-allele frequency alterations, poten-
tially leading to better molecular refinement (11, 14).

The mutational status of RAS and BRAFmust be ascertained for the
selection of mCRC patients towards anti-EGFR treatment, avoiding
ineffective treatment in primary resistant mutant tumors with MAPK
pathway activation downstream of EGFR (6, 15–19). Although pivotal
studies were performed on tumor tissue, retrospective data support the
hypothesis that ctDNA characterization might improve selection for
anti-EGFR treatment through higher sensitivity (20).

Beyond RAS and BRAFmutations (accounting for about half of the
resistant cases), different studies retrospectively broadened negative
selection in the effort of optimizing tumor response. So far, studies of
“negative ultraselection” encompassed alterations such as gene muta-
tions of ERBB2, EGFR ectodomain (ECD), FGFR1, PDGFRA, PIK3CA,
PTEN,AKT1 andMAP2K1, amplifications ofKRAS, ERBB2 andMET,
and fusions of ALK, ROS1,NTRK1–3 and RET (21–24). Among these,
some EGFR ECDmutations (S492R, K467, and R451C) were shown to
drive progression to cetuximab but not panitumumab and could
potentially allow a therapeutic switch to the latter agent (25, 26).
Moreover, further mutations occurring in the EGFR ECD (S464L,
G465R,G465E, V441D,V441G)were reported to drive resistance to all
anti-EGFR agents (25, 26). For most of these alterations, given their
relatively low incidence, there is still limited and heterogeneous
evidence to affirm a biologically and clinically relevant negative
predictive effect towards anti-EGFR agents. For instance, the clinical
validity of PIK3CA, PTEN and other gene alterations in the decision
algorithm for anti-EGFR administration still remains to be elucidated

ahead of inclusion into clinical guidelines recommendations, although
data are progressively accumulating for some biomarkers as in the case
of ERBB2 amplification (22, 23, 27–29). Importantly, ctDNA is
regarded as an exquisite tool for the detection of these additional
biomarkers of resistance, by comprehensively capturing heterogeneity
together with a higher sensitivity for minor clones (30). Next-
generation sequencing (NGS) was adopted by our group and others
to show how genomic alterations associated with anti-EGFR primary
resistance can be detected in plasma (8, 31), thus potentially leveraging
ultra-selection through ctDNA. This concept was recently reinforced
by a post hoc analysis of the PARADIGM trial, where ctDNA allowed
negative ultra-selection to distinguish those patients experiencing
greater benefit to chemotherapy and panitumumab (vs. bevacizumab)
regardless of primary tumor sidedness (32). To validate this concept
prospectively, the LIBImAb study (NCT04776655) was designed as a
ctDNA-based, randomized phase III trial in RAS/BRAF wild-type
mCRC patients, that will answer whether the retrieval of circulating
RAS mutations hampers anti-EGFR efficacy and therefore favors
otherwise an anti-VEGF (bevacizumab) combination with chemo-
therapy (FOLFIRI) in first line as compared with FOLFIRI-cetuximab.

Beyond EGFR targeting, ctDNA could be used to identify potential
candidates to anti-HER2 regimens in up to 5% mCRC patients, as
previously demonstrated (33, 34). In an exploratory analysis of the
HERACLES study investigating trastuzumab and lapatinib in mCRC,
we found that ERBB2 copy number by ctDNA is concordant with
tissue in more than 96% of cases, although mild discrepancy was
observed when evaluating similar data from the TRIUMPH trial, likely
depending on the adopted molecular criteria to define HER2 positiv-
ity (35, 36). Consistently with HERACLES, the DESTINY-CRC01 trial

Figure 1.

Applications of ctDNA monitoring for driving targeted treatments in metastatic colorectal cancer. Different scenarios where ctDNA can effectively parallel
therapeutic decision making during mCRC continuum of care. Potential impact in each scenario (1–3) is reported in gray boxes at the bottom and discussed in
corresponding chapters of this review. ctDNA, circulating tumor DNA; EGFR, epidermal growth factor receptor; mCRC, metastatic colorectal cancer; MSS,
microsatellite stable; TMB, tumor mutational burden. (Adapted from an image created with BioRender.com.)
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with the antibody–drug conjugate (ADC) trastuzumab-deruxtecan
confirmed higher overall response rate (ORR) and progression-free
survival (PFS) in patients with greater levels of ERBB2 copy number in
plasma (37). Likewise, ctDNA was applied as a predictive biomarker
for BRAFV600E mutant mCRC patients receiving targeted therapy
(anti-BRAF/EGFR with or without anti-MEK drugs). In this context,
overall tissue–ctDNA accuracy was more than 90% in patients from
the BEACON trial and another similar study (38, 39). Differently
from ERBB2 amplification, the predictive effect of BRAFV600E was not
quantitative but solely qualitative, since improved ORR to targeted
BRAF-regimens as compared with chemotherapy were observed
independently of mutant allele frequency (MAF) in plasma, with
higher MAF worsening prognosis (38, 40). Finally, ctDNA allowed
the retrieval of other actionable or potentially targetable biomarkers
such as KRASG12C, but also NTRK1–3, RET, FGFR2–3, ALK, and
ROS1 fusions (41–43). Relatively to nonfusion variants, fusions are
more likely to be subclonal, and therefore MAF should be addressed
for these alterations (42).

Longitudinal ctDNA Monitoring to
Detect and Trade Off Acquired
Alterations to Targeted Agents
Assessing early tumor response during treatment

Early assessment of tumor response is crucial to guide treatment
decisions towards improved patient outcomes. Overall, several stud-
ies demonstrated that a decrease of ctDNA can predict tumor
response to chemotherapy and anti-EGFR therapy as soon as 2 weeks
after treatment administration in mCRC, usually remarkably antic-
ipating response by conventional imaging and CEA standard
biomarker (31, 44–46). Besides anti-EGFR agents and chemotherapy,
the predictive value of ctDNA dynamic was also confirmed for
other targeted strategies, such as anti-HER2, anti-BRAF/EGFR, and
KRASG12C-directed regimens (36, 40, 47).

Monitoring resistance to targeted agents and ctDNA-driven
switch maintenance

Apart from driving primary resistance when present as clonal, gene
alterations can be acquired (or alternatively, selected from pre-existing
subclones) during the course of targeted treatments, thus precluding
cure despite initial response (8, 48, 49). In fact, EGFR blockade was
shown to favor the occurrence of a selective sweep for some minor
resistant subclones, eventually taking over the initial, vastly sensitive,
clonal population and leading to acquired resistance and tumor
progression (8). In this context, dynamic monitoring by ctDNA
appears well suited to unveil acquired resistance mechanisms.

In 2012, we first reported together with Diaz and colleagues the
emergence of KRAS mutant alleles in the blood of anti-EGFR
treated mCRC patients, showing not only ctDNA–tissue concor-
dance, but also the capacity of anticipating the emergence of
secondary resistance (48, 49). We also reported that ctDNA has
higher sensitivity for acquired RAS mutations as compared with
paired tissue rebiopsy, with detection rates of 57.1% versus 9.5%
after panitumumab (50). Besides, ctDNA tracking demonstrated
that several other alterations emerge in plasma potentially driving
acquired resistance, in genes such as ERBB2, BRAF, PIK3CA, EGFR
ECD, MET, FLT3, and MAP2K1 (8, 11, 26, 27, 51–54). Recently,
paired tissue–ctDNA analysis further broadened knowledge of
many other mutations, copy gains, and fusions that emerge upon
anti-EGFR therapy, both clonally and subclonally, underlining
the complexity of heterogeneity regarding resistance mechanisms

triggered by targeted agents (55). The evolutionary dynamics of
resistance alterations was also reported to be heterogenous, with
RAS being mutated earlier than EGFR (56). A comprehensive
presentation of ctDNA studies regarding resistance alterations to
anti-EGFR agents in mCRC is presented in Table 1. Finally, the
analysis of mutational signatures on tissue and ctDNA recently
emerged as a new class of cancer evolution predictor; in particular,
single base substitution (SBS) 17B was enriched in EGFR Q61
mutant resistant clones and could be considered as a future
resource if technical challenges linked to blood analysis are further
unraveled (57).

Based on this, research has moved forward to leveraging this
knowledge to circumvent anti-EGFR acquired resistance. We might
ask whether modulating anti-EGFR exposure based on ctDNA
monitoring in first line could prevent the acquisition of massive
molecular heterogeneity allowing longer time on treatment and
survival. This is line with the concept of adaptive therapy, encom-
passing those therapeutic strategies aiming at maintaining control of
the tumor burden by allowing a significant population of treatment-
sensitive cells to survive (58). However, no data is available regarding
ctDNA-driven approaches during first-line anti-EGFR treatment, as
the only evidence of a switch-maintenance paradigm from the FIRE-4
trial (continuation of FOLFIRI-cetuximab until disease progression
or switch to a maintenance of fluoropyrimidine-bevacizumab after
induction) have been generated without ctDNA selection and pro-
vided negative results in an unselectedmCRCpopulation (59). In first
line, ctDNA monitoring is congenial for driving ad hocmaintenance
based on current molecular make-up of the tumor according to scena-
rios reported in Fig. 2, and in this direction adaptive/switch mainte-
nance is being investigated in ongoing trials, such as MODUL
(NCT02291289, tissue-based only, ctDNA-unguided adaptive mainte-
nance; ref. 60), Rapid 1 (NCT04786600), LIBImAb (NCT04776655),
and MoLiMoR (NCT04554836; ref. 61). However, potential limita-
tions to this approach come from the results of two recent retro-
spective studies that agreed on the limited actionability of acquired
mutations in first line. Indeed, alterations in theMAPK pathway as we
know them could be less likely to be developed when chemotherapy is
associated with anti-EGFR agents, as in the case of first line treatment
regimens (62, 63). Different from resistance to single-agent anti-EGFR
therapy, in this setting transcriptomic alterations might be the pre-
dominant drive of resistance (62, 63). Therefore, switch maintenance
in first line may be applicable in less cases than previously hypoth-
esized, significantly slowing accrual of ongoing trials.

ctDNA applications have recently expanded to actionable geno-
mic alterations other than EGFR in mCRC, allowing the monitoring
of resistance mechanisms in blood (33, 34). Considering ERBB2
amplification as a representative example, we and others extensively
studied clonal evolution upon anti-HER2 exposure by ctDNA, and
identified several mutations and copy number alterations associ-
ated with resistance (KRAS, NRAS, BRAF, ERBB2, EGFR, PIK3CA,
MET and PTEN alterations), similarly to the previous experience
with anti-EGFR agents (30, 35, 37, 64). Besides, we were able to
measure the molecular contribution of individual metastasis in
blood through ctDNA and post-mortem tissue analysis, supporting
liquid biopsy as an advanced tool to track resistance alterations that
are heterogeneously scattered across different tumor sites rather
than ubiquitously detectable (30). Recently, novel anti-HER2/
HER2 ADCs were also proposed to circumvent alterations of these
genes as a mechanism of resistance to anti-EGFR drugs (65).
Similarly, convergent patterns of genomic evolution in the MAPK
pathway were demonstrated with other targeted therapies, like the
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anti-BRAF/EGFR combinations for BRAFV600EmutantmCRCpatients,
and ctDNA proved again to be the optimal tool for monitoring and
detection (40).

ctDNA triage to guide anti-EGFR rechallenge
Rechallenge with anti-EGFR agents has long been adopted as an

empiric therapeutic option for chemorefractory RASwild-type mCRC
patients after a wash-out time from previous anti-EGFR therapy (66).

Indeed, resistant clones that emerge during EGFR blockade were
shown to decline upon withdrawal of these agents, thereby con-
ferring regained sensitivity to rechallenge strategies (8, 67, 68). In
this regard, ctDNA has proven to be highly apt for the screening of
patients that are candidates to rechallenge (8). This key concept was
first demonstrated in 2015 by our group, showing how individuals
who benefited from multiple anti-EGFR lines exhibited pulsatile
levels of ctDNA RAS mutations, and therefore providing the

Table 1. Published studies of baseline and dynamicmolecularmonitoring by liquid biopsy (ctDNA) to unveilmechanisms of primary and
acquired resistance to anti-EGFR–based regimens in metastatic colorectal cancer.

Study/trial Pts Drugs
Line of
therapy ctDNA analysis

Resistance
mechanisms

List of genes harboring resistance
alterations

Misale et al. Nature 2012
(ref 48)

3 Cetuximab or panitumumab-
based therapy

Any BEAMing Acquired KRAS

Diaz et al. Nature 2012
(ref 49)

24 Panitumumab monotherapy Refractory BEAMing Acquired KRAS

Spindler et al. CCR 2012
(ref 97)

108 Cetuximab and irinotecan 3rd line qPCR Primary KRAS and BRAF

Montagut et al. Nat Med
2012 (ref 53)

10 Cetuximab-based therapy Any qPCR Acquired EGFR ECD

Siravegna et al. Nat Med
2015 (ref 8)

100 Cetuximab or panitumumab-
based therapy

Any ddPCR for RAS
and BRAF
Extended
NGS analysis

Primary and
acquired

KRAS, NRAS, MET, ERBB2, FLT3,
EGFR ECD and MAP2K1

Grasselli et al. Ann Oncol
2017 (ref 93)

146 Cetuximab or panitumumab-
based therapy

Any BEAMing Primary KRAS

Toledo et al. Oncotarget
2017 (ref 51)

23 Cetuximab and FOLFIRI 1st line BEAMing Primary and
acquired

KRAS, NRAS, BRAF and PIK3CA

Pietrantonio et al. CCR
2017 (ref 52)

22 Cetuximab or panitumumab Any ddPCR Acquired KRAS, BRAF, EGFR ECD and MET

Vidal et al. Ann Oncol 2017
(ref 102)

115 Cetuximab or panitumumab-
based therapy

Any BEAMing Primary and
acquired

KRAS and NRAS

Siena et al. AnnOncol 2018
(ref 50)

39 Panitumumab and irinotecan Refractory BEAMing Primary and
acquired

KRAS and NRAS

Montagut et al. JAMA
Oncol 2018 (ref 26)

193 Sym004 (futuximab and
modotuximab)

Refractory NGS and ddPCR Primary and
acquired

KRAS, NRAS, BRAF, EGFR ECD,
ERBB2, MET

Normanno et al. AnnOncol
2018 (ref 20)

92 Cetuximab and FOLFIRI 1st line BEAMing and
ddPCR

Primary KRAS and NRAS

Strickler et al. Cancer
Discov 2018 (ref 11)

24 Cetuximab or panitumumab-
based therapy

Any NGS Acquired KRAS, NRAS, BRAF, EGFR ECD,
MET, MAP2K1

Maurel et al. JCO PO 2019
(ref 98)

178 Cetuximab or panitumumab-
based therapy

1st line qPCR Primary and
acquired

KRAS, NRAS, and BRAF

Peeters et al. CCR 2019
(ref 54)

261 Panitumumab or panitumumab Refractory NGS Primary and
acquired

KRAS, NRAS, BRAF, MAP2K1, EGFR
ECD, PI3KCA

Knebel et al. Cancers 2020
(ref 99)

10 Cetuximab or panitumumab-
based therapy

Any NGS Primary and
acquired

KRAS, NRAS, MAP2K1 and ERBB2

Lim et al. Nature 2021
(ref 100)

93 Cetuximab-based therapy 1st line NGS Primary and
acquired

KRAS, NRAS, HRAS, BRAF,MAP2K1,
ERBB2, PIK3CA, PTEN, MET, and
ERBB3

Yang et al. Front Oncol
2022 (ref 101)

22 Cetuximab-based therapy Any NGS Primary and
acquired

KRAS, NRAS, BRAF, MAP2K1, EGFR
ECD, ERBB2, PIK3CA

Sartore-Bianchi et al. Nat
Med 2022 (ref 27)

52 Panitumumab monotherapy Refractory NGS Primary and
acquired

KRAS, NRAS, BRAF, EGFR ECD,
ERBB2, MAP2K1, PTEN, SMAD4,
PIK3CA, PTEN, MET

Topham et al. JCO 2023
(ref 55)

169 Cetuximab or panitumumab 3rd line NGS Acquired EGFR ECD, KRAS, LRP1B, ZNF217,
MAP2K1, PIK3CG, BRAF, NRAS,
SMO, MET, FLT3, NOTCH4,
ERBB2, FGFR1

Note: Some additional references to those previously cited in the manuscript are reported here (97–102).
Abbreviations: BEAMing, Beads, Emulsion, Amplification, Magnetics digital polymerase chain reaction; ctDNA, circulating tumor DNA; ddPCR, droplet digital
polymerase chain reaction; ECD, ectodomain; EGFR, epidermal growth factor receptor; mCRC, metastatic colorectal cancer; NGS, next generation sequencing; pts,
patients; qPCR, qualitative polymerase chain reaction.
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molecular bases for the efficacy of rechallenge (8). In the clinic, the
CRICKET and other trials then retrospectively revealed that RAS
wild-type ctDNA at the time of rechallenge was a compulsory
condition for response (69–72).

Based on this rationale, we designed the CHRONOS trial, the first
phase II study of panitumumab rechallenge in mCRC guided by
upfront prospective ctDNA mutational status of RAS, BRAF, and
EGFR ECD (27). All patients were known to have RAS and BRAFwild-
type mCRC on tissue analysis, having previously demonstrated sen-
sitivity to an anti-EGFR–based therapy. Anti-EGFR rechallenge was
proposed after a washout period of at least an intervening anti-EGFR–

free line, on condition that RAS, BRAF, and EGFRmutant clones were
undetectable by ctDNA screening. Overall, the clearing of all subclones
at screening was 69% (36/52); time-to-clearance was as early as
4 months in a few patients, whereas in others resistance-conferring
mutations were persistent up to 33 months. The trial included 27
patients showing 30% ORR with 8 of 27 partial responses and 63%
disease control rate (DCR); median PFS and duration of response were
16 and 17 weeks. Altogether, ctDNA-driven anti-EGFR rechallenge
compared favorably with standard third-line treatments and the
historical 8% to 21% ORR of anti-EGFR rechallenge plus chemother-
apy or immunotherapy in unselected patients. Hence, these results are
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Figure 2.

Clinical scenarios for an adaptive/switch maintenance ctDNA-guided approach following first-line induction treatment in metastatic colorectal cancer. ctDNA,
circulating tumor DNA; EGFR, epidermal growth factor receptor. (Adapted from an image created with BioRender.com.)
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thefirst prospective proof that ctDNAgenotyping can effectively direct
anti-EGFR rechallenge in mCRC management (27).

On the same track, other research groups are currently investigating
ctDNA-driven rechallenge (Table 2; refs. 64, 73). The REMARRY
and PURSUIT phase II trials prospectively investigated ctDNA RAS
dynamics in the same setting as CHRONOS; at progression, 50 patients
with ctDNA-negativeRAS clones were rechallengedwith a combination
of cetuximab–irinotecan. ORR was however limited to 14% (7/50),
with 80% DCR (40/50) and 3.6 months PFS (64). The lower-than-
expected ORR in this study may be related to the fact that BRAF and
EGFR mutations were not addressed by ctDNA, differently from
CHRONOS(64). Besides,while themolecular criteria of theCHRONOS
trial did not allow anyminimal residual presence of circulating resistant
clones, in the PURSUIT study ctDNA negativity was defined as a MAF
<0.1, thereby potentially impacting on results (64). Finally, given the
small sample size of these phase II studies, some variability in terms of
confidence interval is expected, and the ORR of the PURSUIT trial is
indeed in the lower range for ctDNA-informed rechallenge (64).

Overall, current data support the application of ctDNA-guided
rechallenge in clinical practice, because this strategy favorably com-
pared with other late line options (27). Further studies could clarify the
limitations of the PURSUIT trial and suggest whether ERK activation
or othermechanisms interfere with the proper inhibition of theMAPK
pathway (64, 73).

“Enhanced rechallenge” through rational combinations to
overcome resistance mechanisms

A relevant question for the optimization of rechallenge is whether
resistance revealed by alterations in the MAPK pathways could be
overcome by adding on top of anti-EGFR drugs another agent targeting
that specific alteration. Indeed, resistant clones frequently display
clinically actionable oncogenic events (8). ctDNA may rapidly identify
these alterations and allow strategies of “enhanced rechallenge” encom-
passing not only EGFR blockade but also the prevention or treatment of
the escaping refractory clones. This approach was recently investigated
by Parseghian and colleagues by adopting a vertical double blockade
with EGFR and MEK inhibitors (73). In this study, rechallenge with
panitumumabmonotherapy or panitumumab-trametinib was provided
according to ctDNA status for RAS, BRAF orMAP2K1mutant clones.
Crossing over to the anti-EGFR/MEK combination was possible for

ctDNA-negative patients in case of progression to monotherapy (73).
Despite preclinical data supporting this approach (74, 75), the study led
to a modest 18% ORR, 64% DCR, and 4.1-month PFS. Besides, the
combination with MEK blockade failed to improve outcomes and did
not overcome resistance when given at the time of crossover (73).

Other studies are further exploring this approach. The C-PRECISE-
01 trial (NCT04495621) employs a ctDNA screening for the detection
of PIK3CAmutations susceptible of drug targeting with a combination
of MEN1611 (PI3K inhibitor) and cetuximab rechallenge, provided
that no RAS and BRAF variants are detected in plasma and the tumor
demonstrated previous sensitivity to anti-EGFR therapies. Also MET
amplification has been associated with acquired anti-EGFR resis-
tance (76), supporting a study of enhanced rechallenge with anti-
MET (tepotinib) and cetuximab in ctDNA MET-driven acquired
resistance (NCT04515394); however, the study was prematurely ter-
minated due to operational challenges identifying suitable partici-
pants, highlighting the difficulties of precision oncology trials focused
on low-prevalence molecular abnormalities. The OrigAMI-1 trial
(NCT05379595) with the bispecific anti-EGFR/MET antibody ami-
vantamab may provide some answers in this setting despite being
molecular unselected forMET alterations, because it entails a cohort of
anti-EGFR pretreated patients receiving amivantamab monotherapy
and it incorporates ctDNA among the study procedures. Finally,
rechallenge may expand beyond that of anti-EGFR agents alone to
EGFR/BRAF dual inhibition, as demonstrated by a pilot case series of
BRAFV600E mutant mCRC patients that gained clinical benefit by
rechallenge after previous progression to cetuximab and encorafenib.
In this situation, a MAF increase for BRAFV600E in ctDNAwithout the
identification of any additional alterations was proposed to drive
effective rechallenge with cetuximab and encorafenib (77).

Whether “enhanced rechallenge” may prove benefitting in the
clinical setting is debatable; differences from preclinical data like the
very low clonality of acquired alterations in patients may indeed be a
relevant explanation for the negative results of Parseghian and
colleagues (73–75). Besides, polyclonal resistance was reported in up
to 21% of patients progressing to anti-EGFR therapy, meaning that
several resistance alterations arose concomitantly upon progres-
sion (55). These discoveries potentially jeopardize the circumvention
of acquired resistance by “enhanced rechallenge”, and further inves-
tigation is needed to provide answers.

Table 2. Published and ongoing studies prospectively investigating ctDNA-driven anti-EGFR rechallenge in metastatic colorectal
cancer patients.

Trial name/NCT Phase Pts Drugs
Molecular ctDNA triage for
inclusion

ORR
(%)

DRC
(%)

PFS
(months)

Published
CHRONOS II 27 Panitumumab KRAS, NRAS, BRAF, and EGFR

ECD wild type
30 63 4.0

PURSUIT II 50 Cetuximab and irinotecan KRAS and NRAS wild type 14 80 3.6
Ongoing

CAPRI 2-GOIM/ NCT05312398 II NA Cetuximab and irinotecan KRAS, NRAS, and BRAF wild type NA NA NA
PARERE/NCT04787341 II NA Panitumumab (randomized vs.

regorafenib)
KRAS, NRAS, and BRAF wild type NA NA NA

CAVE2-GOIM/ NCT05291156 II NA Cetuximab and avelumab KRAS, NRAS, and BRAF wild type NA NA NA
NCT04509635 III NA Cetuximab (vs. chemotherapy) KRAS and NRAS wild type NA NA NA
NCT04775862 II NA Panitumumab or cetuximab-based

rechallenge
KRAS and NRAS wild type NA NA NA

CITRIC/EudraCT 2020–000443–3 II NA Cetixumab and irinotecan (vs.
anti-EGFR free regimens)

KRAS, NRAS, BRAF, and EGFR
ECD wild type

NA NA NA

Abbreviations: ctDNA, circulating tumor DNA; ECD, ectodomain; EGFR, epidermal growth factor receptor; mCRC, metastatic colorectal cancer; pts, patients.
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Future Perspectives: Tumor Mutational
Burden and Microsatellite Status in
Blood

Another forthcoming application of ctDNA is related to immuno-
oncology. Since immune checkpoint inhibitors (ICI) proved dramat-
ically effective in mCRC with microsatellite instability (MSI), several
research efforts are trying to turn immunologically “cold”, ICI-unre-
sponsive, microsatellite stable (MSS) tumors into “hot” ones through
alkylating agent-mediated transformation (78). Indeed, in the ARE-
THUSA trial cytotoxic priming with temozolomide (TMZ) increased
tumor mutational burden (TMB) and blood TMB (bTMB) in a subset
of MGMT methylated MSS mCRC, possibly gaining sensitivity to
immunotherapy (79). Although the role of TMB in mCRC is still
debated (80), our recent translational findings demonstrated that
ctDNA could reliably measure bTMB and predicted potential benefit
to pembrolizumab (with prolonged stabilization without tumor
response), consistently with another study (79, 81). In this regard,
ctDNA was also capable of identifying the occurrence of acquired
MSH6 p.T1219I variant, which was suggested as a potential marker of
TMZ molecular efficacy (79).

In this setting, methodology and cut-offs for bTMB and TMB
assessment still require standardization (82). As for today, MSI
remains the main biomarker predicting immunotherapy sensitivity
in mCRC, and it is typically addressed by tissue analysis. Apart from
immunohistochemistry and PCR, different possibilities are emerg-
ing for inferring MSI status using NGS data (83, 84) on tissue and,
in particular, some methods have been FDA authorized (85).
Because the mismatch repair (MMR) status can be heterogeneous
within time and space (86), ctDNA was proposed for MMR
characterization and provided accuracy above 98% in some
studies (87–89), although NGS methods present several limitations
due to low and unbalanced tumor purities in liquid biopsy sam-
ples (90). Prospective evaluation is ongoing (NCT03594448).

Conclusions
Several applications of ctDNA are emerging for the care of colo-

rectal cancer patients according to the results of an increasing number
of studies, as witnessed by the effort of clinical and multidisciplinary
task forces to promote ctDNA for biomarker testing (91, 92). In this
review, we focused on metastatic disease and described how ctDNA
could (Fig. 1): 1) refine the molecular selection of mCRC patients at
baseline by addressing tumor heterogeneity that is beyond the capacity
of tissue biopsy; and dynamically 2a) assess early-tumor response; 2b)
monitor resistancemechanisms, potentially leading to tailored, molec-
ular-driven, therapeutic solutions such as switch maintenance to non-
cross-resistant agents; 2c) guide the molecular triage towards rechal-
lenge strategies, by acknowledging the clearance of resistant clones and
suggesting the best time for retreatment; 2d) provide opportunities for
enhanced rechallenge strategies through additional treatments or
combos so as to overcome resistance. Besides, we discussed 3) prom-
ising applications of ctDNA in the field of immuno-oncology regard-
ing MSI detection and TMB monitoring.

It is important for clinicians to be aware of these ctDNA-related
opportunities, as it is increasingly more common to examine ctDNA
reports in the clinical practice. When available, we recommend
medical oncologists to propose ctDNA assessment to patients before
anti-EGFR rechallenge, in order to limit ineffective treatments and
spare unnecessary toxicity, as it is now also suggested in the updated
2022 ESMO Guidelines (6). So far, there is no evidence of an optimal

time for rechallenge; however, we suggest considering it as soon as after
progression to an intervening anti-EGFR-free regimen in the chemor-
efractory setting. Indeed, we found no correlation between the time
interval from previous anti-EGFR therapy and the likelihood of
response to rechallenge (27). We consider a patient candidate to
anti-EGFR rechallenge from a molecular standpoint when the ctDNA
assay is completely negative before starting treatment, according to the
“zero mutation ctDNA” criteria for KRAS, NRAS, BRAF and EGFR
ectodomain mutations (27). We suggest to analyze ctDNA by PCR
(with some technical limitations) or NGS with barcoding to improve
limit of detection, as proposed in theCHRONOS trial (27, 69). Then, in
case of a “wild type” result, we advise commencing panitumumab
withing 4 weeks; yet no data limit the administration at a later time. In
the instance of amutation precluding rechallenge, dynamic assessment
of ctDNA is supported by available data about clonal evolution, andwe
feel an intervening line of treatment could be enough to reassess
whether resistant clones have been wiped out (8, 27).

Addressing ctDNA limitations is as important as listing its huge
potential. Previous publications and reviews on this topic already
thoroughly dissected the main technical and translational limitations
of ctDNA in mCRC (2, 4, 9). Concerning sensitivity, the amount of
ctDNA shed into the bloodstream greatly varies according to the
primary tumor location andmetastatic sites, and false negatives are not
a remote possibility (3, 12, 93, 94). Moreover, clonal hematopoiesis,
reported in around 10% of tumor-free patients aged 70 or older, can
lead to ctDNA false-positive results (95). Finally, limited availability of
ctDNAassayswas reported outside academic or comprehensive cancer
centers, although this issue could be pragmatically solved by referring
to companion diagnostic tests (96).

Summarizing, we believe that, aiming at overcoming the majority
of ctDNA limitations towards a broaden translatability into the real-
world setting, more interventional trials based on ctDNA analysis
are mandatory. Indeed, as suggested by the CHRONOS trial, only
prospective data from controlled trials could prove ctDNA as a
reliable biomarker to be widely exploited for mCRC patients’
management. Eventually, considering intrinsic limitations beyond
well-known advantages, we envision ctDNA analysis as a vehicle to
improve currently available prognostic and predictive tools rather
than replacing them.
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