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Abstract 

Background:  Single primer enrichment technology (SPET) is an emerging and increasingly popular solution for 
high-throughput targeted genotyping in plants. Although SPET requires a priori identification of polymorphisms for 
probe design, this technology has potentially higher reproducibility and transferability compared to other reduced 
representation sequencing (RRS) approaches, also enabling the discovery of closely linked polymorphisms surround-
ing the target one.

Results:  The potential for SPET application in fruit trees was evaluated by developing a 25K target SNPs assay to 
genotype a panel of apricot accessions and progenies. A total of 32,492 polymorphic sites were genotyped in 128 
accessions (including 8,188 accessory non-target SNPs) with extremely low levels of missing data and a significant 
correlation of allelic frequencies compared to whole-genome sequencing data used for array design. Assay perfor-
mance was further validated by estimating genotyping errors in two biparental progenies, resulting in an overall 1.8% 
rate. SPET genotyping data were used to infer population structure and to dissect the architecture of fruit maturity 
date (MD), a quantitative reproductive phenological trait of great agronomical interest in apricot species. Depending 
on the year, GWAS revealed loci associated to MD on several chromosomes. The QTLs on chromosomes 1 and 4 (the 
latter explaining most of the phenotypic variability in the panel) were the most consistent over years and were further 
confirmed by linkage mapping in two segregating progenies.

Conclusions:  Besides the utility for marker assisted selection and for paving the way to in-depth studies to clarify the 
molecular bases of MD trait variation in apricot, the results provide an overview of the performance and reliability of 
SPET for fruit tree genetics.
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Background
The tremendous advance in DNA technologies and the 
advent of next generation sequencing (NGS) platforms 
are making possible a comprehensive cataloguing of 
genetic variation, providing an unprecedented resolu-
tion for analyzing ancestry, evolution and trait diversity 

[1]. Over the past decades, several high-throughput 
methods have been described for genotyping, being 
whole-genome re-sequencing (WGRS)—e.g. short-reads 
sequencing on the Illumina platform and reads align-
ment to a reference assembly—the most straightforward 
in species with an available reference genome [2]. Nev-
ertheless, the financial burden associated with amassing 
sufficient sequence data is still an important drawback, 
particularly in minor crops. Several techniques have been 
developed, mostly oriented to the genotyping of single 
nucleotide polymorphisms (SNPs), the most abundant 
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type of sequence variation in plant genomes [3]. Array-
based SNP genotyping platforms have become popular in 
many fruit crops, having several benefits from rapid high-
density genome scans, high call rate and robust allele 
calling to cost-effectiveness per data point (particularly 
for large numbers of SNPs and samples) [4]. However, 
arrays are non-flexible and the costs of chip development 
(or upgrade) are almost only affordable by (relatively) 
large consortia, as in the case of peach [5], apple [6], pear 
[7] or grape [8]. The reduction of genome complexity 
to increase read depth in certain genomic regions is the 
basic principle of the reduced representation sequencing 
(RRS) approaches [9], such as RAD-seq [10], genotyping-
by-sequencing (GBS) [11], double-digest RAD sequenc-
ing (ddRAD) [12] or SLAF-seq [13]. The common feature 
of all these methods is genomic complexity reduction 
by digestion with restriction enzymes and subsequent 
short-read sequencing of fragments bordering restric-
tion sites [14]. RRS approaches have been widely used 
in many plant species for genetic studies, such as link-
age and association mapping, diversity and population 
structure and core collection development [15]. Com-
pared to SNP arrays, RRS genotyping has the advantage 
of not requiring prior knowledge to develop assays and 
of minor ascertainment bias, although they have also 
several cons, as reviewed by Lowry et  al. [16]. Single 
primer enrichment technology (SPET, United States Pat-
ent 9,650,628), is a relatively recent technology offering 
a customizable and cost-effective solution for targeted 
sequencing. This technology requires a priori identifica-
tion of polymorphisms for probe design. Probes are short 
DNA sequences of around 40-bases long designed in the 
regions adjacent to the target variant enabling also the 
detection of any additional polymorphisms (accessory 
non-target variants) surrounding the target one. Appli-
cation of SPET has been increasingly reported in plants, 
including maize, poplar, oil palm, eggplant and tomato 
[17–19], either for genotyping germplasm resources 
(also including wild relatives) or cross-progenies. The 
customization and scalable probe design can maximize 
the number of target locations and the sequencing of all 
SNPs in the genomic regions for which probes have been 
designed. Moreover, once developed and validated, SPET 
has potentially higher reproducibility and transferability 
compared to the other RRS genotyping approaches.

Apricot (Prunus armeniaca L.) is an economically rela-
tively important Prunus  species, with a worldwide pro-
duction of 4.4 million tons in 2018 [20]. In the last two 
decades, the apricot varietal landscape has been progres-
sively revolutionized by the introduction of several novel 
accessions from various breeding programmes [21–24]. 
Selection for improved productivity (adaptability and flo-
ral self-compatibility), Plum Pox Virus (etiological agent 

of Sharka disease) resistance and fruit quality (internal 
and external) have been the major emphasis of breeders 
[25], leading to a renewed interest for both the offer of 
novel fruit types and the extension of the ripening cal-
endar. Ex situ apricot collections largely represent the 
source of parental material for crossing. Several stud-
ies have investigated genetic diversity and population 
structure in various germplasms backgrounds by sim-
ple-sequence repeats (SSRs) markers [26–29] and, more 
recently, RRS [30] or WGRS techniques [31]. All these 
approaches have allowed to elucidate the domestica-
tion history and relationships among the different eco-
geographical groups, providing a theoretical basis for an 
effective use of plant resources. Also, the recent release 
of high-quality reference genome sequences of some 
apricot cultivars and other Armeniaca species (P. sibirica 
and P. mandshurica) [31, 32] has been a milestone for in-
depth evolutionary and genomics studies, and the way 
to associate allelic variation with phenotypic traits. A 
major challenge for apricot breeding is the development 
of molecular approaches to assist selection; currently, 
major efforts have been made for shedding light on the 
genetic basis of PPV resistance [33–35] and floral self-
compatibility [36, 37], leading to the creation of several 
linkage maps, the identification of major loci and conse-
quent design of marker-assisted selection (MAS) [38, 39], 
or more advanced genomic selection-based prediction 
approaches [40]. However, knowledge about genomic 
regions underlying polygenic traits, such as those that 
define fruit quality, tree phenology and adaptability to the 
environment, is still scarce.

In this work, we described the first application of SPET 
technology in apricot. A collection of accessions and 
breeding selections was genotyped using 25K probes 
assessing SPET reliability for analyzing genetic varia-
tion and population structure. Furthermore, as a proof-
of-concept, genome-wide association studies (GWAS) 
and Quantitative Trait Locus (QTL) mapping were per-
formed to dissect the genetic architecture of maturity 
date in a panel of accessions and breeding selections, and 
two additional segregating progenies.

Results
SPET array results
A total of 25K SPET probes were designed, mostly 
located in gene-rich chromosome regions: SNP type and 
position based on the apricot genome reference assem-
bly of ‘Chuanzhihong’ cultivar [32] is reported in Supple-
mental File 1.

SPET probes were used to genotype a panel of 128 
accessions. After quality filtering and trimming, a total 
of 206 million Paired End (PE) reads were obtained (an 
average of 1.6 million reads per sample) with an average 
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mapping rate of 97.9% and a mean depth per site of about 
80× (Supplemental File 1). The full set of sequences pro-
vides an overall mean 0.6× coverage of the assembled 
apricot genome (size of 221.9 Mbp). By applying stringent 
criteria for variant calling and after excluding INDELs, a 
total of 32,492 polymorphic sites were identified: 24,304 
target SNPs plus 8,188 accessory non-targets SNPs. Miss-
ingness per site showed extremely low levels, less than 
0.01%. The distribution of minor allele frequency (MAF) 
tended to be similar among the various classes, although 
sites with MAF < 0.1 were more abundant in accessory 
SNPs (Fig.  1). Also, MAF spectrum was homogenous 
across the 8 chromosomes, with an average value of 
about 0.30, although a certain variability was observed 
in some regions of chromosomes 2 and 3 (Supplemental 
Fig.  1). As an estimate of ascertainment bias, the entire 
allele frequency spectra (in the range 0 – 0.5) in the col-
lection panel were correlated to the original WGRS data-
set used for SPET design. Although most of accessory 
sites were rare SNPs with very low MAF (mostly between 
0.01 – 0.02), a significantly strong Pearson’s correlation 
(r = 0.82) was found between SPET and WGRS (Fig. 1).

As validation of the SPET assay reproducibility, a 
total of 152 seedlings from two segregating progenies 
were genotyped: 90 seedlings from ‘Fiamma’ (F) × ‘BO 
93623033’ (B93) F1 cross (hereafter F × B) and 62 seed-
lings from ‘Lito’ (L) × ‘BO81604311’ (B81) F1 cross 
(L × B). A total of 336 million PE reads were obtained, 

with an average of 2.2 million per sample (Supplemen-
tal File 1). Both the average mapping rate and the mean 
depth per site were similar to those obtained for the 
collection panel showing 98.9 and about 90× coverage 
respectively (Supplemental File 1), with a negligible 
proportion of missing data (below 0.01%). An approxi-
mate estimate of genotyping errors rate was obtained 
by the evaluation of allelic frequency and Mendelian 
inconsistency both in segregating and monomorphic 
SNPs, resulting in an overall 1.8% rate over the 32,492 
loci (largely due to singleton).

Once filtered for MAF > 0.05, a total of 25,704 clean 
SNPs were available for genetic analyses (23,556 and 
2,148, respectively for target and accessory SNPs). 
As shown in Fig.  2, SNPs efficiently covered the eight 
pseudo-chromosomes in the apricot reference genome 
(recalibrated based on the linkage group of Prunus 
reference map [41]) with an average distance between 
adjacent markers of 10.6 Kb (ranging from a minimum 
of 1 to a maximum of 933  Kb). Specifically, 3,885 and 
21,819 SNPs were located respectively in intergenic and 
genic regions, of which 9,415 in exons, 1,760 in UTRs 
and the remaining in the introns. Linkage disequilib-
rium (LD) decay was in the order of about 10 Kb for an 
R < 0.2, while the heterozygosity level ranged from 0.12 
in the F3 self-crossed selection ‘BO06603111’ to 0.51 of 
‘Hellin’, with the majority of SNPs showing an heterozy-
gosity level in the range 0.4 – 0.5 (Supplemental Fig.  2).

Fig. 1  A Distribution of minor allele frequencies (MAF) between target (24,304) and accessory (8,188) SNPs in a collection of 128 apricot accessions 
(grey and pink histograms, respectively). B Pearson’s correlation of MAF spectrum at the 32,492 polymorphic sites between the accessions panel 
(SPET) and the assembled whole-genome re-sequencing (WGRS) data of 66 accessions used for probe design
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Population structure
For structure evaluation, the set of 25,704 SNPs were LD-
pruned for R > 0.3, retaining a total of 1,593 SNPs (Sup-
plemental File 1). Analysis revealed the presence of two 
to four genetic clusters, as supported by cross-validation 
procedure for maximizing the predictive accuracy. For a 
number of a priori cluster (K) equal to 2 and a member-
ship coefficient higher than 0.75 (Supplemental Fig.  3), 
the panel stratification largely reflects the geographical 
and/or breeding origin of plant materials, being the first 
cluster (I) prevalently made up of accessions from Medi-
terranean and Continental Europe and the second clus-
ter (II) of the individuals derived from North America 
breeding programs under the effort of introgressing PPV 
resistance (Fig. 3).

The admixed cluster mostly includes recently released 
PPV-resistant cultivars and related breeding selections. 
This pattern of stratification is also captured by the prin-
cipal component analysis (PCA), with Dim1 and Dim2 
component capturing 8.5 and 6.7% of the total explained 
variance (Fig.  3). The clusters I and II were clearly dif-
ferentiated while admixed individuals occupied a cen-
tric position. Stratification patterns were consistent with 
UPGMA hierarchical clustering, supporting the dendro-
gram morphology (Supplemental Fig. 4).

Association mapping of maturity date in apricot
Maturity date (MD), expressed in Julian Days (JD) at 
harvest, was highly correlated among the three years of 
observation (r-squared higher than 0.9), although mean 

MD in 2019 was about one week later compared to 2017 
and 2018 (Fig.  4). MD range varied between 143—223, 
148—227 and 153—230 JD, respectively in 2017, 2018 
and 2019 seasons. Across seasons, ‘Pricia’ and ‘Tsunami’ 
were consistently the earliest ripening cultivars while 
‘Augusta 2’ was the latest one. By categorizing MD data 
into bins of 10 day intervals, distribution was almost nor-
mal with a frequency peak around 180 JD (around the II 
decade of June). Association analyses for MD trait were 
performed by FarmCPU algorithm using yearly records 
and the overall validity evaluated through quantile–
quantile (QQ) plot inspection. Significant hits above the 
Bonferroni or FDR significance thresholds (1.91E−06 and 
2.05E−05) were detected on chromosomes (chr) 1, 2, 3, 4, 
5 and 7, depending on the year (Fig. 4 and Table 1).

As estimated by REML analyses, cumulative herit-
ability explained by all SNP loci in each year was 0.82, 
0.66 and 0.72, respectively. The signal on chr 1 was con-
sistent across the 3  years of observation, although the 
top SNP peaks were not identical: SNP16361 (located 
at 25,852,231  bp) in 2017, SNP15833 (at 24,921,422) in 
2018 and 2019. Moreover, a main signal in the middle 
of chr 4 was stable across years, peaking at SNP25197 
(at 9,819,302  bp) in 2017 and 2019, and at SNP25460 
(at 10,712,890  bp) in 2018. However, others nearby 
SNPs beyond the significance threshold were observed 
at this locus (Table  1). Among the other identified loci, 
the association on chr 5 at SNP56480 (17,821,953  bp) 
was detected in two years (2018 and 2019) likewise the 
one at the proximal end of chr 4, peaking at SNP23840 

Fig. 2  Density of the 25,704 SNPs from 128 accessions across the 8 pseudo-chromosomes in the apricot reference genome sequence [32], 
reassigned based on the linkage group of Prunus reference map [41]
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(1,037,869  bp) and SNP23816 (910,675  bp). LD around 
top associated SNPs on chr 1 and 4 were also explored to 
delimit QTL intervals and to identify haplotype blocks, 
although no clear pattern was observed (Supplemental 
Fig.  5). For an approximate estimation of SNP effect, a 
linear regression under additive model was fitted at the 
most significant SNPs using MD best linear unbiased 
prediction (BLUP). The model estimated a major effect 
for SNP25460 locus in the center of chr 4 (r-square of 
0.44), followed by SNP56480 on chr 5 (0.30), SNP37424 
on chr 3 (0.21) and SNP16361 on chr 1 (0.10) (Fig.  5). 
Other signals showed significant but lower effects, with 
an r-square lower than 0.10.

Linkage mapping for maturity date in two segregating 
progenies
The SPET array was also used for QTL mapping in the 
two progenies F×B and L×B, both segregating for MD.

In F×B, MD spanned a period of about two decades, 
roughly comprised in the range 180 – 200 JD, being 
highly correlated in the two analyzed seasons (r-squared 
0.89), although distribution in both years was not normal 
(Fig. 6).

Single marker analysis (SMA) was separately performed 
in F and B93 to test the association with MD variations. 
After excluding 15,448 monomorphic and 1,250 mark-
ers heterozygous in both parents (i.e. hk × hk according 
to JoinMap software code), a total of 5,157 (lm × ll) and 
4,964 (nn × np) markers were respectively used for F and 
B93 parents. A SNP cluster on chr 1 was only detected in 
the F parent, peaking at 23.2 Mb in 2016 and 24.5 in 2019 
(p-value of 5.8E−06 and 7.03E−07, respectively) (Fig.  6). 
A less significant peak on the same position was also 
detected in B93, although only in 2019. A linkage map of 
chr 1 (LG1) was built for both F and B93 parents, result-
ing in a total length of 102.2 and 153 cM, and an average 

Fig. 3  Genetic structure of the apricot accessions panel. A Population structure estimated for K (number of a priori cluster) equal to 2 (A) and 4 
(B). Scatter plot of the first two principal components (Dim1 and Dim2) of the genetic relationship matrix. Red and green colors indicate the two 
subpopulations (cluster I and II), respectively. Parenthesis report the explained variance
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marker density of 2.4 and 3.1 cM. SNP marker order was 
in good agreement with their physical position in the P. 
armeniaca reference genome, although some gaps larger 
than 5  Mb of physical distance were identified on the 
LG1 top (0 – 7 Mb) and bottom (35 – 43 Mb). Interval 
mapping using the LG1 map highlighted a QTL in the 
region overlapping the SNP clusters detected with single 
marker analysis, locating qMD1.1 QTL within the 1.5-
LOD interval comprised between 47.1 and 60 cM in 2016 
and between 54.4 and 60 cM in 2019 (Fig. 6). SNP peaks 
at markers SNP15771 (24.6  Mb, 60  cM) and SNP14240 
(21.4  Mb, 55.6  cM) showed a percentage of explained 
phenotypic variance (PEV) of 21.8 and 28.2, respectively. 
A QTL on the same position was also detected in B93, 
peaking at SNP15289 (23,870,659, 84.9 cM) although the 
LOD (2.03) was below the significance threshold. Link-
age maps were also built for the other pseudo-chromo-
somes: maps covered a total of 429 and 468 cM in F and 
B93 (LG4 not covered), with an overall average marker 
density of 2.5 and 2.15  cM, respectively (Supplemental 
Fig. 6).

In L×B, best linear unbiased predictor (BLUP) of 
5  years MD data showed an almost bimodal distribu-
tion (Fig.  7). SMA was separately performed on L and 

B81 parents using a total of 3,456 (lm × ll) and 4,757 
(nn × np) markers. Analyses showed a SNP cluster on 
chr 4 of B81, peaking at SNP25503 (11.3 Mb, p-value of 
5.70E−19) (Fig. 7) while no evident signals were detected 
in L parent. A linkage map (LG4) of chr 4 was built for 
‘BO81604311’, resulting in a total length of 71.2 cM, with 
an average marker density of 2.2  cM. Interval mapping 
using B81 LG4 map located qMD4.1 QTL in the 1.5-
LOD interval comprised between markers SNP25629 
and SNP25847 (in the physical region 11.6—12.4  Mb) 
with maximum LOD at marker SNP25704 (12.02  Mb, 
29.0 cM) (Fig. 7) and PEV of 62.2%. Linkage maps were 
also built for the other LG groups: maps covered a total 
of 586 and 729 cM in L and B81, with an overall average 
marker density of 2.55 and 2.54 cM, respectively (Supple-
mental Fig. 7). Even in L×B, marker order on the parental 
linkage maps largely agreed with the physical position on 
apricot genome.

Discussions
SPET approach for apricot genotyping
In the last decade, the considerable expansion of apricot 
cultivation has renewed the breeding interest for improv-
ing agronomical and pomological traits, as well as the 

Table 1  Association statistics of loci most significantly associated with the MD trait in the accession panel

SNP id Type Chr Position MAF p-value gene model

MD2017
  SNP25197 C/A 4 9,819,302 0.20 8.35E−23 PARG10387

  SNP25581 C/T 4 11,574,290 0.46 1.40E−09 PARG10602

  SNP23840 T/C 4 1,037,869 0.39 6.38E−08 PARG09400

  SNP16361 C/T 1 25,852,231 0.48 1.51E−07 PARG06739

  SNP37424 G/T 3 24,907,655 0.33 2.32E−06 PARG16093

  SNP5424 G/T 6 17,760,184 0.27 1.83E−06 PARG02232

MD2018
  SNP25460 G/C 4 10,712,890 0.44 1.24E−09 PARG10515

  SNP23816 A/T 4 910,675 0.28 1.04E−07 Intergenic

  SNP56480 A/G 5 17,821,953 0.22 1.15E−07 Intergenic

  SNP39805 A/G 2 14,480,994 0.29 1.35E−06 PARG17886

  SNP29182 G/T 4 23,146,124 0.29 1.95E−06 PARG12303

  SNP15833 C/A 1 24,921,422 0.42 3.17E−06 Intergenic

MD2019
  SNP56480 A/G 5 17,821,953 0.22 1.87E−10 Intergenic

  SNP25197 C/A 4 9,819,302 0.20 6.50E−10 PARG10387

  SNP15833 C/A 1 24,921,422 0.42 1.13E−06 Intergenic

Fig. 4  Frequency distribution (A) and pairwise Pearson’s correlation coefficients (B) of the apricot maturity date (MD) trait in the association 
mapping panel across the three years of evaluation (2017, 2018 and 2019). Manhattan (C) and QQ-plot (D) of -log10 p-values estimated from 
the three-year data using FarmCPU algorithm adjusted for population structure. Horizontal lines indicate the Bonferroni’s-adjusted threshold 
(continuous line, 1.93E−06) and permutation test (dashed line, 2.63E−05)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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adaptability to different environmental conditions. As 
in other fruit tree species, the increase of knowledge on 
the genetic bases of traits variation and the development 
of molecular markers to assist selection could represent 
a useful strategy to complement and boost conventional 
breeding [25, 42]. Also, deploying genomics-assisted 
breeding approaches and association studies holds a sig-
nificant promise to unravel complex quantitative traits, 
identifying favorable haplotypes in promising materi-
als or estimating their breeding values [40]. In spite of 
the enormous progresses in DNA technologies, high-
throughput genotyping approaches have been rarely 
applied in apricot, where most genetic studies relied on 
RAPDs, AFLPs, RFLPs or SSRs markers and low-density 
linkage maps [37, 43–46]. Recently, GBS approaches have 
been applied for QTL mapping studies and high-density 
linkage maps development in apricot to generate low-
costs SNPs of sufficient quantity and quality for genetic 
studies [47, 48].  Despite their undoubted advantages 

(particularly compared to low-density genotyping meth-
ods), RRS techniques still have major pitfalls, including: 
allelic dropout (i.e. polymorphisms in the restriction 
enzyme recognition site which prevent cutting); PCR 
duplication and variance in coverage (sometimes with 
handling of missing data), which can lead to allelic biases; 
the random distribution of restriction enzyme sites on 
the genome, and thus the inability to target markers 
localized within genes, or having a functional significance 
[16, 49, 50]. In addition, regions covered by GBS markers 
might not be the same across different studies, making 
comparisons harder. In consideration of positive expe-
riences in other Rosaceae, the development of a SNP-
array platform for apricot has been proposed by some 
research groups, but never realized due to the difficulties 
of assembling a large consortium in such a minor species. 
In this work, building upon the recently released high-
quality reference genome sequences of some apricot cul-
tivars, a SPET approach was, for the first time, developed 

Fig. 5  Box-plots of markers-trait association for the four top SNPs detected by GWAS (SNP25460, chr 4; SNP15833, chr 1; SNP37424, chr 3 and 
SNP56480, chr 5) with across-years averaged maturity date records in the panel of 128 accessions. Asterisks indicate significant differences between 
segregating classes (p < 0.01) as inferred by one-way ANOVA
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Fig. 6  A Frequency distribution of maturity date (MD) trait in the ‘Fiamma’ × ‘BO93623033’ (F×B) segregating progenies in the two years of 
evaluation (right panel). Single-marker analyses of markers-trait association in ‘Fiamma’ parent using 5,157 SPET-derived lm × ll type SNPs markers. B 
Map of linkage group 1 (LG1) and LOD profile of QTL mapping for maturity date (MD) trait (n = 90 seedlings)
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Fig. 7  A Multiple-year best-linear unbiased prediction (BLUP) of maturity date (MD) trait in the ‘Lito’ × ‘BO81604311’ (L×B) segregating progenies 
(right panel). Single-marker analyses of markers-trait association in ‘BO 81604311’ parent. B Map of linkage group 4 (LG4) constructed from 4,757 
SPET-derived nn × np type SNPs markers and LOD profile of QTL mapping for MD trait (n = 62 seedlings)
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and applied for apricot genotyping. While a direct com-
parison with other approaches is beyond the scope of this 
work, SPET has the ability of multiplexing samples in a 
single sequencing run, genotyping tens of thousands of 
probes with a good coverage, and the advantage of com-
bining targeted SNP analysis and complexity reduction, 
respectively typical of SNPs array and RRS approaches 
[17].

The choice of 25K probes for SPET assay was based on 
the search for a compromise between cost-effectiveness 
(i.e. total reads number, coverage per site and per sam-
ple), prior knowledge on the extent of LD decay in apricot 
(around 0.1 Kb, [35]), as well as the typical range of panel 
sizes available for genetics and genomics studies. This 
probe design allowed to successfully target more than 
32K SNPs, of which 21K located in genic regions, includ-
ing 9,415 within exons. These SNPs may be associated to 
causative mutations, given their potential to modify pro-
tein sequence. Another crucial criterion was a uniform 
distribution of markers across the genome, in order to 
facilitate genetic analyses. The average gap size of about 
10Kb across all chromosomes provides enough power 
for association mapping and/or genetic relatedness stud-
ies, although a few gaps remain in some regions with low 
polymorphism levels (with a maximum of 0.9 Mb on chr 
6). In addition, very low level of missing data (0.02%) 
was obtained, greatly facilitating downstream analyses. 
Untargeted SNPs were also found, confirming the tech-
nique ability to discover novel polymorphisms.

Ascertainment bias (i.e. the systematic deviation of 
population genetic statistics from theoretical expecta-
tions) is the main limiting factor of genome complexity 
reduction approaches, caused by the non-random selec-
tion of SNPs or individuals set [51]. However, the allele 
frequency spectra obtained after SNP discovery in the 
collection panel was highly similar to the original WGRS 
spectrum used for SPET array design, indicating a puta-
tive limitation of ascertainment bias effects. This could 
be explained either by the LD-based filtering performed 
on whole-genome polymorphisms and/or the relatively 
large dataset of accessions used for probe design (high-
coverage WGRS data of 66 genotypes), most of them pre-
sent within the genetic pools of our collection. Indeed, 
population structure and phylogenetic relationships 
were largely congruent with previous literature reports 
on apricot diversity and breeding history [29, 35, 52]. 
Nevertheless, the accessions panel did not include wild 
apricot species or materials of recent introgression and, 
thus, the reliability of the SPET array for genetic and 
population genomics studies remains to be evaluated. In 
case, the flexibility of SPET design will allow further cus-
tomization of the array, such as the replacement and/or 

integration of novel polymorphisms from broader genetic 
backgrounds or relevant QTL-associated variants.

SPET technology was also used for SNP linkage map 
construction in two segregating progenies. The obtained 
parental maps showed metrics comparable with those 
recently obtained through GBS approaches [47, 48] in 
terms of marker density, map length and gaps presence. 
Marker order maps also showed high collinearity with 
the P. armeniaca reference genome. Collectively, they 
provide a sufficiently robust framework for downstream 
QTL analyses.

Genetic dissection of maturity date trait in apricot
Maturity date (MD) was dissected as a proof-of-concept 
of the utility of SPET approach for QTL mapping stud-
ies. MD is a relevant trait for fruit marketability, as early 
ripening cultivars usually command the highest prices 
while late-maturing cultivars allow the extension of the 
harvesting season [53]. Understanding the genetic archi-
tecture of MD is an important target to assist selection, 
considering the broad and only partially exploited vari-
ability within apricot gene pools. To our knowledge, this 
is the first attempt to dissect MD trait at germplasm level 
in apricot, since previous studies have involved bi-paren-
tal segregating progenies. GWAS detected stable loci for 
MD trait on chromosome 1 (qMD1.1) and 4 (qMD4.1) 
and, depending on the year of observation, additional 
QTLs in chromosome 2, 3, 4, 5 and 7. Cumulative herit-
ability explained by significant SNP loci was high, rang-
ing from 0.66 in 2018 to 0.82 in 2017. LD pattern in the 
regions around top associated SNPs did not allow confi-
dent delimitation of QTL intervals and reliable inference 
of haplotypes.

A major effect locus for MD was found in middle of 
chr 4 (qMD4.1), with associated SNPs distributed in 
a region of 1.7  Mb from SNP25197 (at 9,819,302) to 
SNP25581 (at 11,574,290  bp). However, the LD pat-
tern does not allow to exclude the presence of multi-
ple alleles and/or QTLs at this locus. Consistent with 
GWAS results, a major QTL in this same region segre-
gated in the L×B progeny, where it explained most of 
the observed PEV for MD (about 62%). A major QTL 
on linkage group (LG) 4 associated to ripening date 
was previously reported close to the UDAp439 marker 
in the cross ‘Goldrich’ × ‘Moniqui’ and also in the same 
L×B progeny [54]. This major QTL was also mapped 
in the populations ‘Z701-1’ × ‘Palsteyn’ (located 
between UDA021 and UDAp439 markers) [55], 
‘Bergeron’ × ‘Currot’ (B×C) and in ‘Goldrich’ × ‘Currot’ 
(G×C) (with markers S4_9061773 and S4_11947345 
being the most significant, respectively [56]. Based 
on our results and these previous works, the QTLs 
detected on chromosome 4 in our association panel and 
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in different segregating progenies likely correspond to 
the same locus (qMD4.1). A major QTL in the collinear 
region of apricot LG4 has been repeatedly reported in 
other Prunus species, such as peach and hybrids [54, 
57–59], almond [60] and cherry [61, 62], suggesting a 
shared mechanism for the control of fruit ripening. In 
peach, qMD4.1 was fine-mapped to a 220Kb region, 
identifying a NAC transcription factor allele with an in-
frame insertion of 9 bp [63]. At the same locus, a null 
NAC allele caused by a 26.6Kb deletion co-segregate in 
heterozygosis with MD [64, 65]. Future efforts will be 
required to narrow down the qMD4.1 mapping interval 
in apricot and, possibly, identify the underlying genetic 
variant(s).

Apart from chr 4, other QTLs have been reported 
for maturity date in apricot, on LG1, 2, 3, 4, 5, 6 and 7, 
although affected by the season of observation [54–56]. 
However, the limited resolution of the linkage maps 
and the extended confidence interval of QTLs reported 
in these studies do not allow a direct comparison with 
GWAS results. In our study, a consistent QTL for MD 
was found on chr 1 (qMD1.1), although the peak marker 
SNP16361 (at 25,852,231) explained a low percentage 
of variance in the panel (about 10%). The presence of 
qMD1.1 was validated in the F×B progeny, where this 
QTL accounted for about 20 to 28% of PEV, depend-
ing on season. Other two major loci controlling MD 
architecture were identified on chr 5 (qMD5.1) and 3 
(qMD3.1), both explaining over 20% of phenotypic vari-
ance in the panel, although they were only detected in 
one or two or years of data recorded. Additional stud-
ies will be required to confirm the presence and effects 
of these two QTLs, and to infer haplotypes structure 
at these loci, possibly involving large segregating prog-
enies from different cross-combinations issued from 
this germplasm and/or a wider GWAS panel enclosing 
materials from other apricot collections.

Conclusions
In this work, a SPET targeted genotyping approach 
was for the first time developed and applied in apri-
cot. The robustness and efficiency of this technique 
was assessed in a germplasm collection and segregating 
progenies. Results demonstrate that the SPET approach 
is a valid alternative to other RRS methods and arrays, 
highlighting the potential of this technology to pro-
vide dense, easy-to-handle genotypic information at 
the selected polymorphisms and additional untargeted 
sites. Linkage and association mapping revealed several 
genomic loci associated to fruit maturity date which 
may be a starting point for a fine characterization of 
the genetic basis of trait variation, and ultimately, a 

useful tool to assist breeding selection and germplasm 
characterization.

Material and methods
Germplasm and phenotypic analyses
The assayed plant material included 128 apricot acces-
sions and two F1 apricot progenies from the crosses 
‘Fiamma’ × ‘BO93623033’ (F×B) and ‘Lito’ × ‘BO 
81604311’ (L×B) (original and extended [66]) with 90 and 
62 seedlings, respectively. Accessions derived from MAS.
PES apricot germplasm collection located in the experi-
mental farm ‘Brusca’ runned by CRPV (Centro Ricerche 
Produzioni Vegetali) in Imola (Emilia-Romagna region, 
Italy). Trees were grafted onto ‘29C Myrobolan’ root-
stock, trained according to open vase system, regularly 
spaced at distance of 4 × 2.5 m (within and between rows, 
respectively) and managed according to standard cul-
tural practices and yearly pruning. The F1 seedlings F×B 
and L×B were planted at distance of 1 × 4 m (within and 
between rows, respectively) and trained as slender spin-
dle (one stem with short lateral scaffolds). Maturity date 
(MD) trait was recorded when 2—3% of the fruits on the 
tree has reached the full physiological maturity, assessed 
by sensory and visual inspection, also recording IAD (DA-
meter, TR-Turoni, Forlì, Italy) and fruit firmness (punc-
ture test by a digital penetrometer). MD was expressed 
as the number of days from 1 January (Julian days, JD). 
MD was evaluated in the accession panel for 3  years 
(2017, 2018 and 2019) and 2 years (2016 and 2019) in 85 
F×B seedlings. In L×B, best linear unbiased prediction 
(BLUP) was used to pool historical phenotypic data of 58 
seedlings from multiple-years records (2006, 2007, 2008, 
2017 and 2018).

Setting‑up single primer enrichment technology (SPET)
Apricot whole-genome sequencing (WGS) libraries 
were retrieved from available NCBI resources, spe-
cifically from the previous work of Mariette et  al. [35] 
(PRJNA292050 bioproject) including available Illumina 
WGS data of 66 accessions; in addition, RNA-seq data 
from various studies were also included (Supplemen-
tal File 1). Data processing was performed as previously 
described [67]. Briefly, raw reads were quality filtered, 
trimmed with Trimmomatic and mapped onto the apri-
cot reference ‘Chuanzhihong’ genome V1.0 [32] using the 
Burrows − Wheeler Aligner (BWA)-MEM algorithm with 
default parameters. After duplicate removal and index-
ing of mapped reads with Picard tools, genomic variants 
were identified by combining the variant-calling algo-
rithms GATK-Haplotype Caller and Freebayes. Polymor-
phisms were discovered using a joint-calling procedure 
and quality-filtered according to Best Practice Guide-
lines, retaining only simple biallelic SNPs. Genomic 
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and transcriptomic data were separately assembled and 
intersected through a custom Perl script. For SPET assay 
design, SNP selection criteria were based on: (i) a total 
number of 25K loci; ii) regularly spaced positions: SNPs 
within CDS or intergenic regions had to be at least 5 kb 
and 10  Kb apart from other selected; iii) SNP loci that 
allowed to design probes on both left and right borders 
and containing two flanking SNPs; iv) MAF (minor allele 
frequency) in the range of 0.10—0.90 without an excess 
of heterozygosity (avoid potential paralogous). Eligible 
polymorphic sites were forwarded for probe design to 
NuGen (San Carlos, CA, United States).

DNA extraction, library construction preparation, SPET 
sequencing and SNP calling
DNA was extracted from young leaves using the modi-
fied CTAB method [68]. Libraries were prepared accord-
ing to the Ovation Rapid Library Systems (NuGen) 
specifications. The main steps of streamlined workflow 
were previously described in Barchi et  al. [18]. For the 
genotyping of the whole set of accessions with the cus-
tom 25K probe sets, sequencing was performed at IGA 
Technology Services (IGATech, Udine, Italy) facilities 
with Illumina HiSeq 2500 platform (Illumina Inc., San 
Diego, CA, United States) in single-end mode (150  bp). 
BCL files from the instruments were processed using 
the manufacturer’s pipeline software to generate FASTQ 
sequence files. Base calling and de-multiplexing were car-
ried out using the standard Illumina pipeline previously 
described, except for SNP calling, obtained using the 
variant discovery tool ‘UnifiedGenotyper’ in GATK 3.8. 
After SNP selection using the filter expression (‘QD < 2.0 
|| MQ < 40.0 || MQRankSum <  − 12.5’), high confidence 
SNPs were extracted using min-meanDP 30 and max-
missing 0.90 and non-ref-ac-any 1. The mean individual 
coverage at target sites was calculated using bedtools 
v2.26.0 [69].

Genetic diversity and population structure analyses
Genetic diversity measures on VCF dataset were per-
formed by the Geno Summary tool implemented in Tas-
sel v5.2.15 [70], including the estimation of expected 
and observed heterozygosity, MAF and missingness per 
site at all marker loci. Population structure was inferred 
through ADMIXTURE software v1.22 [71] using 1,593 
SNPs obtained from LD pruning (> 0.3). K values from 
2 to 6 were inputted to identify the number of a priori 
genetic clusters that maximizes the predictive accuracy. 
The phylogenetic tree was built from a pairwise genetic 
distance matrix between individuals clustered with NJ 
method in Tassel v5.2.15, with bootstrap replication and 
tree reconstruction in MEGA7 software [72]. Principal 
component analysis (PCA) and linkage disequilibrium 

decay over distance were calculated in GAPIT [73] using 
the filtered SNPs dataset (25,704). Intra-chromosomal 
LD patterns were estimated and visualized using HAP-
LOVIEW [74].

Genome‑wide association study
The fixed and random model Circulating Probability Uni-
fication (FarmCPU) algorithm implemented in GAPIT 
R package, was used for association analyses [73]. Fixed 
effects from population structure were included as 
covariates by using the first two PCs from Q-matrix. The 
observed vs expected p-values distribution under null 
hypothesis were compared through quantile–quantile 
(QQ) plot inspection to evaluate GWAS performance. 
Thresholds for SNP significance were calculated based 
on a conservative Bonferroni’s correction for a type I 
error rate and less stringent permutation test. Manhat-
tan plots were designed using MVP R package [75]. SNP-
based broad-sense heritability was estimated by GREML 
method using GCTA tool (v1.93.2), after fitting top SNPs. 
Statistical significance of single-marker-trait associations 
were inferred using one-way ANOVA with post-hoc Tuk-
ey’s test.

Linkage map construction and QTL‑mapping
Linkage maps were constructed following the two-way 
pseudo-testcross strategy for outcrossing species (CP) 
using JoinMap v4.1 [76]. The input file generated from 
VCF analysis was manually curated and filtered, retain-
ing only markers polymorphic in one parent (i.e. lm × ll 
and nn × np configurations, respectively for the seed 
and pollen parents). Markers were then filtered based on 
identical loci (> 0.95 similarity threshold) and distorted 
markers (1:1 ratio, chi-square goodness-of-fit tests at 
p ≤ 0.05). Linkage groups were defined using a mini-
mum logarithm of odds (LOD) value of 10.0 using the 
regression algorithm (Kosambi mapping function), with 
a recombination frequency threshold of 0.4, LOD value 
of 1.0 and a goodness-of-fit jump of 5.0. The positions of 
markers in the F×B and L×B linkage maps were aligned 
with their position on the apricot reference genome [32]. 
Single-marker analysis was performed in Tassel v5.2.15 
using GLM algorithm. The MapQTL v6.0 software [77] 
was used for detecting QTLs. Significance thresholds 
were calculated by random permutation test (PT) with 
10,000 replicates considering the genome-wide LOD 
scores corresponding to p = 0.05. The interval mapping 
(IM) function was employed for QTLs detection with 
95% significance and estimation of the percentage of phe-
notypic variation. MapChart v2.1 software [78] was used 
to draw the mapped QTLs and the LOD plots.
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