RNA-KG: An ontology-based knowledge graph for representing interactions involving RNA molecules

Emanuele Cavalleri¹, Alberto Cabri¹, Mauricio Soto-Gomez¹, Sara Bonfitto¹, Paolo Perlasca¹, Jessica Gliozzo¹, Tiffany J. Callahan², Justin Reese³, Peter N Robinson⁴, Elena Casiraghi¹, Giorgio Valentini¹, and Marco Mesiti^{1,*}

¹AnacletoLab, Computer Science Department, University of Milan, 20122, Italy

²Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA ³Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

⁴Berlin Institute of Health - Charité, Universitätsmedizin, Berlin, 13353, Germany

*corresponding author(s): Marco Mesiti (marco.mesiti@unimi.it)

ABSTRACT

The "RNA world" represents a novel frontier for the study of fundamental biological processes and human diseases and is paving the way for the development of new drugs tailored to the patient's biomolecular characteristics. Although scientific data about coding and non-coding RNA molecules are continuously produced and available from public repositories, they are scattered across different databases and a centralized, uniform, and semantically consistent representation of the "RNA world" is still lacking. We propose RNA-KG, a knowledge graph encompassing biological knowledge about RNAs gathered from more than 50 public databases, integrating functional relationships with genes, proteins, and chemicals and ontologically grounded biomedical concepts. To develop RNA-KG, we first identified, pre-processed, and characterized each data source; next, we built a meta-graph that provides an ontological description of the KG by representing all the bio-molecular entities and medical concepts of interest in this domain, as well as the types of interactions connecting them. Finally, we leveraged an instance-based semantically abstracted knowledge model to specify the ontological alignment according to which RNA-KG was generated. RNA-KG can be downloaded in different formats and also queried by a SPARQL endpoint. A thorough topological analysis of the resulting heterogeneous graph provides further insights into the characteristics of the "RNA world". RNA-KG can be both directly explored and visualized, and/or analyzed by applying computational methods to infer bio-medical knowledge from its heterogeneous nodes and edges. The resource can be easily updated with new experimental data, and specific views of the overall KG can be extracted according to the bio-medical problem to be studied.

Background & Summary

The involvement of RNAs in various physiological processes has been ascertained by several studies^{1–3} that have revealed the pervasive transcription of an unexpected variety of RNA molecules⁴ that can lead to a significant breakthrough in the treatment of cancer, genetic, and neurodegenerative disorders, cardiovascular and infectious diseases⁵. The study of RNA is also one of the most promising avenue of research in therapeutics, as evidenced by the recent success of mRNA-based vaccines for the COVID-19 pandemic⁶, for the treatment of melanoma⁷, for the development of new drugs that can target both proteins and mRNA, as well as other non-coding RNA, and for encoding missing or defective proteins, regulating the transcriptome, and mediating DNA or RNA editing⁸. Thus, RNA technology significantly broadens the set of druggable targets, and is also less expensive than other technologies (e.g., drug synthesis based on recombinant proteins), due to the relatively simple structure of RNA molecules that facilitate their biochemical synthesis and chemical modifications⁹. Non coding RNAs (ncRNAs) comprise a large range of RNA species, and a large set of scientific data representing different kinds of interactions among them and with other bio-entities (e.g., genes, proteins, chemicals, diseases, and phenotypes) are made publicly available by several genomics laboratories.

The possibility of integrating the interactions that they made available would be of great relevance for knowledge discovery and also for the development of new RNA-based drugs. However, these sources adopt different data models, formats, and conventions for the representation of the bio-entities, and different semantics can be assigned to the proposed interactions. The extraction and integration of information from even two data sources for conducting knowledge discovery activity would require a lot of effort from researchers. To address these issues, KGs^{10} have emerged as a compelling abstraction for organizing interrelated knowledge in different domains and a way for integrating heterogeneous information extracted from multiple data sources with the aim of highlighting complex interdependencies and uncovering hidden relationships. KGs can be

represented both with property graphs (e.g., Neo4j¹¹) or according to the Resource Description Framework (RDF¹²) with different advantages and disadvantages¹³. When a KG is generated according to an ontology, it contains a schema part (denoted TBOX or terminologies) and a data part (denoted ABOX, facts, or assertions) on top of which different kinds of reasoning activities can be conducted using expressive languages (like OWL¹⁴, DL¹⁵, or SPARQL¹⁶). KGs have started to play a central role also in the life sciences¹⁷ for the representation of bio-entities and their interactions and for the application of AI approaches for discovering new knowledge and eventually for explaining it. Different ontologies have been proposed for systematizing the corpus of terms used to describe the function and localization of bio-entities and for offering a formal framework to represent biological knowledge. Specific biological KGs (e.g., PrimeKG¹⁸, Human Disease benchmark KG¹⁹, ReproTox-KG²⁰, Monarch Knowledge Graph²¹, and Knowledge Base of Biomedicine²²) have been recently constructed for conducting different kinds of analysis and supporting the research activities.

In this paper we describe *RNA-KG*, the first ontology-based knowledge graph for representing coding and non-coding RNA molecules and their interactions with other biomolecular data as well as with pathways, abnormal phenotypes and diseases to support the study and the discovery of the biological role of the "RNA-world". RNA-KG contains RDF triples extracted from more than 50 public data sources and also integrates related bio-medical concepts. RNA-KG can be exploited for the study of RNA molecules and the development of innovative graph algorithms to support knowledge discovery in data science. A big effort has been dedicated to the characterization of the data sources and to the identification of the bio-medical ontological concepts that better represent the information provided by the considered data sources and the interactions involving RNA molecules. This work culminated in the construction of a meta-graph that represents all the possible interactions that can be devised from the considered data sources and that can be represented by means of the Relation Ontology (RO²³), which ensures common semantics for the different relationships that can be extracted from the sources. Relying on the generated meta-graph and exploiting the Phenotype Knowledge Translator (PheKnowLator¹⁹) tool, we extracted 578,384 nodes and 8,768,582 edges of good quality according to the metrics provided in each data source. We also experimentally evaluated the main statistical and topological characteristics of the generated KG. RNA-KG can be exported according to different knowledge models and can be accessed through a SPARQL endpoint.

Related Work

For a better understanding of the approach that we have followed in the construction of RNA-KG, we first outline the methods developed for integrating graph-based biomedical heterogeneous data sources and then summarize the main characteristics of the different types of RNA molecules. Finally, we outline the bio-ontologies that can be exploited for the characterization of RNA molecules and the bio-entities with which they are related.

Approaches for the construction of bio-medical knowledge graphs

The data integration issue is a well-known problem in data management and many approaches have been devised to deal with relational data²⁴. However, the explosion of data formats (like CSV, JSON, XML) and the variability in the representation of the same types of information^{25,26} has pushed the need to exploit ontologies as global common models both for accessing (OBDA – Ontology-Based Data Access) and integrating (OBDI – Ontology-Based Data Integration) data sources²⁷.

In OBDA, queries are expressed in terms of an ontology, and the mappings between the ontology and the data sources' schema are described in the form of declarative rules. Two approaches are usually proposed to enable access and integration of different data sources: *materialization*, where data are converted from the local data format according to the ontology concepts and relationships; *virtualization*, where the transformation is executed on the fly during the evaluation of queries by exploiting the mapping rules and the ontology. In this case, only the data from the original sources involved in the query are accessed. Materialization can provide fast and accurate access to data because already organized in a centralized repository. However, data freshness can be compromised when data sources frequently change. On the other hand, virtualization allows access to fresh data but requires the application of transformations during query evaluation and can cause delay, and inconsistency when the structures of the local sources change. Several approaches are available for the specification of mapping rules like R2RML²⁸ (a W3C standard for relational to RDF mapping), and RML²⁹ that extends the standard for dealing with other formats. Moreover, SPARQL-Generate³⁰, YARRRML³¹, and ShExML³² were also proposed for dealing with data heterogeneity.

In the biological context, many efforts are nowadays devoted to the construction of KGs by integrating different public sources that exploit the materialization and virtualization approaches previously described. For instance, Zhang and colleagues³³ applied a Connecting Ontology (*CO*) to integrate all external ontologies that describe the data sources involved. By exploiting algorithms for fusing and integrating annotations, an enriched KG is obtained that spans multiple data sources and is annotated by the integrated biological ontology obtained by gluing together the Gene³⁴, Trait³⁵, Disease³⁶, and Plant³⁷ ontologies. The Precision Medicine KG (PrimeKG)¹⁸ was developed to represent holistic and multimodal views of diseases. PrimeKG integrates more than 20 high-quality resources with more than 4 million relations that capture information like disease-associated perturbations in the proteome, biological processes, and molecular pathways. The considered data were collected and annotated using diverse ontologies such as Disease Gene Network, Mayo Clinical Knowledgebase, Mondo, Bgee, and

DrugBank. ReproTox-KG²⁰ combines information about genes, drugs, and preclinical small molecules with knowledge about the association of genes and drugs with birth defects with the aim of predicting the likelihood that preclinical compounds induce specific birth abnormalities, and whether these compounds are likely to cross the placental barrier. The information is extracted from scientific publications by considering several ontologies including HPO³⁸, CDC birth-defect terms, ³⁹, Geneshot⁴⁰ for connecting genes with birth-defect terms, DrugCentral⁴¹ for connecting drugs with birth-defect terms, and LINCS L1000 data⁴² for drug–gene associations. Sima and colleagues⁴³ proposed a virtualization approach based on an ontology-based federation of three data sources (Bgee, OMA, and UNIProtKB), i.e., starting from the GenEx semantic model for gene expression, the authors proposed mapping rules to deal with the different formats of the three sources and faced the issue of joint queries across the sources by leveraging SPARQL endpoints. A preliminary version of the RNA-KG meta-graph⁴⁴ was recently presented and here deeply enhanced with the description of the methodology and the generation of RNA-KG. A fully automated Python 3 library named PheKnowLator was recently proposed for the construction of semantically rich, large-scale biomedical KGs that are Semantic Web compliant and amenable to automatic OWL reasoning, and conform to contemporary property graph standards. The library offers tools to download data, transform and/or pre-processing resources into edge lists, construct knowledge graphs, and generate a wide-range of outputs¹⁹.

All these papers point out the difficulties that arise when trying to integrate different data sources that exploit different data models, formats, and ontologies. Specifically, data redundancies, data duplicates, and lack of common identifier mechanisms must be properly addressed. In the case of RNA data integration, we also have to consider the lack of specific ontologies for the description of all possible non-coding RNA sequences, and the presence of ontologies that are not well-recognized by the community because still in their infancy. All these aspects must be properly addressed in the generation of RNA-KG.

RNA molecules

The wide variety of RNA molecules, which can be classified as sketched in Figure 1, can be translated into proteins, can regulate gene expression, have enzymatic activity, and can modify or regulate other RNAs.

Coding RNA. In Eukaryotes, messenger RNA (mRNA) primary transcripts follow a cascade of biological processes to transform them into mature functional mRNA molecules that are read by ribosomes, translated into amino acid chains and finally assembled in proteins through peptide bonds⁴⁵.

Non-coding RNA. Transcripts that are not translated into proteins are named non-coding RNAs (ncRNAs). They can be further classified into long non-coding RNAs (lncRNAs – with more than 200 nucleotides) and small non-coding RNAs (sncRNAs – with less than 200 nucleotides)⁴⁶. lncRNAs are the majority of transcription products and play a pivotal role in disease development and progression⁴⁷. Circular RNAs (circRNAs) are lncRNAs produced from alternative splicing events, and may play a role as splicing event regulators. circRNAs have been involved in many human diseases, including cancer and neurodegenerative disorders such as Alzheimer's and Parkinson's disease, due to their aberrant expression in different pathological conditions⁴⁸.

Small non-coding RNA (sncRNA). sncRNAs are involved in several cellular biological processes, including: translation processes; RNA interference (RNAi) pathways; splicing and self-cleavage processes; catalysis of biochemical reactions, and targeted gene editing.

sncRNAs involved in the translation process. Several sncRNAs are involved in this process, including ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and Small Cajal bodyspecific RNAs (scaRNAs, snoRNAs specific to the Cajal body). While rRNA constitutes the core structural and enzymatic framework of the ribosome, tRNAs are characterized by a structure consisting of an acceptor stem that links to a particular amino acid and of a specific anticodon sequence of 3 bases complementary to the corresponding mRNA codon, thus assuring the translation from the mRNA codon triplets to the corresponding sequence of amino acids. snRNAs and snoRNAs primarily guide chemical modifications of other RNAs, mainly rRNAs and tRNAs, and control chromatin compaction and accessibility. sncRNAs associated with RNA interference pathways. RNA interference pathways play a central role in gene expression and their misregulation is associated with several diseases⁴⁹. sncRNAs associated with RNAi pathways include: microRNAs (miRNAs), short interfering RNAs (siRNAs), short hairpin RNAs (shRNAs), antisense oligonucleotides (ASOs), piwiinteracting RNAs (piRNAs), tRNA-derived fragments (tRFs), and tRNA-derived small RNAs (tsRNAs). Mature miRNAs, siRNAs, shRNAs, and ASOs regulate the mRNA expression by blocking translation or promoting degradation of the target mRNA (complementary base pairings). Unlike siRNAs, each miRNA can simultaneously regulate the expression and the activity of hundreds of protein-coding genes and Transcription Factors (TFs). miRNAs from various exogenous sources, which are present in human circulation, are named xeno-miRNAs⁵⁰. By contrast, ASOs are more effective to knock down nuclear targets, whereas siRNAs are superior at suppressing mRNA cytoplasmic targets by recruiting, via Watson-Crick base paring, the RNA-induced Silencing Complex (RISC) that catalyzes the mRNA cleavage. Similarly, throughout RNAi, piRNAs and tRFs promote genome integrity, avoiding potential threats to cellular homeostasis, by silencing transposons, retrotransposons and repeat sequences⁵¹.

Aptamers, riboswitches, ribozymes and guide-RNA. The tertiary structure of RNA sequences can also be investigated to

identify interferences. Aptamers are short single-stranded nucleic acids that can bind to a variety of targets (e.g., proteins, peptides, carbohydrates, DNA, and RNA) thanks to their 3D conformation. Riboswitches are small non-coding RNAs involved in alternative splicing and self-cleavage processes that cause gene expression control and mRNA degradation, critical for survival of the cell⁵². Some RNAs, such as ribozymes, even possess enzymatic activity therefore catalyzing biochemical reactions (e.g., mRNA and protein cleavage). Synthetic ribozymes can and have already been designed to target viral RNA. Synthetic guide RNAs (gRNAs) are usually involved in the application of CRISPR-Cas9 technique, used for gene editing and gene therapy⁵³.

Biomedical ontologies for the semantic characterization of RNA-KG

Several standard biomedical ontologies can be used to set up common semantics in the considered data sources. Table 1 shows those considered during RNA-KG construction (their specifications are made available in the web portals ebi.ac.uk/ols4 and bioportal.bioontology.org). We selected these ontologies because their terms and hierarchical structures are commonly accepted by the scientific community to unequivocally describe biological classes and entities such as diseases, phenotypes, chemicals, biological processes, proteins, and relations between them. In the case of RNA-KG, we have also taken into account the lack of specific ontologies for the description of all possible RNA sequences (especially non-coding ones), and the presence of bio-ontologies that are yet not well-recognized by the community.

Results

RNA-KG is open-source and available through a SPARQL endpoint (hosted at http://fievel.anacleto.di.unimi.it:9999). The code for generating and maintaining RNA-KG is available on GitHub (https://github.com/AnacletoLAB/RNA-KG). RNA-KG comprises a comprehensive collection of relationships involving RNA molecules from various recognized RNA sources. The considered data sources have been characterized from different perspectives and compared (see Tables 2-3). These tables also provide the different kinds of relationships that can be established and their respective occurrences are summarized in Figure 6. Data sources might contain similar relationships and their possible overlapping has been visually highlighted in Figure 7. Relationships have been represented according to the Relation Ontology (RO) and the resulting meta-graph (Figure 8) has been used for the generation of an ontological description of RNA-KG. Different analyses have been conducted to characterize the types of nodes and interactions that are represented in RNA-KG (Figure 10), their distribution (Figures 11-12), and the topological structure analysis (Table 5). Details on the obtained results are discussed in the *Data Records* section.

The methodology we employed to construct RNA-KG enabled us to generate a high-quality knowledge graph that includes reliable interactions, validated through experimental methods and/or strongly endorsed by data providers, and whose meaning was meticulously verified to ensure a consistent representation of domain knowledge.

In the supplementary section, we have also included further figures and tables that better describe RNA-KG. Specifically, Supplementary Table 1 delineates the bio-ontologies that have been exploited for representing concepts in each RNA source. Supplementary Tables 2-5 report the descriptive statistics of the triples that have been extracted from the different data sources. Moreover, Supplementary Figures 1-2 show bio-entities present in RNA sources and their mapping to RO terms we used to represent relationships within the sources. Supplementary Table 7 highlights the primary node types and their corresponding identifiers with an instance sample. Finally, Supplementary Listings 1- 3 provide a few examples of SPARQL queries, illustrating the kind of information that can be extracted from RNA-KG.

Discussion

The structure of the obtained KG has been analyzed by computing various graph metrics that provide a macroscopic description of the network topology derived from the entity relations (see Table 5). By means of a t-SNE representation of an embedding of the nodes/edges in RNA-KG (Figure 13) we have highlighted that the embedding of the node type is able to effectively identify the similarities among the nodes of the same type, thus capturing their function in the network. Moreover, the edge embedding is able to capture, in most cases, the similarity between edges. In our analysis we have also identified the nodes having the highest out-degree and observed that the (undirected) degree distribution follows a heavy-tailed distribution (see Figure 14). Moreover, we computed bounds for the treewidth and the closeness centrality distribution, which suggest a sparse yet well-connected structure. All of these characteristics are commonly found in networks with a scale-free structure, which is often seen in networks representing complex interactions. Further investigation will be conducted in this direction to confirm such a structure. This property would yield benefits in the network analysis both in terms of structure understanding and algorithmic design. Finally, we have investigated the presence of isomorphic node groups, that is nodes that are topologically indistinguishable because they present exactly the same neighbors. These nodes deserve further investigation to check whether the involved molecules are duplicates and should thus be collapsed to improve the information quality of RNA-KG. A detailed discussion of the results is reported in Section *Technical Validation*.

RNA-KG can generate heterogeneous biomedical graphs in different formats that can be processed by graph-based computational tools to infer biomedical knowledge, provide insights into biomolecular mechanisms and biological processes

underlying diseases, support the discovery of new drugs, especially those based on RNA, and evaluate biomedical hypotheses in silico. In particular, RNA-KG is specifically designed to deal with computational tasks involving RNAs, by e.g. exploiting the information about ncRNA interactions for gene and protein expression regulation, collected from tens of publicly available databases. By leveraging the biomedical concepts represented in the biomedical ontologies embedded in the KG, RNA-KG can be also analyzed to predict associations and causal relationships of the "RNA world" with diseases and abnormal phenotypes. We also observe that the rich information embedded in the RNA-KG can be leveraged for classical biomedical prediction tasks, including e.g. gene-disease prioritization, drug-target prediction, and drug repurposing.

Most of these biomedical tasks can be modeled as link or node-label prediction problems in heterogeneous graphs. Even if, in principle we could apply methods developed for homogeneous graphs⁵⁴, to leverage the rich information scattered across the different types of modes and edges of the RNA-KG, we suggest applying methods specifically designed for heterogeneous graphs⁵⁵. To this end, several AI graph-based methods have been recently proposed to deal with heterogeneous graphs, also in the context of biomedical Knowledge Graphs⁵⁶. In particular we foresee that Graph Representation Learning methods, by leveraging the topology of the complex bio-medical heterogeneous graphs to embed them into compact vectorial spaces, could be the most promising choice to properly analyze the complex heterogeneous structure of RNA-KG⁵⁷.

We are currently working on enhancing the proposed KG in different directions. First, we are identifying key properties associated with RNA molecules and their interactions to be included in RNA-KG. This is a tough problem because we need to integrate and make uniform the information about the same bio-entity obtained from different sources. However, we have already identified the main properties characterizing the same molecule. Moreover, we have established systematic rules for aligning the representation and fusing records representing the same bio-entities. In this line of research, we are also considering the possibility of proposing an RNA Ontology for describing RNAs with a particular emphasis on non-coding RNA molecules. We aim to craft this ontology on the data that we have identified in the sources considered in this study. This could be a relevant contribution toward the definition of a standard representation of RNA molecules and the interactions that might be determined among them. Another research direction is the use of Transformers⁵⁸ in combination with RNA-KG for the extraction of new triples from textual documents. In this direction, we are currently leveraging the SPIRES engine⁵⁹ which enables the user to guide OntoGPT on the kinds of interactions that we are interested in, by specifying our meta-graph in terms of LinkML⁶⁰. The identified triples can be validated by using RNA-KG as a gold standard in this domain. This approach can limit the hallucination issue that is typical of large language models, ensuring the reliability and accuracy of the extracted information. We would like also to analyze RNA-KG with cutting-edge AI graph representation learning algorithms⁶¹ to support the discovery of novel RNA drugs. Finally, we are developing graphical facilities for supporting the user in the data acquisition and maintenance processes and thus reducing the manual effort required for mapping the data available in the different data sources into RNA-KG⁶² and also for showing the graph at different granularities^{63, 64}.

Methods

The creation of a KG is a complex task that requires facing several phases that can be organized in a workflow such as the one reported in Figure 2. In the remainder of the section, we provide a detailed description of the different issues and adopted solutions for each phase of the creation of our RNA-based KG.

RNA sources characterization

In this phase, we have identified and analyzed the characteristics of relevant data sources from which the information for feeding the KG has been extracted. This is a well recognized critical initial step in constructing a KG^{65} .

To this aim, an extensive literature review was carried out to identify repositories dealing with RNA sequences and annotations developed by well-reputed organizations, published in top journals, periodically updated, and containing significant amounts of RNA molecules and relevant relationships with other types of molecules and bio-entities. Furthermore, RNA sources that are included in other bigger repositories have been considered, as well as those that are used as collectors of other repositories. We have also identified the presence of controlled vocabularies, thesauri, reference ontologies that formally describe the repository content, and the presence of well-recognized identification schemes.

Sources provide data in different formats (e.g., CSV, TSV, gaf, hpoa, reactome, xlsx, JSON, and HTML) or by issuing queries on content management systems. Once the data were downloaded, Pandas⁶⁶ DataFrames were used to transform the data into a common format (TSV files) and remove syntactic inconsistencies. The data obtained can be then processed through PheKnowLator to extract the relationships among bio-entities.

For the characterization of the relationships that can be extracted from the different data sources, we applied the Relation Ontology. Moreover, the hierarchical organization of concepts in RO allows the expression of different kinds of relationships at different granularities (e.g., the general term interacts with can be substituted with more specific terms such as molecularly interacts with or genetically interacts with). Moreover, in case of a lack of specific terms for describing relationships identified in a data source, two strategies have been devised. The first one is to approximate the concept/relationship type with a term already present in RO. This implies a better coherence with RO semantics but misses details that the concept/relationship can carry. The second strategy is to extend the RO ontology with new terms specifically tailored for the representation of the concept/relationship. In this case, non-standard, more precise terms can be introduced for the representation of the concept/relationship. In the construction of RNA-KG, we adopted the first strategy for a larger agreement on the meaning of the used terms and uilized the interacts with relationship for representing any connection among bio-entities when a more specific one is missing.

The adoption of different types of molecular identifiers represents another issue. Indeed, the identification scheme encountered in the considered data may vary from the source and target of the relation and could be characterized by different accuracy levels. Four levels have been detected: *Well-Reputed* (denoted WR), when the identifiers are widely accepted by the scientific community (e.g., NCBI Entrez Gene identifiers); *Ontology-based* (denoted O), when the identifiers are directly represented with ontological terms; *Mapping-based* (denoted M), when the identifiers can be obtained by exploiting look-up tables; and *Proprietary* (denoted P), when all the previous techniques cannot be applied. Once the identification scheme adopted in a source has been classified, appropriate *look-up* tables for their mapping into the reference ontology have been realized by analyzing synonyms in the reference ontology or by examining the ones provided by the sources themselves to facilitate interoperability with other sources dealing with the same entities. For instance, we employed *NCBI Gene Entrez* identifiers to represent genes in RNA-KG, but many sources provide the correspondent *Gene Symbol*. In this case, a look-up table has been used to map gene identifiers into the chosen representation (Figure 3).

To guarantee a high level of homogeneity in the KG, a few tuples have been omitted when the mapping to the reference ontology was not possible. For some types of RNA molecules (especially ncRNA sequences), the look-up tables cannot be adopted because of the lack of a reference ontology with which these molecules can be represented. In these cases, the *NCBI Entrez Gene* identifiers of the gene from which the specific RNA is transcribed have been extended with a suffix that corresponds to the type of non-coding RNA (e.g., in case of small nucleolar RNA molecules the suffix is <code>?snoRNA</code>). We remark that the lack of a common ontological representation among heterogeneous sources can cause the duplication of molecules. At the current stage of development, we decided to admit the presence of duplicates for this kind of molecule, but we will consider de-duplication techniques^{67,68} that rely on the use of similarity measures on the molecule sequences in future releases.

To guarantee a high-level of reliability of the relationships to be included in RNA-KG, only *meaningful* relationships have been considered, that is those satisfying constraints that take into account p-values or FDR – False Discovery Rate (e.g., $p_{val} < 0.01$), experimental validation of results, or scores (denoted with σ) defined as reliable in the considered data source.

All of these activities led to the identification of the reference ontologies for each data source and the relationships that can be extracted and represented according to the RO ontology. Moreover, by studying the organization and format of the data sources, the extraction patterns and the look-up tables to apply have been realized. Finally, pruning strategies have been devised specifically tailored to the characteristics of each data source.

Ontological description of the KG

In this phase, we identified the classes of bio-entities that need to be managed and of the kinds of relationships that can exist among them (*schema layer*). Moreover, specific instances and the properties that need to be maintained have been identified (*data layer*). This design activity plays a fundamental role in the hierarchy, structure and content filling of the knowledge graph, and it is the basis for determining the kind of reasoning that can be supported.

Starting from the knowledge gained from the characterization of RNA sources, we moved toward the construction of the ontological schema underlying RNA-KG. A *meta-graph* was built to include all the kinds of bio-entities and relationships between them outlined in the previous phase. The meta-graph provides both direct and inverse relationships that are considered to guarantee bi-directional navigation of the generated KG.

Once classes of bio-entities and their relationships have been identified, we determined the properties that should be kept for them. At the current stage, only fundamental properties of bio-entities have been collected (identifiers, node types, and source provenance). This choice has the advantage of avoiding the explosion of the KG size. However, in future implementations, we wish to enhance the properties that can be stored within RNA-KG.

Ontological alignment specification

In this phase, we identified the KG representation and the kind of storage system to adopt. RDF triples have turned out to be suitable because of their common, flexible, and uniform data model. These properties result in an ontologically-grounded knowledge graph for conducting different kinds of analysis and reasoning.

Since a standardized formal definition for the concept of a KG is still lacking, we considered the one adopted by Callahan and colleagues¹⁹ where a KG is a pair $\langle T, A \rangle$, where T is the TBox and A the ABox. The TBox represents the taxonomy of a particular domain including classes, properties/relationships, and assertions that are assumed to generally hold within a domain (e.g., a miRNA is a small regulatory ncRNA located in an exosome as depicted in Figure 4). The ABox describes attributes and roles of class instances (i.e., individuals) and assertions about their membership in classes within the TBox

(e.g., *hsa-miR-125b-5p* is a type of miRNA that may cause *leukemia*). Non-ontological entities (i.e., entities from a data source that are not compliant to a given set of ontologies such as RNA molecules) can be integrated with ontologies using either a TBox (i.e., class-based) or ABox (i.e., instance-based) knowledge model. For the class-based approach, each database entity is represented as subClassOf an existing ontology class, while for the instance-based approach it is represented as instanceOf an existing ontology class.

For the construction of the KG we have employed the PheKnowLator ecosystem¹⁹ because it offers both approaches for the representation of bio-entities and their relationships, and also because of its simplicity in the identification of the columns containing the molecules' identifiers and for the specification of their relationships in terms of the RO ontology. PheKnowLator also provides tools to easily generate the ontology that better describes the content of the KG that, besides the terms and relationships of the meta-graph, also includes other ontological terms for supporting the reasoning.

KGs can be easily exported according to different kinds of models offered by PheKnowLator depending on the analyses to be conducted. Even if RNA-KG is made available in all the supported knowledge models, we think that the instance-based, inverse relation, semantically abstracted (OWL-NETS⁶⁹ without harmonization) configuration is the most suitable to be processed by different kinds of ML algorithms for node and link prediction. This solution ensures that RNA molecules (which lack semantic characterizations in bio-ontologies) and other non-ontological data can be specified as subClassOf specific ontological classes. Moreover, this approach enables the automatic specification of inverse relations among the involved bio-entities. Lastly, OWL-NETS reversibly abstracts ontological biomedical knowledge into a network representation containing only biologically meaningful concepts and relations. Figure 5 shows a small toy-example subgraph extracted from RNA-KG according to the proposed set-up. We can notice the presence of inverse relationships (located in and its inverse location of), and the relation RDF subClassOf connected to entities that do not have a corresponding term in a reference ontology (miRNA molecules are specified as subClassOf the SO term miRNA).

By studying the characteristics of the data sources, specific mapping rules have been devised through PheKnowLator to extract triples compliant with the adopted ontologies. Mapping rules contain the position of the source and object in the TSV file, the two human-readable labels for subject and object (e.g., mRNA and disease), the type of relationship that holds/exists between them according to RO (e.g., RO_0003302 corresponds to causes or contributes to condition relation), and further detailed options (e.g., thresholds for considering the tuple, row filtering options, transformation options according to the look-up table). These rules will be exploited for the extraction of the triples according to the reference ontology.

Since many ontologies are used in our context, we adopted the PheKnowLator tools to clean ontology files (i.e., remove and normalize errors, eliminate obsolete and/or deprecated entities, remove duplicate classes and class concepts) and merge cleaned ontology files into a single ontology file. The so-obtained merged ontology describes entirely the structure of RNA-KG and is compliant with our meta-graph.

RNA-KG generation

In this final phase, the PheKnowLator mapping rules have been issued on the pre-processed data with the aim of generating a KG compliant with the meta-graph identified in Phase 2 (ontological description of the KG).

In order to evaluate the characteristics of the generated KG, we used the GRAPE library that we recently developed for fast and efficient graph processing and embedding⁷⁰. By importing RNA-KG into the GRAPE environment, we were able to retrieve relevant topological information and topological oddities that can be useful in identifying biological and biomedical KG inconsistencies. Moreover, GRAPE can be exploited to implement different types of graph embedding techniques that cannot be realized by means of other tools because of the size of the generated KG.

Finally, a Blazegraph endpoint⁷¹ has been realized to make RNA-KG freely available and accessible. Using SPARQL, it is possible to extract portions of the graph and use it for different kinds of analysis (see the examples reported in the Supplementary Listings 1- 3). Moreover, the entire RNA-KG can be downloaded from our lab website.

Data Records

Identification and characterization of RNA entities and relationships

By applying the method discussed in the previous section, we identified more than 50 public repositories. The papers describing these data sources were published in top bioinformatics, bio-medical, and database focused journals between 2008 and 2023 but the majority were published in the last 5 years. The main characteristics of the identified repositories are reported in Tables 2-3, whose entries are organized according to the main type of RNA molecules made available by the source. Sources with miRNA entities can contain hairpin miRNA, xeno-miRNA, and mature miRNA molecules (last ones, in turn, can be classified in -3p and -5p transcripts). Inter RNA sources are those that do not focus on a single RNA type but propose multiple relationships among different types of RNA molecules and bio-entities (e.g., disease in the case of RNADisease or cellular component in the case of RNALocate). Note that no species is present for aptamers because they are synthetic and none of the databases are specific for piRNA molecules related to *Homo sapiens* (although relationships involving piRNA sequences are stored in

Inter RNA sources). Regarding the format, the majority of the considered data sources ($\geq 80\%$) export data in a flat-file format (*CSV*). Only a small fraction of them (around 20%) provide an API for accessing data stored in a relational database. Only DrugBank offers a RDF data representation coupled with a SPARQL endpoint.

Figure 6 summarizes the available relations involving RNA molecules and bio-entities (i.e., gene, protein, chemical, and disease) that we have identified in the different data sources. miRNA-lncRNA interactions are the most numerous. We can retrieve around 150 million distinct relationships of this type from public RNA-based data sources. In terms of cardinality, they are followed by lncRNA-mRNA interactions (~28 million) and miRNA-mRNA interactions (~12 million). Around 800 thousand distinct relationships can also be identified for protein-lncRNA interactions. These categories of molecules often interact with each other in specific diseases. RNA aptamer-disease is the less represented one because at the current stage only two approved (or under-investigation) RNA aptamer drugs are present in DrugBank and, in general, RNA drugs are less represented than others because they are synthetic (DrugBank siRNA and mRNA vaccine categories contain only 4 approved or under-investigation drugs, ASO drugs are only 12, and RNA aptamer drugs only 2). In addition to the so far discussed data sources, RNA central⁷² is a collector coordinated by the European Bioinformatics Institute (EBI⁷³), which imports non-coding RNA sequences from multiple databases and enables integrated text search, sequence similarity search, bulk downloads, and programmatic data access through a reliable API.

Starting from the need to understand whether the content of the different data sources overlap, we examined the entities and relationships made available in the considered data sources and identified containment (or overlapping) data sources. The result of our study is reported in Figure 7 where bubbles represent the relationships made available by the data sources. We can note the presence of two prominent clusters (miRNet and RNAcentral) that properly include or overlap the relationships made available by other data sources. The identification of these containments has been exploited to reduce the issue of semantic compatibility. Furthermore, many miRNA and lncRNA sources contain relations that either overlap or are properly included within other sources. For the sake of readability, we have included some of these RNA sources in a legend. We remark that the Inter RNA sources RNAInter, RNALocate, RNAdisease, ncRDeathDB, cncRNAdb, and ViRBase are nicknamed "Sister Projects" because they are updated and maintained by the same research team. Common semantics in "Sister Projects" result useful for data handling because they share a practically identical structure.

Construction of the RNA meta-graph and ontological description of the KG

Besides the sequences, these data sources also contain different kinds of relationships that can be exploited for the KG construction. Table 4 reports the main relationships that have been identified in the considered data sources according to the RO ontology. For each relation, Table 4 reports the RO identifier, the corresponding meaning, and, whenever feasible, we have introduced the inverse relationships in case only a unidirectional relationship is available in the data source (e.g., develops from and develops into). The general relationships interacts with available in RO with the meaning "A relationship that holds between two entities in which the processes executed by the two entities are causally connected" have been specified in the most specific relationships molecularly interacts with in our classification to represent the situation in which the two partners are molecular entities that directly physically interact with each other (e.g., via a stable binding interaction or a brief interaction during which one modifies the other). We use this relationship to represent a specific amino acid). We remark that some authors^{74,75} suggest that miRNA molecules are involved in negative regulation of complementary miRNA molecules by forming base-pairing interactions. However, this kind of relationship is not present in the considered data sources.

The content of Tables 2–4 is the groundwork for the generation of the meta-graph reported in Figure 8. The graphical representation provides a global overview of the richness of information that is currently provided. To simplify the visualization of the meta-graph, we omitted most of the non-RNA bio-entities that are known to play an important role in studying the biology (and supporting the discovery) of novel RNA drugs. Moreover, we have omitted some of the relationships extracted from the Inter RNA data sources (see Table 3) because of the limitation of their occurrences. The meta-graph in Figure 8 can be further extended to include other nodes representing other bio-entities (e.g., diseases, epigenetic modifications, small molecules, tissues, biological pathways, and cellular components) and relationships relevant to the analysis. This "enlarged" meta-graph is quite complex and difficult to be graphically represented. Figure 9 shows a very abstract representation by clustering in a single RNA node all the kinds of RNA molecules described in Figure 8. Then, this node is connected with various bio-entities based on insights extracted from RNA sources and literature. It is worth noting that RNA-KG has the potential for expansion by integrating additional KGs, and to set the basis for an RNA ontology thanks to the hierarchical structure introduced by the subClassOf relationship.

RNA-KG statistical analysis

The current version of RNA-KG has a single connected component containing 578,384 nodes and 8,768,582 edges. The number of nodes and edges has been deeply reduced by considering only the relationships with a high reliability. The construction

process of the graph is designed to be periodically updated, including data from other public RNA and related biomedical sources. Moreover, thresholds can be tuned for enlarging or reducing the KG size. Table 5 depicts the main macroscopic topological and structural properties of the current RNA-KG.

Figure 10a shows the distribution of nodes contained in RNA-KG. Nodes can be classified into nodes representing bio-entities and those that represent the ontological terms. Bio-entities have been further subdivided into RNA nodes (gathering together sncRNA, mRNA, lncRNA, viral RNA, and unclassified RNA nodes), and non-RNA nodes (named other bio-entities) that contain, for instance, gene and variant (SNP)-typed nodes. Furthermore, Figure 11a presents the distribution of nodes according to the main type of RNA molecules, detailing the different categories of sncRNA. mRNA, lncRNA, and miRNA available in RNA-KG. These RNA molecules are the most represented in RNA-KG because they are well-studied (many RNA sources have been categorized/typed as lncRNA and miRNA, and mRNA are in relationships with many other ncRNAs as already discussed in the characterization of the data sources). Also tRF molecules (that are classified in the sncRNA category) are very numerous because they are "fragments" of tRNAs (one tRNA can generate more than one tRF or tsRNA). The unclassified RNA category includes 692 RNA nodes for which a better semantic characterization cannot be assigned because, in the original sources, they are specified as "other RNA", "miscellaneous RNA", "unknown RNA", "ncRNA", or "RNA molecules to be experimentally confirmed". Finally, the other category includes sncRNA molecules whose distribution is negligible in RNA-KG (64 sncRNA molecules among ribozymes, piRNAs, enhancer RNAs, vault RNAs, Y RNAs, retained introns, mitochondrial RNAs, small conditional RNAs, and scaRNAs). The total number of mRNA, and in general, RNA, is consistent with experimental studies regarding the number of genes in human ($\sim 22-25K$ protein coding genes and more than 100K total genes⁷⁶). Ontological terms shown in Figure 10a are introduced in the generation of the KG for supporting reasoning activities and can be further classified according to the specific bio-ontology from which they are extracted (e.g., ChEBI for chemicals and HPO for phenotypes). Among them, chemical and protein nodes cover around 42.5% of the total amount of nodes in RNA-KG. This is due to the fact that ChEBI and PRO both contain many terms representing chemical entities and proteins for *Homo sapiens*. Figure 11b further details the distribution of ontological terms. Since the considered ontologies contain also terms that do not follow the usual pattern for their identification (e.g., terms representing glycans belong to PRO but their identifier starts with the prefix GNO which differs from the usual one adopted for identifying proteins), we have introduced the category species, with the terms representing the species (all species start with the prefix NCBITaxon), and the category other terms, generally containing all the others.

Figure 10b shows the distribution of edges in RNA-KG. Edges have been subdivided into three categories: *i*) edges representing RO terms that have been further classified in those that describe the interactions among RNA molecules and RO terms introduced by the integrations of the bio-ontologies; *ii*) edges representing the subClassOf relationships; and *iii*) edges representing other kinds of relationships not included in RO (e.g., has gene template belonging to PRO). Figure 12a details the distribution of the types of edges involving RNA molecules. As reflected by the organization of the meta-graph, interacts with is the most represented edge type because it is symmetric, whereas the presence of many regulates activity of edges is justified by the vast majority of miRNA molecules within RNA-KG that indeed regulate the activity of, for example, pseudogene and mRNA molecules. Moreover, Figure 12b shows the distribution of the bio-ontologies, and because we specified each RNA molecule as subClassOf an appropriate class within SO (e.g., SO_0000276 for miRNA molecules).

Technical Validation

In order to evaluate the quality of the generated KG, several analyses have been performed whose results are reported in the following paragraphs.

t-SNE representation. Figure 13 shows the t-SNE representation of an embedding of the nodes/edges in RNA-KG by using the GRAPE implementation of Node2Vec with CBOW, a random walk-based second-order embedding algorithm⁷⁷, with walk length equal to 5. Figure 13a shows how the embedding of the node type is able to effectively identify the similarities among the nodes of the same type, thus capturing their function in the network. On the other hand, Figure 13b depicts the edge embedding for RNA-KG. Also in this case, the embedding is able to capture the similarity between edges with the only exception of the interacts with relation which seems to overlap several other edge types. This fact is not so surprising considering that this relation is also used to denote a generic relation between nodes.

Topological analysis. The topological analysis led to the identification of top-5 nodes with the highest degree centrality: *microvesicle* (GO_1990742) with degree 27.11K (whose type is GO); *nucleus* (GO_0005634, degree 20.15K), *hcmv-miR-US25-1-5p* (human cytomegalovirus hcmv-miR-US25-1-5p mature miRNA, degree 18.18K and node type miRNA), *hFOXA1* (PR_P55317, degree 31.80K and node type protein), and *cytosol* (GO_0005829, degree 17.26K). We remark that the nodes cytosol, nucleus, and microvescicle represent cellular components used for aggregating different

bio-entities existing in the context of a cell and this is the main reason for the high node degree within RNA-KG. Moreover, the RNA relationships with these kinds of cellular components are enhanced by the semantics contained in and location of together with their respective RO inverse contains and located in. On the other hand, *hcmv-miR-US25-1-5p* is a human cytomegalovirus (HCMV)-encoded -5p miRNA transcript, whose diagnostic and prognostic value has been proved valid for several human diseases and their clinical implications⁷⁸. Finally, hFOXA1 is a forkhead TF known to be the main target of insulin signaling, to regulate metabolic homeostasis in response to oxidative stress, and to interact with chromatin. The central role assumed by hFOXA1 in RNA-KG is quite interesting since this TF is implicated in various human malignancies characterized by altered expression of ncRNAs⁷⁹.

Degree distribution. As can be seen in Table 5, the average degree of the undirected version of RNA-KG is relatively small (9.65). Despite the graph sparsity, the diameter of the KG is also relatively small (36). On the other hand, as shown in Figure 14a, the degree distribution suggests a heavy-tailed distribution. All of these properties are usually associated with scale-free graphs, which is a common structure in real-world complex systems. These properties motivate the computation of the empirical *complementary cumulative distribution function* (CCDF) for the degree reported in Figure 14b. This curve approximates the probability distribution that a randomly selected node has a degree greater than or equal to *x*. The linear trend in the plot is usually associated with a powerlaw distribution, where the CCDF is given by a function proportional to $x^{1-\alpha}$. We estimate the power of the distribution using⁸⁰, obtaining a value of $\alpha = 1.832$. The theoretical powerlaw obtained for the degrees is shown in Figure 14b together with other common heavy-tailed distributions. Among these alternatives, we found that the powerlaw distribution fits better according to the log-likelihood ratio criterion⁸¹ with *p*-values smaller or equal than 10^{-6} . Further exploration should be made to confirm the powerlaw properties of the graph since they are usually associated with a hierarchical modular structure of the network, entailing algorithmic advantages for its analysis. For instance, the closeness centrality distribution in Figure 14c presents a bimodal behavior, which could be explained by the existence of a well-connected core usually present in heavy-tail degree distribution networks.

Treewidth. Treewidth is a graph parameter measuring the structural similarity between a graph and a tree. It is based on the construction of a tree decomposition which captures how subset of nodes can be grouped to form a tree structure that maintains the global structure of the former graph. For instance, graphs having treewidth equal to one are trees, cycles have treewidth two, and clique graphs have a treewidth equal to the number of nodes minus one. The computation of the treewidth is in NP, but several approximation strategies can be used⁸². The upper bound (8,554 in Table 5), computed on the undirected version of the KG, can be considered relatively small because it represents about 1.5% of the KG size. This result is consistent with a tree-like hierarchical structure of RNA-KG that has a small and well-connected core.

Isomorphic node groups. RNA-KG contains 829 *isomorphic node groups*, that is nodes with exactly the same neighbours, node and edge types. Nodes in such groups are topologically indistinguishable, that is, swapping their identifiers would not change the graph topology. These groups involve a total of 14.30K nodes (2.47%) and 398.32K edges (4.54%), with the largest one containing 1.04K nodes and 19.78K edges. This particular group has degree 19 and is composed of riboswitches, specifically putative Ile (GAU) T-box riboswitches, and contains sequences that are all located upstream of an isoleucine–tRNA ligase. Other isomorphic node groups involve other riboswitches, tRNAs, tsRNAs, and tRFs. The detected isomorphic group components involve sncRNAs all interacting with amino acids at a molecular level or that originate from tRNA with molecular interactions tied to specific amino acids. For example, these groups deserve further investigation to check whether the involved molecules correspond to the same tRNA, riboswitch, tsRNA, or tRF and thus pruning them to improve the information quality of RNA-KG. Indeed, these groups derive from different RNA sources and contain molecules presenting proprietary identifiers that might collapse.

Usage Notes

While every effort has been made to provide complete, up-to-date and correct information, we make no warranty about the completeness and accuracy of the RNA-KG content. The use of the data contained in this database is limited to research-oriented and non-profit activities only (as requested by the data sources from which the data have been extracted).

Code Availability

The RNA-KG 's project website is at http://fievel.anacleto.di.unimi.it:9999. The code to reproduce results, together with documentation and tutorials, is available in RNA-KG 's GitHub repository at https://github.com/AnacletoLAB/RNA-KG. In addition, the repository contains information and Python scripts to build new versions of RNA-KG as the underlying primary resources get updated and new data become available. RNA-KG data resource is hosted on Zenodo under a persistent identifier https://doi.org/10.5281/zenodo.10078877. We have deposited the KG and all relevant intermediate files in this repository.

References

- Bartel, D. P. & Chen, C.-Z. Micromanagers of gene expression: the potentially widespread influence of metazoan micrornas. *Nat. Rev. Genet.* 5, 396–400, http://dx.doi.org/10.1038/nrg1328 (2004).
- 2. Guttman, M. & Rinn, J. L. Modular regulatory principles of large non-coding rnas. *Nature* 482, 339–346, http://dx.doi.org/10.1038/nature10887 (2012).
- 3. Cech, T. R. & Steitz, J. A. The noncoding rna revolution—trashing old rules to forge new ones. *Cell* 157, 77–94, http://dx.doi.org/10.1016/j.cell.2014.03.008 (2014).
- Sigler, P. B. An analysis of the structure of trna. Annu. Rev. Biophys. Bioeng. 4, 477–527, http://dx.doi.org/10.1146/ annurev.bb.04.060175.002401 (1975).
- 5. Damase, T. R. *et al.* The limitless future of rna therapeutics. *Front. Bioeng. Biotechnol.* 9, http://dx.doi.org/10.3389/fbioe. 2021.628137 (2021).
- Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mrna vaccines and immunotherapies. *Nat. Biotechnol.* 40, 840–854, http://dx.doi.org/10.1038/s41587-022-01294-2 (2022).
- Carvalho, T. Personalized anti-cancer vaccine combining mrna and immunotherapy tested in melanoma trial. *Nat. Medicine* 29, 2379–2380, http://dx.doi.org/10.1038/d41591-023-00072-0 (2023).
- Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding rna therapeutics challenges and potential solutions. *Nat. Rev. Drug Discov.* 20, 629–651, http://dx.doi.org/10.1038/s41573-021-00219-z (2021).
- Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for rna therapeutics. *Nat. Rev. Genet.* 23, 265–280, http://dx.doi.org/10.1038/s41576-021-00439-4 (2022).
- 10. Hogan, A. et al. Knowledge graphs. ACM Comput. Surv. 54, 1–37, http://dx.doi.org/10.1145/3447772 (2021).
- 11. Neo4j. Neo4j the world's leading graph database. Available at http://neo4j.org/ (2012).
- 12. Beckett, D. & McBride, B. RDF/XML Syntax Specification (Revised) W3C recommendation. Available at https: //www.w3.org/TR/REC-rdf-syntax/ (2004).
- **13.** Alocci, D. *et al.* Property graph vs rdf triple store: A comparison on glycan substructure search. *PLOS ONE* **10**, e0144578, http://dx.doi.org/10.1371/journal.pone.0144578 (2015).
- **14.** OWL Working Group. Web ontology language (owl) w3c recommendation. Available at https://www.w3.org/OWL/ (2012).
- 15. Baader, F., Horrocks, I., Lutz, C. & Sattler, U. An Introduction to Description Logic (Cambridge University Press, 2017).
- Prud'hommeaux, E. & Seaborne, A. SPARQL Query Language for RDF W3C recommendation. Available at https://www.w3.org/TR/rdf-sparql-query/ (2018).
- 17. Chen, J. *et al.* Knowledge graphs for the life sciences: Recent developments, challenges and opportunities. Preprint at https://arxiv.org/abs/2309.17255 (2023).
- Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision medicine. *Sci. Data* 10, http://dx.doi.org/10.1038/s41597-023-01960-3 (2023).
- Callahan, T. J. *et al.* An open-source knowledge graph ecosystem for the life sciences. Preprint at https://arxiv.org/abs/ 2307.05727 (2023).
- Evangelista, J. E. *et al.* Toxicology knowledge graph for structural birth defects. *Commun. Medicine* 3, http://dx.doi.org/ 10.1038/s43856-023-00329-2 (2023).
- Shefchek, K. A. *et al.* The monarch initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species. *Nucleic Acids Res.* 48, D704–D715, http://dx.doi.org/10.1093/nar/gkz997 (2019).
- Livingston, K. M., Bada, M., Baumgartner, W. A. & Hunter, L. E. Kabob: ontology-based semantic integration of biomedical databases. *BMC Bioinforma*. 16, http://dx.doi.org/10.1186/s12859-015-0559-3 (2015).
- 23. Mungall, C. et al. oborel/obo-relations: 2023-08-18 release. Available at https://doi.org/10.5281/zenodo.8263469 (2023).
- 24. Halevy, A. Information integration. In *Encyclopedia of Database Systems*, 1490–1496, http://dx.doi.org/10.1007/ 978-0-387-39940-9_1069 (Springer US, 2009).
- Mesiti, M. *et al.* Xml-based approaches for the integration of heterogeneous bio-molecular data. *BMC Bioinforma*. 10, http://dx.doi.org/10.1186/1471-2105-10-s12-s7 (2009).

- Bonfitto, S., Casiraghi, E. & Mesiti, M. Table understanding approaches for extracting knowledge from heterogeneous tables. WIREs Data Min. Knowl. Discov. 11, http://dx.doi.org/10.1002/widm.1407 (2021).
- 27. Poggi, A. *et al.* Linking data to ontologies. In Spaccapietra, S. (ed.) *Journal on Data Semantics X*, 133–173 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008).
- **28.** Das, S., Sundara, S. & Cyganiak, R. R2rml: Rdb to rdf mapping language w3c recommendation. Available at https://www.w3.org/TR/r2rml/ (2012).
- **29.** Dimou, A. *et al.* RML: a generic language for integrated RDF mappings of heterogeneous data. In Bizer, C., Heath, T., Auer, S. & Berners-Lee, T. (eds.) *Proceedings of the 7th Workshop on Linked Data on the Web*, vol. 1184 of *CEUR Workshop Proceedings* (2014).
- **30.** Lefrançois, M., Zimmermann, A. & Bakerally, N. A sparql extension for generating rdf from heterogeneous formats. In Blomqvist, E. *et al.* (eds.) *The Semantic Web*, 35–50, https://doi.org/10.1007/978-3-319-58068-5_3 (Springer International Publishing, Cham, 2017).
- **31.** Heyvaert, P., De Meester, B., Dimou, A. & Verborgh, R. *Declarative Rules for Linked Data Generation at Your Fingertips!*, 213–217 (Springer International Publishing, 2018).
- 32. García-González, H., Boneva, I., Staworko, S., Labra-Gayo, J. E. & Cueva Lovelle, J. M. Shexml: improving the usability of heterogeneous data mapping languages for first-time users. *PeerJ Comput. Sci.* 6, e318, http://dx.doi.org/10.7717/peerj-cs.318 (2020).
- **33.** Zhang, S. *et al.* A graph-based approach for integrating biological heterogeneous data based on connecting ontology. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), http://dx.doi.org/10.1109/bibm52615. 2021.9669700 (IEEE, 2021).
- 34. Ashburner, M. *et al.* Gene ontology: tool for the unification of biology. *Nat. Genet.* 25, 25–29, http://dx.doi.org/10.1038/ 75556 (2000).
- **35.** Pan, Q. *et al.* Trait ontology analysis based on association mapping studies bridges the gap between crop genomics and phenomics. *BMC Genomics* **20**, http://dx.doi.org/10.1186/s12864-019-5812-0 (2019).
- **36.** Schriml, L. M. *et al.* The human disease ontology 2022 update. *Nucleic Acids Res.* **50**, D1255–D1261, 10.1093/nar/ gkab1063 (2021).
- 37. Cooper, L. & Jaiswal, P. The Plant Ontology: A Tool for Plant Genomics, 89-114 (Springer New York, 2016).
- **38.** Robinson, P. N. *et al.* The human phenotype ontology: A tool for annotating and analyzing human hereditary disease. *The Am. J. Hum. Genet.* **83**, 610–615, http://dx.doi.org/10.1016/j.ajhg.2008.09.017 (2008).
- **39.** CDC Centers for Disease Control and Prevention. Learn about specific birth defects. Available at https://www.cdc.gov/ ncbddd/birthdefects/types.html (2023).
- **40.** Lachmann, A. *et al.* Geneshot: search engine for ranking genes from arbitrary text queries. *Nucleic Acids Res.* **47**, W571–W577, https://doi.org/10.1093/nar/gkz393 (2019).
- **41.** Avram, S. *et al.* Drugcentral 2021 supports drug discovery and repositioning. *Nucleic Acids Res.* **49**, D1160–D1169, https://doi.org/10.1093/nar/gkaa997 (2020).
- **42.** Evangelista, J. E. *et al.* SigCom LINCS: data and metadata search engine for a million gene expression signatures. *Nucleic Acids Res.* **50**, W697–W709, https://doi.org/10.1093/nar/gkac328 (2022).
- **43.** Sima, A. C. *et al.* Enabling semantic queries across federated bioinformatics databases. *Database* **2019**, baz106, https://doi.org/10.1093/database/baz106 (2019).
- 44. Cavalleri, E. *et al.* A meta-graph for the construction of an rna-centered knowledge graph. In Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L. J. & Ortuño, F. (eds.) *Bioinformatics and Biomedical Engineering*, 165–180, https://doi.org/10.1007/978-3-031-34953-9_13 (Springer Nature Switzerland, Cham, 2023).
- **45.** Vorländer, M. K., Pacheco-Fiallos, B. & Plaschka, C. Structural basis of mrna maturation: Time to put it together. *Curr. Opin. Struct. Biol.* **75**, 102431, http://dx.doi.org/10.1016/j.sbi.2022.102431 (2022).
- **46.** Hombach, S. & Kretz, M. *Non-coding RNAs: Classification, Biology and Functioning*, 3–17 (Springer International Publishing, 2016).
- Mattick, J. S. *et al.* Long non-coding rnas: definitions, functions, challenges and recommendations. *Nat. Rev. Mol. Cell Biol.* 24, 430–447, http://dx.doi.org/10.1038/s41580-022-00566-8 (2023).

- **48.** Nisar, S. *et al.* Insights into the role of circrnas: Biogenesis, characterization, functional, and clinical impact in human malignancies. *Front. Cell Dev. Biol.* **9**, http://dx.doi.org/10.3389/fcell.2021.617281 (2021).
- 49. Hannon, G. J. Rna interference. Nature 418, 244–251, http://dx.doi.org/10.1038/418244a (2002).
- **50.** Stephen, B. J. *et al.* Xeno-mirna in maternal-infant immune crosstalk: An aid to disease alleviation. *Front. Immunol.* **11**, http://dx.doi.org/10.3389/fimmu.2020.00404 (2020).
- Yu, A.-M., Choi, Y. H. & Tu, M.-J. Rna drugs and rna targets for small molecules: Principles, progress, and challenges. *Pharmacol. Rev.* 72, 862–898, http://dx.doi.org/10.1124/pr.120.019554 (2020).
- Machtel, P., Bakowska-Żywicka, K. & Żywicki, M. Emerging applications of riboswitches from antibacterial targets to molecular tools. J. Appl. Genet. 57, 531–541, http://dx.doi.org/10.1007/s13353-016-0341-x (2016).
- **53.** Linlin, S., Brianna Marie, L. & Yuan-Xiang, T. The crispr/cas9 system for gene editing and its potential application in pain research. *Transl. Perioper. Pain Medicine* **3**, http://dx.doi.org/10.31480/2330-4871/040 (2016).
- Hamilton, W. L., Ying, R. & Leskovec, J. Representation learning on graphs: Methods and applications. Preprint at http://arxiv.org/abs/1709.05584 (2017).
- 55. Yang, C., Xiao, Y., Zhang, Y., Sun, Y. & Han, J. Heterogeneous network representation learning: A unified framework with survey and benchmark. *IEEE Transactions on Knowl. Data Eng.* 34, 4854–4873, http://dx.doi.org/10.1109/tkde. 2020.3045924 (2022).
- Johnson, R., Li, M. M., Noori, A., Queen, O. & Zitnik, M. Graph ai in medicine. Preprint at https://arxiv.org/abs/2310. 13767 (2023).
- **57.** Li, M. M., Huang, K. & Zitnik, M. Graph representation learning in biomedicine and healthcare. *Nat. Biomed. Eng.* **6**, 1353–1369, http://dx.doi.org/10.1038/s41551-022-00942-x (2022).
- 58. Vaswani, A. et al. Attention is all you need. Preprint at http://arxiv.org/abs/1706.03762 (2017).
- **59.** Caufield, J. H. *et al.* Structured prompt interrogation and recursive extraction of semantics (spires): A method for populating knowledge bases using zero-shot learning. Preprint at https://arxiv.org/abs/2304.02711 (2023).
- **60.** Moxon, S. *et al.* The Linked Data Modeling Language (LinkML): A General-Purpose Data Modeling Framework Grounded in Machine-Readable Semantics. In *International Conference on Biomedical Ontologies* (2021).
- **61.** Xia, F. *et al.* Graph learning: A survey. *IEEE Transactions on Artif. Intell.* **2**, 109–127, https://doi.org/10.1109/tai.2021. 3076021 (2021).
- **62.** Bonfitto, S., Perlasca, P. & Mesiti, M. Easy-to-use interfaces for supporting the user in the semantic annotation of web tables. In *EDBT/ICDT DataPlat Workshop on Data Platform Design, Management, and Optimization* (2023).
- Mesiti, M., Pennacchioni, M. & Perlasca, P. Indexing structures for the efficient multi-resolution visualization of big graphs. *IEEE Access* 11, 103585–103600, http://dx.doi.org/10.1109/access.2023.3317369 (2023).
- Perlasca, P. *et al.* Multi-resolution visualization and analysis of biomolecular networks through hierarchical community detection and web-based graphical tools. *PLOS ONE* 15, e0244241, http://dx.doi.org/10.1371/journal.pone.0244241 (2020).
- **65.** Wang, X. *et al.* Knowledge graph quality control: A survey. *Fundamental Res.* https://doi.org/10.1016/j.fmre.2021.08.018 (2021).
- 66. The pandas development team. pandas-dev/pandas: Pandas. Available at https://doi.org/10.5281/zenodo.3509134 (2020).
- **67.** Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J. Mol. Biol.* **215**, 403–410, https://doi.org/10.1016/s0022-2836(05)80360-2 (1990).
- Pearson, W. R. & Lipman, D. J. Improved tools for biological sequence comparison. *Proc. Natl. Acad. Sci.* 85, 2444–2448, https://doi.org/10.1073/pnas.85.8.2444 (1988).
- **69.** Callahan, T. J. *et al.* Owl-nets: Transforming owl representations for improved network inference. In *Biocomputing 2018*, http://dx.doi.org/10.1142/9789813235533_0013 (WORLD SCIENTIFIC, 2017).
- 70. Cappelletti, L. *et al.* Grape for fast and scalable graph processing and random-walk-based embedding. *Nat. Comput. Sci.* 3, 552–568, http://dx.doi.org/10.1038/s43588-023-00465-8 (2023).
- 71. Blazegraph[™]. Blazegraph[™] DB. Available at https://blazegraph.com/.
- 72. Sweeney, B. A. *et al.* Rnacentral 2021: secondary structure integration, improved sequence search and new member databases. *Nucleic Acids Res.* 49, D212–D220, http://dx.doi.org/10.1093/nar/gkaa921 (2020).

- **73.** Cantelli, G. *et al.* The european bioinformatics institute (embl-ebi) in 2021. *Nucleic Acids Res.* **50**, D11–D19, http://dx.doi.org/10.1093/nar/gkab1127 (2021).
- 74. Guo, L., Sun, B., Wu, Q., Yang, S. & Chen, F. mirna-mirna interaction implicates for potential mutual regulatory pattern. *Gene* 511, 187–194, http://dx.doi.org/10.1016/j.gene.2012.09.066 (2012).
- Lai, E. C., Wiel, C. & Rubin, G. M. Complementary mirna pairs suggest a regulatory role for mirna:mirna duplexes. *RNA* 10, 171–175, http://dx.doi.org/10.1261/rna.5191904 (2004).
- **76.** Salzberg, S. L. Open questions: How many genes do we have? *BMC Biol.* **16**, https://doi.org/10.1186/s12915-018-0564-x (2018).
- 77. Grover, A. & Leskovec, J. Node2vec: Scalable feature learning for networks. In *Proc. of the 22nd ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining*, KDD '16, 855–864, https://doi.org/10.1145/2939672.2939754 (ACM, New York, NY, USA, 2016).
- Fernández-Moreno, R., Torre-Cisneros, J. & Cantisán, S. Human cytomegalovirus (hcmv)-encoded micrornas: potential biomarkers and clinical applications. *RNA Biol.* 18, 2194–2202, https://doi.org/10.1080/15476286.2021.1930757 (2021).
- **79.** Peng, Q. *et al.* Foxa1 suppresses the growth, migration, and invasion of nasopharyngeal carcinoma cells through repressing mir-100-5p and mir-125b-5p. *J. Cancer* **11**, 2485–2495, https://doi.org/10.7150/jca.40709 (2020).
- Alstott, J., Bullmore, E. & Plenz, D. powerlaw: A python package for analysis of heavy-tailed distributions. *PLoS ONE* 9, e85777, https://doi.org/10.1371/journal.pone.0085777 (2014).
- Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. *SIAM Rev.* 51, 661–703, 10.1137/070710111 (2009).
- 82. Bodlaender, H. L. & Koster, A. M. Treewidth computations i. upper bounds. *Inf. Comput.* 208, 259–275, https://doi.org/10.1016/j.ic.2009.03.008 (2010).
- Vasilevsky, N. A. *et al.* Mondo: Unifying diseases for the world, by the world. Preprint at http://dx.doi.org/10.1101/2022. 04.13.22273750 (2022).
- 84. He, Y. et al. Vo: Vaccine ontology. Nat. Preced. http://dx.doi.org/10.1038/npre.2009.3553 (2009).
- Degtyarenko, K. *et al.* Chebi: a database and ontology for chemical entities of biological interest. *Nucleic Acids Res.* 36, D344–D350, http://dx.doi.org/10.1093/nar/gkm791 (2007).
- Mungall, C. J., Torniai, C., Gkoutos, G. V., Lewis, S. E. & Haendel, M. A. Uberon, an integrative multi-species anatomy ontology. *Genome Biol.* 13, R5, http://dx.doi.org/10.1186/gb-2012-13-1-r5 (2012).
- **87.** Sarntivijai, S. *et al.* Clo: The cell line ontology. *J. Biomed. Semant.* **5**, 37, http://dx.doi.org/10.1186/2041-1480-5-37 (2014).
- 88. Natale, D. A. *et al.* The protein ontology: a structured representation of protein forms and complexes. *Nucleic Acids Res.* 39, D539–D545, http://dx.doi.org/10.1093/nar/gkq907 (2010).
- **89.** Eilbeck, K. *et al.* The sequence ontology: a tool for the unification of genome annotations. *Genome Biol.* **6**, http://dx.doi.org/10.1186/gb-2005-6-5-r44 (2005).
- **90.** Petri, V. *et al.* The pathway ontology updates and applications. *J. Biomed. Semant.* **5**, 7, http://dx.doi.org/10.1186/2041-1480-5-7 (2014).
- Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. mirbase: from microrna sequences to function. *Nucleic Acids Res.* 47, D155–D162, http://dx.doi.org/10.1093/nar/gky1141 (2018).
- **92.** Chen, Y. & Wang, X. mirdb: an online database for prediction of functional microrna targets. *Nucleic Acids Res.* **48**, D127–D131, http://dx.doi.org/10.1093/nar/gkz757 (2019).
- **93.** Fan, Y., Habib, M. & Xia, J. Xeno-mirnet: a comprehensive database and analytics platform to explore xeno-mirnas and their potential targets. *PeerJ* **6**, e5650, http://dx.doi.org/10.7717/peerj.5650 (2018).
- 94. Xiao, F. et al. mirecords: an integrated resource for microrna-target interactions. Nucleic Acids Res. 37, D105–D110, http://dx.doi.org/10.1093/nar/gkn851 (2009).
- **95.** Huang, Z. *et al.* Hmdd v3.0: a database for experimentally supported human microrna–disease associations. *Nucleic Acids Res.* **47**, D1013–D1017, http://dx.doi.org/10.1093/nar/gky1010 (2018).
- **96.** Dai, E. *et al.* Epimir: a database of curated mutual regulation between mirnas and epigenetic modifications. *Database* **2014**, http://dx.doi.org/10.1093/database/bau023 (2014).

- 97. Jiang, Q. *et al.* mir2disease: a manually curated database for microrna deregulation in human disease. *Nucleic Acids Res.* 37, D98–D104, http://dx.doi.org/10.1093/nar/gkn714 (2009).
- **98.** McGeary, S. E. *et al.* The biochemical basis of microrna targeting efficacy. *Science* **366**, http://dx.doi.org/10.1126/science. aav1741 (2019).
- **99.** Bhattacharya, A. & Cui, Y. Somamir 2.0: a database of cancer somatic mutations altering microrna–cerna interactions. *Nucleic Acids Res.* **44**, D1005–D1010, http://dx.doi.org/10.1093/nar/gkv1220 (2015).
- **100.** Karagkouni, D. *et al.* Diana-tarbase v8: a decade-long collection of experimentally supported mirna–gene interactions. *Nucleic Acids Res.* **46**, D239–D245, http://dx.doi.org/10.1093/nar/gkx1141 (2017).
- 101. Huang, H.-Y. et al. mirtarbase update 2022: an informative resource for experimentally validated mirna-target interactions. Nucleic Acids Res. 50, D222–D230, http://dx.doi.org/10.1093/nar/gkab1079 (2021).
- **102.** Liu, X. *et al.* Sm2mir: a database of the experimentally validated small molecules' effects on microrna expression. *Bioinformatics* **29**, 409–411, http://dx.doi.org/10.1093/bioinformatics/bts698 (2012).
- 103. Tong, Z., Cui, Q., Wang, J. & Zhou, Y. Transmir v2.0: an updated transcription factor-microrna regulation database. *Nucleic Acids Res.* 47, D253–D258, http://dx.doi.org/10.1093/nar/gky1023 (2018).
- 104. Bhattacharya, A., Ziebarth, J. D. & Cui, Y. Polymirts database 3.0: linking polymorphisms in micrornas and their target sites with human diseases and biological pathways. *Nucleic Acids Res.* 42, D86–D91, http://dx.doi.org/10.1093/nar/gkt1028 (2013).
- **105.** Xu, F. *et al.* dbdemc 3.0: Functional exploration of differentially expressed mirnas in cancers of human and model organisms. *Genomics, Proteomics & Bioinforma.* **20**, 446–454, http://dx.doi.org/10.1016/j.gpb.2022.04.006 (2022).
- 106. Lu, M., Shi, B., Wang, J., Cao, Q. & Cui, Q. Tam: A method for enrichment and depletion analysis of a microrna category in a list of micrornas. *BMC Bioinforma*. 11, http://dx.doi.org/10.1186/1471-2105-11-419 (2010).
- 107. Bandyopadhyay, S. & Bhattacharyya, M. Putmir: A database for extracting neighboring transcription factors of human micrornas. *BMC Bioinforma*. 11, http://dx.doi.org/10.1186/1471-2105-11-190 (2010).
- **108.** Kehl, T. *et al.* mirpathdb 2.0: a novel release of the mirna pathway dictionary database. *Nucleic Acids Res.* **48**, D142–D147, http://dx.doi.org/10.1093/nar/gkz1022 (2019).
- 109. Xie, B., Ding, Q., Han, H. & Wu, D. mircancer: a microrna-cancer association database constructed by text mining on literature. *Bioinformatics* 29, 638–644, http://dx.doi.org/10.1093/bioinformatics/btt014 (2013).
- 110. Bruno, A. E. *et al.* mirdsnp: a database of disease-associated snps and microrna target sites on 3'utrs of human genes. BMC Genomics 13, http://dx.doi.org/10.1186/1471-2164-13-44 (2012).
- 111. Russo, F. *et al.* mirandola 2017: a curated knowledge base of non-invasive biomarkers. *Nucleic Acids Res.* 46, D354–D359, http://dx.doi.org/10.1093/nar/gkx854 (2017).
- 112. Wishart, D. S. et al. Drugbank 5.0: a major update to the drugbank database for 2018. Nucleic Acids Res. 46, D1074–D1082, http://dx.doi.org/10.1093/nar/gkx1037 (2017).
- 113. Lindstrom, M. The MIT/ICBP siRNA Database. Available at https://web.mit.edu/sirna/links.html (2009).
- 114. Aptagen, LLC. Apta-IndexTM (Aptamer Database). Available at https://www.aptagen.com/apta-index/ (2023).
- **115.** Chiba, S. *et al.* eskip-finder: a machine learning-based web application and database to identify the optimal sequences of antisense oligonucleotides for exon skipping. *Nucleic Acids Res.* **49**, W193–W198, http://dx.doi.org/10.1093/nar/gkab442 (2021).
- 116. Kamens, J. The addgene repository: an international nonprofit plasmid and data resource. Nucleic Acids Res. 43, D1152–D1157, http://dx.doi.org/10.1093/nar/gku893 (2014).
- 117. Li, Z. *et al.* Lncbook 2.0: integrating human long non-coding rnas with multi-omics annotations. *Nucleic Acids Res.* 51, D186–D191, http://dx.doi.org/10.1093/nar/gkac999 (2022).
- 118. Chen, G. et al. Lncrnadisease: a database for long-non-coding rna-associated diseases. Nucleic Acids Res. 41, D983–D986, http://dx.doi.org/10.1093/nar/gks1099 (2012).
- **119.** Li, Z. *et al.* Lncexpdb: an expression database of human long non-coding rnas. *Nucleic Acids Res.* **49**, D962–D968, http://dx.doi.org/10.1093/nar/gkaa850 (2020).
- 120. Zhang, Y.-Y., Zhang, W.-Y., Xin, X.-H. & Du, P.-F. dbesslnc: A manually curated database of human and mouse essential lncrna genes. *Comput. Struct. Biotechnol. J.* 20, 2657–2663, http://dx.doi.org/10.1016/j.csbj.2022.05.043 (2022).

- 121. Mas-Ponte, D. *et al.* Lncatlas database for subcellular localization of long noncoding rnas. *RNA* 23, 1080–1087, http://dx.doi.org/10.1261/rna.060814.117 (2017).
- **122.** Zhao, L. *et al.* Noncodev6: an updated database dedicated to long non-coding rna annotation in both animals and plants. *Nucleic Acids Res.* **49**, D165–D171, http://dx.doi.org/10.1093/nar/gkaa1046 (2020).
- 123. Gao, Y. *et al.* Lnc2cancer 3.0: an updated resource for experimentally supported lncrna/circrna cancer associations and web tools based on rna-seq and scrna-seq data. *Nucleic Acids Res.* 49, D1251–D1258, http://dx.doi.org/10.1093/nar/gkaa1006 (2020).
- 124. Liu, L. *et al.* Lncrnawiki 2.0: a knowledgebase of human long non-coding rnas with enhanced curation model and database system. *Nucleic Acids Res.* 50, D190–D195, http://dx.doi.org/10.1093/nar/gkab998 (2021).
- 125. Deng, J. et al. Ribocentre: a database of ribozymes. Nucleic Acids Res. 51, D262–D268, http://dx.doi.org/10.1093/nar/gkac840 (2022).
- 126. Lee, B. D., Neri, U., Oh, C. J., Simmonds, P. & Koonin, E. V. Viroiddb: a database of viroids and viroid-like circular rnas. *Nucleic Acids Res.* 50, D432–D438, http://dx.doi.org/10.1093/nar/gkab974 (2021).
- 127. Marchand, J. A., Pierson Smela, M. D., Jordan, T. H. H., Narasimhan, K. & Church, G. M. Tbdb: a database of structurally annotated t-box riboswitch:trna pairs. *Nucleic Acids Res.* 49, D229–D235, http://dx.doi.org/10.1093/nar/gkaa721 (2020).
- 128. Penchovsky, R., Pavlova, N. & Kaloudas, D. Rswitch: A novel bioinformatics database on riboswitches as antibacterial drug targets. *IEEE/ACM Transactions on Comput. Biol. Bioinforma.* 18, 804–808, http://dx.doi.org/10.1109/tcbb.2020. 2983922 (2021).
- 129. Kumar, P., Mudunuri, S. B., Anaya, J. & Dutta, A. trfdb: a database for transfer rna fragments. *Nucleic Acids Res.* 43, D141–D145, http://dx.doi.org/10.1093/nar/gku1138 (2014).
- **130.** Wang, J.-H. *et al.* tsrfun: a comprehensive platform for decoding human tsrna expression, functions and prognostic value by high-throughput small rna-seq and clip-seq data. *Nucleic Acids Res.* **50**, D421–D431, http://dx.doi.org/10.1093/nar/gkab1023 (2021).
- 131. Pliatsika, V., Loher, P., Telonis, A. G. & Rigoutsos, I. Mintbase: a framework for the interactive exploration of mitochondrial and nuclear trna fragments. *Bioinformatics* 32, 2481–2489, http://dx.doi.org/10.1093/bioinformatics/btw194 (2016).
- **132.** Bouchard-Bourelle, P. *et al.* snodb: an interactive database of human snorna sequences, abundance and interactions. *Nucleic Acids Res.* **48**, D220–D225, http://dx.doi.org/10.1093/nar/gkz884 (2019).
- 133. Jühling, F. *et al.* trnadb 2009: compilation of trna sequences and trna genes. *Nucleic Acids Res.* 37, D159–D162, http://dx.doi.org/10.1093/nar/gkn772 (2009).
- **134.** Kang, J. *et al.* Rnainter v4.0: Rna interactome repository with redefined confidence scoring system and improved accessibility. *Nucleic Acids Res.* **50**, D326–D332, http://dx.doi.org/10.1093/nar/gkab997 (2021).
- **135.** Cui, T. *et al.* Rnalocate v2.0: an updated resource for rna subcellular localization with increased coverage and annotation. *Nucleic Acids Res.* **50**, D333–D339, http://dx.doi.org/10.1093/nar/gkab825 (2021).
- 136. Chen, J. *et al.* Rnadisease v4.0: an updated resource of rna-associated diseases, providing rna-disease analysis, enrichment and prediction. *Nucleic Acids Res.* 51, D1397–D1404, http://dx.doi.org/10.1093/nar/gkac814 (2022).
- 137. Wu, D. et al. ncrdeathdb: A comprehensive bioinformatics resource for deciphering network organization of the ncrna-mediated cell death system. Autophagy 11, 1917–1926, http://dx.doi.org/10.1080/15548627.2015.1089375 (2015).
- **138.** Huang, Y. *et al.* cncrnadb: a manually curated resource of experimentally supported rnas with both protein-coding and noncoding function. *Nucleic Acids Res.* **49**, D65–D70, http://dx.doi.org/10.1093/nar/gkaa791 (2020).
- **139.** Cheng, J. *et al.* Virbase v3.0: a virus and host ncrna-associated interaction repository with increased coverage and annotation. *Nucleic Acids Res.* **50**, D928–D933, http://dx.doi.org/10.1093/nar/gkab1029 (2021).
- 140. Pathan, M. *et al.* Vesiclepedia 2019: a compendium of rna, proteins, lipids and metabolites in extracellular vesicles. *Nucleic Acids Res.* 47, D516–D519, http://dx.doi.org/10.1093/nar/gky1029 (2018).
- 141. Zhang, Y. *et al.* Directrmdb: a database of post-transcriptional rna modifications unveiled from direct rna sequencing technology. *Nucleic Acids Res.* 51, D106–D116, http://dx.doi.org/10.1093/nar/gkac1061 (2022).
- 142. Boccaletto, P. *et al.* Modomics: a database of rna modification pathways. 2021 update. *Nucleic Acids Res.* 50, D231–D235, http://dx.doi.org/10.1093/nar/gkab1083 (2021).

Acknowledgements

This research was supported by the National Center for Gene Therapy and Drugs based on RNA Technology, PNRR-NextGenerationEU program (G43C22001320007).

Author contributions statement

M.M. and G.V. designed the study. Em.C. retrieved, processed, and harmonized datasets. T.J.C., M.M. defined the methodology for the construction of the KG. Em.C. and S.B. worked on the specification of the mapping alignment. Em.C. generated the KG that was analyzed by A.C. and M.S.G. S.B. and P.P. set up the SPARQL endpoint and developed the SPARQL queries on the generated KG. G.V., E.C., J.G., J.R., P.N.R. identified the possible applications of the KG in conducting knowledge discovery in life science. M.M., Em.C. and G.V. wrote the initial draft of the paper. All authors reviewed the final version of the manuscript and approved it.

Competing interests

The authors declare no competing interests.

Figures & Tables

Figure 1. Schematic representation of the RNA network within a cell.

Figure 2. Workflow for the construction of RNA-KG.

Figure 3. The relationship between chemicals and miRNA cannot be decoded directly because of the use of different identification schemes. However, by means of a look-up table the relationship can be highlighted.

Figure 4. An example of the use of Description Logic (DL) for knowledge modeling. The TBox includes classes (i.e., miRNA, small regulatory ncRNA, and exosome), and the assertions between classes (i.e., "miRNA subClassOf small regulatory ncRNA" and "miRNA is located in exosome"). The ABox includes instances of classes (i.e., *hsa-miR-125b-5p*) represented in the TBox and assertions about those instances (i.e., "*hsa-miR-125b-5p* instanceOf miRNA" and "*hsa-miR-125b-5p* causes leukemia").

Figure 5. Example of a RNA-KG subgraph realized according to the instance-based, inverse relations, semantically abstracted (OWL-NETS without harmonization) parameters. Black nodes and edges come from the integration of RNA sources, whereas red ones from the integration of selected ontologies.

Figure 6. Number of relationships involving RNA molecules and relevant bio-entities (gene, protein, chemical, and disease) within the considered RNA sources. Colors represent the ranges of relationships in log scale, as reported in the legend.

Figure 7. Bubbles represent the relationships made available from the considered data sources. Overlapping and inclusions of bubbles show the presence of common relationships among the considered data sources.

Figure 8. RNA-KG meta-graph. Most non-RNA entities are not represented to simplify the visualization.

Figure 9. The complete conceptual RNA-KG meta-graph.

Figure 10. Pie-chart of: (a) node distribution according to node types. (b) edge distribution according to edge types.

Figure 11. Node distribution according to node types.

Figure 12. Edges distribution. Only direct edges with more than 5,000 occurrences are reported.

Figure 13. Bidimensional view of RNA-KG embeddings.

Figure 14. (a) Node degree distribution (semi-log). (b) Complementary cumulative distribution (CCDF) for the node degree. (c) Approximated closeness centrality distribution.

Name	Abbr.	Description
Human Phenotype Ontology ³⁸	HPO	Terms representing medically relevant phenotypes and disease-phenotype anno-
		tations.
Gene Ontology ³⁴	GO	Terms representing attributes of gene products in all organisms. Cellular compo-
		nent, molecular function, and biological process domains are covered.
Monarch Merged Disease Ontology ⁸³	Mondo	Terms representing human diseases.
Vaccine Ontology ⁸⁴	VO	Terms in the domain of vaccine and vaccination.
Chemical Entities of Biological Interest ⁸⁵	ChEBI	Structured classification of molecular entities of biological interest focusing on
		"small" chemical compounds.
Uber-anatomy Ontology ⁸⁶	Uberon	Terms representing body parts, organs and tissues in a variety of animal species,
		with a focus on vertebrates.
Cell Line Ontology ⁸⁷	CLO	Terms representing publicly available cell lines.
PRotein Ontology ⁸⁸ *	PRO	Terms representing protein-related entities (including specific modified forms,
		orthologous isoforms, and protein complexes).
Sequence Ontology ⁸⁹	SO	Terms representing features and properties of nucleic acid used in biological
		sequence annotation.
Pathway Ontology ⁹⁰	PW	Terms for annotating gene products to pathways.
Relation Ontology ²³	RO	Terms and properties representing relationships used across a wide variety of
		biological ontologies.

Table 1. Main biomedical ontologies employed for RNA-KG construction (* modified to exclude all non-human proteins).

Туре	Data source	Species	# RNAs	Format	API	Threshold	SI	Relation with	TI	# Relation
	miRBase ⁹¹	271	87,474	rel/CSV	no		WR	premiRNA	WR	48,885
	miRDB ⁹²	5	7,086	CSV	no	$\sigma > 80$	WR	mRNA	WR	3,519,884
								SNP	WR	67,532
								mRNA	WR	3,025,487
								snoRNA	WR	9,738
								chemical	M	4,935
		10	7.029	1/COV			wn	TF	M	3,311
	mikinet	10	7,928	rei/CSV	yes		WK	epi. mod.	M	1,955
								IncRNA	WR	31,345
								pseudogene	WR	59,417
								circRNA	WR	804,086
								disease	M	32,004
	miRecords94	9	384	CSV	no	validated	WR	mRNA	M	1,529
	HMDD ⁹⁵	HS	1,206	CSV	no		WR	disease	M	35,547
	EpimiR ⁹⁶	7	617	CSV	no		WR	epi. mod.	M	1,974
	miR2Disease97	HS	349	CSV	no		WR	disease	0	3,273
	TargetScan ⁹⁸	5	5,168	CSV	no	validated	WR	mRNA	WR	2,850,014
								mRNA	WR	2,313,416
	SomomiP DP99	цс	1.079	CSV		validated	WD	circRNA	WR	428,237
	Somaniik DD**	пз	1,078	CSV	по	validated	WK	lncRNA	WR	127,025
miRNA								disease	M	2,424
	TarBase ¹⁰⁰	18	2,156	rel/CSV	no		WR	mRNA	WR	665,843
	miRTarBase ¹⁰¹	28	4,630	CSV	no		WR	mRNA	WR	2,200,449
	SM2miR ¹⁰²	21	1,658	CSV	no		WR	chemical	M	4,989
	TransmiR ¹⁰³	19	785	CSV	no	validated	WR	TF	M	3,730
	PolymiRTS ¹⁰⁴	HS	11,182	rel/CSV	no		WR	disease	M	83,516
	dbDEMC ¹⁰⁵	HS	3,268	CSV	no	$p_{val} < 0.01$	WR	disease	M	160,800
								mol. function	M	2,538
			HS 1,209	CSV				miRNA	WR	1,218
	TAM ¹⁰⁶	HS			no		WR	TF	M	165
								disease	M	12,516
								anatomy	M	58
	PuTmiR ¹⁰⁷	HS	1,296	CSV	no		WR	TF	M	12,097
	miRPathDB ¹⁰⁸	HS, MM	29,430	CSV	no	FDR<0.01	WR	mol. function	M	3,063
	miRCancer ¹⁰⁹	HS	57,984	CSV	no		WR	disease	M	9,080
	miD dCMD110	цс	240	CSV			WD	disease	WR	786
	minuone	115	249	CSV	110		WK	SNP	M	758
	miRandola	14	1.002	CSV	no		WP	extracell. form	M	3,262
	mirkandola	14	1,002	CSV	110		WK	chemical	M	25
mRNA vaccine	DrugBank ¹¹²		4	rel/RDF	yes ^s		Р	disease	M	7
	ICBP siRNA ¹¹³	HS, MM	147	HTML	no		Р	mRNA	WR	147
s(i/h)RNA	Dmie Dentrill2		4	m 01	S		D	mRNA	WR	3
	Diugbalik		4	101	yes		г	disease	M	3
	A		220					chemical	M	77
RNA	Apta-Index ¹¹⁴		230	rel	no		P	protein	M	153
aptamer	Dave Develo		2		S		D	protein	M	2
	DiugBank		2	rel/KDF	yes-		r	disease	M	2
	eSkip-Finder ¹¹⁵	4	2,196	rel	no		P	mRNA	WR	11,778
ASO								protein	M	12
	DrugBank ¹¹²		12	rel/RDF	yes ^S		P	mRNA	WR	7
								disease	M	11
gRNA	Addgene ¹¹⁶	29	296	HTML	no		Р	gene	WR	321

Table 2. Main data sources (Part I). For each type of RNA molecule, the table reports the corresponding data sources. Moreover, for each data source, Species and #RNAs columns specify the number of species and distinct sequences (HS and MM tags refer to specific species *Homo sapiens* and *Mus musculus*); Relation with and #Relation columns specify the distinct relationships with bio-entities and their number; Format column refers to the data format (CSV for flatfiles, rel for relational tables, RDF, or HTML for web pages); API column reports the availability of API or SPARQL endpoints (the last one denoted with the superscript s) for data access; Threshold column provides identified quality threshold within the source. SI and TI columns contain the class of the identification schemes (WR – *Well-Reputed*, O – *Ontology-based*, M – *Mapping-based*, and P – *Proprietary*) adopted respectively by source and target(s) within a specific resource (the source is the RNA molecule specified in the Type column, whereas target(s) are specified in the Relation with column).

Туре	Data source	Species	# RNAs	Format	API	Threshold	SI	Relation with	TI	# Relation
								miRNA	WR	146,092,274
	L no Doots117	IIC	222.050	nal/CSV			WD	small protein	WR	772,745
	LICBOOK	нз	323,950	rei/CSV	no		WK	disease	Μ	34,536
								biological context	Μ	95,243
	LncRNADisease ¹¹⁸	4	6,066	CSV	no		WR	disease	М	20,277
	LncExpDB ¹¹⁹	HS	101,293	rel/CSV	no		WR	mRNA	WR	28,443,865
	dhEccl no ¹²⁰	US MM	207	ISON			WD	biological role	Р	207
	ubessenc	IIS, WIW	207	12014	110		WK	biological process	0	28
	IncATLAS ¹²¹	HS	6,768	CSV	no		WR	cell. comp.	М	2,429,368
	NONCODE ¹²²	39	644,510	rel	no		WR	disease	0	32,226
IncRNA	Lnc2Cancer ¹²³	HS	3,402	CSV	no		WR	disease	0	9,254
								small protein	WR	9,387
								disease	М	7,634
								biological context	М	18,453
								cell. comp.	Μ	4,969
	124							gene	WR	509
	LncRNAWiki ¹²⁴	HS	106,063	rel/CSV	no		WR	miRNA	WR	210
								TF	M	232
								biological process	M	10,806
								mol. function	M	1,800
								chemical	M	789
	125			-				pathway	M	5/1
Ribozyme	Ribocentre ¹²⁵	1,195	21,084	rel	no		P	biological process	М	34
Viral RNA	ViroidDB ¹²⁰	9	9,891	CSV	no		WR	ribozyme	Р	17,460
Riboswitch	TBDB ¹²⁷	3,621	23,497	CSV	no		P	protein	M	23,535
	RSwitch ¹²⁸	50	215	rel/CSV	no		P	bact. strain	WR	215
	tRFdb ¹²⁹	7	863	CSV	no		P	tRNA	Р	792
tRF	120						_	miRNA	WR	45,165
& tsRNA	tsRFun ¹³⁰	HS	3,940	CSV	no	FDR<0.01	P	tRNA	Р	46,798
								disease	M	4,620
	MINTbase ¹⁵¹	HS	28,824	CSV	no		P	tRNA	Р	125,285
								gene	WR	763
								mRNA	WR	276
								IncRNA	WR	45
								miRNA	WR	17
snoRNA	snoDB ¹³²	ня	751	CSV	no		WR	pseudogene	WR	10
SHOKINA	31000	115	751	CSV	110			rRNA	Р	735
								snoRNA	WR	670
								snRNA	WR	164
								tRNA	Р	164
				-				scaRNA	WR	34
tRNA	tRNAdb ¹³³	681	9,758	rel	no		Р	amino acid	M	8,872
								chemical	M	10,890
								histone mod.	Р	1,060,685
	RNAInter ¹³⁴	156	455,887	CSV	ves	$\sigma > 0.2886$	WR	RBP	M	5,200,067
								TF.	M	9,323,690
								protein	M	22,543,829
Inter	DNAL	104	122 502	COV			WD	gene	wĸ	119,577
RNA	RNALocate ¹³⁶	104	01 245	CSV	yes	$\sigma > 0.05$	WK	diagona		213,429
	naPDaethDP137	11/	91,243	CSV	yes	0 <u>≥</u> 0.93	WK	uisease	M	343,273
	anoPNA DD 138	12	2 002	CSV	yes		WK	prog. cell death	M	4,013
	CIICKINADB	21	2,002	CSV	yes		WK	viral DNA	IVI W/D	2,398
	ViRBase ¹³⁹	152	41,718	CSV	yes	$\sigma \ge 0.7$	WR	viral rotein	M	19,214
	Vesiclepedia ¹⁴⁰	41	20,490	CSV	no		WR	extracell. form	M	388,154
	DirectRMDB ¹⁴¹	25	19,702	CSV	no		WR	epi. mod.	WR	904,712
	Modomics ¹⁴²	32	225	rel/RDF	yes		WR	epi.mod.	WR	276

 Table 3. Main data sources (Part II).

Relation ID	Name	Inverse Relation ID	Inverse Name	
RO:000056	participates in	RO:000057	has participant	
RO:000079	function of	RO:000085	has function	
RO:0001015	location of	RO:0001025	located in	
RO:0001018	contained in	RO:0001019	contains	
RO:0002202	develops from	RO:0002203	develops into	
RO:0002204	gene product of	RO:0002205	has gene product	
RO:0002245	over-expressed in			
RO:0002260	has biological role			
RO:0002246	under-expressed in			
RO:0002291	ubiquitously expressed in	RO:0002293	ubiquitously expresses	
RO:0002302	is treated by substance	RO:0002606	is substance that treats	
RO:0002430	involved in regulation of			
RO:0002430	involved in negative regulation of			
RO:0002434	interacts with*			
RO:0002436	molecularly interacts with*			
RO:0002526	overlaps sequence of*			
RO:0002528	is upstream of sequence of	RO:0002529	is downstream of sequence of	
RO:0002559	causally influenced by	RO:0002566	causally influences	
RO:0003002	represses expression of			
RO:0003302	causes or contributes to condition			
RO:0010001	generically depends on	RO:0010002	is carrier of	
RO:0011002	regulates activity of			
RO:0011007	decreases by repression quantity of			

Table 4. Main relations among bio-entities involving RNA with the RO identifier (* symmetric relationship).

Graph parameter	
Number of nodes	578,384
Number of directed edges	8,768,582
Max out degree	27,109
Max in degree	117,135
Number of edges*	5,583,802
Max degree*	117,142
Min degree*	1
Mean degree*	9.65
Diameter*	36
Upper bound Treewidth*	8,554
Mean closeness centrality*	$3.38 imes 10^{-7}$

Table 5. Basic topological properties of RNA-KG (* calculated on the undirected version of the KG).

Supplementary material

Supplementary Table 1 specifies the bio-ontologies that can be exploited for representing concepts in RNA sources. RNA sources are categorized according to the main treated molecules of RNA (whose characteristics are reported in Tables 2-3).

Supplementary Tables 2-6 detail the interactions present in RNA-KG by showing the two interactors with their numerosity (Subject column refers to the numerosity of the first entity while Object column refers to the numerosity of the second entity in the Edge column), the RO relation we used to semantically describe the interaction (Relation column) with its cardinality (Direct Relation(s) column), and the sources that have been processed to include the interaction in RNA-KG (Source(s) column). We omit inverse relationships because they can be retrieved by means of Table 4. Supplementary Figure 1-2 show bio-entities present in RNA sources and the mapping on RO terms we used to represent relationships within the sources. Each source is annotated with a red spot if the bioentity or the RO term is present in the source. Confirming our previous analysis, lncRNA, miRNA, mRNA, and protein are among the most represented molecules, whereas interacts with, regulates activity of, and causes or contributes to condition are among the most represented RO terms. Supplementary Table 7 shows the primary node types and their corresponding identifiers with an instance sample. Finally, Supplementary Listings 1-3 show three examples of queries on RNA-KG that can be executed through the SPARQL endpoint's query tab.

Supplementary Figure 1. Relevant bio-entities involved in RNA sources. Columns represent bio-entities involved in the RNA sources (rows) included in RNA-KG.

Supplementary Figure 2. Overlap of of RO terms in RNA sources. Columns represent the RO terms involved in the RNA sources (rows) included in RNA-KG.

Туре	Data source	GO	Mondo/HPO	VO	ChEBI	Uberon	CLO	PRO	SO	PW
	miRBase								x	
	miRDB								x	
	miRNet	x	x		x			х	x	
	miRecords								x	
	EpimiR	x							х	
	HMDD		X						x	
	miR2Disease		x						х	
	TargetScan								x	
	SomamiR DB		X						x	
miRNA	TarBase								x	
	miRTarBase								x	
	SM2miR				X				x	
	TransmiR							Х	x	
	PolymiRTS		X						x	
	dbDEMC		X						x	
	TAM	X	X			x		X	x	
	PUIMIK							X	X	
	miRPathDB	X							X	
	miRCancer		X						X	
	miRandala	v	X		v				X	
DNA	Dava Davala	X		L	X					
inkina vaccine			<u> </u>	X						
siRNA	ICBP siRNA								x	
	DrugBank		X		X				X	
RNA	Apta-Index				x			х		
aptamer	DrugBank		X		x			Х		
4.60	eSkip-Finder								x	
ASO	DrugBank		x		x			х		
gRNA	Addgene								x	
	LncBook	X	x			x	x		x	
	LncRNADisease		x						x	
	LncExpDB								x	
L. DNA	dbEssLnc	x			x				x	
INCKINA	IncATLAS	x							x	
	NONCODE		x						x	
	Lnc2Cancer		х						x	
	LncRNAWiki	X	x		х			х	x	X
Ribozyme	Ribocentre	x							x	
Viral RNA	ViroidDB								x	
	TBDB							x	x	
Riboswitch	RSwitch			x					x	
	tRFdb								x	
tRF	tsRFun		x						x	
	MINTbase								x	
snoRNA	snoDB								x	
fDNA	tPNAdb		I	I		I	I	I		I
INIYA					<u>л</u>				<u>л</u>	<u> </u>
	RNAInter RNAL ocoto				x				X	
	RINALOCATE RNA Disease	X	v						X	
	ncPDeathDB	v	X						X	
Inter	cncRNADB	λ						v	x x	-
RNA	ViRBase							A V	x x	
11/1	Vesiclepedia	v						^	x	
	DirectRMDB								x	
	Modomics							x	x	
	modoniico					l	1	A		1

Supplementary Table 1. Bio-ontologies that can be exploited for the characterization of data sources.

Edge	Relation	Source(s)	Subjects	Objects	Direct Relation(s)
premiRNA-miRNA	develops into	miRBase	1.917	2.656	2,879
premiRNA-pseudogene	interacts with	RNAInter	1	1	1
miRNA-protein	interacts with	RNAInter	10	98	105
premiRNA-protein	interacts with	RNAInter	20	22	26
		miRDB miRecords TarBase			
premiRNA-mRNA	regulates activity of	miRTarBase TargetScan SomamiR miRdSNP	11	107	117
miRNA-mRNA	regulates activity of	miRDB miRecords TarBase miRTarBase TargetScan SomamiR miRdSNP	2,761	19,125	1,373,343
miRNA-mRNA	interacts with	RNAInter	2,599	16,718	580,001
premiRNA-mRNA	interacts with	RNAInter	133	175	222
miRNA-miRNA	interacts with	RNAInter	4	4	4
miRNA-pseudogene	regulates activity of	miRNet	642	3,743	59,377
miRNA-pseudogene	interacts with	RNAInter	466	720	1,894
mRNA-pseudogene	interacts with	RNAInter	856	1,043	1,173
pseudogene-pseudogene	interacts with	RNAInter	79	77	85
rRNA-pseudogene	interacts with	RNAInter	5	3	5
miRNA-circRNA	interacts with	RNAInter	42	139	322
miRNA-othersRNA	interacts with	RNAInter	6	12	13
miRNA-epigenetic modification	interacts with	EpimiR RNAInter DirectRMDB	499	22	1,911
premiRNA-epigenetic modification	interacts with	EpimiR RNAInter DirectRMDB	421	27	773
protein-epigenetic modification	interacts with	Modomics	32	7	33
scaRNA-epigenetic modification	interacts with	Modomics	21	4	21
snoRNA-epigenetic modification	interacts with	Modomics	6	3	6
miRNA-disease	causes or contributes to condition	miR2Disease HMDD miRNet dbDEMC miRdSNP TAM RNADisease PolymiRTS miRCancer miRCancer	2,627	611	38,258
premiRNA-disease	causes or contributes to condition	miR2Disease HMDD miRNet dbDEMC miRdSNP TAM RNADisease PolymiRTS miRCancer	608	193	5,034
miRNA-lncRNA	interacts with	miRNet LncRNAWiki SomamiR RNAInter	2,534	777	13,893
premiRNA-lncRNA	interacts with	miRNet LncRNAWiki SomamiR RNAInter	111	535	3,450

Supplementary Table 2. RNA-KG Descriptive statistics by primary edge type (Part I).

Edge	Relation	Source(s)	Subjects	Objects	Direct Relation(s)
variant miPNA	couselly influences	miRNet	300	164	242
Variant-mikivA	causary minuences	miRdSNP	500	104	545
variant-premiRNA	causally influences	miRNet miRdSNP	10,756	251	11,281
variant-gene	causally influences	miRNet	357,872	16,755	357,872
variant-disease	causally influences	miRdSNP	321	26	346
variant-TF	causally influences	miRNet	2,080,335	113	2,082,657
tsRNA-miRNA	interacts with	tsRFun	8,044	103	121,236
tsRNA-disease	causes or contributes to condition	tsRFun	449	31	26,602
tRF-tRNA	develops from	tRFdb MINTbase	20,628	882	114,851
tRF-mRNA	interacts with	RNAInter	269	11,150	26,314
tRF-lncRNA	interacts with	RNAInter	18	6	18
tRF-pseudogene	interacts with	RNAInter	20	13	26
piRNA-lncRNA	interacts with	RNAInter	1	1	1
piRNA-mRNA	interacts with	RNAInter	1	1	1
snoRNA-gene	interacts with	snoDB	373	249	379
snoRNA-premiRNA	interacts with	snoDB miPNot	1	1	1
		snoDB			
SDOPNA miPNA	interacts with	miRNet	240	500	1 385
SHORIVA-IIIRIVA	Interacts with	RNAInter	249	509	1,565
spoPNA spoPNA	interacts with	snoDB	74	86	344
SHORIVA-SHORIVA	lineraets with	snoDB	/4	80	544
snoRNA-IncRNA	interacts with	RNAInter	146	31	196
snoRNA-snRNA	interacts with	snoDB RNAInter	432	329	717
snoRNA-rRNA	interacts with	snoDB	427	318	672
onoPNA mPNA	interacts with	snoDB	00	142	190
SIIOKINA-IIIKINA	interacts with	RNAInter	39	142	180
snoRNA-tRNA	interacts with	snoDB	4	4	4
snoRNA-retained intron	interacts with	snoDB	25	8	33
snoRNA-scaRNA	interacts with	snoDB RNAInter	24	9	34
spoPNA psoudogopo	interacts with	snoDB	0	0	0
shoktvA-pseudogene		RNAInter	0	0	,
IncRNA-gene	interacts with	LncRNAWiki RNAInter	185	620	1,138
othersRNA-gene	interacts with	RNAInter	1	2	2
mRNA-gene	interacts with	RNAInter	3	10	10
IncRNA-disease	causes or contributes to condition	LncRNADisease Lnc2Cancer LncRNAWiki LncBook RNADicease	1,331	347	6,557
circRNA-disease	causes or contributes to condition	LncRNADisease Lnc2Cancer RNADisease	14	8	15
snRNA-disease	causes or contributes to condition	RNADisease	7	13	14
pseudogene-disease	causes or contributes to condition	RNADisease	101	68	397
snoRNA-disease	causes or contributes to condition	RNADisease	14	6	14
scRNA-disease	causes or contributes to condition	RNADisease	1	3	3
mRNA-disease	causes or contributes to condition	RNADisease	412	93	502
IncRNA-chemical	interacts with	LncRNAWiki RNAInter	822	80	1,173
small protein-lncRNA	gene product of	LncBook	8,178	810	8,417
IncRNA-protein	interacts with	LncBook LncRNAWiki RNAInter	8,412	294	16,212
IncRNA-biological context	over-expressed in	LncBook	822	9	1,395
IncRNA-biological context	under-expressed in	LncBook	1,742	9	3,128

Supplementary Table 3. RNA-KG Descriptive statistics by primary edge type (Part II).

Edge	Relation	Source(s)	Subjects	Objects	Direct Relation(s)
IncRNA-biological role	has biological role	dbEssI nc	173	3	173
IncRNA biological context	ubiquitously expressed in	LncBook	2 221	9	6.610
IncRNA-cellular component	contained in	LICATLAS	10 207	6	27 287
IncRNA-pathway	participates in	L ncRNAWiki	30	11	43
IncRNA-biological process	participates in	L ncRNAWiki	21	2	23
miRNA-TF	is upstream of sequence of	PuTmiR	4	17	19
miRNA-TE	is downstream of sequence of	PuTmiR	4	10	10
premiRNA_TE	is upstream of sequence of	PuTmiR	484	66	1 839
premiRNA-TF	is downstream of sequence of	PuTmiR	488	65	1,039
	is downstream of sequence of	miRNet	100	05	1,515
premiRNA-TF	involved in regulation of	TransmiR TAM	330	320	1,869
premiRNA-molecular function	has function	TAM miRPathDB	26	2	29
premiRNA-premiRNA	interacts with	TAM	320	646	820
premiRNA-anatomy	located in	TAM	57	7	70
IncRNA-anatomy	located in	cncRNADB	4	5	6
mRNA-anatomy	located in	cncRNADB	3	3	3
lncRNA-cell	located in	cncRNADB	49	7	52
mRNA-cell	located in	cncRNADB	41	23	70
mRNA-chemical	interacts with	RNAInter	92	12	97
TEC-chemical	interacts with	RNAInter	2	1	2
snoRNA-chemical	interacts with	RNAInter	15	2	15
pseudogene-chemical	interacts with	RNAInter	82	7	84
premiRNA-chemical	interacts with	SM2miR RNAInter miRNet miRandola	17	11	22
miRNA-chemical	interacts with	SM2miR RNAInter miRNet miRandola	724	147	3,067
ASO drug-disease	is substance that treats	DrugBank	10	8	12
ASO drug-protein	decreases by repression quantity of	DrugBank	5	11	11
ASO drug-protein	is carrier of	DrugBank	1	1	1
siRNA drug-mRNA	involved in negative regulation of	DrugBank	3	3	3
siRNA-mRNA	involved in negative regulation of	ICBP siRNA	77	54	79
shRNA-mRNA	involved in negative regulation of	ICBP siRNA	40	42	42
siRNA drug-disease	is substance that treats	DrugBank	4	4	6
aptamer-protein	molecularly interacts with	Apta-Index	33	76	85
aptamer-chemical	molecularly interacts with	Apta-Index	114	67	114
aptamer drug-protein	molecularly interacts with	DrugBank	2	4	4
aptamer drug-disease	is substance that treats	DrugBank	1	4	4
mRNA vaccine-disease	is substance that treats	DrugBank	8	1	8
lncRNA-mRNA	interacts with	RNAInter LncExpDB	2,214	18,228	2,429,654
IncRNA-IncRNA	interacts with	RNAInter	1,431	1,431	3,187
lncRNA-rRNA	interacts with	RNAInter	10	8	17
IncRNA-pseudogene	interacts with	RNAInter	136	2,239	2,577
lncRNA-ncRNA	interacts with	RNAInter	4	6	6
IncRNA-scaRNA	interacts with	RNAInter	7	8	11
IncRNA-TF	interacts with	RNAInter	4,833	370	173,842
IncRNA-ribozyme	interacts with	RNAInter	1	1	1
circRNA-protein	interacts with	RNAInter	1	2	2
ncRNA-protein	interacts with	RNAInter	12	2	12
othersRNA-protein	interacts with	RNAInter	12	2	12
pseudogene-protein	interacts with	RNAInter	44	17	54
ribozyme-protein	interacts with	RNAInter	1	2	2

Supplementary Table 4. RNA-KG Descriptive statistics by primary edge type (Part III).

Edge	Relation	Source(s)	Subjects	Objects	Direct Relation(s)
scRNA-protein	interacts with	RNAInter	1	5	5
snRNA-protein	interacts with	RNAInter	3	11	11
snoRNA-protein	interacts with	RNAInter	2	3	3
snoRNA-miscRNA	interacts with	snoDB	2	2	2
unknownRNA-protein	interacts with	RNAInter	1	1	1
vRNA-protein	interacts with	RNAInter	1	1	1
riboswitch-protein	is downstream of sequence of	TBDB	9 384	1 405	148.262
riboswitch-bacterial strain	interacts with	RSwitch database	215	77	215
riboswitch-biological process	participates in	TBDB	13 072	111	13.072
viralRNA-ribozyme	overlaps sequence of	ViroidDB	5.654	6	5.896
ribozyme-biological process	participates in	Ribocentre	2	6	11
miRNA-viralmRNA	interacts with	ViRBase	80	38	250
snRNA-viralmRNA	interacts with	ViRBase	1	1	1
IncRNA-viralmRNA	interacts with	ViRBase	3	8	8
pseudogene-viralmRNA	interacts with	ViRBase	1	3	3
snRNA-viralmiRNA	interacts with	ViRBase	2	1	2
pseudogene-viralmiRNA	interacts with	ViRBase	351	4	352
snoRNA-viralmiRNA	interacts with	ViRBase	8	1	8
premiRNA-viralmiRNA	interacts with	ViRBase	1	1	1
unknownRNA-viralmiRNA	interacts with	ViRBase	3	1	3
IncRNA-viralmiRNA	interacts with	ViRBase	263	1	263
othersRNA-viralmiRNA	interacts with	ViRBase	1	1	1
scRNA-viralmiRNA	interacts with	ViRBase	1	1	1
protein-viralmiRNA	interacts with	ViRBase	11	18	21
mRNA-viralmiRNA	interacts with	ViRBase	17 564	63	17.923
miRNA-viralmiRNA	interacts with	ViRBase	17,501	1	1
IncRNA-viral protein	interacts with	ViRBase	1	1	1
miRNA-viral protein	interacts with	ViRBase	51	15	59
miRNA-ribozyme	interacts with	RNAInter	1	15	1
miRNA-unknownRNA	interacts with	RNAInter	14	4	14
miRNA-scRNA	interacts with	RNAInter	1	1	1
othersRNA-mRNA	interacts with	RNAInter	58	68	70
othersRNA-IncRNA	interacts with	RNAInter	41	16	49
othersRNA-pseudogene	interacts with	RNAInter	8	8	8
othersRNA-rRNA	interacts with	RNAInter	1	1	1
snRNA-snRNA	interacts with	RNAInter	21	21	33
snRNA-lncRNA	interacts with	RNAInter	34	14	52
snRNA-mRNA	interacts with	RNAInter	39	96	100
snRNA-pseudogene	interacts with	RNAInter	9	11	15
eRNA-mRNA	interacts with	RNAInter	2	2	4
scRNA-mRNA	interacts with	RNAInter	1	23	23
mRNA-mRNA	interacts with	RNAInter	4,459	4,459	7,035
mRNA-rRNA	interacts with	RNAInter	120	4	133
mRNA-ncRNA	interacts with	RNAInter	7	5	7
mRNA-scaRNA	interacts with	RNAInter	4	2	4
mRNA-protein	interacts with	RNAInter	179	130	227
rRNA-rRNA	interacts with	RNAInter	2	3	3
circRNA-RBP	interacts with	RNAInter	1,027	31	1,105
mRNA-RBP	interacts with	RNAInter	8,856	130	17,754
ribozyme-RBP	interacts with	RNAInter	1	13	13
scaRNA-RBP	interacts with	RNAInter	11	17	35
scRNA-RBP	interacts with	RNAInter	1	5	5
othersRNA-RBP	interacts with	RNAInter	19	26	54
snRNA-RBP	interacts with	RNAInter	44	42	158
IncRNA-RBP	interacts with	RNAInter	1,011	140	6,136
snoRNA-RBP	interacts with	RNAInter	200	70	753
ncRNA-RBP	interacts with	RNAInter	5	45	48
rRNA-RBP	interacts with	RNAInter	19	9	30
pseudogene-RBP	interacts with	RNAInter	1,014	92	1,907

Supplementary Table 5. RNA-KG Descriptive statistics by primary edge type (Part IV).

premiRNA-REP interacts with RNAInter 12 18 37 unknownRNA-TF interacts with RNAInter 33 6 33 rickRNA-TF interacts with RNAInter 33 64 94 scaRKA-TF interacts with RNAInter 17 83 429 othersRNA-TF interacts with RNAInter 11 121 110 24.489 sonRNA-TF interacts with RNAInter 11 74 74 74 sonRNA-TF interacts with RNAInter 10 77 74 74 sonRNA-TF interacts with RNAInter 20 10 77 76 sonRNA-TF interacts with RNAInter 23 120 77 76 sonRNA-TF interacts with RNAInter 53 10 77 76 withA-TF interacts with RNAinter 53 10 76 76 miRNA-tret interacts with RN	Edge	Relation	Source(s)	Subjects	Objects	Direct Relation(s)
unknownRNA-TF interacts with RNAInter 1 74 74 cirkRNA-TF interacts with RNAInter 3 6 33 ribozyme-TF interacts with RNAInter 17 83 429 othersRNA-TF interacts with RNAInter 1124 109 24.489 snRNA-TF interacts with RNAInter 11 74 74 snRNA-TF interacts with RNAInter 11 74 74 snRNA-TF interacts with RNAInter 11 74 74 dRNA-TF interacts with RNAInter 26 35 713 pseudogene-TF interacts with RNAInter 1.522 188.443 mRNA-TF interacts with RNAInter 1.522 188.443 mRNA-TF interacts with RNAInter 1.522 272 4.038 interacts with mRNAinter 1.522 272 4.038 4 mRNA-tretacturacturacturacturacturacturacturactu	premiRNA-RBP	interacts with	RNAInter	32	18	37
circRAA-TF interacts with RNAInter 33 6 33 rbozyme.TF interacts with RNAInter 17 83 429 othersRNA-TF interacts with RNAInter 117 183 429 snRNA.TF interacts with RNAInter 1124 109 24.489 snRNA.TF interacts with RNAInter 11 74 74 scRNA.TF interacts with RNAInter 12 110 716 scRNA.TF interacts with RNAInter 55 713 pseudogne-TF interacts with RNAInter 53 424 188.443 premiRNA.TF interacts with RNAInter 15.3 140 71.662 premiRNA-TF interacts with RNAInter 15.3 147 14.116 premiRNA-TF interacts with RNAInter 15.3 147 14.116 premiRNA-TF interacts with RNAInter 15.3 147 14.116 14.116 14.116	unknownRNA-TF	interacts with	RNAInter	1	74	74
rhboyme-TF interacts with RNAInter 13 64 94 cohersRNA-TF interacts with RNAInter 171 83 429 stRNA-TF interacts with RNAInter 1124 119 24.489 stRNA-TF interacts with RNAInter 14 174 174 stRNA-TF interacts with RNAInter 18 100 77 tRNA-TF interacts with RNAInter 22 110 716 rRNA-TF interacts with RNAInter 22 245 188.431 mRNA-TF interacts with RNAInter 15.21 22.22 8.629 promiRNA-TF interacts with RNAInter 15.22 27.2 4.038 mRNA-tractular vesicle contained in molanda 6 10 6 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>circRNA-TF</td><td>interacts with</td><td>RNAInter</td><td>33</td><td>6</td><td>33</td></t<>	circRNA-TF	interacts with	RNAInter	33	6	33
scaRNA-TF interacts with RNAInter 17 83 429 othersRNA-TF interacts with RNAInter 1124 1192 11,851 snRNA-TF interacts with RNAInter 11 74 1192 scRNA-TF interacts with RNAInter 11 74 74 scRNA-TF interacts with RNAInter 22 110 716 nRNA-TF interacts with RNAInter 52 713 pseudogne-TF interacts with RNAInter 510 722 86,02 premRNA-TF interacts with RNAInter 153 140 71.662 premRNA-TF interacts with RNAInter 153 3 47 indic-stratellular vesicle contained in Wesiclepedia 15 1 1 promitex-stratellular vesicle contained in Vesiclepedia 15 2 55 promitex-stratellular vesicle contained in Vesiclepedia 15 2 55	ribozyme-TF	interacts with	RNAInter	3	64	94
othersRNA-TF interacts with RNAInter 5.11 25 11.851 snRNA-TF interacts with RNAInter 1.12 109 22.4489 snRNA-TF interacts with RNAInter 419 108 11.932 scRNA-TF interacts with RNAInter 8 10 77 ncRNA-TF interacts with RNAInter 8 10 77 peadogenc-TF interacts with RNAInter 2.55 713 peadogenc-TF interacts with RNAInter 5.019 222 8.629 premiRNA-TF interacts with RNAInter 1.521 4.03 71.662 circRNA-extracellular vesicle contained in Wesiclepedia 1.37 3 47 mRNA-extracellular vesicle contained in Vesiclepedia 1.37 2 14.116 sricrRNA-extracellular vesicle contained in Vesiclepedia 1.37 3 47 mRNA-restracellular vesicle contained in Vesiclepedia 1.41 <	scaRNA-TF	interacts with	RNAInter	17	83	429
snRNA-TF interacts with RNAIner 1,124 109 24,489 snRNA-TF interacts with RNAIner 1 74 11,932 scRNA-TF interacts with RNAIner 1 74 74 IRNA-TF interacts with RNAIner 2 100 77 ncRNA-TF interacts with RNAIner 20 555 713 pseudogene-TF interacts with RNAIner 1.09 222 8.629 premiRNA-TF interacts with RNAIner 1.839 140 71.662 inRNA-TF interacts with RNAIner 1.1 1 1 ingl-d-stracellular vesicle contained in Vesiclepedia 11.92 2 20.01	othersRNA-TF	interacts with	RNAInter	541	152	11,851
snoRNA-TF interacts with RNAIner 419 10.82 scRNA-TF interacts with RNAIner 1 74 uRNA-TF interacts with RNAIner 8 10 77 uRNA-TF interacts with RNAIner 22 110 716 uRNA-TF interacts with RNAIner 25.5 713 pseudogene-TF interacts with RNAIner 5.019 222 8.629 memMA-TF interacts with RNAIner 1.539 140 71.662 miRNA-extracellular vesicle contained in Wesiclepedia 13.907 2 4.038 icitrRNA-extracellular vesicle contained in Vesiclepedia 13.907 2 4.116 mRNA-extracellular vesicle contained in Vesiclepedia 13.907 2 2.0081 miRNA-extracellular vesicle contained in Vesiclepedia 2.6 2.0 2.0 2.00.011 cricrRNA-premiRNA interacts with SomanuR 4.309 2.590	snRNA-TF	interacts with	RNAInter	1,124	109	24,489
scRNA-TF interacts with RNAIner 1 74 74 IRNA-TF interacts with RNAIner 8 10 77 ncRNA-TF interacts with RNAIner 22 110 716 RNA-TF interacts with RNAIner 250 55 713 peeudogene-TF interacts with RNAIner 9,524 245 188,443 inRNA-TF interacts with RNAInter 1,839 140 71,662 inRNA-TF interacts with RNAInter 1,839 140 71,662 inRNA-stracellular vesicle contained in Nesicepedia 6 1 6 ipid-extracellular vesicle contained in Vesicepedia 13,907 2 14,116 inRNA-extracellular vesicle contained in Vesicepedia 13,907 2 554 premiRNA-extracellular vesicle contained in Vesicepedia 26,529 30,197 circRNA-premiRNA interacts with NMINer 1 18	snoRNA-TF	interacts with	RNAInter	419	108	11,932
interacts withRNAInter81077cRNA-TFinteracts withRNAInter22110716rRNA-TFinteracts withRNAInter2655713pseudogene-TFinteracts withRNAInter50.92228.6.29premiRNA-TFinteracts withRNAInter15.222724.0.38circRN-extracellular vesiclecontained inmiRandola616interacts withRNAInter15.222724.0.38rerRN-extracellular vesiclecontained inVesiclepedia13347mRN-extracellular vesiclecontained inVesiclepedia111pretin-extracellular vesiclecontained inVesiclepedia10.974520.081mrRN-extracellular vesiclecontained inVesiclepedia43552554pretin-extracellular vesiclecontained inVesiclepedia43552554ictrRNA-miRNAinteracts withSmanniR4,3092,500302,197unknownRNA-histone modificationinteracts withRNAInter11818mRNA-histone modificationinteracts withRNAInter4202026.3interacts withRNAInter1220486486486486othersRNA-histone modificationinteracts withRNAInter41011preußRNA-subcellular locationlocated inRNALocate5787926<	scRNA-TF	interacts with	RNAInter	1	74	74
ncRNA-TFinteracts withRNAInter22110716RNA-TFinteracts withRNAInter2655713pseudogene-TFinteracts withRNAInter9,524245188,443mRNA-TFinteracts withRNAInter1.83914071,662mRNA-TFinteracts withRNAInter1.83914071,662mRNA-TFinteracts withRNAInter1.5222724,038circRNA-extracellular vesiclecontained inwsiclepedia35347mRNA-extracellular vesiclecontained inVesiclepedia1111snRNA-extracellular vesiclecontained inVesiclepedia11,924520,081mRNA-tracellular vesiclecontained inVesiclepedia4352554premiRNA-extracellular vesiclecontained inVesiclepedia4352554circRNA-miRNAinteracts withmiRNet4,3092,590302,197circRNA-premiRNAinteracts withRNAInter11818mRNA-histone modificationinteracts withRNAInter20263ncRNA-histone modificationinteracts withRNAInter1220263ncRNA-histone modificationinteracts withRNAInter1833premiRNA-subcellular locationlocated inRNALocate2787926mRNA-histone modificationinteracts withRNAInter1220263n	tRNA-TF	interacts with	RNAInter	8	10	77
rRNA-TFinteracts withRNAInter 26 55 713 pseudogene-TFinteracts withRNAInter 5024 245 $188,443$ mRNA-TFinteracts withRNAInter 15019 222 8.629 premiRNA-TFinteracts withRNAInter 1522 2455 2455 circRNA-extracellular vesiclecontained inNuRandola 6 1 6 fuid-extracellular vesiclecontained inVesiclepedia 35 3 47 nRNA-extracellular vesiclecontained inVesiclepedia 11.924 22.94 promin-extracellular vesiclecontained inVesiclepedia 25.22 29.254 circRNA-actracellular vesiclecontained inVesiclepedia $26.2.2$ 29.2 circRA-miRNAinteracts withSomanilk 43.09 2.590 302.197 circRA-premiRNAinteracts withRNAInter $42.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.$	ncRNA-TF	interacts with	RNAInter	22	110	716
pseudogene-TF interacts with RNAInter 95.24 245 188.443 mRNA-TF interacts with RNAInter 15.019 222 8.629 mRNA-TF interacts with RNAInter 15.22 272 4.038 circRNA-extracellular vesicle contained in miRadola 6 1 6 ipid-extracellular vesicle contained in Vesiclepedia 13.007 2 14.116 mRNA-extracellular vesicle contained in Vesiclepedia 11.924 5 20.081 mRNA-extracellular vesicle contained in Vesiclepedia 435 2 2554 premiRNA-extracellular vesicle contained in Vesiclepedia 435 2 209 circRNA-miRNA interacts with miRNet 4.309 2.590 302.197 circRNA-premiRNA interacts with RNAInter 1 18 18 mRNA-histone modification interacts with RNAInter 2.0 263 othersRNA-histone modification interacts with <td>rRNA-TF</td> <td>interacts with</td> <td>RNAInter</td> <td>26</td> <td>55</td> <td>713</td>	rRNA-TF	interacts with	RNAInter	26	55	713
mRNA-TF interacts with RNAInter 5.019 222 8.629 miRNA-TF interacts with RNAInter 1.839 140 71.662 miRNA-TF interacts with RNAInter 1.839 140 71.662 miRNA-extracellular vesicle contained in Vesiclepedia 15.307 2 14.116 mRNA-extracellular vesicle contained in Vesiclepedia 11.924 5 20.081 mRNA-extracellular vesicle contained in Vesiclepedia 435 2 354 protein-extracellular vesicle contained in Vesiclepedia 435 2 354 premiRNA-extracellular vesicle contained in Vesiclepedia 26 2 29 circRNA-miRNA interacts with RNAInter 1 18 18 mRNA-bistone modification interacts with RNAInter 1 18 18 mRNA-bistone modification interacts with RNAInter 42 20 460 pscudogene-bistone modification <t< td=""><td>pseudogene-TF</td><td>interacts with</td><td>RNAInter</td><td>9,524</td><td>245</td><td>188,443</td></t<>	pseudogene-TF	interacts with	RNAInter	9,524	245	188,443
premiRNA-TF interacts with RNAInter 1.839 140 71,662 miRNA-TF interacts with RNAInter 1.522 272 4.038 circRNA-extracellular vesicle contained in wesiclepedia 35 3 47 mRNA-extracellular vesicle contained in Vesiclepedia 11 1 1 protein-extracellular vesicle contained in Vesiclepedia 12.92 52.0081 miRNA-tracellular vesicle contained in Vesiclepedia 26.0 2 29 circRNA-miRNA interacts with miRNA 302,197 302,197 circRNA-premiRNA interacts with RNAInter 14 18 mRNA-histone modification interacts with RNAInter 4.309 2,590 302,197 unkNA-histone modification interacts with RNAInter 12 20 486 othersRNA-histone modification interacts with RNAInter 4.30 2653 110 129,990 mRNA-histone modification interacts with	mRNA-TF	interacts with	RNAInter	5,019	222	8,629
miRNA-TF interacts with RNAInter 1,52 272 4,038 circRNA-extracellular vesicle contained in Vesiclepedia 35 3 47 mRNA-extracellular vesicle contained in Vesiclepedia 13,907 2 14,116 snRNA-extracellular vesicle contained in Vesiclepedia 11,924 5 20,081 miRNA-extracellular vesicle contained in Vesiclepedia 435 2 554 protein-extracellular vesicle contained in Vesiclepedia 26 2 29 circRNA-miRNA interacts with SomamiR 4,309 2,590 302,197 unknownRNA-histone modification interacts with RNAInter 1 18 18 mRNA-histone modification interacts with RNAInter 1 18 13 premiRNA-subcellular location interacts with RNAInter 1 20 263 incRNA-histone modification interacts with RNAInter 1 30 460 premiRNA-s	premiRNA-TF	interacts with	RNAInter	1,839	140	71,662
circRNA-extracellular vesiclecontained inmiRandola616mRNA-extracellular vesiclecontained inVesiclepedia35347mRNA-extracellular vesiclecontained inVesiclepedia10111protein-extracellular vesiclecontained inVesiclepedia4352554premiRNA-extracellular vesiclecontained inVesiclepedia26229circRNA-miRNAinteracts withSomamiR miRNet4.3092.590302,197circRNA-premiRNAinteracts withRNAInter11818mRNA-histone modificationinteracts withRNAInter4202622990unknownRNA-histone modificationinteracts withRNAInter4220486otherRNA-histone modificationinteracts withRNAInter4220263neRNA-histone modificationinteracts withRNAInter4320460premiRNA-histone modificationinteracts withRNAInter1220130premiRNA-histone modificationinteracts withRNAInter1.242020,754premiRNA-subcellular locationlocated inRNALocate2.5787926mRNA-subcellular locationlocated inRNALocate2.5787926mRNA-subcellular locationlocated inRNALocate2.757153.496snRNA-subcellular locationlocated inRNALocate2.7194 <td>miRNA-TF</td> <td>interacts with</td> <td>RNAInter</td> <td>1,522</td> <td>272</td> <td>4,038</td>	miRNA-TF	interacts with	RNAInter	1,522	272	4,038
lipid-extracellular vesiclecontained inVesiclepedia13347mRN-extracellular vesiclecontained inVesiclepedia11,907214,116orbein-extracellular vesiclecontained inVesiclepedia11,924520,081miRNA-extracellular vesiclecontained inVesiclepedia4352554premiRNA-extracellular vesiclecontained inVesiclepedia4352290circRNA-miRNAinteracts withSomamiR miRNet4,3092,590302,197circRNA-premiRNAinteracts withRNAInter11818mknowaRNA-histone modificationinteracts withRNAInter20263incRNA-histone modificationinteracts withRNAInter20263incRNA-histone modificationinteracts withRNAInter1220130pseudogene-histone modificationinteracts withRNAInter122020,754premiRNA-histone modificationinteracts withRNAInter122020,754premiRNA-bistone modificationinteracts withRNAInter14,8422020,754premiRNA-subcellular locationlocated inRNAInter1,8422020,754premiRNA-subcellular locationlocated inRNALocate2,772153,496mRNA-subcellular locationlocated inRNALocate1,1191111ncRNA-subcellular locationlocated inRNALocate223	circRNA-extracellular vesicle	contained in	miRandola	6	1	6
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	lipid-extracellular vesicle	contained in	Vesiclepedia	35	3	47
snRNA-extracellular vesiclecontained inVesiclepedia111protein-extracellular vesiclecontained inVesiclepedia11.924520.081miRNA-extracellular vesiclecontained inVesiclepedia26229circRNA-miRNAinteracts withmiRNet4.3092.590302.197circRNA-premiRNAinteracts withSomamiR8.755110129.990unknownRNA-histone modificationinteracts withRNAInter11818mRNA-histone modificationinteracts withRNAInter11818otherRNA-histone modificationinteracts withRNAInter2020263IncRNA-histone modificationinteracts withRNAInter4.8162051.375ncRNA-histone modificationinteracts withRNAInter4.8162020,754premiRNA-histone modificationinteracts withRNAInter1.8422020,754premiRNA-subcellular locationlocated inRNALocate5787926miRNA-busbellular locationlocated inRNALocate859107ncRNA-subcellular locationlocated inRNALocate859107premiRNA-subcellular locationlocated inRNALocate57811ncRNA-subcellular locationlocated inRNALocate111ncRNA-subcellular locationlocated inRNALocate111ncRNA-subcellular lo	mRNA-extracellular vesicle	contained in	Vesiclepedia	13,907	2	14,116
proten-extracellular vesiclecontained inVesiclepedia19.24520.081miRNA-extracellular vesiclecontained inVesiclepedia26229circRNA-miRNAinteracts withSomaniR26229circRNA-premiRNAinteracts withSomaniR4.3092.590302,197circRNA-premiRNAinteracts withRNAInter11818mRNA-histone modificationinteracts withRNAInter11818mRNA-histone modificationinteracts withRNAInter420200263lncRNA-histone modificationinteracts withRNAInter12020263lncRNA-histone modificationinteracts withRNAInter1.8162051,375premiRNA-histone modificationinteracts withRNAInter1.822020,754premiRNA-subcellular locationlocated inRNALocate5787926miRNA-subcellular locationlocated inRNALocate2,872153,496snRNA-subcellular locationlocated inRNALocate2,8723030premiRNA-subcellular locationlocated inRNALocate2230seaRNA-subcellular locationlocated inRNALocate2,87233,496snRNA-subcellular locationlocated inRNALocate223snRNA-subcellular locationlocated inRNALocate223incRNA-subcellular locationlocat	snRNA-extracellular vesicle	contained in	Vesiclepedia	1	1	1
miRNA-extracellular vesiclecontained inVesiclepedia232554premiRNA-extracellular vesiclecontained inVesiclepedia26229circRNA-miRNAinteracts withSomamiR miRNet4.3092.590302,197circRNA-premiRNAinteracts withSomamiR miRNet8.755110129,990unknownRNA-histone modificationinteracts withRNAInter11818mRNA-histone modificationinteracts withRNAInter4220486othersRNA-histone modificationinteracts withRNAInter4320263lncRNA-histone modificationinteracts withRNAInter4320460premiRNA-bistone modificationinteracts withRNAInter432020,754premiRNA-bistone modificationlocated inRNALocate2,772153,496premiRNA-subcellular locationlocated inRNALocate2,772153,496nRNA-subcellular locationlocated inRNALocate2,707763363scaRNA-subcellular locationlocated inRNALocate2,197311111ncRNA-subcellular locationlocated inRNALocate2,272153,496snRNA-subcellular locationlocated inRNALocate2,1777633300,303snRNA-subcellular locationlocated inRNALocate2,2528othersRNA-subcellular locationlocated inRNALocate <t< td=""><td>protein-extracellular vesicle</td><td>contained in</td><td>Vesiclepedia</td><td>11,924</td><td>5</td><td>20,081</td></t<>	protein-extracellular vesicle	contained in	Vesiclepedia	11,924	5	20,081
premiRNA-extracellular vesiclecontained inVesiclepedia26229circRNA-miRNAinteracts withSomamiR miRNet4,3092,590302,197circRNA-premiRNAinteracts withSomamiR miRNet8,755110129,990unknownRNA-histone modificationinteracts withRNAInter11818mRNA-histone modificationinteracts withRNAInter4220486othersRNA-histone modificationinteracts withRNAInter4220263incRNA-histone modificationinteracts withRNAInter122051,375ncRNA-histone modificationinteracts withRNAInter1220130peeudogene-histone modificationinteracts withRNAInter1,8422020,754premiRNA-subcellular locationlocated inRNALocate2,572153,496snRNA-subcellular locationlocated inRNALocate2,572153,496snRNA-subcellular locationlocated inRNALocate2,572153,496snRNA-subcellular locationlocated inRNALocate2186230snRNA-subcellular locationlocated inRNALocate2186230snRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate223lineRNA-subcellular locationlocated inRNALocate111r	miRNA-extracellular vesicle	contained in	Vesiclepedia	435	2	554
circRNA-miRNAinteracts withSomanik miRNet4.3092.590302,197circRNA-premiRNAinteracts withSomanikSomanik8,755110129,990unknownRNA-histone modificationinteracts withRNAInter11818mRNA-histone modificationinteracts withRNAInter2020263IncRNA-histone modificationinteracts withRNAInter1220130pscudgere-histone modificationinteracts withRNAInter1220130pscudgere-histone modificationinteracts withRNAInter4320460premiRNA-histone modificationinteracts withRNAInter1.8422020,754premiRNA-subcellular locationlocated inRNALocate5787926mRNA-subcellular locationlocated inRNALocate2.572153,496snRNA-subcellular locationlocated inRNALocate2186230snRNA-subcellular locationlocated inRNALocate5707763scaRNA-subcellular locationlocated inRNALocate111ncRNA-subcellular locationlocated inRNALocate111ncRNA-subcellular locationlocated inRNALocate111ncRNA-subcellular locationlocated inRNALocate111ncRNA-subcellular locationlocated inRNALocate111ncRNA-subcellular locat	premiRNA-extracellular vesicle	contained in	Vesiclepedia	26	2	29
circRNA-premiRNAinteracts withSomanific miRNet8,755110129,990unknownRNA-histone modificationinteracts withRNAInter11818mRNA-histone modificationinteracts withRNAInter4220486othersRNA-histone modificationinteracts withRNAInter4220263IncRNA-histone modificationinteracts withRNAInter4.8162051,375ncRNA-histone modificationinteracts withRNAInter4.320460premiRNA-subcellular locationinteracts withRNAInter1.8422020,754premiRNA-subcellular locationlocated inRNALocate2,572153,496snRNA-subcellular locationlocated inRNALocate2,572153,496snRNA-subcellular locationlocated inRNALocate2,17941,719ncRNA-subcellular locationlocated inRNALocate111premiRNA-subcellular locationlocated inRNALocate223scaRNA-subcellular locationlocated inRNALocate223lncRNA-subcellular locationlocated inRNALocate223scaRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate223lncRNA-subcellular locationlocated inRNALocate2222othersRNA-subcel	circRNA-miRNA	interacts with	SomamiR miRNet	4,309	2,590	302,197
unknownRNA-histone modificationinteracts withRNAInter11818mRNA-histone modificationinteracts withRNAInter4220486othersRNA-histone modificationinteracts withRNAInter2020263IncRNA-histone modificationinteracts withRNAInter4.8162051,375ncRNA-histone modificationinteracts withRNAInter1220130pseudogene-histone modificationinteracts withRNAInter4.320460premiRNA-subcellular locationlocated inRNALocate5787926miRNA-subcellular locationlocated inRNALocate2,572153,496snRNA-subcellular locationlocated inRNALocate1,71941,719pseudogene-subcellular locationlocated inRNALocate1111ncRNA-subcellular locationlocated inRNALocate2186230snRNA-subcellular locationlocated inRNALocate7763763scaRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate313incRNA-subcellular locationlocated inRNALocate313incRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate313incRNA-subcellular locationlocated	circRNA-premiRNA	interacts with	SomamiR miRNet	8,755	110	129,990
mRNA-histone modificationinteracts withRNAInter4220486othersRNA-histone modificationinteracts withRNAInter2020263IncRNA-histone modificationinteracts withRNAInter1220130pseudogene-histone modificationinteracts withRNAInter1220130premiRNA-subcenlular locationinteracts withRNAInter1320460premiRNA-subcenlular locationlocated inRNALocate5787926miRNA-subcellular locationlocated inRNALocate5787926miRNA-subcellular locationlocated inRNALocate1,71941,719ncRNA-subcellular locationlocated inRNALocate859107pseudogene-subcellular locationlocated inRNALocate2186230snoRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate223incRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate223incRNA-subcellular locationlocated inRNALocate223incRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate222othersRNA-subcellular locationlocated inRNALo	unknownRNA-histone modification	interacts with	RNAInter	1	18	18
othersRNA-histone modificationinteracts withRNAInter2020263IncRNA-histone modificationinteracts withRNAInter4.8162051,375ncRNA-histone modificationinteracts withRNAInter1220130pseudogene-histone modificationinteracts withRNAInter4.320460premiRNA-subcellular locationlocated inRNALocate5787926miRNA-subcellular locationlocated inRNALocate2,572153,496snRNA-subcellular locationlocated inRNALocate1,71941,719ncRNA-subcellular locationlocated inRNALocate859107pseudogene-subcellular locationlocated inRNALocate2186230snoRNA-subcellular locationlocated inRNALocate2186230snoRNA-subcellular locationlocated inRNALocate111rfRNA-subcellular locationlocated inRNALocate223lncRNA-subcellular locationlocated inRNALocate223lncRNA-subcellular locationlocated inRNALocate111rfRNA-subcellular locationlocated inRNALocate222starRNA-subcellular locationlocated inRNALocate111rfRNA-subcellular locationlocated inRNALocate111rfRNA-subcellular locationlocated in<	mRNA-histone modification	interacts with	RNAInter	42	20	486
IncRNA-histone modificationinteracts withRNAInter4.8162051,375ncRNA-histone modificationinteracts withRNAInter1220130pseudogene-histone modificationinteracts withRNAInter4320460premiRNA-subcellular locationinteracts withRNAInter1.8422020,754premiRNA-subcellular locationlocated inRNALocate5787926snRNA-subcellular locationlocated inRNALocate2,572153,496snRNA-subcellular locationlocated inRNALocate859107pseudogene-subcellular locationlocated inRNALocate859107pseudogene-subcellular locationlocated inRNALocate5707763scaRNA-subcellular locationlocated inRNALocate1111rRNA-subcellular locationlocated inRNALocate1111incRNA-subcellular locationlocated inRNALocate11111incRNA-subcellular locationlocated inRNALocate252828othersRNA-subcellular locationlocated inRNALocate313313iRNA-subcellular locationlocated inRNALocate111111111111111111111111<	othersRNA-histone modification	interacts with	RNAInter	20	20	263
ncRNA-histone modificationinteracts withRNAInter1220130pseudogene-histone modificationinteracts withRNAInter4320460premiRNA-subcellular locationlocated inRNALocate5787926mRNA-subcellular locationlocated inRNALocate2,572153,496snRNA-subcellular locationlocated inRNALocate2,572153,496snRNA-subcellular locationlocated inRNALocate2,572153,496snRNA-subcellular locationlocated inRNALocate2186230snoRNA-subcellular locationlocated inRNALocate2186230snoRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate223lncRNA-subcellular locationlocated inRNALocate223lncRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate2528othersRNA-subcellular locationlocated inRNALocate313tricrRNA-subcellular locationlocated inRNALocate111Y RNA-subcellular locationlocated inRNALocate21228othersRNA-subcellular locationlocated inRNALocate1111Y RNA-subcellular locationlocated in <td>IncRNA-histone modification</td> <td>interacts with</td> <td>RNAInter</td> <td>4,816</td> <td>20</td> <td>51,375</td>	IncRNA-histone modification	interacts with	RNAInter	4,816	20	51,375
pseudogene-histone modificationinteracts withRNAInter4.32.04.60premiRNA-subcellular locationinteracts withRNAInter1.8422020.754premiRNA-subcellular locationlocated inRNALocate5.787926miRNA-subcellular locationlocated inRNALocate2.572153.496snRNA-subcellular locationlocated inRNALocate1.71941.719ncRNA-subcellular locationlocated inRNALocate859107pseudogene-subcellular locationlocated inRNALocate5707763scaRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate223lincRNA-subcellular locationlocated inRNALocate223lincRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate313lincRNA-subcellular locationlocated inRNALocate111rtrrtrRNA-subcellular locationlocated inRNALocate111rtrrtrrtrRNA-subcellular locationlocated inRNALocate111rtrrtrrtrRNA-subcellular locationlocated inRNALocate111rtrrtrrtrRNA-subcellular locationlocated inRNA	ncRNA-histone modification	interacts with	RNAInter	12	20	130
premiRNA-histone modificationinteracts withRNAInter1,8422020,754premiRNA-subcellular locationlocated inRNALocate5787926miRNA-subcellular locationlocated inRNALocate2,572153,496snRNA-subcellular locationlocated inRNALocate1,71941,719ncRNA-subcellular locationlocated inRNALocate186230snoRNA-subcellular locationlocated inRNALocate2186230snoRNA-subcellular locationlocated inRNALocate1111rRNA-subcellular locationlocated inRNALocate223lincRNA-subcellular locationlocated inRNALocate1,047112,313lincRNA-subcellular locationlocated inRNALocate111rtRNA-subcellular locationlocated inRNALocate313lincRNA-subcellular locationlocated inRNALocate111circRNA-subcellular locationlocated inRNALocate111circRNA-subcellular locationlocated inRNALocate2122othersRNA-subcellular locationlocated inRNALocate1111circRNA-subcellular locationlocated inRNALocate2122mRNA-subcellular locationlocated inRNALocate3261mRNA-subcellular location	pseudogene-histone modification	interacts with	RNAInter	43	20	460
premiRNA-subcellular locationlocated inRNALocate5787926miRNA-subcellular locationlocated inRNALocate2,572153,496snRNA-subcellular locationlocated inRNALocate2,572153,496ncRNA-subcellular locationlocated inRNALocate859107pseudogene-subcellular locationlocated inRNALocate2186230snoRNA-subcellular locationlocated inRNALocate5707763scaRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate223lncRNA-subcellular locationlocated inRNALocate22528othersRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate313trRNA-subcellular locationlocated inRNALocate111crRNA-subcellular locationlocated inRNALocate111trRNA-subcellular locationlocated inRNALocate111Y RNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate111Y RNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate212 <td>premiRNA-histone modification</td> <td>interacts with</td> <td>RNAInter</td> <td>1,842</td> <td>20</td> <td>20,754</td>	premiRNA-histone modification	interacts with	RNAInter	1,842	20	20,754
miRNA-subcellular locationlocated inRNALocate2,5/2153,496snRNA-subcellular locationlocated inRNALocate1,71941,719ncRNA-subcellular locationlocated inRNALocate859107pseudogene-subcellular locationlocated inRNALocate2186230sonRNA-subcellular locationlocated inRNALocate5707763scaRNA-subcellular locationlocated inRNALocate223IncRNA-subcellular locationlocated inRNALocate223IncRNA-subcellular locationlocated inRNALocate111grandgrandlocated inRNALocate223IncRNA-subcellular locationlocated inRNALocate111grandlocated inRNALocate3133thersRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate111yrRNA-subcellular locationlocated inRNALocate111yrRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate212mrRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate326mrRNA-subcel	premiRNA-subcellular location	located in	RNALocate	578	7	926
snRNA-subcellular locationlocated inRNALocate1,71941,719ncRNA-subcellular locationlocated inRNALocate859107pseudogene-subcellular locationlocated inRNALocate2186230snoRNA-subcellular locationlocated inRNALocate5707763scaRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate223lncRNA-subcellular locationlocated inRNALocate223lincRNA-subcellular locationlocated inRNALocate223lincRNA-subcellular locationlocated inRNALocate313trensRNA-subcellular locationlocated inRNALocate311trensRNA-subcellular locationlocated inRNALocate111Y RNA-subcellular locationlocated inRNALocate111Y RNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate2122mRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate326mRNA-subcellular locationlocated inRNALocate326mRNA-subcellular locationlocated inRNALocate326 <td>miRNA-subcellular location</td> <td>located in</td> <td>RNALocate</td> <td>2,572</td> <td>15</td> <td>3,496</td>	miRNA-subcellular location	located in	RNALocate	2,572	15	3,496
ncRNA-subcellular locationlocated inRNALocate85910/pseudogene-subcellular locationlocated inRNALocate2186230snoRNA-subcellular locationlocated inRNALocate5707763scaRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate223lncRNA-subcellular locationlocated inRNALocate22528othersRNA-subcellular locationlocated inRNALocate313incRNA-subcellular locationlocated inRNALocate311circRNA-subcellular locationlocated inRNALocate111circRNA-subcellular locationlocated inRNALocate111circRNA-subcellular locationlocated inRNALocate111y RNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate326mtR	snRNA-subcellular location	located in	RNALocate	1,719	4	1,/19
pseudogene-subcellular locationlocated inRNALocate2186250snoRNA-subcellular locationlocated inRNALocate5707763scaRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate223lncRNA-subcellular locationlocated inRNALocate1,047112,313lincRNA-subcellular locationlocated inRNALocate313othersRNA-subcellular locationlocated inRNALocate311crcRNA-subcellular locationlocated inRNALocate111crcRNA-subcellular locationlocated inRNALocate111rerRNA-subcellular locationlocated inRNALocate111Y RNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate212otated inRNALocate3266mRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate329vRNA-subcellular location </td <td>ncRNA-subcellular location</td> <td>located in</td> <td>RNALocate</td> <td>85</td> <td>9</td> <td>107</td>	ncRNA-subcellular location	located in	RNALocate	85	9	107
stoktNA-subcellular locationlocated inRNALocate5707765scaRNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate223lncRNA-subcellular locationlocated inRNALocate1,047112,313lincRNA-subcellular locationlocated inRNALocate22528othersRNA-subcellular locationlocated inRNALocate313tRNA-subcellular locationlocated inRNALocate111circRNA-subcellular locationlocated inRNALocate111circRNA-subcellular locationlocated inRNALocate114scRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate326mRNA-subcellular locationlocated inRNALocate326mRNA-subcellular locationlocated inRNALocate326mRNA-subcellular locationlocated inRNALocate326mRNA-subcellular locationlocated inRNALocate326mRNA-subcellular locationlocated inRNALocate10219miRNA-progr	pseudogene-subcellular location	located in	RNALocate	218	6	230
scarNA-subcellular locationlocated inRNALocate111rRNA-subcellular locationlocated inRNALocate223lncRNA-subcellular locationlocated inRNALocate1,047112,313lincRNA-subcellular locationlocated inRNALocate22528othersRNA-subcellular locationlocated inRNALocate313tRNA-subcellular locationlocated inRNALocate111circRNA-subcellular locationlocated inRNALocate111Y RNA-subcellular locationlocated inRNALocate111Y RNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate329mtRNA-subcellular locationlocated inRNALocate329mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate329mtRNA-subcellul	snokna-subcellular location	located in	RNALocate DNALocate	570	/	/05
IncRNA-subcellular locationlocated inRNALocate223IncRNA-subcellular locationlocated inRNALocate1,047112,313incRNA-subcellular locationlocated inRNALocate22528othersRNA-subcellular locationlocated inRNALocate313tRNA-subcellular locationlocated inRNALocate111circRNA-subcellular locationlocated inRNALocate111Y RNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate212mRA-subcellular locationlocated inRNALocate212mRA-subcellular locationlocated inRNALocate326wRNA-subcellular locationlocated inRNALocate326mRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate329mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate329mtRNA-subcellular lo	scarina-subcentular location	located in	RINAL ocate	1	1	1
IncRNA-subcellular locationIbcated inRNALocate102.313lincRNA-subcellular locationlocated inRNALocate22528othersRNA-subcellular locationlocated inRNALocate313tRNA-subcellular locationlocated inRNALocate111circRNA-subcellular locationlocated inRNALocate111Y RNA-subcellular locationlocated inRNALocate414scRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate326wRNA-subcellular locationlocated inRNALocate326mRNA-subcellular locationlocated inRNALocate10219wRNA-subcellular locationlocated inRNALocate10219mRNA-programmed deathparticipates inncRDeathDB5813792lncRNA-programmed deathparticipates inncRDeathDB111gRNA-genedecreases by repression quantity ofAddgene774377ASO-mRNAinvolved in negative regulation ofDrugBank646tRNA-mino acidinteracts withRNAInter444tRNA-mino acidmolecularly interacts withRNAInter849	Include subcellular location	located in	RNALocate PNALocate	1.047	11	2 212
Inclust VF-MedicationIberated inRNALocate2.2.5.2.5othersRNA-subcellular locationlocated inRNALocate313tRNA-subcellular locationlocated inRNALocate111circRNA-subcellular locationlocated inRNALocate111Y RNA-subcellular locationlocated inRNALocate414scRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate10219wRNA-subcellular locationlocated inRNALocate10219mtRNA-subcellular locationlocated inRNALocate10219mtRNA-subcellular locationlocated inRNALocate10219mtRNA-programmed deathparticipates inncRDeathDB5813792lncRNA-programmed deathparticipates inncRDeathDB111gRNA-genedecreases by repression quantity ofAddgene774377ASO-mRNAinvolved in negative regulation ofDrugBank646tRNA-mino acidinteracts withRNAInter444tRNA-mino acidmolecularly interacts withRNAInter849 <td>lincRNA-subcellular location</td> <td>located in</td> <td>RNAL ocate</td> <td>22</td> <td>5</td> <td>2,313</td>	lincRNA-subcellular location	located in	RNAL ocate	22	5	2,313
Otherski-NA-subcellular locationIbcated inRNALocate11tRNA-subcellular locationlocated inRNALocate11Y RNA-subcellular locationlocated inRNALocate11Y RNA-subcellular locationlocated inRNALocate414scRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate121mRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate10219mtRNA-subcellular locationlocated inRNALocate10219mtRNA-programmed deathparticipates inncRDeathDB5813792lncRNA-programmed deathparticipates inncRDeathDB111gRNA-genedecreases by repression quantity ofAddgene774377ASO-mRNArepresses expression ofeSkip-Finder2,633162,678ASO drug-mRNAinvolved in negative regulation ofDrugBank646tRNA-mrino acidmolecularly interacts withRNAInter444tRNA-mrino acidmolecularly interacts withRNAInter849	othersPNA subcellular location	located in	RIVALOCATE PNALocate	3	1	20
InterventionInductionInterventionInterventionInterventioncirceRNA-subcellular locationlocated inRNALocate11Y RNA-subcellular locationlocated inRNALocate414scRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate13,6461950,903vRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate10219mtRNA-subcellular locationlocated inRNALocate10219mtRNA-programmed deathparticipates inncRDeathDB5813792lncRNA-programmed deathparticipates inncRDeathDB111gRNA-genedecreases by repression quantity ofAddgene774377ASO-mRNArepresses expression ofeSkip-Finder2,633162,678ASO drug-mRNAinvolved in negative regulation ofDrugBank646tRNA-mrino acidmolecularly interacts withRNAInter444tRNA-amino acidmolecularly interacts withRNAInter849	tRNA-subcellular location	located in	RNAL ocate	1	1	1
Y RNA-subcellular locationInclude inRNALocate11Y RNA-subcellular locationlocated inRNALocate414scRNA-subcellular locationlocated inRNALocate212mRNA-subcellular locationlocated inRNALocate13,6461950,903vRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate10219miRNA-programmed deathparticipates inncRDeathDB5813792lncRNA-programmed deathparticipates inncRDeathDB99299snoRNA-programmed deathparticipates inncRDeathDB111gRNA-genedecreases by repression quantity ofAddgene774377ASO-mRNArepresses expression ofeSkip-Finder2,633162,678ASO drug-mRNAinvolved in negative regulation ofDrugBank646tRNA-mino acidmolecularly interacts withRNAInter444tRNA-anino acidmolecularly interacts withRNAInter849	circRNA-subcellular location	located in	RNAL ocate	1	1	1
And LocateAnd Locate<	Y RNA-subcellular location	located in	RNAL ocate	4	1	4
InstructureDetected inRNALocate1212mRNA-subcellular locationlocated inRNALocate13,6461950,903vRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate10219mtRNA-programmed deathparticipates inncRDeathDB5813792lncRNA-programmed deathparticipates inncRDeathDB99299snoRNA-programmed deathparticipates inncRDeathDB111gRNA-genedecreases by repression quantity ofAddgene774377ASO-mRNArepresses expression ofeSkip-Finder2,633162,678ASO drug-mRNAinvolved in negative regulation ofDrugBank646tRNA-mRNAinteracts withRNAInter44tRNA-mRNAinteracts withRNAInter849	scRNA-subcellular location	located in	RNAL ocate	2	1	2
InclusterInclusterInclusterInclusterInclusterInclustervRNA-subcellular locationlocated inRNALocate326mtRNA-subcellular locationlocated inRNALocate10219miRNA-programmed deathparticipates inncRDeathDB5813792lncRNA-programmed deathparticipates inncRDeathDB99299snoRNA-programmed deathparticipates inncRDeathDB111gRNA-genedecreases by repression quantity ofAddgene774377ASO-mRNArepresses expression ofeSkip-Finder2,633162,678ASO drug-mRNAinvolved in negative regulation ofDrugBank646tRNA-mRNAinteracts withRNAInter44tRNA-amino acidmolecularly interacts withtRNAdb54919549tRNA-lncRNAinteracts withRNAInter849	mRNA-subcellular location	located in	RNAL ocate	13 646	19	50,903
IntroductionInclusion </td <td>vRNA-subcellular location</td> <td>located in</td> <td>RNAL ocate</td> <td>3</td> <td>2</td> <td>6</td>	vRNA-subcellular location	located in	RNAL ocate	3	2	6
InterversionInterversionInterversionInterversionInterversionmiRNA-programmed deathparticipates inncRDeathDB5813792lncRNA-programmed deathparticipates inncRDeathDB99299snoRNA-programmed deathparticipates inncRDeathDB111gRNA-genedecreases by repression quantity ofAddgene774377ASO-mRNArepresses expression ofeSkip-Finder2,633162,678ASO drug-mRNAinvolved in negative regulation ofDrugBank646tRNA-mRNAinteracts withRNAInter44tRNA-amino acidmolecularly interacts withtRNAinter849	mtRNA-subcellular location	located in	RNALocate	10	2	19
IncRNA-programmed deathparticipates inncRDeathDB99299snoRNA-programmed deathparticipates inncRDeathDB111gRNA-genedecreases by repression quantity ofAddgene774377ASO-mRNArepresses expression ofeSkip-Finder2,633162,678ASO drug-mRNAinvolved in negative regulation ofDrugBank646tRNA-mRNAinteracts withRNAInter44tRNA-amino acidmolecularly interacts withtRNAInter849tRNA-IncRNAinteracts withRNAInter849	miRNA-programmed death	participates in	ncRDeathDB	581	3	792
snoRNA-programmed deathparticipates inncRDeathDB111gRNA-genedecreases by repression quantity ofAddgene774377ASO-mRNArepresses expression ofeSkip-Finder2,633162,678ASO drug-mRNAinvolved in negative regulation ofDrugBank646tRNA-mRNAinteracts withRNAInter444tRNA-mino acidmolecularly interacts withtRNAdb54919549tRNA-lncRNAinteracts withRNAInter849	IncRNA-programmed death	participates in	ncRDeathDB	99	2	99
gRNA-genedecreases by repression quantity of AdgeneAdgene774377ASO-mRNArepresses expression of involved in negative regulation of tRNA-mRNASkip-Finder2,633162,678ASO drug-mRNAinvolved in negative regulation of tRNA-mRNADrugBank646tRNA-mRNAinteracts withRNAInter444tRNA-amino acidmolecularly interacts withtRNAdb54919549tRNA-lncRNAinteracts withRNAInter849	snoRNA-programmed death	participates in	ncRDeathDB	1	1	1
ASO-mRNArepresses expression of involved in negative regulation of involved in negative regulation of interacts withCRNA16 	gRNA-gene	decreases by repression quantity of	Addgene	77	43	77
ASO drug-mRNAinvolved in negative regulation of interacts withDrugBank646tRNA-mRNAinteracts withRNAInter44tRNA-amino acidmolecularly interacts withtRNAdb54919549tRNA-lncRNAinteracts withRNAInter849	ASO-mRNA	represses expression of	eSkip-Finder	2,633	16	2,678
tRNA-mRNAinteracts withRNAInter44tRNA-amino acidmolecularly interacts withtRNAdb54919549tRNA-lncRNAinteracts withRNAInter849	ASO drug-mRNA	involved in negative regulation of	DrugBank	6	4	6
tRNA-amino acidmolecularly interacts withtRNAdb54919549tRNA-lncRNAinteracts withRNAInter849	tRNA-mRNA	interacts with	RNAInter	4	4	4
tRNA-lncRNA interacts with RNAInter 8 4 9	tRNA-amino acid	molecularly interacts with	tRNAdb	549	19	549
	tRNA-lncRNA	interacts with	RNAInter	8	4	9

Supplementary Table 6. RNA-KG Descriptive statistics by primary edge type (Part V).

Node type	Full name	Identifier(s)
Anatomy	-	Uberon (http://purl.obolibrary.org/obo/UBERON_0005253)
Amino acid	-	ChEBI (http://purl.obolibrary.org/obo/CHEBI_25017)
ASO	AntiSense Oligonucleotide	Oligo name in literature (https://eskip-finder.org?H45_1-13_18-30)
ASO drug	AntiSense Oligonucleotide drug	DrugBank (https://go.drugbank.com/drugs/DB05528)
Aptamer	RNA aptamer	Apta-Index (https://www.aptagen.com/aptamer-details/?id=608)
Aptamer drug	RNA aptamer drug	DrugBank (https://go.drugbank.com/drugs/DB04932)
Bacterial strain		NCBI Taxonomy Browser (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=485)
		Uberon (http://purl.obolibrary.org/obo/UBERON_0000479)
		GO (http://purl.obolibrary.org/obo/GO 0070062)
Biological context	-	CLO (http://purl.obolibrary.org/obo/CLO_0009828)
		Mondo (http://purl.obolibrary.org/obo/MONDO_0005108)
Biological process	-	GO (http://purl.obolibrary.org/obo/GO 0044848)
Biological role	_	NIH Talking Glossary of Genetic Terms (https://www.genome.gov/genetics-glossary/Oncogene)
Call		CLO (http://aurl.oba/ibrary.org/ab//CLO_00002(2))
Collular component	-	
Central component	-	ChEDI (http://puri.cov/abs/2010103)
	- Circulor DNA	CIEBI (IIII)://puil.000101aiy.01g/000/CIEBI_//002)
D	Circular KINA	NCB1 Entrez gene (http://www.ncb1.mm.nm.gov/gene/05/5/cfrck/NA)
Disease	-	Mondo (ntp://puri.oboinbrary.org/obo/MONDO_0049/1)
Epigenetic modification	-	GO (http://purl.obolibrary.org/obo/GO_0006306)
10		ENCODE (https://www.encodeproject.org/targets/H3K4me2)
erna	RNA enhancer	Human enhancer RNA Atlas (HeRA) (https://hanlab.uth.edu/HeRA? IL1beta-RBT46)
Extracellular vesicle	-	GO (http://purl.obolibrary.org/obo/GO_1990742)
Gene	-	NCBI Entrez gene (http://www.ncbi.nlm.nih.gov/gene/1954)
Genomic sequence	-	SO (http://purl.obolibrary.org/obo/SO_0000704)
gRNA	Guide RNA	Addgene (https://www.addgene.org/41818)
Histone modification	-	dbEM (http://crdd.osdd.net/raghava/dbem?H3K9me2)
lincRNA	Long intergenic RNA	NCBI Entrez gene (http://www.ncbi.nlm.nih.gov/gene/100287569?lincRNA)
Lipid	-	ChEBI (http://purl.obolibrary.org/obo/CHEBI_136143)
IncRNA	Long non-coding RNA	NCBI Entrez gene (http://www.ncbi.nlm.nih.gov/gene/100506207?lncRNA)
miscRNA	Miscellaneous RNA	NCBI Entrez gene (www.ncbi.nlm.nih.gov/gene/6029?misc_RNA)
mRNA	Messenger RNA	NCBI Entrez gene (http://www.ncbi.nlm.nih.gov/gene/1756?mRNA)
mRNA vaccine	-	DrugBank (https://go.drugbank.com/drugs/DB15654)
miRNA	Mature microRNA	miRBase (https://www.mirbase.org/cgi.hb/mature_nl?mature_acc-MIMAT0022711)
mtPNA	Mitochondrial PNA	NCBI Entrez gene (http://www.ncbi.nlm.nih.gov/gene/45402mtPNA)
	Non coding DNA	NCDI Entrez gene (http://www.ncbi.nmi.nmi.gov/gene/10722620/hoPNA)
Other (not close feed yet) DNA	Non-coding KINA	NCDI Entrez gene (http://www.ncbi.nlm.nlm.gov/gene/102/25029.nlcKiNA)
Other (not classified yet) KNA	-	NCB1 Entrez gene (http://www.ncb1.mm.nm.gov/gene/3537.coner)
Pathway	-	PW (http://purl.obolibrary.org/obo/PW_U000632)
Phenotype	-	HPO (http://purl.obolibrary.org/obo/HP_0005506)
piRNA	Piwi-interacting RNA	piRBase (http://bigdata.ibp.ac.cn/piRBase?piR-39980)
premiRNA	Hairpin microRNA	miRBase (https://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=M10000067)
Programmed cell death	-	GO (http://purl.obolibrary.org/obo/GO_0097300)
Protein	-	PRO (http://purl.obolibrary.org/obo/PR_Q92506)
Pseudogene	-	NCBI Entrez gene (http://www.ncbi.nlm.nih.gov/gene/442240?pseudo)
Retained intron	-	NCBI Entrez gene (http://www.ncbi.nlm.nih.gov/gene/23642?retained_intron)
RBP	RNA-Binding Protein	PRO (http://purl.obolibrary.org/obo/PR_Q92506)
Riboswitch	-	TBDB (https://tbdb.io/tboxes/UQCD7JYG.html)
Ribozyme	RIBOnucleic acid enZYME	Rfam (http://rfamlive.xfam.org/family/ RF02682)
rRNA	Ribosomal RNA	snoDB (http://scottgroup.med.usherbrooke.ca/snoDB/ 28S-3616?snoDBrRNA)
scRNA	Small conditional RNA	NCBI Entrez gene (http://www.ncbi.nlm.nih.gov/gene/618?scRNA)
scaRNA	Small Caial body-specific RNA	NCBI Entrez gene (http://www.ncbi.nlm.nih.gov/gene/6777673scaRNA)
shRNA	Short/small hairpin RNA	ICBP siRNA (http://web.mit.edu/sirna/sequences/results-1107.html)
siRNA	Short interfering RNA	ICBP siRNA (http://web.mit.edu/sirna/sequences/results-1053.html)
siRNA drug	Short interfering RNA drug	DrugBank (https://go.drugbank.com/drugs/DB15935)
Small protein	-	SmProt (http://bigdata.jbp.ac.cn/SmProt/SmProt php?ID=SPROHSA53815)
snRNA	Small nuclear RNA	NCBI Entrez gene (http://www.ncbi.nlm.nih.gov/gene/26824?snRNA)
spoRNA	Small nucleolar RNA	NCBI Entrez gene (http://www.ncbi.nlm.nih.gov/gene/ 727676 2sno RNA)
Subcellular location		GO (http://purl.obolibrary.org/obo/CO 0005840)
TEC	To be Experimentally Confirmed PNA	NCRI Entrez gene (https://www.ncbi.nlm.nih.gov/gene/ &1232TEC)
TE	Transportation Faster	DDO (http://www.ncol.llill.llill.gov/gcitc/0143;1EC)
ІГ	Transcription Factor	PRO (http://pur.coonbrary.org/000/PR_0000/055)
(DE	(DNA dominand for success)	IKFdD (http://genome.biocn.virginia.edu/Irido/IKF-5018D) MINThese (https://genome.biocn.virginia.edu/Irido/IKF-5018D)
tRF	tRNA-derived fragment	MIN I base (https://cm.jenerson.edu/MIN I base/input/Controller //=i&g=GKCh3/&e=1&
		search=submit&t=All&am=All&an=All&aa=&th=&th= tF -10-47DKFUE)
(D)14		GRNAdb (http://gtrnadb.ucsc.edu/genomes/eukaryota/Hsapi19/genes/tRNA-Gin-CTG-1-3.ntml)
tRNA	Transfer RNA	tkFdb (http://genome.bioch.virginia.edu/trfdb?chr8.trna4-1yrGIA)
		NCBI Entrez gene (https://www.ncbi.nlm.nih.gov/gene/4567?tRNA)
tsRNA	tRNA-derived small RNA	tsRFun (https://rna.sysu.edu.cn/tsRFun/searchDetail-tsRNA.php?tsRNAid=tsRNA-Gly-i-0605)
Unknown RNA	-	NCBI Entrez gene (https://www.ncbi.nlm.nih.gov/gene/100128998?unknown)
Vaccine	-	VO (http://purl.obolibrary.org/obo/VO_000186)
Variant (SNP)	-	NCBI dbSNP (https://www.ncbi.nlm.nih.gov/snp/rs71354105)
Viral miRNA	-	miRBase (https://www.mirbase.org/cgi-bin/mature.pl?mature_acc=MIMAT0001581)
Viral mRNA	-	NCBI Entrez gene (https://www.ncbi.nlm.nih.gov/gene/43740578?viral_mRNA)
Viral protein	-	PRO (http://purl.obolibrary.org/obo/PR_000036828)
Viral RNA	-	NCBI Nucleotide database (https://www.ncbi.nlm.nih.gov/nuccore/KF869252.1)
vRNA	Vault RNA	NCBI Entrez gene (https://www.ncbi.nlm.nih.gov/gene/56664?vRNA)
Y RNA	-	NCBI Entrez gene (https://www.ncbi.nlm.nih.gov/gene/6090?Y RNA)
L	1	

Supplementary Table 7. RNA-KG primary node types and their corresponding identifiers with an instance sample.

Supplementary Listing 1. SPARQL query to retrieve all miRNA molecules that causes or contributes to the development of leukemia.

```
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
SELECT ?miRNA
WHERE {
    ?miRNA rdfs:subClassOf obo:SO_0000276. # so_0000276 ->label-> miRNA
    ?miRNA obo:RO_0003302 obo:MONDO_0005059.
    # R0_0003302 ->label-> causes or contributes to condition;
    # MONDO_0005059 ->label-> leukemia
}
```

Supplementary Listing 2. SPARQL query to retrieve all premiRNA molecules that develop into mature miRNAs known to be located in an apoptotic body and cause or contribute to the development of a cancer.

Supplementary Listing 3. SPARQL query to retrieve all lncRNA molecules that are over-expressed in a viral infectious disease and are known to cause or contribute to a disease treated by at least one RNA drug.

```
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX obo: <http://purl.obolibrary.org/obo/>
PREFIX disease: <http://purl.obolibrary.org/obo/MONDO_>
PREFIX RNAdrug: <https://go.drugbank.com/drugs/>
SELECT ?lncRNA ?disease ?RNAdrug (COUNT(DISTINCT ?RNAdrug) as ?numRNAdrugs)
WHERE {
    ?lncRNA rdfs:subClassOf obo:SO_0001877; # so_0001877 ->label-> lncRNA
        obo:RO_0002245 obo:MONDO_0005108;
          # MONDO_0005108 ->label-> viral infectious disease
        obo:RO_0003302 ?disease.
    ?disease obo:RO_0002302 ?RNAdrug.
      # RO_0002302 ->label-> is treated by substance
    FILTER(STRSTARTS(STR(?disease), STR(disease:)))
    FILTER (STRSTARTS (STR (?RNAdrug), STR (RNAdrug:)))
}
GROUP BY ?lncRNA ?disease ?RNAdrug
HAVING (COUNT(DISTINCT ?RNAdrug) >= 1)
```