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This article continues the investigation started in [18] on the role of possibilistic mixed strategies 
in strategic-form games. In this earlier work we assumed, as standard in possibility theory, 
that joint possibility distributions were computed by combining possibilistic mixed strategies 
with the minimum t-norm. In this paper, we investigate the consequences of defining joint 
possibility distributions by using any continuous t-norm, with players’ expected utilities based 
on the Choquet integral. We characterise under which conditions a pair of possibilistic mixed 
strategies is an equilibrium, generalising the results first presented in [18], and also show that 
the set of equilibria in possibilistic mixed strategies depends on the set of idempotent elements of 
a t-norm and not just on the chosen t-norm.

1. Introduction and motivation

The research reported in this note contributes to the investigation on the formal properties of possibilistic randomisation [1,

15–18]. In [18], we asked what kind of game-theoretic equilibria would arise by considering the possibilistic counterpart of the 
classical notion of a probabilistic mixed strategy. Two notions of possibilistic expected utility, an ordinal one based on the Sugeno 
integral [28] and a cardinal one based on the Choquet integral [4], were then investigated in the context of strategic-form games and 
applied to the analysis of a coordination game known as the Weak-link game [29]. Since the publication of [18], further research 
has addressed this topic, notably [2,26], indicating a continuing interest in understanding the features of game-theoretic models in 
conjunction with possibility theory (see also [5,25]).

In [18], we defined joint possibility distributions by combining possibility distributions with the minimum t-norm, as this is the 
natural choice in the standard qualitative setting of possibility theory. In this article, however, we focus on a quantitative decision-

theoretic approach based on the Choquet integral: in this setting, any continuous t-norm [19] provides a suitable way of defining a 
joint possibility distribution. This approach does not simply have a mathematical justification. In fact, depending on how the concept 
of possibilistic randomisation is interpreted, choosing continuous t-norms other than the minimum might allow a more accurate 
representation of the meaning of a joint possibility distribution, according to the context (more on this in the last section).

In this paper, we then significantly extend the scope of [18] by investigating the consequences of randomising with distinct 
continuous t-norms. We give a full characterisation (Theorem 26) of when a pair of possibilistic mixed strategies forms an equilibrium 
with respect to any continuous t-norm and show that this notion of equilibrium properly generalises the classical one (Proposition 29). 
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Our main result (Theorem 30) shows that, modulo the set of its idempotents, the specific choice of a t-norm is irrelevant to the set 
of equilibria. In particular, Theorem 30 proves that whenever the set of idempotents of a continuous t-norm is a subset of the set of 
idempotents of another, the set of equilibria with respect to the former t-norm is a subset of the set of equilibria with respect to the 
latter. In addition, the set of equilibria with respect to any continuous t-norm is always a subset of the set of equilibria with respect 
to the minimum t-norm.

This article is organised as follows. Section 2 provides the basic background concepts on strategic-form games, possibility mea-

sures, and t-norms at the core of this work. Section 3 investigates the notion of possibilistic Choquet equilibria and characterises 
their main game-theoretic properties. Section 4 studies how the notions introduced in the previous section apply to well-known 
strategic-form games such as the Prisoner’s Dilemma, Matching Pennies, and the Stag-Hunt game. Section 5 illustrates the extent 
to which defining joint possibility distributions through distinct continuous t-norms makes a difference for the set of possibilistic 
Choquet equilibria. Finally, Section 6 puts forward concluding remarks and directions for future work.

2. Background

2.1. Strategic-form games

For present purposes it is sufficient to recall a selection of key definitions for static, non-cooperative games in strategic form. All 
the games in this article are assumed to be two-person games. Interested readers can refer to classic introductions such as [24], the 
more recent [21], or the freely available [3].

Definition 1 (Strategic-form Game). A strategic-form game is a tuple

𝐆 = ⟨𝑁,𝑆1, 𝑆2, 𝑢1, 𝑢2⟩
where:

1. 𝑁 = {1, 2} is the set of players of the game.

2. 𝑆𝑖 is a finite set of strategies for each player 𝑖 ∈ {1, 2}.

3. 𝑢𝑖 ∶ 𝑆1 ×𝑆2 →ℝ+, for each player 𝑖 ∈ {1, 2}, is a non-negative real-valued function (different from the identically zero function) 
called utility function (or payoff function).

Given a player 𝑖 ∈ {1, 2}, we sometimes refer to the other player as −𝑖. The elements of each 𝑆𝑖 are often referred to as pure strategies. 
We usually denote by 𝑠𝑖 an arbitrary strategy for player 𝑖. Given 𝑠𝑖 ∈ 𝑆𝑖, 𝑠−𝑖 ∈ 𝑆−𝑖 is used to denote a strategy for the other player 
−𝑖. A strategy combination is any pair (𝑠1, 𝑠2) ∈ 𝑆1 × 𝑆2.

Definition 2 (Best response). Let 𝐆 be a strategic-form game and (𝑠1, 𝑠2) ∈ 𝑆1 × 𝑆2 be a strategy combination. Player 1’s strategy 𝑠1
is called a best response to 𝑠2 if, for all 𝑠′1 ∈ 𝑆1,

𝑢1(𝑠1, 𝑠2) ≥ 𝑢1(𝑠′1, 𝑠2).

The definition for player 2 is analogous.

Definition 3 (Pure Strategy Nash Equilibrium). Let 𝐆 be a strategic-form game. We call a pair of pure strategies (𝑠1, 𝑠2) ∈ 𝑆1 × 𝑆2 a 
pure strategy Nash equilibrium if each player’s strategy is a best response to the other player’s strategy.

It is well known that not all strategic-form games admit a pure strategy Nash equilibrium. This situation is obviated by allowing 
players to not simply choose one among their pure strategies, but among all possible mixed strategies, i.e. all probability distributions 
over their strategy set. More formally:

Definition 4 (Mixed Strategy). In a strategic-form game 𝐆, a mixed strategy 𝜎𝑖 for player 𝑖 ∈ {1, 2} is a probability distribution over 
the set of strategies 𝑆𝑖, i.e. a function 𝜎𝑖 ∶ 𝑆𝑖 → [0, 1] such that∑

𝑠𝑖∈𝑆𝑖

𝜎𝑖(𝑠𝑖) = 1.

Similar to pure strategies, any pair of mixed strategies (𝜎1, 𝜎2) is called a mixed strategy combination.

Definition 5 (Mixed Extension). Let 𝐆 be a strategic-form game. The mixed extension of 𝐆 is the game

𝔊 = ⟨𝑁,𝑀𝑆1,𝑀𝑆2, 𝑒𝑢1, 𝑒𝑢2⟩

2

where, for 𝑖 ∈ {1, 2}:
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1. Each 𝑀𝑆𝑖 is the set of all mixed strategies of player 𝑖 over 𝑆𝑖.

2. Each 𝑒𝑢𝑖 ∶𝑀𝑆1 ×𝑀𝑆2 →ℝ is a function that associates with each mixed strategy combination (𝜎1, 𝜎2) the expected utility

𝑒𝑢𝑖(𝜎1, 𝜎2) =
∑

(𝑠1 ,𝑠2)∈𝑆1×𝑆2

((𝜎1(𝑠1) ⋅ 𝜎2(𝑠2)) ⋅ 𝑢𝑖(𝑠1, 𝑠2)).

Both the concept of best response and Nash equilibrium in pure strategies are easily generalised to mixed strategies.

Definition 6 (Best Response: Mixed Strategies). Let 𝐆 be a strategic-form game, 𝔊 be its mixed extension and (𝜎1, 𝜎2) ∈𝑀𝑆1 ×𝑀𝑆2
be a mixed strategy combination. Player 1’s mixed strategy 𝜎1 is called a best response to 𝜎2 if, for all 𝜎′1 ∈𝑀𝑆1,

𝑒𝑢1(𝜎1, 𝜎2) ≥ 𝑒𝑢1(𝜎′1, 𝜎2).

The definition for player 2 is analogous.

Definition 7 (Mixed Strategy Nash Equilibrium). Let 𝐆 be a strategic-form game and let 𝔊 be its mixed extension. We call a pair of 
mixed strategies (𝜎1, 𝜎2) ∈𝑀𝑆1 ×𝑀𝑆2 a mixed strategy Nash equilibrium for 𝐆 if each player’s mixed strategy is a best response to 
the other player’s mixed strategy.

The following is the celebrated theorem by John Nash proving the existence of equilibria in mixed strategies.

Theorem 8 ([23]). Every strategic-form game has a mixed strategy Nash equilibrium.

2.2. Possibility measures and Choquet integration

In this subsection, we provide the background notions concerning possibility measures and distributions, and Choquet integration 
for finite functions with respect to possibility measures. The reader can find a full account of these topics in [6–10,12,14].

Definition 9 (Possibility Measure). Let 𝑋 be a finite non-empty set. A possibility measure is a function Π ∶ 2𝑋 → [0, 1] such that, for all 
𝐴, 𝐵 ∈ 2𝑋 :

1. Π 
(
∅
)
= 0;

2. Π (𝑋) = 1;

3. if 𝐴 ⊆ 𝐵, then Π (𝐴)≤Π (𝐵);
4. Π (𝐴 ∪𝐵) = max (Π (𝐴) ,Π(𝐵)).

Definition 10 (Possibility Distribution). Let 𝑋 be a finite non-empty set. A possibility distribution is a function 𝜋 ∶𝑋 → [0, 1] such that

sup
𝑥∈𝑋

𝜋(𝑥) = 1.

Given a possibility distribution 𝜋 on a finite non-empty set 𝑋, the function Π ∶ 2𝑋 → [0, 1] such that, for all 𝐴 ∈ 2𝑋 ,

Π(𝐴) = sup
𝑥∈𝐴

𝜋 (𝑥)

is a possibility measure called the possibility measure generated from 𝜋. Given a possibility measure Π ∶ 2𝑋 → [0, 1], the function 
𝜋 ∶𝑋 → [0, 1] defined by 𝜋(𝑥) = Π({𝑥}), for all 𝑥 ∈𝑋, is a possibility distribution.

We now introduce the notion of Choquet integration for non-negative finite functions with respect to possibility measures.

Definition 11 (Choquet Integral for Possibility Measures). Let 𝑋 = {𝑥1, … , 𝑥𝑛} be a finite non-empty set, 𝑓 ∶𝑋 →ℝ+ be a non-negative 
finite function and Π ∶ 2𝑋 → [0, 1] be a possibility measure. Let 𝛼 be a permutation over 𝑋 such that

𝑓
(
𝑥𝛼(1)

) ≤ 𝑓
(
𝑥𝛼(2)

) ≤… ≤ 𝑓
(
𝑥𝛼(𝑛)

)
,

and let, for each 1 ≤ 𝑗 ≤ 𝑛,

𝐴𝛼(𝑗) =
{
𝑥𝛼(𝑗),… , 𝑥𝛼(𝑛)

}
.

The Choquet integral of 𝑓 with respect to Π is defined as:

ℎ
𝑓dΠ =

𝑛∑(
𝑓
(
𝑥

)
− 𝑓

(
𝑥

))
⋅Π

(
𝐴

)
,

3

∫
𝑗=1

𝛼(𝑗) 𝛼(𝑗−1) 𝛼(𝑗)
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Fig. 1. 3D plot of the minimum, product, and Łukasiewicz t-norms.

with 𝑓
(
𝑥𝛼(0)

)
= 0 by convention.

Possibility measures were originally introduced by Zadeh in [32]. Since then, they have been studied as measures of uncertainty 
capable of representing incomplete information and as models of partial belief offering both a qualitative and a numerical alternative 
to probabilities [11,12]. Similar to probabilities, possibility measures lend themselves to several different interpretations. The epis-

temic interpretation is one of the most prominent ones and sees possibilities as a measure of plausibility of the occurrence of an event. 
In this context, a possibility distribution over a set of alternatives can be seen as a way to rank how plausible or likely each option 
is. Possibility can also be seen as a measure of logical consistency. The possibility of a proposition is a measure of how consistent it is 
with the available information. Another interpretation of possibilities is that of measures of feasibility: they rank how easy to achieve 
different options are. Finally, possibility measures can be cast in a deontic framework and be seen as a way to measure permissibility, 
to evaluate the degree to which an action is allowed or permitted.

In this work, similar to [18], our view of possibility remains neutral and we do not take any stance concerning its interpretation: 
we simply see a possibility distribution as a way to formalise a different notion of randomisation.

2.3. Triangular norms

Here we introduce several basic notions and results about triangular norms that we will make extensive use of throughout the 
paper. A full account of the basic properties of these functions can be found in [19].

Definition 12 (Triangular Norm [19]). A triangular norm ∗∶ [0, 1]2 → [0, 1] (t-norm, for short) is a binary function such that for all 
𝑥, 𝑦, 𝑧 ∈ [0, 1]:

1. 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥;

2. 𝑥 ∗ (𝑦 ∗ 𝑧) = (𝑥 ∗ 𝑦) ∗ 𝑧;

3. 𝑥 ∗ 𝑦 ≤ 𝑥 ∗ 𝑧 whenever 𝑦 ≤ 𝑧;

4. 𝑥 ∗ 1 = 𝑥.

According to the above definition, t-norms are then binary, commutative, associative, and monotone functions, having 1 as a neutral 
element.

A t-norm ∗ is continuous if for all convergent sequences (𝑥𝑛)𝑛∈ℕ, (𝑦𝑛)𝑛∈ℕ ∈ [0, 1]ℕ,(
lim
𝑛→∞

𝑥𝑛

)
∗
(
lim
𝑛→∞

𝑦𝑛

)
= lim

𝑛→∞

(
𝑥𝑛 ∗ 𝑦𝑛

)
.

The minimum, product, and Łukasiewicz t-norms (see Fig. 1) are the most prominent examples of continuous t-norms and play a 
fundamental role in the representation of all continuous t-norms (Theorem 18):

1. Minimum t-norm: 𝑥 ∗min 𝑦 =min(𝑥, 𝑦);
2. Product t-norm: 𝑥 ∗prod 𝑦 = 𝑥 ⋅ 𝑦;

3. Łukasiewicz t-norm: 𝑥 ∗Łuk 𝑦 =max(𝑥 + 𝑦 − 1, 0).

A t-norm ∗ is strictly monotone if, whenever 𝑥 > 0 and 𝑦 < 𝑧, 𝑥 ∗ 𝑦 < 𝑥 ∗ 𝑧. A t-norm satisfies the cancellation law if 𝑥 ∗ 𝑦 = 𝑥 ∗ 𝑧
implies 𝑥 = 0 or 𝑦 = 𝑧. A t-norm ∗ is Archimedean if for each (𝑥, 𝑦) ∈]0, 1[2 there is an 𝑛 ∈ ℕ such that 𝑥𝑛 < 𝑦, with

𝑥𝑛 = 𝑥 ∗⋯ ∗ 𝑥.
4

⏟⏞⏞⏟⏞⏞⏟
𝑛
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A t-norm is strictly monotone if and only if it satisfies the cancellation law. A t-norm is called strict if it is continuous and strictly 
monotone, and it is called nilpotent if it is continuous and for any 𝑥 ∈]0, 1[ there is an 𝑛 ∈ ℕ such that 𝑥𝑛 = 0. Every continuous 
Archimedean t-norm is either strict, and isomorphic to product t-norm, or nilpotent, and isomorphic to the Łukasiewicz t-norm.

Proposition 13 ([19]). Let ∗1 and ∗2 be two continuous Archimedean t-norms. The following are equivalent:

1. ∗1 and ∗2 are isomorphic.

2. Either both ∗1 and ∗2 are strict or both ∗1 and ∗2 are nilpotent.

Proposition 14 ([19]). Let ∗ be any t-norm:

1. ∗ is strict if and only if it is isomorphic to the product t-norm ∗prod.

2. ∗ is nilpotent if and only if it is isomorphic to the Łukasiewicz t-norm ∗Łuk .

Idempotent elements of continuous t-norms will play a central role in several of the results we present in Section 3 and Section 5.

Definition 15 (Idempotent Element). For a t-norm ∗, an element 𝑥 ∈ [0, 1] is called idempotent if 𝑥 ∗ 𝑥 = 𝑥.

For all t-norms, 0 and 1 are trivial idempotent elements. Each 𝑥 ∈ [0, 1] is an idempotent element of the minimum t-norm, which 
is the only t-norm whose elements are all idempotent. The Łukasiewicz and product t-norms (and so all continuous Archimedean 
t-norms in general) have no idempotent elements with the exception of the trivial ones.

Proposition 16. Let ∗ be a continuous t-norm. Then:

1. Any 𝑥 ∈ [0, 1] is an idempotent element if and only if, for all 𝑦 ∈ [0, 1], 𝑥 ∗ 𝑦 =min(𝑥, 𝑦).
2. For all (𝑥, 𝑦) ∈ [0, 1]2, 𝑥 ∗ 𝑦 ≤min(𝑥, 𝑦).
3. If ∗ is Archimedean, then, for all (𝑥, 𝑦) ∈]0, 1[2, 𝑥 ∗ 𝑦 <min(𝑥, 𝑦).

Proof. Proofs for (1) and (2) can be found in [19]. (3) can be derived from results in [19] as follows. Suppose ∗ is Archimedean 
but there exists a pair of elements (𝑎, 𝑏) ∈]0, 1[2, such that 𝑎 ∗ 𝑏 =min(𝑎, 𝑏). Without any loss of generality suppose that 𝑎 < 𝑏. Since 
∗ is Archimedean, there exists an 𝑛 ∈ ℕ such that 𝑏𝑛 < 𝑎, which, as t-norms are monotone functions, implies that 𝑏𝑛 ∗ 𝑎 ≤ 𝑎 ∗ 𝑎. As 
𝑎 ∗ 𝑏 = 𝑎, it is easy to see that 𝑏𝑛 ∗ 𝑎 = 𝑎 and so we have that 𝑎 ≤ 𝑎 ∗ 𝑎, which, together with the fact that 𝑎 ∗ 𝑎 ≤ 𝑎 (statement (2) in 
this proposition), implies that 𝑎 is idempotent. If ∗ is nilpotent and 𝑏𝑛 = 0, then 𝑎 = 0, contradicting the assumption that 𝑎 ∈]0, 1[. If 
𝑏𝑛 > 0, then 𝑎 is a non-trivial idempotent element of ∗, contradicting the assumption that ∗ is Archimedean. □

The ordinal sum construction allows the generation of new t-norms.

Theorem 17 (Ordinal Sum [19]). Let 𝐴 be a countable set, {∗𝑖}𝑖∈𝐴 be a family of t-norms and 
{
]𝑎𝑖, 𝑏𝑖[

}
𝑖∈𝐴 be a family of non-empty, 

pairwise disjoint, open subintervals of [0, 1]. Then the function ∗∶ [0, 1]2 → [0, 1], defined by

𝑥 ∗ 𝑦 =

{
𝑎𝑖 +

(
𝑏𝑖 − 𝑎𝑖

)
⋅
(

𝑥−𝑎𝑖
𝑏𝑖−𝑎𝑖

∗𝑖
𝑦−𝑎𝑖
𝑏𝑖−𝑎𝑖

)
(𝑥, 𝑦) ∈ [𝑎𝑖, 𝑏𝑖]2

min(𝑥, 𝑦) otherwise
,

is a t-norm.

We refer to each ∗𝑖 in the ordinal sum construction as a component of the ordinal sum. Notice that ordinal sums preserve continuity. 
Some examples of t-norms obtained as ordinal sums can be found in Section 5.

As shown by the Mostert-Shields theorem [22], every continuous t-norm can be represented as an ordinal sum of continuous 
Archimedean t-norms, i.e. of copies of the Łukasiewicz and the product t-norm.

Theorem 18 (Mostert-Shields Theorem [19,22]). For a function ∗∶ [0, 1]2 → [0, 1] the following are equivalent:

1. ∗ is a continuous t-norm.

2. ∗ is uniquely representable as an ordinal sum of continuous Archimedean t-norms.

3. Possibilistic Choquet equilibria

In this section, we introduce a concept of equilibrium where players’ expectations are given by the Choquet integral of their 
5

utility function with respect to a possibility measure. For each game, this possibility measure will be defined with respect to some 
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given continuous t-norm. As mentioned above, the games we consider are assumed to be two-person games. The results presented 
here can be easily generalised for strategic-form games with any finite number of players.

Definition 19 (Possibilistic Mixed Strategy). Given a strategic-form game 𝐆, a possibilistic mixed strategy 𝜋𝑖 for a player 𝑖 ∈ {1, 2} is a 
possibility distribution 𝜋𝑖 ∶ 𝑆𝑖 → [0, 1].

We denote by Σ𝑖 the set of all possibilistic mixed strategies of player 𝑖.
The possibilistic mixed strategies of the players will have an effect on the game and on the players’ expectations concerning the 

outcome. A player’s expectation will depend not only on their own possibilistic mixed strategy but also on the other player’s. For 
this, we need a notion of joint possibility distribution.

Definition 20 (Joint Possibility Distribution). Let 𝐆 be a strategic-form game and (𝜋1, 𝜋2) ∈ Σ1 × Σ2 be a pair of possibilistic mixed 
strategies. Given a continuous t-norm ∗, the joint possibility distribution 𝜋∗ of 𝜋1 and 𝜋2 is the function 𝜋∗ ∶ 𝑆1 ×𝑆2 → [0, 1] such that, 
for all (𝑠1, 𝑠2) ∈ 𝑆1 ×𝑆2,

𝜋∗(𝑠1, 𝑠2) = 𝜋1(𝑠1) ∗ 𝜋2(𝑠2).

We now define a notion of expected utility based on the Choquet integral with respect to an arbitrary continuous t-norm ∗. In 
what follows, take a strategic-form game 𝐆 with set of strategy combinations

𝑆1 × 𝑆2 =
{(
𝑠1, 𝑠2

)
1 ,… ,

(
𝑠1, 𝑠2

)
𝑚

}
.

Note that we will always use 𝑚 to denote the number of pure strategy combinations in a game. Now, for each 𝑖 ∈ {1, 2}, take a 
permutation 𝛼𝑖 on 𝑆1 ×𝑆2 such that

𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(1)

) ≤ 𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(2)

) ≤⋯ ≤ 𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(𝑚)

)
.

Let 𝐴𝛼𝑖(𝑗) ⊆ 𝑆1 ×𝑆2 be defined as

𝐴𝛼𝑖(𝑗) =
{(

𝑠1, 𝑠2
)
𝛼𝑖(𝑗)

,
(
𝑠1, 𝑠2

)
𝛼𝑖(𝑗+1)

,… ,
(
𝑠1, 𝑠2

)
𝛼𝑖(𝑚)

}
,

with 𝑖 ∈ {1, 2} and 1 ≤ 𝑗 ≤𝑚.

Definition 21 (Possibilistic Choquet Expected Utility). Let 𝐆 be a strategic-form game, (𝜋1, 𝜋2) ∈ Σ1 ×Σ2 be a pair of possibilistic mixed 
strategies, ∗ be a continuous t-norm, 𝜋∗ be the joint possibility distribution of 𝜋1 and 𝜋2, and Π∗ ∶ 2𝑆1×𝑆2 → [0, 1] be the possibility 
measure generated from 𝜋∗. The possibilistic Choquet expected utility of player 𝑖 is the Choquet integral of the utility function 𝑢𝑖 with 
respect to Π∗ and is defined as

𝐸
ℎ∗
𝑖

(𝜋1, 𝜋2) =

ℎ

∫ 𝑢𝑖dΠ∗ =
𝑚∑
𝑗=1

(
𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(𝑗)

)
− 𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(𝑗−1)

))
⋅Π∗

(
𝐴𝛼𝑖(𝑗)

)
,

where

Π∗

(
𝐴𝛼𝑖(𝑗)

)
= max

(𝑠1 ,𝑠2)∈𝐴𝛼𝑖(𝑗)
(𝜋1(𝑠1) ∗ 𝜋2(𝑠2)),

and 𝑢𝑖
((
𝑠1, 𝑠2

)
𝛼𝑖(0)

)
= 0, by convention.

We now introduce the possibilistic counterpart of Definition 5 as well as specific notions of best response and equilibrium for 
Choquet integrals w.r.t. possibility measures.

Definition 22 (Possibilistic Choquet Mixed Extension). Let 𝐆 be a strategic-form game and ∗ be a continuous t-norm. The possibilistic 
Choquet mixed extension of 𝐆 w.r.t. ∗ is the game

𝔊Π∗ = ⟨𝑁,Σ1,Σ2, 𝑒𝑢1, 𝑒𝑢2⟩
where, for 𝑖 ∈ {1, 2}, 𝑒𝑢𝑖 ∶ Σ1 × Σ2 →ℝ is a function the that associates with each possibilistic mixed strategy combination (𝜋1, 𝜋2) ∈
Σ1 × Σ2 player 𝑖’s Choquet expected utility w.r.t. the possibility measure generated by the joint possibility distribution 𝜋∗ of 𝜋1 and 
𝜋2:
6

𝑒𝑢𝑖(𝜋1, 𝜋2) =𝐸
ℎ∗
𝑖

(𝜋1, 𝜋2).
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Definition 23 (Possibilistic Best Response). Let 𝐆 be a strategic-form game and 𝔊Π∗ be its possibilistic Choquet mixed extension w.r.t. 
some continuous t-norm ∗. Let (𝜋1, 𝜋2) ∈ Σ1 ×Σ2 be a possibilistic mixed strategy combination. Player 1’s possibilistic mixed strategy 
𝜋1 is called a possibilistic best response to 𝜋2 if, for all 𝜋′

1 ∈ Σ1:

𝐸
ℎ∗
1 (𝜋1, 𝜋2) ≥𝐸

ℎ∗
1 (𝜋′

1, 𝜋2).

The definition for player 2 is analogous.

Definition 24 (Possibilistic Choquet Equilibrium). Let 𝐆 be a strategic-form game and 𝔊Π∗ be its possibilistic Choquet mixed extension 
w.r.t. some continuous t-norm ∗. We call a pair of possibilistic mixed strategies (𝜋1, 𝜋2) ∈ Σ1 × Σ2 a possibilistic Choquet equilibrium

for 𝐆 with respect to ∗, if each player’s possibilistic mixed strategy is a possibilistic best response to the other player’s possibilistic 
mixed strategy.

We are now going to offer a full characterisation of when a pair of possibilistic mixed strategies forms a possibilistic Choquet 
equilibrium w.r.t. some continuous t-norm ∗.

Definition 25. Let 𝐆 be a strategic-form game and 𝔊Π∗ be its possibilistic Choquet mixed extension w.r.t. some continuous t-norm 
∗. Let (𝜋1, 𝜋2) ∈ Σ1 × Σ2 be a possibilistic mixed strategy combination. For each player 𝑖 = {1, 2} we define:

1. 𝑈𝑖 =
{
1 ≤ 𝑗 ≤𝑚 ∣ 𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(𝑗)

)
− 𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(𝑗−1)

)
> 0

}
, and,

2. for each 1 ≤ 𝑗 ≤𝑚,

𝐴max
𝛼𝑖(𝑗)

=

{
(𝑠1, 𝑠2) ∣ (𝑠1, 𝑠2) ∈𝐴𝛼𝑖(𝑗), and 𝑠−𝑖 ∈ argmax

𝑠′−𝑖∈𝑆−𝑖 , (𝑠
′
1 ,𝑠

′
2)∈𝐴𝛼𝑖(𝑗)

𝜋−𝑖(𝑠′−𝑖)

}
.

For each player 𝑖, 𝑈𝑖 is the set of indices 1 ≤ 𝑗 ≤ 𝑚 such that 𝑢𝑖
((
𝑠1, 𝑠2

)
𝛼𝑖(𝑗)

)
is strictly greater that 𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(𝑗−1)

)
. For each 

player 𝑖 and index 𝑗, 𝐴max
𝛼𝑖(𝑗)

is the set of pairs of pure strategies (𝑠1, 𝑠2) in 𝐴𝛼𝑖(𝑗) such that 𝜋−𝑖(𝑠−𝑖) has the highest value.

The following theorem generalises Theorem 13 from [18].

Theorem 26. Let 𝐆 be a strategic-form game and 𝔊Π∗ be its possibilistic Choquet mixed extension w.r.t. some continuous t-norm ∗. Let 
(𝜋1, 𝜋2) ∈ Σ1 × Σ2 be a possibilistic mixed strategy combination. Then, the following statements are equivalent:

1. (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium for 𝐆 w.r.t. ∗.

2. For each player 𝑖 ∈ {1, 2} and for every 𝑗 ∈ 𝑈𝑖, there exists (𝑠1, 𝑠2) ∈ 𝐴max
𝛼𝑖(𝑗)

such that 𝜋𝑖(𝑠𝑖) ≥ 𝜋−𝑖(𝑠−𝑖) and there is an idempotent 
element 𝑎 ∈ [𝜋−𝑖(𝑠−𝑖), 𝜋𝑖(𝑠𝑖)].

Proof. (1) ⇒ (2): Given a pair (𝜋1, 𝜋2) ∈ Σ1 × Σ2, suppose that (2) does not hold. Without any loss of generality we can assume that 
for player 1 there exists 𝑗 ∈ 𝑈1 so that, for all (𝑠1, 𝑠2) ∈ 𝐴max

𝛼1(𝑗)
, either 𝜋1(𝑠1) < 𝜋2(𝑠2) or 𝜋1(𝑠1) ≥ 𝜋2(𝑠2) and there is no idempotent 

element 𝑎 ∈ [𝜋2(𝑠2), 𝜋1(𝑠1)]. We are going to show that player 1 can unilaterally change their possibilistic mixed strategy and improve 
their possibilistic Choquet expected utility.

Take then any (𝑠1, 𝑠2) ∈𝐴max
𝛼1(𝑗)

and take a new possibility distribution 𝜋′
1 ∶ 𝑆1 → [0, 1] such that 𝜋′

1(𝑠1) = 1 and 𝜋′
1(𝑠

′
1) = 𝜋1(𝑠1) for 

all 𝑠′1 ≠ 𝑠1. Let 𝜋′
∗ be the joint possibility distribution of 𝜋′

1 and 𝜋2 and let Π′
∗ be the possibility measure generated from 𝜋′

∗. We first 
show that, for 𝑗 and for each (𝑠′′1 , 𝑠

′′
2 ) ∈𝐴𝛼1(𝑗), we have that

𝜋1(𝑠′′1 ) ∗ 𝜋2(𝑠
′′
2 ) < 𝜋2(𝑠2).

In fact:

1. If (𝑠′′1 , 𝑠
′′
2 ) ∈𝐴max

𝛼1(𝑗)
we have the following cases:

(a) 𝜋1(𝑠′′1 ) < 𝜋2(𝑠′′2 ). Then by Proposition 16(2),

𝜋1(𝑠′′1 ) ∗ 𝜋2(𝑠
′′
2 ) ≤ 𝜋1(𝑠′′1 ) < 𝜋2(𝑠′′2 ).

(b) 𝜋1(𝑠′′1 ) ≥ 𝜋2(𝑠′′2 ) and there is no idempotent 𝑎 ∈ [𝜋2(𝑠′′2 ), 𝜋1(𝑠
′′
1 )]. Then by Theorem 17 and Theorem 18, 𝜋1(𝑠′′1 ) and 𝜋2(𝑠′′2 )

must belong to the same interval ]𝑎, 𝑏[ in the ordinal sum representation of ∗, where the value of (𝜋1(𝑠′′1 ) ∗ 𝜋2(𝑠
′′
2 )) is given 

by an isomorphic copy of a continuous Archimedean t-norm over [𝑎, 𝑏]2 . By applying Proposition 16(3) we then obtain that
7

𝜋1(𝑠′′1 ) ∗ 𝜋2(𝑠
′′
2 ) < min(𝜋1(𝑠′′1 ), 𝜋2(𝑠

′′
2 )) = 𝜋2(𝑠′′2 ).
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Both in case (a) and (b), since for all (𝑠′′1 , 𝑠
′′
2 ) ∈𝐴max

𝛼1(𝑗)
, 𝜋2(𝑠′′2 ) = 𝜋2(𝑠2), we have:

𝜋1(𝑠′′1 ) ∗ 𝜋2(𝑠
′′
2 ) < 𝜋2(𝑠′′2 ) = 𝜋2(𝑠2).

2. If (𝑠′′1 , 𝑠
′′
2 ) ∉𝐴max

𝛼1(𝑗)
then, by Proposition 16(2) and by definition of 𝐴max

𝛼1(𝑗)
:

𝜋1(𝑠′′1 ) ∗ 𝜋2(𝑠
′′
2 ) ≤ 𝜋2(𝑠′′2 ) < 𝜋2(𝑠2).

We can now show that player 1 can improve their possibilistic Choquet expected utility by changing their possibilistic mixed 
strategy from 𝜋1 to 𝜋′

1. In fact, for 𝑗, we have that

max
(𝑠′′1 ,𝑠

′′
2 )∈𝐴𝛼1(𝑗)

(𝜋1(𝑠′′1 ) ∗ 𝜋2(𝑠
′′
2 )) < 𝜋2(𝑠2) = max

(𝑠′′1 ,𝑠
′′
2 )∈𝐴𝛼1(𝑗)

(𝜋′
1(𝑠

′′
1 ) ∗ 𝜋2(𝑠

′′
2 )).

This follows from the fact that for each (𝑠′′1 , 𝑠
′′
2 ) ∈𝐴𝛼1(𝑗)

𝜋1(𝑠′′1 ) ∗ 𝜋2(𝑠
′′
2 ) < 𝜋2(𝑠2),

(as shown above) and the fact that 𝜋′
1(𝑠1) = 1 and

𝜋′
1(𝑠1) ∗ 𝜋2(𝑠2) = 𝜋2(𝑠2).

For each 𝑗′ ∈𝑈1, with 𝑗′ ≠ 𝑗:

max
(𝑠′′1 ,𝑠

′′
2 )∈𝐴𝛼1

(
𝑗′
)(𝜋1(𝑠′′1 ) ∗ 𝜋2(𝑠′′2 )) ≤ max

(𝑠′′1 ,𝑠
′′
2 )∈𝐴𝛼1

(
𝑗′
)(𝜋′

1(𝑠
′′
1 ) ∗ 𝜋2(𝑠

′′
2 )) ,

since 𝜋1 and 𝜋′
1 differ only in the value assigned to 𝑠1, and 𝜋1(𝑠1) < 𝜋′

1(𝑠1) = 1.

From the above we have that

𝐸
ℎ∗
1 (𝜋1, 𝜋2) <𝐸

ℎ∗
1 (𝜋′

1, 𝜋2),

and (𝜋1, 𝜋2) is not a possibilistic Choquet equilibrium.

(2) ⇒ (1): Given a pair (𝜋1, 𝜋2) ∈ Σ1 × Σ2, suppose that for each player 𝑖 and for every 𝑗 ∈ 𝑈𝑖, there exists (𝑠1, 𝑠2) ∈ 𝐴max
𝛼𝑖(𝑗)

such 
𝜋𝑖(𝑠𝑖) ≥ 𝜋−𝑖(𝑠−𝑖) and there is an idempotent element 𝑎 ∈ [𝜋−𝑖(𝑠−𝑖), 𝜋𝑖(𝑠𝑖)].

Then, for player 1, for each 𝑗 ∈𝑈1 there exists (𝑠1, 𝑠2) ∈𝐴max
𝛼1(𝑗)

such 𝜋1(𝑠1) ≥ 𝜋2(𝑠2) and there is an idempotent 𝑎 ∈ [𝜋2(𝑠2), 𝜋1(𝑠1)]. 
From 𝑎 ≤ 𝜋1(𝑠1), by monotonicity of ∗, Proposition 16(1) and the fact that 𝑎 is idempotent, we have that

𝜋2(𝑠2) = 𝑎 ∗ 𝜋2(𝑠2) ≤ 𝜋1(𝑠1) ∗ 𝜋2(𝑠2),

which, together with the fact that 𝜋1(𝑠1) ∗ 𝜋2(𝑠2) ≤ 𝜋2(𝑠2) (Proposition 16(2)), implies that

𝜋1(𝑠1) ∗ 𝜋2(𝑠2) = 𝜋2(𝑠2).

Then we have that

Π∗

(
𝐴𝛼1(𝑗)

)
= max

(𝑠′′1 ,𝑠
′′
2 )∈𝐴𝛼1(𝑗)

(𝜋1(𝑠′′1 ) ∗ 𝜋2(𝑠
′′
2 )) = 𝜋2(𝑠2),

where Π∗ is the possibility measure generated by the joint possibility distribution 𝜋∗ of 𝜋1 and 𝜋2 w.r.t. ∗.

It is easy to see that for all 𝜋′
1 ∈ Σ1, for each 𝑗 ∈𝑈1 and any (𝑠1, 𝑠2) ∈𝐴max

𝛼1(𝑗)
:

Π′
∗

(
𝐴𝛼1(𝑗)

)
= max

(𝑠′′1 ,𝑠
′′
2 )∈𝐴𝛼1(𝑗)

(𝜋′
1(𝑠

′′
1 ) ∗ 𝜋2(𝑠

′′
2 )) ≤ 𝜋2(𝑠2),

where Π′
∗ is the possibility measure generated by the joint possibility distribution 𝜋′

∗ of 𝜋′
1 and 𝜋2 w.r.t. ∗. This is a consequence 

of the definition of 𝐴max
𝛼1(𝑗)

and (Proposition 16(2)). In fact, for any (𝑠1, 𝑠2) ∈ 𝐴max
𝛼1(𝑗)

, 𝜋2(𝑠2) is the highest value player 2 assigns to 

their strategies across all the strategy combinations in 𝐴𝛼1(𝑗) and is the maximum possible value of Π′
∗

(
𝐴𝛼1(𝑗)

)
for any possibility 

distribution 𝜋′
1 chosen by player 1.

As a consequence, we have that, for all 𝜋′
1 ∈ Σ1, for each 𝑗 ∈𝑈1 and any (𝑠1, 𝑠2) ∈𝐴max

𝛼1(𝑗)

Π′
∗

(
𝐴𝛼1(𝑗)

) ≤ 𝜋2(𝑠2) = Π∗

(
𝐴𝛼1(𝑗)

)
,

which means that

𝐸
ℎ∗
1 (𝜋′

1, 𝜋2) ≤𝐸
ℎ∗
1 (𝜋1, 𝜋2).
8

A similar argument holds for player 2, and so (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium. □
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The following corollary shows that every strategic-form game has a (trivial) possibilistic Choquet equilibrium, independent of the 
chosen t-norm.

Corollary 27. Given any continuous t-norm ∗, every strategic-form game 𝐆 has a possibilistic Choquet equilibrium w.r.t. ∗.

Proof. Given any strategic-form game 𝐆 and any continuous t-norm ∗, let 𝜋1 and 𝜋2 be possibility distributions such that 𝜋1(𝑠1) = 1
for all 𝑠1 ∈ 𝑆1 and 𝜋2(𝑠2) = 1 for all 𝑠2 ∈ 𝑆2. It is easy to see that (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium for 𝐆 w.r.t. ∗ as each 
player maximises the value of their possibilistic Choquet expected utility. □

It is clear that every pure strategy 𝑠𝑖 ∈ 𝑆𝑖 can be seen as a possibilistic mixed strategy by taking the distribution 𝜋𝑖 ∶ 𝑆𝑖 → [0, 1]
such that 𝜋𝑖(𝑠𝑖) = 1 and 𝜋𝑖(𝑠′𝑖) = 0 for all 𝑠′

𝑖
≠ 𝑠𝑖. Given any pure strategy, we refer to the possibilistic mixed strategy built as above 

as its corresponding degenerate distribution.

Lemma 28. For any strategic-form game 𝐆, let (𝑠1, 𝑠2) ∈ 𝑆1 ×𝑆2 be a pair of pure strategies, (𝜋1, 𝜋2) ∈ Σ1 ×Σ2 be their corresponding pair 
of degenerate distributions, and ∗ be any continuous t-norm. Then, for each player 𝑖 ∈ {1, 2}:

𝑢𝑖(𝑠1, 𝑠2) =𝐸
ℎ∗
𝑖

(𝜋1, 𝜋2).

Proof. Given any strategic-form game 𝐆 and any continuous t-norm ∗, let (𝑠1, 𝑠2) ∈ 𝑆1 × 𝑆2 be a pair of pure strategies and 
(𝜋1, 𝜋2) ∈ Σ1 × Σ2 be their corresponding pair of degenerate distributions. Let Π∗ be the possibility measure generated by the joint 
possibility distribution 𝜋∗ of 𝜋1 and 𝜋2 w.r.t. ∗. For each 𝑖 ∈ {1, 2}, it is easy to see that there is an index 1 ≤ 𝑘 ≤𝑚 such that, for all 
1 ≤ 𝑘′ ≤ 𝑘, (𝑠1, 𝑠2) ∈𝐴𝛼𝑖(𝑘′), and for all 𝑘 < 𝑘′′ ≤𝑚, (𝑠1, 𝑠2) ∉𝐴𝛼𝑖(𝑘′′). Then:

1. For all 𝑘′ such that 1 ≤ 𝑘′ ≤ 𝑘,

Π∗

(
𝐴𝛼𝑖(𝑘′)

)
= 1,

since (𝑠1, 𝑠2) ∈𝐴𝛼𝑖(𝑘′) and 𝜋1(𝑠1) ∗ 𝜋2(𝑠2) = 1.

2. For all 𝑘′′ such that 𝑘 < 𝑘′′ ≤𝑚,

Π∗

(
𝐴𝛼𝑖(𝑘′′)

)
= 0,

since (𝑠1, 𝑠2) ∉𝐴𝛼𝑖(𝑘′′) and, for all (𝑠′′1 , 𝑠
′′
2 ) ∈𝐴𝛼𝑖(𝑘′′), either 𝜋1(𝑠′′1 ) = 0 or 𝜋2(𝑠′′2 ) = 0.

As a consequence:

𝐸
ℎ∗
𝑖

(𝜋1, 𝜋2) =
𝑘∑

𝑘′=1

(
𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(𝑘′)

)
− 𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(𝑘′−1)

))
⋅Π∗

(
𝐴𝛼𝑖(𝑘′)

)
+

𝑚∑
𝑘′′=𝑘+1

(
𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(𝑘′′)

)
− 𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(𝑘′′−1)

))
⋅Π∗

(
𝐴𝛼𝑖(𝑘′′)

)
=

𝑘∑
𝑘′=1

(
𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(𝑘′)

)
− 𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(𝑘′−1)

))
⋅Π∗

(
𝐴𝛼𝑖(𝑘′)

)
,

and so

𝐸
ℎ∗
𝑖

(𝜋1, 𝜋2) = 𝑢𝑖

((
𝑠1, 𝑠2

)
𝛼𝑖(𝑘)

)
= 𝑢𝑖(𝑠1, 𝑠2). □

The next proposition shows that the concept of possibilistic Choquet equilibrium is a proper generalisation of the notion of Nash 
equilibrium in pure strategies.

Proposition 29. Let 𝐆 be a strategic-form game and 𝔊Π∗ be its possibilistic Choquet mixed extension w.r.t. some continuous t-norm ∗. 
Let (𝑠1, 𝑠2) ∈ 𝑆1 × 𝑆2 be a pair of pure strategies and (𝜋1, 𝜋2) ∈ Σ1 × Σ2 be their corresponding pair of degenerate distributions. Then the 
following statements are equivalent:

1. (𝑠1, 𝑠2) is a pure strategy Nash equilibrium.

2. (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium.

Proof. Given any strategic-form game 𝐆 and any continuous t-norm ∗, let (𝑠1, 𝑠2) ∈ 𝑆1 × 𝑆2 be a pair of pure strategies and 
(𝜋1, 𝜋2) ∈ Σ1 × Σ2 be their corresponding pair of degenerate distributions. Let Π∗ be the possibility measure generated by the joint 
9

possibility distribution 𝜋∗ of 𝜋1 and 𝜋2 w.r.t. ∗.
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Suppose that (𝜋1, 𝜋2) is not a possibilistic Choquet equilibrium. By Theorem 26, without any loss of generality, we can assume that 
for player 1 there exists 𝑗 ∈ 𝑈1 so that, for all (𝑠′1, 𝑠

′
2) ∈ 𝐴max

𝛼1(𝑗)
, either 𝜋1(𝑠′1) < 𝜋2(𝑠′2) or 𝜋1(𝑠′1) ≥ 𝜋2(𝑠′2) and there is no idempotent 

element 𝑎 ∈ [𝜋2(𝑠′2), 𝜋1(𝑠
′
1)]. Since 𝜋1 and 𝜋2 are degenerate distributions, this means that 𝐴max

𝛼1(𝑗)
contains strategy combinations 

(𝑠′1, 𝑠2), such that 𝜋2(𝑠2) = 1 and 𝜋1(𝑠′1) = 0. Notice that, for all 𝑗′ such that 𝑗 < 𝑗′ ≤ 𝑚, 𝐴𝛼1(𝑗′) ⊂ 𝐴𝛼1(𝑗), which also means that 
(𝑠1, 𝑠2) ∉ 𝐴𝛼1(𝑗′). So there must exist some 1 ≤ 𝑘 < 𝑗 such that, for all 1 ≤ 𝑘′ ≤ 𝑘, (𝑠1, 𝑠2) ∈ 𝐴𝛼1(𝑘′), and for all 𝑘 < 𝑘′′ ≤ 𝑚, (𝑠1, 𝑠2) ∉
𝐴𝛼1(𝑘′′). Then,

1. for all 𝑘′ such that 1 ≤ 𝑘′ ≤ 𝑘,

Π∗

(
𝐴𝛼1(𝑘′)

)
= 1,

and

2. for all 𝑘′′ such that 𝑘 < 𝑘′′ ≤𝑚,

Π∗

(
𝐴𝛼1(𝑘′′)

)
= 0

(see Lemma 28).

Now, take any (𝑠′1, 𝑠2) ∈𝐴max
𝛼1(𝑗)

and let 𝜋′
1 be a degenerate possibility distribution such that 𝜋′

1(𝑠
′
1) = 1 but 𝜋′

1(𝑠
′′
1 ) = 0 for all 𝑠′′1 ≠ 𝑠′1. 

(𝑠′1, 𝑠2) belongs to all 𝐴𝛼1(𝑗′′) with 1 ≤ 𝑗′′ ≤ 𝑗, and, clearly, for all these sets, Π′
∗

(
𝐴𝛼1(𝑗′′)

)
= 1, where Π′

∗ is the possibility measure 
generated by the joint possibility distribution 𝜋′

∗ of 𝜋′
1 and 𝜋2 w.r.t. ∗. By the fact that 𝑗 ∈𝑈1 and 𝑘 < 𝑗, and given that

𝐸
ℎ∗
1 (𝜋1, 𝜋2) =

𝑘∑
𝑘′=1

(
𝑢1

((
𝑠1, 𝑠2

)
𝛼1(𝑘′)

)
− 𝑢1

((
𝑠1, 𝑠2

)
𝛼1(𝑘′−1)

))
⋅Π∗

(
𝐴𝛼1(𝑘′)

)
+

𝑚∑
𝑘′′=𝑘+1

(
𝑢1

((
𝑠1, 𝑠2

)
𝛼1(𝑘′′)

)
− 𝑢1

((
𝑠1, 𝑠2

)
𝛼1(𝑘′′−1)

))
⋅Π∗

(
𝐴𝛼1(𝑘′′)

)
,

and

𝐸
ℎ∗
1 (𝜋′

1, 𝜋2) =
𝑘∑

𝑘′=1

(
𝑢1

((
𝑠1, 𝑠2

)
𝛼1(𝑘′)

)
− 𝑢1

((
𝑠1, 𝑠2

)
𝛼1(𝑘′−1)

))
⋅Π′

∗

(
𝐴𝛼1(𝑘′)

)
+

𝑗∑
𝑘′′=𝑘+1

(
𝑢1

((
𝑠1, 𝑠2

)
𝛼1(𝑘′′)

)
− 𝑢1

((
𝑠1, 𝑠2

)
𝛼1(𝑘′′−1)

))
⋅Π′

∗

(
𝐴𝛼1(𝑘′′)

)
+

𝑚∑
𝑗′=𝑗+1

(
𝑢1

((
𝑠1, 𝑠2

)
𝛼1(𝑗′)

)
− 𝑢1

((
𝑠1, 𝑠2

)
𝛼1(𝑗′−1)

))
⋅Π′

∗

(
𝐴𝛼1(𝑗′)

)
,

it is easy to see that

𝐸
ℎ∗
1 (𝜋1, 𝜋2) <𝐸

ℎ∗
1 (𝜋′

1, 𝜋2)

and, by Lemma 28,

𝑢1(𝑠1, 𝑠2) < 𝑢1(𝑠′1, 𝑠2)

(where (𝑠′1, 𝑠2) is the pure strategy combination corresponding to the pair (𝜋′
1, 𝜋2) of degenerate distributions), which means that 

(𝑠1, 𝑠2) is not a pure strategy Nash equilibrium.

Conversely, suppose that (𝑠1, 𝑠2) is not a pure strategy Nash equilibrium. Then, without any loss of generality, we can suppose 
that for player 1, there exists a pure strategy 𝑠′1 such that

𝑢1(𝑠1, 𝑠2) < 𝑢1(𝑠′1, 𝑠2).

By Lemma 28, given the degenerate distributions 𝜋1, 𝜋′
1, 𝜋2 corresponding to 𝑠1, 𝑠′1, 𝑠2, respectively, we have that

𝐸
ℎ∗
1 (𝜋1, 𝜋2) <𝐸

ℎ∗
1 (𝜋′

1, 𝜋2),

which means that (𝜋1, 𝜋2) is not a possibilistic Choquet equilibrium. □

4. Examples

We look now at some well-known examples of strategic-form games. Please note that in these examples we will slightly change 
10

the notation used in Section 3, where we described a more general approach.
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Table 1

The Prisoner’s Dilemma.

Player 2

S C

Player 1
S

2
2

3
0

C
0

3
1

1

4.1. The Prisoner’s Dilemma

Recall that in the Prisoner’s Dilemma two criminals are apprehended and questioned separately and in isolation. Each criminal 
can make the choice of cooperating by remaining silent (S) or defecting by betraying their fellow criminal and confessing (C). If both 
confess, each prisoner will face two years in prison. If only one confesses, they will be freed while the other prisoner will face three 
years in prison. If neither of them confesses, both will be charged with a sentence of one year in prison. Table 1 shows the Prisoner’s 
Dilemma in matrix form using a convenient payoff representation of the prisoners’ preferences.

The game has the following set of pure strategy combinations

{(𝑆,𝑆), (𝑆,𝐶), (𝐶,𝑆), (𝐶,𝐶)} ,

where (𝐶, 𝐶) is the only pure strategy Nash equilibrium, corresponding to the situation where both criminals choose to confess. We 
compute the set of possibilistic Choquet equilibria of the game.

We begin by taking an ordering of the payoffs of each player 𝑖 ∈ {1, 2} as follows:

𝑢1(𝑆,𝐶) ≤ 𝑢1(𝐶,𝐶) ≤ 𝑢1(𝑆,𝑆) ≤ 𝑢1(𝐶,𝑆)

𝑢2(𝐶,𝑆) ≤ 𝑢2(𝐶,𝐶) ≤ 𝑢2(𝑆,𝑆) ≤ 𝑢2(𝑆,𝐶)
.

Given the above ordering, we define the sets

𝐴1(1) = {(𝑆,𝐶), (𝐶,𝐶), (𝑆,𝑆), (𝐶,𝑆)} 𝐴2(1) = {(𝐶,𝑆), (𝐶,𝐶), (𝑆,𝑆), (𝑆,𝐶)}
𝐴1(2) = {(𝐶,𝐶), (𝑆,𝑆), (𝐶,𝑆)} 𝐴2(2) = {(𝐶,𝐶), (𝑆,𝑆), (𝑆,𝐶)}
𝐴1(3) = {(𝑆,𝑆), (𝐶,𝑆)} 𝐴2(3) = {(𝑆,𝑆), (𝑆,𝐶)}
𝐴1(4) = {(𝐶,𝑆)} 𝐴2(4) = {(𝑆,𝐶)}

,

i.e.: 𝐴𝑖(1), 𝐴𝑖(2), 𝐴𝑖(3) etc. are the sets of strategy combinations for player 𝑖 that have the lowest, second lowest, third lowest etc. 
payoff according to the above ordering.

For each player 𝑖, 𝑈𝑖 is the set of indices 1 ≤ 𝑗 ≤ 4 such that the difference between the lowest utility of the strategy combinations 
in 𝐴𝑖(𝑗) and the lowest utility of the strategy combinations in 𝐴𝑖(𝑗−1) is strictly greater that 0 (cfr. Definition 25). Since

𝑢1(𝑆,𝐶) − 0 = 0 𝑢2(𝐶,𝑆) − 0 = 0
𝑢1(𝐶,𝐶) − 𝑢1(𝑆,𝐶) = 1 𝑢2(𝐶,𝐶) − 𝑢2(𝐶,𝑆) = 1
𝑢1(𝑆,𝑆) − 𝑢1(𝐶,𝐶) = 1 𝑢2(𝑆,𝑆) − 𝑢2(𝐶,𝐶) = 1
𝑢1(𝐶,𝑆) − 𝑢1(𝑆,𝑆) = 1 𝑢2(𝑆,𝐶) − 𝑢2(𝑆,𝑆) = 1

,

we have 𝑈1 =𝑈2 = {2, 3, 4}.

To compute the equilibria of the game, we now make use of Theorem 26 and look at all possible pairs (𝜋1, 𝜋2) of possibilistic 
mixed strategies. In what follows, given any (𝜋1, 𝜋2), 𝐴max

1(𝑗) will denote the set of strategy combinations (𝑠1, 𝑠2) in 𝐴1(𝑗), with 1 ≤ 𝑗 ≤ 4, 
where 𝜋2(𝑠2) has the highest value (cfr. Definition 25). 𝐴max

2(𝑗) is defined in a similar way.

By Corollary 27, we know that the pair (𝜋1, 𝜋2) where

𝜋1(𝑆) = 1 𝜋2(𝑆) = 1
𝜋1(𝐶) = 1 𝜋2(𝐶) = 1

trivially is a possibilistic Choquet equilibrium.

Consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝑆) = 1 𝜋2(𝑆) = 1
𝜋1(𝐶) < 1 𝜋2(𝐶) = 1 ,

𝜋1(𝑆) = 1 𝜋2(𝑆) = 1
𝜋1(𝐶) = 1 𝜋2(𝐶) < 1 , or

𝜋1(𝑆) = 1 𝜋2(𝑆) = 1
𝜋1(𝐶) < 1 𝜋2(𝐶) < 1 .

In the first and third case, we have 𝜋1(𝐶) < 𝜋2(𝑆) for 𝐴1(4), while in the second and third we have 𝜋1(𝑆) > 𝜋2(𝐶) for 𝐴2(4). This 
means that none of the above pairs is a possibilistic Choquet equilibrium.

Consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝑆) < 1 𝜋2(𝑆) = 1 𝜋1(𝑆) = 1 𝜋2(𝑆) < 1 𝜋1(𝑆) < 1 𝜋2(𝑆) < 1
11

𝜋1(𝐶) = 1 𝜋2(𝐶) = 1 , 𝜋1(𝐶) = 1 𝜋2(𝐶) = 1 , or
𝜋1(𝐶) = 1 𝜋2(𝐶) = 1 .
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Table 2

Matching Pennies with rescaled pay-

offs.

Player 2

H T

Player 1
H

0
2

2
0

T
2

0
0

2

In all these cases, (𝐶, 𝐶) belongs to 𝐴max
1(2) and 𝐴max

2(2) , while (𝐶, 𝑆) belongs to 𝐴max
1(3) and 𝐴max

1(4) and 𝜋1(𝐶) ≥ 𝜋2(𝑆), and (𝑆, 𝐶) belongs to 
𝐴max
2(3) and 𝐴max

2(4) and 𝜋2(𝐶) ≥ 𝜋1(𝑆). Then, the above pairs are all possibilistic Choquet equilibria.

Consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝑆) = 1 𝜋2(𝑆) < 1
𝜋1(𝐶) < 1 𝜋2(𝐶) = 1 or

𝜋1(𝑆) < 1 𝜋2(𝑆) = 1
𝜋1(𝐶) = 1 𝜋2(𝐶) < 1 .

In the first case, (𝑆, 𝐶) belongs to each 𝐴2(𝑗), with 1 ≤ 𝑗 ≤ 4, so player 2 cannot improve their possibilistic Choquet expected utility. 
For player 1, we have that 𝐴max

1(2) = {(𝐶, 𝐶)} and 𝜋1(𝐶) < 𝜋2(𝐶), and so (𝜋1, 𝜋2) is not a possibilistic Choquet equilibrium. For the 
second case, (𝐶, 𝑆) belongs to each 𝐴1(𝑗), with 1 ≤ 𝑗 ≤ 4, so player 1 cannot improve their possibilistic Choquet expected utility. For 
player 2, we have that 𝐴max

2(2) = {(𝐶, 𝐶)} and 𝜋2(𝐶) < 𝜋1(𝐶), and so (𝜋1, 𝜋2) is not a possibilistic Choquet equilibrium.

This covers all the possible combinations of possibilistic mixed strategies and the set of possibilistic Choquet equilibria is given 
by {

(𝜋1, 𝜋2) ∣ 𝜋1(𝑆) ≤ 1, 𝜋1(𝐶) = 1 and 𝜋2(𝑆) ≤ 1, 𝜋2(𝐶) = 1
}
.

Notice that the above results for the Prisoner’s Dilemma are independent of the choice of a continuous t-norm.

4.2. Matching Pennies

The two-person game of Matching Pennies is an example of a game with no pure strategies Nash equilibria. In this game, each 
player has a penny and decides to show either heads (H) or tails (T). If both players make the same choice (i.e. they both choose H 
or T), then player 1 keeps both coins. If the players’ choices are different, then player 2 keeps both coins. The game can be presented 
in the matrix form displayed in Table 2, where the payoffs have been rescaled from the original version to non-negative values.

The game has the following set of pure strategy combinations

{(𝐻,𝐻), (𝐻,𝑇 ), (𝑇 ,𝐻), (𝑇 ,𝑇 )} .

We compute the set of possibilistic Choquet equilibria of the game.

We begin by taking an ordering of the payoffs of each player 𝑖 ∈ {1, 2} as follows:

𝑢1(𝑇 ,𝐻) ≤ 𝑢1(𝐻,𝑇 ) ≤ 𝑢1(𝐻,𝐻) ≤ 𝑢1(𝑇 ,𝑇 )

𝑢2(𝐻,𝐻) ≤ 𝑢2(𝑇 ,𝑇 ) ≤ 𝑢2(𝑇 ,𝐻) ≤ 𝑢2(𝐻,𝑇 )
.

From the above, we obtain the sets

𝐴1(1) = {(𝑇 ,𝐻), (𝐻,𝑇 ), (𝐻,𝐻), (𝑇 ,𝑇 )} 𝐴2(1) = {(𝐻,𝐻), (𝑇 ,𝑇 ), (𝑇 ,𝐻), (𝐻,𝑇 )}
𝐴1(2) = {(𝐻,𝑇 ), (𝐻,𝐻), (𝑇 ,𝑇 )} 𝐴2(2) = {(𝑇 ,𝑇 ), (𝑇 ,𝐻), (𝐻,𝑇 )}
𝐴1(3) = {(𝐻,𝐻), (𝑇 ,𝑇 )} 𝐴2(3) = {(𝑇 ,𝐻), (𝐻,𝑇 )}
𝐴1(4) = {(𝑇 ,𝑇 )} 𝐴2(4) = {(𝐻,𝑇 )}

.

Since

𝑢1(𝑇 ,𝐻) − 0 = 0 𝑢2(𝐻,𝐻) − 0 = 0
𝑢1(𝐻,𝑇 ) − 𝑢1(𝑇 ,𝐻) = 0 𝑢2(𝑇 ,𝑇 ) − 𝑢2(𝐻,𝐻) = 0
𝑢1(𝐻,𝐻) − 𝑢1(𝐻,𝑇 ) = 2 𝑢2(𝑇 ,𝐻) − 𝑢2(𝑇 ,𝑇 ) = 2
𝑢1(𝑇 ,𝑇 ) − 𝑢1(𝐻,𝐻) = 0 𝑢2(𝐻,𝑇 ) − 𝑢2(𝑇 ,𝐻) = 0

,

we have 𝑈1 =𝑈2 = {3}.

To compute the equilibria of the game, we now make use of Theorem 26 and look at all possible pairs (𝜋1, 𝜋2) of possibilistic 
mixed strategies.

By Corollary 27, we know that the pair (𝜋1, 𝜋2), where

𝜋1(𝐻) = 1 𝜋2(𝐻) = 1
𝜋1(𝑇 ) = 1 𝜋2(𝑇 ) = 1 ,
12

trivially is a possibilistic Choquet equilibrium.
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Consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝐻) = 1 𝜋2(𝐻) < 1
𝜋1(𝑇 ) = 1 𝜋2(𝑇 ) = 1 .

For player 1 we have 𝐴max
1(3) = {(𝑇 , 𝑇 )} and 𝜋1(𝑇 ) ≥ 𝜋2(𝑇 ) = 1. For player 2 we have 𝐴max

2(3) = {(𝑇 , 𝐻), (𝐻, 𝑇 )} and 𝜋2(𝑇 ) ≥ 𝜋1(𝐻) = 1. 
Then (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium.

Consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝐻) < 1 𝜋2(𝐻) = 1
𝜋1(𝑇 ) = 1 𝜋2(𝑇 ) = 1 .

For player 1 we have 𝐴max
1(3) = {(𝐻, 𝐻), (𝑇 , 𝑇 )} and 𝜋1(𝑇 ) ≥ 𝜋2(𝑇 ) = 1. For player 2 we have 𝐴max

2(3) = {(𝑇 , 𝐻)} and 𝜋2(𝐻) ≥ 𝜋1(𝑇 ) = 1. 
Then (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium.

Consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝐻) = 1 𝜋2(𝐻) = 1
𝜋1(𝑇 ) < 1 𝜋2(𝑇 ) = 1 .

For player 1 we have 𝐴max
1(3) = {(𝐻, 𝐻), (𝑇 , 𝑇 )} and 𝜋1(𝐻) ≥ 𝜋2(𝐻) = 1. For player 2 we have 𝐴max

2(3) = {(𝐻, 𝑇 )} and 𝜋2(𝑇 ) ≥ 𝜋1(𝐻) = 1. 
Then (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium.

Consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝐻) = 1 𝜋2(𝐻) = 1
𝜋1(𝑇 ) = 1 𝜋2(𝑇 ) < 1 .

For player 1 we have 𝐴max
1(3) = {(𝐻, 𝐻)} and 𝜋1(𝐻) ≥ 𝜋2(𝐻) = 1. For player 2 we have 𝐴max

2(3) = {(𝑇 , 𝐻), (𝐻, 𝑇 )} and 𝜋2(𝐻) ≥ 𝜋1(𝑇 ) = 1. 
Then (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium.

Consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝐻) < 1 𝜋2(𝐻) < 1
𝜋1(𝑇 ) = 1 𝜋2(𝑇 ) = 1 .

For player 2 we have 𝐴max
2(3) = {(𝑇 , 𝐻)} and 𝜋2(𝐻) < 𝜋1(𝑇 ). Then (𝜋1, 𝜋2) is not a possibilistic Choquet equilibrium.

Consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝐻) = 1 𝜋2(𝐻) = 1
𝜋1(𝑇 ) < 1 𝜋2(𝑇 ) < 1 .

For player 2 we have 𝐴max
2(3) = {(𝐻, 𝑇 )} and 𝜋2(𝑇 ) < 𝜋1(𝐻). Then (𝜋1, 𝜋2) is not a possibilistic Choquet equilibrium.

Consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝐻) < 1 𝜋2(𝐻) = 1
𝜋1(𝑇 ) = 1 𝜋2(𝑇 ) < 1 .

For player 1 we have 𝐴max
1(3) = {(𝐻, 𝐻)} and 𝜋1(𝐻) < 𝜋2(𝐻). Then (𝜋1, 𝜋2) is not a possibilistic Choquet equilibrium.

Consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝐻) = 1 𝜋2(𝐻) < 1
𝜋1(𝑇 ) < 1 𝜋2(𝑇 ) = 1 .

For player 1 we have 𝐴max
1(3) = {(𝑇 , 𝑇 )} and 𝜋1(𝑇 ) < 𝜋2(𝑇 ). Then (𝜋1, 𝜋2) is not a possibilistic Choquet equilibrium.

This covers all the possible combinations of possibilistic mixed strategies and the set of possibilistic Choquet equilibria is given 
by {

(𝜋1, 𝜋2) ∣ 𝜋1(𝐻) ≤ 1, 𝜋1(𝑇 ) = 1 and 𝜋2(𝐻) = 1, 𝜋2(𝑇 ) = 1,or

𝜋1(𝐻) = 1, 𝜋1(𝑇 ) ≤ 1 and 𝜋2(𝐻) = 1, 𝜋2(𝑇 ) = 1,or

𝜋1(𝐻) = 1, 𝜋1(𝑇 ) = 1 and 𝜋2(𝐻) ≤ 1, 𝜋2(𝑇 ) = 1,or

𝜋1(𝐻) = 1, 𝜋1(𝑇 ) = 1 and 𝜋2(𝐻) = 1, 𝜋2(𝑇 ) ≤ 1
}
.

Similar to the Prisoner’s Dilemma, the set of possibilistic Choquet equilibria for Matching Pennies is independent of the choice of a 
continuous t-norm. Not surprisingly, this is not true for all strategic-form games, and even for 2 × 2 games in particular, as shown in 
the next subsection.

4.3. Stag Hunt game

The Stag Hunt game is an example of a two-player coordination game. Two hunters can choose to hunt a stag or a hare. Hunting 
13

the hare requires a small effort and offers a small reward, but if only one hunter makes this choice, they will receive a much higher 
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Table 3

The Stag Hunt game.

Player 2

S H

Player 1
S

10
10

8
1

H
1

8
5

5

payoff than the other as they won’t have to share their catch. In this case, the other hunter will have to hunt the stag alone, which 
requires a much higher effort for little chance of success. If, however, the hunters make the same choice, they will catch their 
prey, with the higher payoff obtained when both hunt the stag. The game is well known to have two pure strategy Nash equilibria, 
corresponding to the players coordinating on the same choice, and it can be presented in the matrix form displayed in Table 3.

The game has the following set of pure strategy combinations

{(𝑆,𝑆), (𝑆,𝐻), (𝐻,𝑆), (𝐻,𝐻)} .

We compute the set of possibilistic Choquet equilibria of the game.

We begin by taking an ordering of the payoffs of each player 𝑖 ∈ {1, 2} as follows:

𝑢1(𝑆,𝐻) ≤ 𝑢1(𝐻,𝐻) ≤ 𝑢1(𝐻,𝑆) ≤ 𝑢1(𝑆,𝑆)

𝑢2(𝐻,𝑆) ≤ 𝑢2(𝐻,𝐻) ≤ 𝑢2(𝑆,𝐻) ≤ 𝑢2(𝑆,𝑆)
.

From the above, we obtain the sets

𝐴1(1) = {(𝑆,𝐻), (𝐻,𝐻), (𝐻,𝑆), (𝑆,𝑆)} 𝐴2(1) = {(𝐻,𝑆), (𝐻,𝐻), (𝑆,𝐻), (𝑆,𝑆)}
𝐴1(2) = {(𝐻,𝐻), (𝐻,𝑆), (𝑆,𝑆)} 𝐴2(2) = {(𝐻,𝐻), (𝑆,𝐻), (𝑆,𝑆)}
𝐴1(3) = {(𝐻,𝑆), (𝑆,𝑆)} 𝐴2(3) = {(𝑆,𝐻), (𝑆,𝑆)}
𝐴1(4) = {(𝑆,𝑆)} 𝐴2(4) = {(𝑆,𝑆)}

.

Since

𝑢1(𝑆,𝐻) − 0 = 1 𝑢2(𝐻,𝑆) − 0 = 1
𝑢1(𝐻,𝐻) − 𝑢1(𝑆,𝐻) = 4 𝑢2(𝐻,𝐻) − 𝑢2(𝐻,𝑆) = 4
𝑢1(𝐻,𝑆) − 𝑢1(𝐻,𝐻) = 3 𝑢2(𝑆,𝐻) − 𝑢2(𝐻,𝐻) = 3
𝑢1(𝑆,𝑆) − 𝑢1(𝐻,𝑆) = 2 𝑢2(𝑆,𝑆) − 𝑢2(𝑆,𝐻) = 2

,

we have 𝑈1 =𝑈2 = {1, 2, 3, 4}.

To compute the equilibria of the game, we now make use of Theorem 26 and look at all possible pairs (𝜋1, 𝜋2) of possibilistic 
mixed strategies.

Consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝑆) = 1 𝜋2(𝑆) = 1
𝜋1(𝐻) ≤ 1 𝜋2(𝐻) ≤ 1 .

Since (𝑆, 𝑆) ∈𝐴max
𝑖(𝑗) for each player 𝑖 and each 1 ≤ 𝑗 ≤ 4, any of the above pairs trivially is a possibilistic Choquet equilibrium.

Consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝑆) < 1 𝜋2(𝑆) = 1
𝜋1(𝐻) = 1 𝜋2(𝐻) ≤ 1 or

𝜋1(𝑆) = 1 𝜋2(𝑆) < 1
𝜋1(𝐻) ≤ 1 𝜋2(𝐻) = 1 .

In the first case, we have that {(𝑆, 𝑆)} = 𝐴max
1(4) and 𝜋1(𝑆) < 𝜋2(𝑆). In the second, we have that {(𝑆, 𝑆)} = 𝐴max

2(4) and 𝜋2(𝑆) < 𝜋1(𝑆). 
In both cases then, (𝜋1, 𝜋2) is not a possibilistic Choquet equilibrium.

Finally, consider any pair (𝜋1, 𝜋2) such that

𝜋1(𝑆) < 1 𝜋2(𝑆) < 1
𝜋1(𝐻) = 1 𝜋2(𝐻) = 1 .

Again, we have that {(𝑆, 𝑆)} = 𝐴max
1(4) = 𝐴max

2(4) . If 𝜋1(𝑆) ≠ 𝜋2(𝑆), then (𝜋1, 𝜋2) is obviously not an equilibrium. If 𝜋1(𝑆) = 𝜋2(𝑆), then 
(𝜋1, 𝜋2) is a possibilistic Choquet equilibrium as long as both 𝜋1(𝑆) and 𝜋2(𝑆) are idempotent. This, of course, depends on the specific 
choice of a t-norm and shows that the sets of equilibria associated to different t-norms for the same game are not necessarily the 
same.

To make this more explicit, consider the pair (𝜋1, 𝜋2) of possibility distributions such that

𝜋1(𝑆) = 0.4 𝜋2(𝑆) = 0.4
14

𝜋1(𝐻) = 1 𝜋2(𝐻) = 1 .
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It is easy to check that (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium w.r.t. the minimum t-norm: this is a consequence of both 
Theorem 26 in Section 3 and Theorem 13 from [18]. In fact, for player 1,

Π∗min

(
𝐴1(1)

)
=Π∗min

(
𝐴1(2)

)
= 1

and

Π∗min

(
𝐴1(3)

)
= max(min(𝜋1(𝐻)

=1
, 𝜋2(𝑆)

=0.4
),min(𝜋1(𝑆)

=0.4
, 𝜋2(𝑆)

=0.4
)) = 0.4,

Π∗min

(
𝐴1(4)

)
= min(𝜋1(𝑆)

=0.4
, 𝜋2(𝑆)

=0.4
) = 0.4

(where Π∗min
is the possibility measure generated by the joint possibility distribution 𝜋∗min

of 𝜋1 and 𝜋2 w.r.t. the minimum t-norm). It 
is clear that there is no possible distribution for player 1 that would unilaterally increase the value of Π∗min

(
𝐴1(3)

)
and Π∗min

(
𝐴1(4)

)
. 

A very similar argument can be made for player 2, showing that (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium w.r.t. the minimum 
t-norm.

The same pair of distributions is not, however, a possibilistic Choquet equilibrium w.r.t. the product t-norm ∗prod. As an example, 
for any pair (𝜋′

1, 𝜋2) of possibility distributions such that

𝜋′
1(𝑆) = 𝑎 𝜋2(𝑆) = 0.4

𝜋′
1(𝐻) = 1 𝜋2(𝐻) = 1 ,

with 𝑎 > 0.4, player 1 increases their possibilistic Choquet expected utility. In fact, for the pair (𝜋1, 𝜋2) of possibilistic mixed strategies 
such that

𝜋1(𝑆) = 0.4 𝜋2(𝑆) = 0.4
𝜋1(𝐻) = 1 𝜋2(𝐻) = 1 ,

we have, for player 1,

Π∗prod
(
𝐴1(1)

)
=Π∗prod

(
𝐴1(2)

)
= 1,

and

Π∗prod
(
𝐴1(3)

)
= max((𝜋1(𝐻)

=1
⋅ 𝜋2(𝑆)

=0.4
), (𝜋1(𝑆)

=0.4
⋅ 𝜋2(𝑆)

=0.4
) = 0.4,

Π∗prod
(
𝐴1(4)

)
= 𝜋1(𝑆)

=0.4
⋅ 𝜋2(𝑆)

=0.4
= 0.16

(where Π∗prod is the possibility measure generated by the joint possibility distribution 𝜋∗prod of 𝜋1 and 𝜋2 w.r.t. the product t-norm). 
For any pair (𝜋′

1, 𝜋2) of possibilistic mixed strategies such that

𝜋′
1(𝑆) = 𝑎 𝜋2(𝑆) = 0.4

𝜋′
1(𝐻) = 1 𝜋2(𝐻) = 1 ,

with 𝑎 > 0.4, we have, for player 1,

Π′
∗prod

(
𝐴1(1)

)
=Π′

∗prod

(
𝐴1(2)

)
= 1,

and

Π′
∗prod

(
𝐴1(3)

)
= max((𝜋′

1(𝐻)
=1

⋅ 𝜋2(𝑆)
=0.4

), (𝜋′
1(𝑆)
=𝑎

⋅ 𝜋2(𝑆)
=0.4

)) = 0.4,

Π′
∗prod

(
𝐴1(4)

)
= 𝜋′

1(𝑆)
=𝑎

⋅ 𝜋2(𝑆)
=0.4

> 0.16

(where Π′
∗prod

is the possibility measure generated by the joint possibility distribution 𝜋′
∗prod

of 𝜋′
1 and 𝜋2 w.r.t. the product t-norm). 

Then (𝜋1, 𝜋2) is not a possibilistic Choquet equilibrium w.r.t. the product t-norm. A similar argument can be made for the Łukasiewicz 
t-norm and any continuous Archimedean t-norm, as a consequence of Corollary 31 below.

5. Relationship between equilibria of different T-norms

As mentioned above, any continuous t-norm ∗ is isomorphic to an ordinal sum of isomorphic copies of continuous Archimedean 
t-norms (Theorem 18). In any ordinal sum, the set of idempotents can be seen as a sort of skeleton supporting and separating the 
components. In this section, we show that idempotent elements also play a pivotal role in determining the set of possibilistic Choquet 
equilibria.

In what follows, for any continuous t-norm ∗, we denote by 𝐼(∗) ⊆ [0, 1] its set of idempotent elements.

Theorem 30. Let ∗ and ∗′ be any two continuous t-norms, and 𝐼(∗) and 𝐼(∗′) be their sets of idempotents. Let 𝐆 be a strategic-form game, 
and 𝔊Π∗ and 𝔊Π∗′ be the possibilistic Choquet mixed extensions of 𝐆 w.r.t. ∗ and ∗′. Let ℎ ∶ [0, 1] → [0, 1] be an order-preserving bijection. 
15

Then the following hold:
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1. If ℎ is an order-embedding of 𝐼(∗) into 𝐼(∗′), then if (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium for 𝐆 w.r.t. ∗, so is (ℎ(𝜋1), ℎ(𝜋2))
w.r.t. ∗′.

2. If 𝐼(∗) and 𝐼(∗′) are order-isomorphic under ℎ, then (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium for 𝐆 w.r.t. ∗ if and only if 
(ℎ(𝜋1), ℎ(𝜋2)) is a possibilistic Choquet equilibrium for 𝐆 w.r.t. ∗′.

Proof. Given any strategic-form game 𝐆, consider any two continuous t-norms ∗ and ∗′ along with their corresponding possibilistic 
Choquet mixed extensions 𝔊Π∗ and 𝔊Π∗′ . Let ℎ ∶ [0, 1] → [0, 1] be an order-preserving bijection that is an order embedding of 𝐼(∗)
into 𝐼(∗′). Suppose that (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium w.r.t. ∗. We show that (ℎ(𝜋1), ℎ(𝜋2)) is a possibilistic Choquet 
equilibrium w.r.t. ∗′.

First, notice that, since ℎ is an order preserving bijection, for each 𝑗,

𝐴max
𝛼1(𝑗)

=
⎧⎪⎨⎪⎩(𝑠

′
1, 𝑠

′
2) ∣ (𝑠

′
1, 𝑠

′
2) ∈𝐴𝛼1(𝑗) and 𝑠′2 ∈ argmax

𝑠′′2 ∈𝑆2 , (𝑠
′′
1 ,𝑠

′′
2 )∈𝐴𝛼1(𝑗)

𝜋2(𝑠′′2 )
⎫⎪⎬⎪⎭

=
⎧⎪⎨⎪⎩(𝑠

′
1, 𝑠

′
2) ∣ (𝑠

′
1, 𝑠

′
2) ∈𝐴𝛼1(𝑗) and 𝑠′2 ∈ argmax

𝑠′′2 ∈𝑆2 , (𝑠
′′
1 ,𝑠

′′
2 )∈𝐴𝛼1(𝑗)

ℎ(𝜋2(𝑠′′2 ))
⎫⎪⎬⎪⎭ .

Now, by assumption (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium for 𝐆 w.r.t. ∗. Then by Theorem 26, for player 1 and for every 
𝑗 ∈ 𝑈1, there exists (𝑠1, 𝑠2) ∈ 𝐴max

𝛼1(𝑗)
such that 𝜋1(𝑠1) ≥ 𝜋2(𝑠2) and there is an idempotent element 𝑎 ∈ [𝜋2(𝑠2), 𝜋1(𝑠1)]. Since ℎ is an 

order-preserving bijection that maps idempotents into idempotents, it is easy to see that

ℎ(𝜋1(𝑠1)) ≥ ℎ(𝑎) ≥ ℎ(𝜋2(𝑠2)),

where ℎ(𝑎) is an idempotent element. The same argument can be made for player 2. Then, by Theorem 26, (ℎ(𝜋1), ℎ(𝜋2)) is a 
possibilistic Choquet equilibrium for 𝐆 w.r.t. to ∗′.

This proves (1). (2) can be shown in a similar way. □

From the above theorem we can derive some interesting results concerning equilibria of any continuous t-norm and the minimum 
t-norm, and equilibria of continuous Archimedean t-norms.

Corollary 31. Let 𝐆 be a strategic-form game, let ∗ and ∗′ be any two continuous t-norms and let 𝔊Π∗ and 𝔊Π∗′ be the possibilistic Choquet 
mixed extensions of 𝐆 w.r.t. ∗ and ∗′.

1. If (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium w.r.t. ∗, then (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium w.r.t. the minimum t-norm.

2. If ∗ and ∗′ are Archimedean, then the sets of possibilistic Choquet equilibria w.r.t. ∗ and ∗′ coincide.

3. If ∗ is Archimedean and (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium w.r.t. ∗, then (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium w.r.t. 
∗′.

Proof. (1) follows from Theorem 30(1) along with the fact that every element of the minimum t-norm is idempotent, and that the 
identity mapping 𝑖𝑑 ∶ [0, 1] → [0, 1] is a bijection that trivially maps the set of idempotents of ∗ into the set of idempotents of the 
minimum.

(2) is a consequence of Theorem 30(2), as every continuous Archimedean t-norm has only two idempotent elements, i.e. 0 and 1, 
and of taking the identity mapping 𝑖𝑑 ∶ [0, 1] → [0, 1].

(3) follows from Theorem 30(1) by an argument similar to (2). □

The previous corollary shows that, for any continuous t-norm ∗, a possibilistic Choquet equilibrium w.r.t. ∗ will also be a 
possibilistic Choquet equilibrium w.r.t. the minimum t-norm. However, we know from Section 4.3 that not every possibilistic Choquet 
equilibrium w.r.t. the minimum t-norm will necessarily be a possibilistic Choquet equilibrium w.r.t. ∗. While there are strategic-form 
games for which the set of possibilistic Choquet equilibria does not change no matter the choice of a continuous t-norm (sections 4.1

and 4.2), in general, games with mixed extensions based on different t-norms will have different sets of equilibria.

In what follows, we see some examples of ordinal sums of continuous t-norms and the relationship between their sets of idempo-
16

tents.
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Fig. 2. Domains of the t-norms ∗1 , ∗2 , and ∗3 with their components (Example 32).

Example 32. Consider the following continuous t-norms (see Fig. 2):

𝑥 ∗1 𝑦 =
⎧⎪⎨⎪⎩
0.3 ⋅

(
𝑥

0.3 ⋅
𝑦

0.3

)
(𝑥, 𝑦) ∈ [0,0.3]2

0.3 + 0.7 ⋅
(
𝑥−0.3
0.7 ⋅ 𝑦−0.30.7

)
(𝑥, 𝑦) ∈ [0.3,1]2

min(𝑥, 𝑦) otherwise

,

𝑥 ∗2 𝑦 =

{
0.4 ⋅

(
max

(
0, 𝑥

0.4 +
𝑦

0.4 − 1
))

(𝑥, 𝑦) ∈ [0,0.4]2

min(𝑥, 𝑦) otherwise
,

𝑥 ∗3 𝑦 =
⎧⎪⎨⎪⎩
0.5 ⋅

(
max

(
0, 𝑥

0.5 +
𝑦

0.5 − 1
))

(𝑥, 𝑦) ∈ [0,0.5]2

0.5 + 0.5 ⋅
(
max

(
0, 𝑥−0.50.5 + 𝑦−0.5

0.5 − 1
))

(𝑥, 𝑦) ∈ [0.5,1]2

min(𝑥, 𝑦) otherwise

.

∗1 is a continuous t-norm that is the ordinal sum of two isomorphic copies of the product t-norm: the first over [0, 0.3]2 and the 
second over [0.3, 1]2, with set of idempotents 𝐼(∗1) = {0, 0.3, 1}. ∗2 is a continuous t-norm obtained as an ordinal sum built from an 
isomorphic copy of the Łukasiewicz t-norm over [0, 0.4]2, with 𝐼(∗2) = {0} ∪ [0.4, 1]. ∗3 is a continuous t-norm that is the ordinal 
sum of two isomorphic copies of the Łukasiewicz t-norm: the first over [0, 0.5]2 and the second over [0.5, 1]2, with 𝐼(∗3) = {0, 0.5, 1}.

Let

ℎ1(𝑥) =
⎧⎪⎨⎪⎩

4
3𝑥 𝑥 ∈ [0,0.3]

6
7𝑥+

1
7 𝑥 ∈ (0.3,1]

.

ℎ1 is an order-preserving bijection that is an order-embedding of 𝐼(∗1) into 𝐼(∗2). By Theorem 30, we have that, for any strategic-

form game 𝐆, if (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium w.r.t. ∗1, then so is (ℎ1(𝜋1), ℎ1(𝜋2)) w.r.t. ∗2.

Let

ℎ2(𝑥) =
⎧⎪⎨⎪⎩

5
3𝑥 𝑥 ∈ [0,0.5]

5
7𝑥+

2
7 𝑥 ∈ (0.5,1]

.

ℎ2 is an order-preserving bijection that is an order-isomorphism between 𝐼(∗1) into 𝐼(∗3). Again, by Theorem 30, we have that, for 
any strategic-form game 𝐆, (𝜋1, 𝜋2) is a possibilistic Choquet equilibrium w.r.t. ∗1, if and only if so is (ℎ2(𝜋1), ℎ2(𝜋2)) w.r.t. ∗3.

We conclude this section by showing how, given any strategic-form game 𝐆, for any pair of possibility distributions satisfying 
certain conditions, we can construct a family of continuous t-norms from a finite set of elements so that each resulting t-norm ∗
makes (𝜋1, 𝜋2) into a possibilistic Choquet equilibrium for 𝐆 w.r.t. ∗. We describe this construction here.

Let 𝐆 be any strategic-form game and (𝜋1, 𝜋2) be any pair of possibilistic mixed strategies for 𝐆 such that for each player 𝑖
and for every 𝑗 ∈ 𝑈𝑖, there exists (𝑠1, 𝑠2) ∈ 𝐴max

𝛼𝑖(𝑗)
such 𝜋𝑖(𝑠𝑖) ≥ 𝜋−𝑖(𝑠−𝑖). For each player 𝑖 and each 𝑗 ∈ 𝑈𝑖, take a real number 

𝑎𝑖𝑗 ∈ [𝜋−𝑖(𝑠−𝑖), 𝜋𝑖(𝑠𝑖)]. Take the set

𝑋 =
{
0,1

}
∪

⋃
𝑗∈𝑈1

{
𝑎1𝑗

}
∪

⋃
𝑗′∈𝑈2

{
𝑎2𝑗′

}
.

17

𝑋 ⊂ [0, 1] can be presented as an ordered set of elements
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𝑋 =
{
𝑏1, 𝑏2,… , 𝑏𝑘−1, 𝑏𝑘

}
where 𝑘′ < 𝑘′′ if and if only 𝑏𝑘′ < 𝑏𝑘′′ . Then, for each 1 ≤ 𝑙 ≤ 𝑘 −1, let ∗𝑙 be either a continuous Archimedean t-norm or the minimum 
t-norm and ]𝑏𝑙, 𝑏𝑙+1[ be an open subinterval of [0, 1]. Let ∗ be the t-norm defined by

𝑥 ∗ 𝑦 =

{
𝑏𝑙 +

(
𝑏𝑙+1 − 𝑏𝑙

)
⋅
(

𝑥−𝑏𝑙
𝑏𝑙+1−𝑏𝑙

∗𝑙
𝑦−𝑏𝑙

𝑏𝑙+1−𝑏𝑙

)
(𝑥, 𝑦) ∈ [𝑏𝑙, 𝑏𝑙+1]2

min(𝑥, 𝑦) otherwise
.

∗ is a continuous t-norm built from 𝑋 where the elements of 𝑋 are taken as idempotents bounding the components of the ordinal 
sum, each being isomorphic to either the minimum, product or Łukasiewicz t-norm. It is easy to check that for any choice of ∗𝑙 , 
(𝜋1, 𝜋2) is a possibilistic Choquet equilibrium for 𝐆 w.r.t. ∗.

6. Final remarks

The above results suggest that the set of possibilistic Choquet equilibria of a strategic-form game essentially depends on the set 
of idempotents of a t-norm and not strictly on the t-norm itself. By taking the minimum, we have the guarantee of obtaining the 
set of all possible possibilistic Choquet equilibria, as any other choice will not return possibilistic mixed strategy combinations that 
are not in this set. The question then is: why would anyone choose to model joint possibility distributions with the Łukasiewicz or 
product t-norms (or any other continuous t-norm) over the minimum and would this really matter? One could argue that the choice 
of a t-norm is still relevant depending on the interpretation given to a possibilistic mixed strategy and a joint possibility distribution. 
Suppose that, for instance, we were to interpret a possibilistic mixed strategy as a measure of the commitment of a player to make a 
specific choice (as we do with respect to the Weak-link game in [18]). The choice of the Łukasiewicz t-norm can model the situation 
in which to obtain a positive aggregated value of the commitment of different players requires the combined commitment to pass a 
certain threshold. In that case, for a strategy combination (𝑠1, 𝑠2), we need 𝜋1(𝑠1) + 𝜋2(𝑠2) > 1 to have 𝜋1(𝑠1) ∗Łuk 𝜋2(𝑠2) > 0. Other 
situations that require a different threshold might be more adequately represented by taking other nilpotent t-norms or taking ordinal 
sums where the Łukasiewicz t-norm (or another nilpotent t-norm) is the first component. The choice of the minimum t-norm can 
instead model the situation in which the aggregated value is rather seen as the minimum commitment level among the players. It is 
then clear that the choice of a particular t-norm is relevant in the context of what possibilistic mixed strategies are used to model in 
strategic interactions.

The above suggests that to gain a better understanding of the role the possibilistic approach plays in game theory, further research 
should explore a behavioural interpretation of the notion of possibilistic mixed strategies. Possibility measures are a special kind of 
imprecise probabilities [30] and can be seen, in behavioural terms, as coherent upper probabilities [31], i.e. as upper bounds of some 
set of probability measures. Whilst the game theoretic literature abounds with behavioural generalisations of Nash equilibria aimed 
at overcoming the limitations of the additive representations of uncertainty [13,20], this has not quite been the motivating question 
for our research. As discussed in full detail in [18], our goal has been rather that of investigating the mathematical consequences 
of randomising with possibility instead of probability distributions. However, the framework of Ellsberg games [27] may provide 
an interesting bridge between our analysis and the approach to game theory aimed at rationalising ambiguity aversion. The reason 
is that in Ellsberg games players can be seen to make a strategic use of ambiguity by concealing their intentions of playing one 
probability distribution and rather playing a set of distributions. Seeing possibility measures as upper bounds of sets of probabilities 
could offer then an interesting link to Ellsberg games. We plan to explore this connection in our future work.
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