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F OURIER EXPANSION is a special case of signal decomposition that decomposes a signal
into oscillatory components. In this method, the signal is represented as a linear

combination of trigonometric or exponential basis functions. The expansion coefficients (or
weights) are then computed by correlating the signal with the corresponding basis functions [1,
2]. The process of computing the coefficients is known as Fourier analysis. In real applications,
we are interested to use a few terms of Fourier expansion or it may be impossible to use
all the terms to approximate the signal. Therefore, a truncated Fourier expansion is used
instead [3]. However, when a truncated Fourier expansion is used to approximate a signal
with a jump discontinuity, an overshoot/undershoot at the discontinuity occurs which is known
as Gibbs phenomenon. The correct size of the overshoot and the undershoot of truncated
Fourier expansion near the point of discontinuity was computed by Gibbs, that is the size
of overshoot/undershoot is approximately 9% of the magnitude of the jump [4]. This lecture
note shows that the size of overshoot mainly depends on the approach used for computing the
Fourier analysis. It shows that in the traditional approach, the Fourier analysis is computed
based on the minimization of the mean squares error (MSE) between the signal and its Fourier
expansion (i.e., the ℓ2-norm minimization of the model error). Then it presents a new method to
compute the Fourier analysis. In the new approach, the Fourier analysis (expansion coefficients)
is obtained by minimizing the mean absolute error (MAE) between the reconstructed signal and
the original signal. Since the new approach is defined based on the ℓ1-norm minimization, we
call it ℓ1 Fourier analysis. Similarly the traditional approach is called ℓ2 Fourier analysis. Using
ℓ1 Fourier analysis, we observed that the size of overshoot/undershoot for truncated Fourier
expansion of signals with jump discontinuities is decreased to 4% of the magnitude of the
jump. The effectiveness of the proposed ℓ1 Fourier analysis, in terms of reduction of Gibbs
phenomenon in truncated Fourier-series expansion and filtering the impulsive noise from the
signals and images, is showcased using numerical examples.
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Relevance
In signal analysis, one often encounters the so called

Fourier analysis. It is one of the most important tools in
mathematics, computer science and signal processing where
one’s need to solve a partial differential equation (PDE)
[5], compress music in MP3 players [6], or compress the
digital images in JPEG form [7], digital spectral analysis
[8] and filter design [9], to just name a few. The method
consists of two steps: i) decomposing the signal into
oscillatory components by expanding it based on a linear
combination of a set of trigonometric or exponential functions
with fundamental frequencies; ii) computing the Fourier
analysis or finding the expansion coefficients. It was first
introduced by Baron Jean Baptiste Joseph Fourier in 1807 to
derive the equations of heat propagation using some series
of trigonometric function [10]. The original derivation by
Fourier was proposed for representing a continuous-time (CT)
signal. Nowadays, due to the power of digital computers,
the Fourier analysis is mainly presented in the context of
discrete-time (DT) signals (sequences) and systems. The
most important transform that performs Fourier analysis for
discrete signals is the discrete Fourier transform (DFT).
The formulations of discrete Fourier analysis (or DFT) and
their CT counterparts (continuous Fourier series) are quite
similar with some differences. In 1965, Cooley and Tukey
jointly developed an implementation of DFT for high speed
computers which is known as fast Fourier transform (FFT)
[11].

In this article, we concern ourselves mainly with DFT,
which is of great practical importance in the analysis
of discrete signals and other data. We study the Gibbs
phenomenon in truncated Fourier expansions of functions
with jump discontinuities and propose a new approach to
compute the DFT (Fourier coefficients) that reduces the
Gibbs effect. The method is based on the replacement of ℓ2-
norm with ℓ1-norm. It minimizes the mean absolute error
(MAE) between the signal and its Fourier expansion. The
replacement of ℓ2-norm with ℓ1-norm is a treatment studied
for two decades in sparse solutions [12, 13] and compressed
sensing [14]. Especially, in many applications in compressed
sensing, the measurement matrix is a Fourier matrix [15].

Compressive sensing shows that a compressed signal can be
reconstructed from much fewer incoherent measurements. Its
aim is to represent the sparse signal without going through
the intermediate stage of acquiring all the samples. It is
also related to the problem of reconstructing the signal
from incomplete frequency information [16]. The ℓ1-norm
has also been attracting more and more attention for the
interpolation and approximation of functions and irregular
geometric data. In [17], the authors show that the Gibbs
phenomenon can be reduced by using ℓ1 spline fits. In [18],
some theoretical results are provided to explain the potential
of such methods in avoiding the Gibbs phenomena. While
none of the above algorithms use the ℓ1-norm to identify
the expansion coefficients, in this article, the process of
computing the Fourier analysis is defined based on the ℓ1-
norm minimization of the error between the reconstructed
signal and the original signal. The main problem is that
there is no analytic formula for its solution. Therefore, a
majorization minimization (MM) approach [19] is used to
solve the problem which results in a linear iterative algorithm.

Prerequisites
This lecture note requires basic knowledge of signal and

system, engineering mathematics and optimization problem.

Discrete Fourier
Transform

The inverse DFT states that a discrete signal
can be represented as a linear combination of
trigonometric/exponential functions with fundamental
frequencies. That is a given signal x[n], n ∈ ZN =

{0, 1, · · · , N − 1} can be represented as [20, 9]

x[n] =

N−1∑
k=0

cke
i 2πk

N n, (1)

where i =
√
−1 and the expansion coefficients ck are given
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Figure 1: The result of the truncated Fourier expansion when the coefficients are computed using ℓ2 Fourier analysis (xM [n]
for M = 8, 32, 64, 128) in approximating a step function with N = 1024.

by

ck =
1

N

N−1∑
n=0

x[n]e−i 2πk
N n. (2)

Some authors include the factor 1/N in the definition of x[n]
and not in the definition of Fourier analysis [21, 22, 23]. (2) is
simply obtained by multiplying both sides of (1) with ei

2πj
N n;

taking the sum of the result from 0 to N − 1; simplifying it
while considering the following relation:

1

N

N−1∑
n=0

ei
2πj
N nei

2πk
N n =

0 if j ̸= k

1 if j = k
(3)

It is mentionable that when x is a real-valued, its Fourier
expansion is usually written in terms of sines and cosines:

x[n] =

N−1∑
k=0

αk cos

(
2πk

N
n

)
+ βk sin

(
2πk

N
n

)
, (4)

where the coefficients, αk and βk, are computed as
αk =

1

N

N−1∑
n=0

x[n] cos

(
2πk

N
n

)

βk =
1

N

N−1∑
n=0

x[n] sin

(
2πk

N
n

) (5)

Note that ck, αk and βk are related as ck = (αk − iβk)/2.
In real applications, we are interested to use a few terms
of Fourier expansion or it may be impossible to use all
the terms to approximate the signal. Therefore, a truncated
Fourier expansion is used instead. In the following section, the
problem of representing the signals with a truncated Fourier
expansion and its limitations is discussed.

Problem Statement

Let us consider the problem of approximating x[n] by a
truncated Fourier expansion xM [n] defined by

xM [n] =

M−1∑
k=0

cke
i 2πk

N n, M < N. (6)

In truncated Fourier expansion, the number of expansion
terms is less than the length of signal. When (6) is used
to approximate a signal with a jump discontinuity, an
overshoot at the discontinuity occurs. This phenomenon was
observed by Michelson when he was using his mechanical
machine (called harmonic analyser) to produce graphs of
truncated trigonometric series with terms up to 80 sines and
cosines. He published his report [24] and the problem was
explained by Gibbs [25, 26] in 1899, thus is known as Gibbs
phenomenon. However, the history of studying the overshoot
and undershoot in the neighborhood of discontinuities of the
sums of Fourier series goes back to 1848 where Wilbraham
published a paper on this topic for the first time [27].
The Gibbs effect is also seen in other signal decomposition
approaches such as wavelet expansion, spline and cubic
spline interpolation [28, 17, 18]. As an illustration of Gibbs
phenomenon, we consider a step function with length N =

1024 (t = 0 : 0.0098 : 10) and its Fourier expansion using
the truncated model (6). The step function and its truncated
Fourier expansion with the first M modes, i.e., xM [n], for
M = 8, 32, 64, 128 are shown via blue and red line in
Figure 1. The first plot includes only the first 8-th modes in
the Fourier expansion, while the last plot includes up to the
128 modes. The more modes we include, the more the curve
looks like a step function. However, it introduces strange
wiggles (overshoots) near the discontinuity. As the number
of modes grows, the wiggles get pushed closer and closer to
the discontinuity, in the sense that the amplitude in a given
region decreases as the number of modes, M , increases. So
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in some sense the wiggles go away as M approaches N .
However, the overshoot unfortunately never goes away, but it
remains roughly the same size (about 9% of the magnitude
of the jump). It is provable that this 9% result holds for a
discontinuity in any function, not just a step function [4].
So, the question arises as to whether this 9% overshoot is
due to the Fourier expansion or due to the approach used for
computing the expansion coefficients. If it is due to the later
case, is it possible to decrease the Gibbs effect by employing
a different computation approach? This article shows that
the 9% overshoot of the Fourier expansion reported in the
literature is due to the approach used for computing the
Fourier analysis and it can be decreased if we employ a proper
approach to compute the coefficients.

Solution
As it become clear in the following discussion, the

Fourier analysis (expansion coefficients) computed by (2)
minimizes the mean square error (MSE) between the signal
and its Fourier expansion. MSE corresponds to the ℓ2-norm.
It also gives the maximum likelihood (ML) estimate of
the coefficients, under the assumption of a white Gaussian
distribution for the modeling error. The problem is that
this assumption does not hold in practice. Specially, for the
above example, the estimation error confirms a non-Gaussian
distribution. We will see that for truncated Fourier expansion
of the step function, the Gibbs phenomenon can be reduced if
the Fourier coefficients are computed by minimizing the mean
absolute error (MAE) between signal and its model.

MSE based Fourier analysis computation
(6) can be written in the following form

xM [n] =

M−1∑
k=0

ckϕk[n], (7)

where
ϕk[n] = ei

2πk
N n. (8)

The expansion error is defined by e[n] = x[n]− xM [n], i.e.,

e[n] = x[n]−
M−1∑
k=0

ckϕk[n]

An important property for the expansion model is its ability in
signal approximation, that is the error signal should be within

an acceptable range. Let us consider that the parameters are
found by minimizing the power of the residual error signal,
e[n]:

ĉk = argmin
ck

1

N

N−1∑
n=0

(
x[n]−

M−1∑
k=0

ckϕk[n]

)2

(9)

Then the minimization of (9) with respect to the coefficients
ck, leads to the following solution:

copt = Φ−1x (10)

where Φ ∈ RM×M and x ∈ RM are, respectively, matrices
and vectors with the following entries:

Φp,q =
1

N

N−1∑
n=0

ϕp[n]ϕ
∗
q [n], (p, q = 0, · · · ,M − 1)

xq =
1

N

N−1∑
n=0

x[n]ϕ∗
q [n]

(11)
Since, the Fourier basis functions ϕk[n] form an orthonormal
basis, the matrix Φ becomes an identity matrix and the
coefficients are found as

copt = x, (12)

which is exactly the same as (2) when we set M = N . It
means that the Fourier analysis obtained by (2) minimizes
the MSE between the signal and its expansion (i.e., the ℓ2-
norm of the error). Note that (10) is also the maximum
likelihood (ML) estimate of the coefficient vector c, under the
assumption of a white Gaussian distribution for the modeling
error e[n]. In the following, we compute the Fourier analysis
by minimizing the MAE between the signal and its Fourier
expansion (i.e., the ℓ1-norm minimization of the error).

MAE based Fourier analysis computation
An alternative method is to estimate the expansion

coefficients using the following cost function:

ĉk = argmin
ck

1

N

N−1∑
n=0

∣∣∣∣∣x[n]−
M−1∑
k=0

ckϕk[n]

∣∣∣∣∣ , (13)

which substitutes a mean of absolute errors for the
mean of square errors used in the traditional Fourier
analysis. Using the proposed Fourier analysis, the truncated
Fourier expansion can approximate a function with a jump
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Figure 2: The result of the truncated Fourier expansion of M = 8 terms when the coefficients are computed using ℓ1 Fourier
analysis after a certain iteration (x(r)

8 [n], r = 3, 5, 10, 50) in approximating the step function.

discontinuity with a more robust behaviour against the
amplitude changes at discontinuous points. We call it ℓ1

Fourier analysis or MAE Fourier analysis. Similarly, the
traditional Fourier analysis is called ℓ2 Fourier analysis or
MSE Fourier analysis as the coefficients are computed by
minimizing the MSE. The optimization problem (13) is
convex but there is no analytic formula for its solution (i.e.,
it is difficult to minimize due to the last term since it is non-
differentiable). However, it can be solved numerically in a
linear computational complexity. In this article, optimization
problem (13) is solved by the MM approach [19]. The key
idea of the MM approach is to convert the intractable original
problem into a simpler one that can be solved. Specifically,
the original cost function is approximated by an iterative
tractable surrogate function. Then a solution is found by
minimizing the surrogate function with non-increasing cost.
The obtained solution converges to a stationary point of the
original optimization problem. In order to solve the problem
(13), we use a majorizer for the absolute value. That is

|x[n]| ≤ 1

2

x2[n]

|x(r)
M [n]|

+
1

2

∣∣∣x(r)
M [n]

∣∣∣ , (14)

with equality when x[n] = x
(r)
M [n] (x(r)

M [n] is the estimated
signal after r iterations). In this case, (13) is expressed as

ĉ
(r+1)
k = argmin

ck

1

N

N−1∑
n=0

(
x[n]−

∑M−1
k=0 ckϕk[n]

)2
2
∣∣∣x[n]− x

(r)
M [n]

∣∣∣ +
γ

2
,

(15)
where γ =

∣∣∣x[n]− x
(r)
M [n]

∣∣∣ and

x
(r)
M [n] =

M−1∑
k=0

ĉ
(r)
k ϕk[n]

The minimization of (15) with respect to the coefficients ck,

leads to the following solution:

cr+1
opt =

(
Ψ(r)

)−1

x̃(r) (16)

where Ψ(r) ∈ RM×M and x̃(r) ∈ RM are, respectively,
matrices and vectors with the following entries:

Ψ(r)
p,q =

1

N

N−1∑
n=0

ϕp[n]ϕ
∗
q [n]∣∣∣x[n]− x
(r)
M [n]

∣∣∣ , (p, q = 0, · · · ,M − 1)

x̃(r)
q =

1

N

N−1∑
n=0

x[n]
ϕ∗
q [n]∣∣∣x[n]− x

(r)
M [n]

∣∣∣
(17)

In this study, we consider the initial condition x
(0)
M [n] =

x[n] + κ, where κ is a non-zero constant value. In this
case, the traditional approach (i.e., ℓ2 Fourier analysis) is a
special case of ℓ1 Fourier analysis when κ and the number
of iterations, r, are both set to one (κ = r = 1). The
proposed approach (ℓ1 Fourier analysis) was used to compute
the coefficients of the truncated Fourier expansion of the
step function in the previous example. Figure 2 illustrates
the performance of truncated Fourier series with the first 8
modes. The solid blue and red curve in Figure 2 denote the
theoretical step function (i.e., x[n]) and its Fourier expansion
using the ℓ2 Fourier analysis (i.e., x8[n]), respectively, which
are the same as those in Figure 1. The truncated Fourier
expansion with the expansion coefficients obtained by ℓ1

Fourier analysis after r = {3, 5, 10, 50} iterations (i.e.,
x
(r)
8 [n]) is plotted in Figure 2 with black solid line. The

overshoot of the truncated Fourier expansion is reduced when
the expansion coefficients are computed using ℓ1 Fourier
analysis. Specially, the overshoot is decreased as the number
of iterations is increased. The cost function evolution of MM
approach is illustrated in Figure 3. It is seen that the algorithm
converges well within a few iterations. In Figure 4(a) and
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Figure 3: The convergence of MM approach.
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Figure 4: The result of the proposed truncated Fourier expansion of M = 128 terms after a certain iteration, x(r)
8 [n], in

approximating the step function, for r = 3, 10. The truncated Fourier expansion using ℓ2 Fourier analysis (xM [n]) is also
illustrated via red line for comparison.

4(b), we illustrate the performance of the truncated Fourier
series with the first 128 modes. The coefficients are computed
by ℓ1 Fourier analysis after 3 and 10 iterations, respectively.
The results show that the overshoot can be decreased to
4% of the magnitude of the jump. Since the matrices Ψ(r)

in (16) are non-orthogonal, the ℓ1 Fourier analysis involves
matrix inversion, which has a complexity of O(M3 +MN).
There are three special spaces in convex optimization: i)
the ℓ1-norm which mostly replaces ℓ0-norm as ℓ0-norm is
not convex and not well defined, ii) the celebrated ℓ2-norm
that everybody knows and uses, and iii) the ℓ∞-norm. Other
norm spaces mostly produce performances in between these.
We also employed the ℓ∞-norm minimization to compute
the Fourier analysis. The truncated Fourier expansion of the
step function when the coefficients are computed using ℓ∞

Fourier analysis is shown via red color in Figure 5. The ℓ8-
and ℓ4-norm minimization are also employed to compute the
Fourier analysis. The truncated Fourier expansion using ℓ8

and ℓ4 Fourier analysis are respectively shown via yellow and
purple. As expected these two norms produce performance in
between ℓ1- and ℓ∞-norm minimization. In other words, the
size of overshoot/undershoot for truncated Fourier expansion
decreases when we decrease the norm of minimization in
Fourier analysis computation.

Applications
The new Fourier analysis can find various applications in

signal processing. As a proof of concept, we focus on two
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Figure 5: The result of the truncated Fourier expansion of M = 8 terms (xℓp
M [n]) when the coefficients are computed using ℓ∞,

ℓ8, ℓ4, ℓ2 and ℓ1 Fourier analysis in approximating the step function.

examples.

Reduction the Gibbs phenomena in image
filtering

Signal decomposition based method such as Fourier,
discrete cosine and wavelet transform is a common approach
to image filtering. In this section, we consider the discrete
cosine transform (DCT) for low-pass filtering of an image.
For a two-dimensional signal x[n1, n2], n1 = 0, 1, · · · , N1−
1, n2 = 0, 1, · · · , N2 − 1, one of the possible two-
dimensional inverse discrete cosine transform (iDCT) is
defined as

x[n1, n2] =

N1−1∑
k1=0

N2−1∑
k2=0

ck1,k2ϕk1,k2 [n1, n2], (18)

where
ϕk1,k2

[n1, n2] = cos
k1π

N1

(
n1 +

1

2

)
cos

k2π

N2

(
n2 +

1

2

)
ck1,k2 =

1

N1N2

N1−1∑
n1=0

N2−1∑
n2=0

x[n1, n2]ϕk1,k2 [n1, n2]

(19)
When we represent an image by iDCT, Gibbs phenomenon
is the most common image artifact that arises from truncated
iDCT of an image. For instance, consider the original image
shown in the left side of Figure 6. We contaminated it with
salt-and-pepper noise as shown in the middle of the Figure 6.
Salt-and-pepper noise is an impulse noise which is sometimes

seen on images. This noise can be caused by sharp and sudden
disturbances in the image signal. We employed the truncated
iDCT to reconstruct the original image. The result is shown in
the right side of Figure 6. The truncated iDCT is not a good
model for reconstructing the original image. The noise is not
eliminated by the model and the Gibbs effect is clear in the
output. The weak performance of the truncated iDCT model
is due to the approach used for DCT computation. To show it,
we computed the DCT using the ℓ1 optimization approach.
The results of the truncated iDCT using the ℓ1 DCT after
a certain iteration (r = 2, 5, 15) are shown in Figure 7.
It is seen that the reconstructed image becomes close to the
original image as the number of iterations increases. In other
words, the Gibbs effect is reduced when the ℓ1 optimization
is used to compute the coefficients (i.e., DCT). Therefore, the
Gibbs effect is mainly due to the DCT computation approach
but not the iDCT model. It is decreased in low-pass filtering
of images while maintaining the sharp edges features.

Audio filtering
In this section, we compare the truncated Fourier

expansion (when the coefficients are computed using ℓ2 or
ℓ1 Fourier analysis) and zero-phase Butterworth filter for
denoising audio signals corrupted by random-valued impulse
noise. To this purpose, we consider “guitartune.wav” the
standard sample tune that ships with MATLAB. The signal
contains 661500 samples which we split it to sub signals
each contains 10000 samples. Therefore, we have 66 signals.
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Figure 6: Image filtering using truncated ℓ2 iDCT. From left to right: original image, noisy image obtained by adding salt-and-
pepper noise and denoised image using truncated ℓ2 iDCT.

Figure 7: Image denoising using truncated ℓ1 iDCT after a certain iteration, r = 2, 5, 15.

The signals were contaminated with impulse noise. To this
purpose, we produced signals varying the power of noise.
The signal-to-noise ratio (SNR) was modulated from −5 dB
to 10 dB. The truncated Fourier expansion (using ℓ2 or ℓ1

Fourier analysis) and the third order zero-phase Butterworth
filter were then used to reconstruct the desired signals from
the noisy signals. The cutoff frequency was set to 800 Hz. As
an example, the first 10000 samples of “guitartune.wav” and
its noisy signal with SNR = 5 dB are shown in Figure 8(a) and
Figure 8(b), respectively. The results of audio signal filtering
with these three methods are illustrated in Figures 8(c)-8(e).
For evaluating the performance of the methods, we used the
average square relative error (SRE) and the average absolute

relative error (ARE) of the estimation accuracy defined by

SRE =

∑
k (xk − x̂k)

2∑
k x

2
k

ARE =

∑
k |xk − x̂k|∑

k|xk|

, (20)

where x and x̂ are the original and estimated signal,
respectively. The results of the reconstruction procedures
using these metrics are reported in Figures 9(a) and 9(b).
The SRE and ARE for the truncated Fourier expansion when
the coefficients are computed using ℓ1 Fourier analysis is
less than zero-phase Butterworth filter and truncated Fourier
expansion when the coefficients are computed using ℓ2

Fourier analysis which means that the proposed ℓ1 Fourier
expansion outperforms other two methods.
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Figure 8: Audio filtering using zero-phase Butterworth filter (SRE = 0.1092 and ARE = 0.1152), truncated ℓ2 Fourier expansion
(SRE = 0.1118 and ARE = 0.1183) and ℓ1 Fourier expansion (SRE = 0.0963 and ARE = 0.1000).

What we have learned

In Fourier decomposition, the signal is represented as
a linear combination of trigonometric or exponential basis
functions and the expansion weights (or coefficients) are
computed such that it best fits the signal. In the traditional
approach, the Fourier analysis (expansion coefficient) is
computed based on the minimization of mean square
error between the signal and its expansion (i.e., ℓ2-norm
minimization of the error). In this approach, when a
truncated Fourier expansion is used to approximate a signal
with a jump discontinuity, an overshoot/undershoot at the
discontinuity occurs which is known as Gibbs phenomenon.
Using ℓ2 Fourier analysis, the size of overshoot/undershoot
is approximately 9% of the magnitude of the jump. We have
learned that the size of overshoot/undershoot is mainly due
to the approach used for computing the Fourier analysis.
The Fourier analysis can be computed using other ℓp-norm
minimization. The size of overshoot/undershoot changes if
the Fourier analysis is computed based on the ℓp-norm
minimization of the model error. For p ≥ 1, other ℓp-norm
minimization mostly produce performances in between ℓ1-
and ℓ∞-norm minimization.

Some future directions are summarized as follows:

• Although different ℓp-norm optimization approach
(p ≥ 1) were used to compute the Fourier analysis and
the ℓ1 Fourier analysis is the best choice for reducing

the size of overshoot/undershoot in the truncated
Fourier expansion of the step function, there are some
improvements that can be done in the future.

• The extension of the proposed computing approach to
ℓp Fourier analysis for 0 ≤ p < 1 is interesting. For
instance, it is interesting to see what could be the result
by using ℓ0-norm minimization.

• The extension of the proposed method to compute the
expansion coefficients of other signal decomposition
based methods such as wavelet transform, polynomial
and spline interpolation is another possibility.

• Finally, the ℓ1 Fourier analysis can be used to improve
the accuracy of the Fourier expansion at cost of
increasing the computational complexity. Improving
the computational complexity of the proposed approach
can be considered as future work.
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Figure 9: Audio low-pass filtering using ℓ2 and ℓ1 Fourier expansion and zero-phase Butterworth filter.

Fourier and Gibbs phenomena available on YouTube which
motivated me to prepare this lecture note.
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