Experimental cross-section measurement of the nuclear reactions induced by protons on ^{159}Tb: Evaluation of the $^{155}\text{Dy}/^{155}\text{Tb}$ precursor system

Michele Coluccia, Filippo Carlo Bolchinia,b,1, Lorenzo Confalonieria,b, Ferid Haddadc, Etienne Nigronc, Flavia Groppia,b, Simone Manentia,b

a Department of Physics, University of Milan, via Celoria, 16, Milan (MI), 20133, Italy
b LASA, University of Milan and INFN-Milan, via F.lli Cervi, 201, Segrate (MI), 20090, Italy
c Laboratoire Subatech, CNRS/IN2P3, IMT Atlantique, Nantes Université, 4, rue Alfred Kastler, Nantes, 44307, France
d GIP Arronax, 1, rue Arronax, Saint-Herblain, 44817, France

A R T I C L E I N F O

Keywords:
- Terbium-155
- Dysprosium-155
- Radionuclide production
- Cross-sections
- Stacked-foils technique
- Thick target yield

A B S T R A C T

$^{149,152,155,161}\text{Tb}$ have recently been under the lens of research in nuclear medicine due to their physical characteristics, which allow them to be used in various applications in both diagnosis and therapy. Performing the optimization of the production methods of these terbium radioisotopes is of great research interest. In this work, the viability of the production of ^{155}Tb ($T_{1/2} = 5.32$ d) via the $^{155}\text{Dy}/^{155}\text{Tb}$ precursor system was studied and discussed from a theoretical point of view. The production of ^{155}Dy, alongside its contaminants, was accomplished through the $^{159}\text{Tb}(p,x)$ nuclear reactions. The cross-sections of these reactions were studied in the 37.5–62 MeV energy range using the stacked-foils technique. The study of the yield of the indirectly produced ^{155}Tb gives promising estimations for an implementation of the $^{155}\text{Dy}/^{155}\text{Tb}$ precursor system.

1. Introduction

The field of nuclear medicine is currently developing in the direction of theranostics, a tailor-made radiopharmaceutical therapy that aims to enhance the therapeutic effects of radioactive substances while reducing treatment toxicities (Naskar and Lahiri, 2021; Qaim et al., 2021). The term theranostics in nuclear medicine refers to the pairing of therapeutic-diagnostic radionuclides linked to a compound (called a carrier or vector) that targets a particular kind of cancer cells. On the one hand, therapeutic radioisotopes decay by releasing particles like α, β^- or Auger electrons, which release energy over a short distance leading to ionization or bond breakage. On the other hand, diagnostic radioisotopes decay by releasing gamma rays or emitting gamma rays after the annihilation of β^+ particles. Gamma rays are highly penetrating radiations that can be collected outside the body for imaging purposes (Herzog et al., 1993; Rösch et al., 2017).

Tb is a unique element that provides four radionuclides decaying through all types of radiations (^{149}Tb, ^{152}Tb, ^{155}Tb and ^{161}Tb) useful for medical application, that makes it the perfect tool for the theranostic approach, proposed for the first time by the PSI research team (Müller et al., 2012, 2018). The chemistry of an element remains consistent across its isotopes, allowing the same radiopharmaceutical to be labeled with two different terbium radioisotopes. This enables precise assessment of the dose delivered before treatment, as the radiopharmaceutical’s behavior remains consistent in both the diagnostic and therapeutic phases, facilitating a personalized approach to therapy (Qaim, 2019).

^{149}Tb is a short-lived ($T_{1/2} = 4.12$ h National Nuclear Data Center (2024)) radionuclide and it is the only α-emitter of the Tb family. It is a candidate for targeted alpha therapy (TAT). Moreover, ^{149}Tb is also a β^+ emitter, allowing its detection through Positron Emission Tomography (PET) exams simultaneously with ^{149}Y radiopharmaceutical administration. The main drawbacks of ^{149}Tb are the feasibility of its large-scale production (production is at the moment restricted to few sites able to perform the ISOL technique using mass separation). The impact of its complicated decay scheme on the radio-toxicity of this radionuclide needs to be inferred precisely, in particular due to its various long-lived daughter nuclei such as ^{149}Gd ($T_{1/2} = 9.28$ d), ^{145}Eu ($T_{1/2} = 5.93$ d), ^{145}Sm ($T_{1/2} = 340$ d), ^{149}Eu ($T_{1/2} = 93.1$ d) and ^{145}pm ($T_{1/2} = 17.7$ y) (Naskar and Lahiri, 2021; National Nuclear Data Center, 2024; Müller et al., 2017).

^{152}Tb ($T_{1/2} = 17.5$ h National Nuclear Data Center (2024)) is a β^+ emitter that can be used as a diagnostic tool and for dosimetry and the monitoring of the distribution of the $^{149,161}\text{Tb}$ isotopes which act as the...
therapeutic counterparts (Naskar and Lahiri, 2021; National Nuclear Data Center, 2024; Nedrow and Anderson, 2011). 155mTb (T/2 = 5.32 d National Nuclear Data Center, 2024) is a potential single photon emission computed tomography (SPECT) candidate thanks to its gamma emissions at 86.55 keV (32%) and 105.32 keV (25.1%) (National Nuclear Data Center, 2024). Furthermore, it can be used for dosimetry calculation before therapy, for example in a matched pair with 161mTb or 149mTb (Naskar and Lahiri, 2021; Müller et al., 2019). 156mTb (T/2 = 6.89 d National Nuclear Data Center (2024)) mainly decays by emitting β− particles, but it also has the characteristic of emitting Auger and conversion electrons. On average, 2.24 Auger and conversion electrons are emitted per β− particle (National Nuclear Data Center, 2024). This characteristic of 161mTb could make it an alternative to 177Lu for cancer treatment as it can have a higher killing potential if internalized within the cell (Müller et al., 2019; Lehener et al., 2011).

The production of Tb radioisotopes is still a challenge due to the non-monoisotopic Gd target material, their production cross-sections, and the complexity of radiochemical separations of lanthanides (Naskar and Lahiri, 2021; Pupillo et al., 2023; Quinn et al., 2018). In order to facilitate the diffusion of Tb radioisotopes in clinical practices, the main challenge to overcome is obtaining high amount of said radionuclides (in the order of GBq) while maintaining a high radionuclidic purity.

Regarding the production of 155mTb, different methods have been studied. The direct production using medical cyclotron accelerated protons on enriched 155gGd and 156gGd targets permit to reach acceptable yield but with a limited purity (lower than 93% and 89% respectively) of the product mainly due to the current enrichment of the Gd target and to the unavoidable co-production of 156mTb that is not separable from the radionuclide of interest without off-line mass separation, that, in any case, will lead to a reduction of the yield (Dellipiane et al., 2022). The 156gGd(d,2n)155mTb nuclear reaction allows to obtain a 3 times higher yield but with a lower purity (<90%) due to the presence of 154,156mTb (Wang et al., 2023). Very low yield and purity are reached with other direct reactions induced by light ions, such as natDy(d,x)155mTb (Colucci et al., 2022), or natGd(a,x)155mTb (Moiseeva et al., 2022) nuclear reactions. However, an indirect production method exploiting medium-energy light ions is possible, through the production of 155mDy and its subsequent decay in 155mTb (Moiseeva et al., 2022, 2023). With this technique very high radionuclidic purity is achievable.

In this work, the excitation function of the 159Tb(p,5n)155Dy nuclear reaction was studied, alongside the excitation functions of the main Dy producers (i.e. 157,159Dy) and of other radionuclides produced in the reaction. The cross-section results are compared with previous experimental data by Steyn et al. (2014), Tärkányi et al. (2017) and Engle et al. (2016). This new set of data enriches the nuclear libraries and is used in this paper to discuss the Thick Target Yields (TTY) of production of 155mTb obtained via 155Dy/155mTb precursor system in order to evaluate the potential of this route.

2. Material and methods

The excitation functions were measured by irradiating 16 different thin 159mTb metallic targets with protons, using the stacked-foils technique. Four different stacks, each containing 4 terbium foils, were used to cover the proton energy range from 37.5 to 62 MeV. In every stack, each Tb foil was followed by a 16 μm Al catcher foil, which served also as monitor foil as long as it was not adjacent to another Al foil. Thick Al foils (250 μm) were used as energy degraders, while some Ti foils were positioned in the stack as monitor foils. In the stack, some Dy foils were present for a parallel experiment, not related to the work. The uniformity of each foil was verified using an analogical thickness gauge (sensitivity equal to 0.1 μm). The mass and surface area of each foil were measured with a high precision weighting scale and a caliber (of uncertainties equal to 10−5 g and 10−5 m respectively), so to determine the mass thickness of each foil. The uncertainty on the mass thickness is set to 2% in order to account for the non-uniformity of the foil thickness. The foil characteristics are summarized in Table 1. Successively, the foils were cut in squares of area 2.5 × 2.5 cm² to be placed in the stack holder for the irradiation.

All the metallic foils have been purchased from GoodFellow Corporation (Huntingdon, UK).

2.1. Irradiation setup

The irradiation was carried out by accelerating protons with the high-intensity cyclotron (IBA-C70XP, K = 70) of GIP ARRONAX research center (Saint-Herblain, France) (Haddad et al., 2008). Each stack was positioned in air at a distance of about 8 cm from the end of the beamline, which is closed by a 50 μm Kapton layer. The shape of the beam was checked by irradiating a Al₂O₃ scintillating foil, to ensure a well-collimated and centered beam on the stack. The four stacks were irradiated in two distinct irradiation sessions at a constant beam current of 150 nA for 1 h each. The mean beam energies directed within each foil (detailed in Table 2) were deliberately chosen to guarantee an overlap in the energy ranges during the irradiation of successive stacks. This selection facilitates the identification of potential bias between each experiment, as it accentuates any discontinuity in the curve formed by the data points. The current stability during each irradiation was monitored using a beam dump equipped with a charge integrator. The total charge of the incident beam was then determined by the ratio between the measured cross-sections of the natP(p,x)3V, natTi(p,x)56Sc, and Al(p,x)27Na monitor reactions, calculated using a fictitious charge Q* = 1 C, and the IAEA recommended values (Hermanne et al., 2018).

2.2. Measurements

The activity measurements of the produced radionuclides were carried out at the LASA Laboratory (Segrate, Italy) using HPGe detectors. Each detector was calibrated with certified 133Ba and 152Eu calibration sources (CercaLEA, France). In particular, the 133Ba source was necessary in order to determine the efficiency curve at low energies by exploiting its 53.16 keV (I = 2.14 3%) and 80.99 keV (I = 32.9 3%) and 160.61 keV (I = 0.638 5%) gamma emissions. This was crucial for measuring 159Dy, whose only measurable gamma emission is at 58 keV (I = 2.27 13%). The irradiated targets were positioned on top of a spacer, with the beam entrance side facing the detector crystal in the same geometry as the calibration. The measurements were carried out in the time interval between 2 days and 4 months after each irradiation. The duration of the measurements was between 20 min and 2 days for short- and medium-lived radionuclides, and from 2 to 7 days for the long-lived radionuclides such as 159Dy and 151,153Gd. The radionuclides

Table 1

<table>
<thead>
<tr>
<th>Material</th>
<th>Nominal thickness</th>
<th>Size (μm)</th>
<th>Nominal purity</th>
<th>Mass thickness (mg cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>159Tb</td>
<td>25 μm ± 0.25%</td>
<td>5 × 5 cm²</td>
<td>99%</td>
<td>20.84–25.51</td>
</tr>
<tr>
<td>17Al</td>
<td>16 μm ± 0.25%</td>
<td>Roll</td>
<td>99%</td>
<td>4.46</td>
</tr>
<tr>
<td>15Ti</td>
<td>250 μm</td>
<td>10 × 10 cm²</td>
<td>99%</td>
<td>67.86–68.54 6</td>
</tr>
<tr>
<td>152Eu</td>
<td>20 μm</td>
<td>10 × 10 cm²</td>
<td>99.6%</td>
<td>8.06–8.226</td>
</tr>
</tbody>
</table>

Table 2

Mean energy values of the proton beam in each Tb foil.

<table>
<thead>
<tr>
<th>Stack</th>
<th>E₁ (MeV)</th>
<th>E₂ (MeV)</th>
<th>E₃ (MeV)</th>
<th>E₄ (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>61.8 ± 0.4</td>
<td>59.8 ± 0.4</td>
<td>57.7 ± 0.4</td>
<td>55.0 ± 0.6</td>
</tr>
<tr>
<td>2nd</td>
<td>56.0 ± 0.4</td>
<td>54.2 ± 0.4</td>
<td>52.3 ± 0.5</td>
<td>50.2 ± 0.6</td>
</tr>
<tr>
<td>3rd</td>
<td>50.7 ± 0.4</td>
<td>48.7 ± 0.4</td>
<td>46.6 ± 0.5</td>
<td>43.6 ± 0.7</td>
</tr>
<tr>
<td>4th</td>
<td>44.6 ± 0.4</td>
<td>42.5 ± 0.5</td>
<td>40.3 ± 0.6</td>
<td>37.5 ± 0.7</td>
</tr>
</tbody>
</table>
whose cross-section was measured are listed in Table 3, along with their half-lives and nuclear data regarding their decay properties and production reactions.

3. Results

The experimental cross-section values of the radionuclides listed in Tables 4 and 5 were evaluated by measuring the activity produced on the Tb targets. The cross-section values $\sigma(E)$ (mb) were computed using the following equation:

$$\sigma(E) = \frac{C}{LT \cdot \epsilon \cdot I_j} \cdot \frac{M \cdot e}{\lambda \cdot Q \cdot N_A \cdot \rho x} \cdot D(RT) \cdot G(t_{irr}) \cdot e^{\mu x} \cdot 10^{-27}$$ \hspace{1cm} (1)$$

where E (MeV) is the mean energy of the proton beam in the target foil, C are the net counts of the photo-peak of energy E_j, ϵ is the detector efficiency at energy E_j, I_j is the abundance of the gamma emission of energy E_j, LT (s) is the Live Time of the measurement, RT (s) is the Real Time of the measurement (given by the sum of LT and the dead time of the measurement), M is the atomic mass (in g mol$^{-1}$) of the target material, e is the proton charge (C), λ is the decay constant (s$^{-1}$) of the detected radionuclide, Q is the total charge of the incident proton beam (C), N_A is the Avogadro number (mol$^{-1}$), ρx is the mass thickness of the target foil (g cm$^{-2}$), t_{irr} (s) is the duration of irradiation, t_{elec} (s) is the time interval between the End Of Bombardment (EOB) and the beginning of measurements. Two correction factors are also present: the growing factor $G(t_{irr})$ which takes into account the produced radionuclide decay during irradiation, and the decay factor $D(RT)$ which takes into account the decay of the radionuclides during the measurements.

$$G(t_{irr}) = \frac{\lambda \cdot t_{irr}}{1 - e^{-\lambda \cdot t_{irr}}} \hspace{1cm} (2)$$

$$D(RT) = \frac{\lambda \cdot RT}{1 - e^{-\lambda \cdot RT}} \hspace{1cm} (3)$$
The uncertainty on the photo-peak net counts C has been kept lower than 10% by increasing the LT according to the intensity of the source.

The experimental excitation functions are presented in Figs. 1 to 13 and compared with previous experimental measurements (Steyn et al., 2014; Tárkányi et al., 2017; Engle et al., 2016), and with the TALYS 1.96 (Koning and Rochman, 2012; Koning et al., 2019) computer simulations ran with default settings.

3.1. 155Dy

The 155Dy excitation function is shown in Fig. 1. It can be seen that other works data tend to underestimate this work measurement at energies higher than 50 MeV, but all datasets follow the same overall trend. The TALYS 1.96 simulation seems to be shifted to lower energies, not accurately reproducing the experimental results. The measurements used for estimating the 155Dy were carried out in the first 4–5 days after the end of irradiation due to the relatively short half-life of this radionuclide ($T_{1/2} = 9.9$ h).

As shown in Table 3 the most abundant gamma emission for this radionuclide is the 226.918 keV emission. Unfortunately, this emission overlaps with the 226.95 keV gamma emission of 155Tb ($T_{1/2} = 5.32$ days). Moreover, being 155Dy the parent of 155Tb the activities of the two radionuclides are linked. Nevertheless, by solving the Batesman equations for this couple of radionuclides a simple biexponential function is obtained:

$$C_{\text{photo-peak}}(t_{\text{EOB}}) = a_1 e^{-\lambda_1 t_{\text{EOB}}} + a_2 e^{-\lambda_2 t_{\text{EOB}}}$$

In this case a_1 do not represent directly the activities of the two radionuclides, but they are the fitting parameters, from which the 155Dy and 155Tb activities at the EOB can be derived:

$$a_1 = A_{155\text{Dy}} \cdot (I_{151} + I_{157} \lambda_1 \lambda_1 - \lambda_2 \lambda_1)$$

$$a_2 = I_{157} \cdot \lambda_2 \lambda_2 - \lambda_1 \lambda_1$$

In Eqs. (5) and (6), $A_{155\text{Dy}}$ and I_{151} are the EOB activity and abundance of the 226.918 keV gamma emission of 155Dy, while $A_{155\text{Tb}}$ and I_{157} are the respective terms of the peak at 226.95 keV of 155Tb.

Thus, to separate the two contributions in the ~226 keV peak a bi-exponential fit method was applied: this procedure is illustrated in Fig. 2. It can be noted that the half-lives are in accordance with the data present in the literature (see Table 3).

3.2. 157Dy

Fig. 3 presents the 157Dy excitation function. This work data aligns well with previous studies. The TALYS 1.96 simulation tends to underestimate the experimental excitation functions considered in this work.

3.3. 159Dy

From Fig. 4, it can be seen that this work 159Dy excitation function aligns well with data from previous studies (Steyn et al., 2014; Tárkányi et al., 2017). At higher energy, the points of Engle et al. (2016) seem to underestimate the cross-section in the whole range, while the TALYS 1.96 simulation tends to overestimate the experimental excitation functions considered in this work. The measurements used for estimating the 159Dy excitation function were acquired not before 5 weeks after the end of irradiation. This is because, as shown in Table 3, 159Dy has a single low abundance (2.27%) gamma emission at 58.0 keV, that is a critical region for p-type HPGe detectors since...
gamma lines. Since a good estimate of the ^{155}Tb were subtracted manually from the 58.0 keV gamma emission of ^{155}Dy, the latter gamma emission is not very abundant compared with ^{159}Tb, due to the low cross-section of the reaction. It is because in the other cases, the statistics of the peaks were insufficient. The TALYS 1.96 simulation reproduces quite well the literature data at 226 keV photo-peak.

The half-life of ^{159}Tb is 144.4 days meaning that to verify our results, the decay of ^{153}Tb was followed to be sure that no other radionuclides contributed to this peak counts, and the decay time was measured and resulted to be compatible with the reference data, with a mean value of $T_{1/2}^{\text{Tb}} = 2.3 \pm 0.2$ d. Note that the uncertainty on this result refers to the maximum dispersion of the experimental data and it is not the error of the average, which instead stands at 6% of $T_{1/2}^{\text{Tb}}$.

The TALYS 1.96 simulation reproduces quite well the literature data at least up to 58 MeV. In this work, only the data relative to the Tb foils irradiated with the four highest beam energy values are presented. This result refers to the maximum dispersion of the experimental data and it is not the error of the average, which instead stands at 6% of $T_{1/2}^{\text{Tb}}$. The TALYS 1.96 simulation reproduces quite well the literature data at least up to 58 MeV.

3.4. ^{153}Tb

Fig. 5 represents the ^{153}Tb cumulative excitation function. Indeed, it was not possible to separate the contribution of direct production and the ^{153}Tb obtained from the decay of the co-produced ^{153}Dy ($T_{1/2} = 6.4$ h) because, by the time we started the measurements, the latter was no longer measurable. It can be seen that data from other works are considerably higher than the data from this work for energies greater than 56 MeV. This could be caused by a possible overlapping between the analyzed ^{153}Tb gamma emissions and other nuclei emissions. For example, the 101.2 keV, 102.4 keV and 103.3 keV emissions of ^{159}Dy could have influenced the measured value of the 102.3 keV ^{159}Dy emission. The same concept applies to the 109.8 keV ^{153}Tb emission and the 111.9 keV ^{156}g emission. In this work, only the 212.0 keV ^{153}Tb emission was used. However these considerations do not apply to the work of Steyn et al. (2014), since in that case only the emission at 212.0 keV was used, even if with a slightly different intensity, $I_j = 31.0\%$, that in any case is not enough to explain the differences in the results. To verify our results, the decay of ^{153}Tb was followed to be sure that no other radionuclides contributed to this peak counts, and the decay time was measured and resulted to be compatible with the reference data, with a mean value of $T_{1/2}^{\text{Tb}} = 2.3 \pm 0.2$ d. Note that the uncertainty on this result refers to the maximum dispersion of the experimental data and it is not the error of the average, which instead stands at 6% of $T_{1/2}^{\text{Tb}}$.

The TALYS 1.96 simulation reproduces quite well the literature data at least up to 58 MeV. In this work, only the data relative to the Tb foils irradiated with the four highest beam energy values are presented. This is because in the other cases, the statistics of the peaks were insufficient due to the low cross-section of the reaction.

3.5. $^{154m1}\text{m2}^{2}\text{Tb}$

$^{154m1}\text{m2}^{2}\text{Tb}$ ($T_{1/2} = 9.4$ h) and $^{154m2}\text{m2}^{2}\text{Tb}$ ($T_{1/2} = 21.5$ h) are the two metastable states of ^{154}Tb ($T_{1/2} = 22.7$ h). A simplified decay scheme is illustrated in Fig. 6: in the scheme $a_{1,2}$ represents the IT branching ratios, i.e. the probabilities that metastable states decay into the ground state, that are 12.8% and 1.8% respectively.

The metastable and the ground states share most of their gamma emissions (see Table 3) that need to be separated in order to calculate each radionuclide activity. In particular, the 649.44 keV emission overlaps with the same emission from the decay $^{154m2}\text{Tb}$, while the

Fig. 2. Experimental $\frac{C_D}{L_{T/2}}$ values for the 226 keV photo-peak. The $\frac{C_D}{L_{T/2}}$ were measured multiple times at different cooling times after EOB in order to separate the EOB contributions of ^{155}Dy and ^{159}Tb in the resulting photo-peak. The fit was carried out using Eq. (4). The experimental decay times are reported.

Fig. 3. Comparison between this work ^{157}Dy excitation function and other studies results (Tárkányi et al., 2017; Steyn et al., 2014; Engle et al., 2016) and the TALYS 1.96 simulation.

Fig. 4. Comparison between this work ^{159}Dy excitation function and other studies results (Tárkányi et al., 2017; Steyn et al., 2014; Engle et al., 2016) and the TALYS 1.96 simulation.
Fig. 5. Comparison between this work 153Tb excitation function and other studies results (Tárkányi et al., 2017; Steyn et al., 2014) and the TALYS 1.96 simulation.

Fig. 6. Level scheme of 154Tb. α_1, α_2 are the branching ratios, i.e. the probabilities of having metastable state 1,2 decay into the ground state. Notice that the transition from the metastable state m_1 to m_2 is not allowed.

123.07 keV and 873.21 keV emissions overlap the emissions at the same energies from both 154m2Tb and 154gTb. 154m1Tb has a half-life significantly different from the 154m2Tb and 154gTb half-lives, meaning that the 154m1Tb contribution can be separated by the 154m2Tb and 154gTb contributions by performing a bi-exponential fit using Eq. (4), where $a_1,2 = A_{EOB,1,2} H_{m1,2} I_1,2$. The 154m1Tb and 154m2Tb excitation functions shown in Figs. 7 and 8 are computed using this method.

The 154gTb direct production cross-section was determined using the following equation:

$$
\sigma_g = M_{iirr} Z e \frac{N_{EOB}}{A_{iirr} Q} + \frac{a_1 \sigma_{m1}}{H_{m1}} \left(\lambda_{m1} H_{m1} \right) + \frac{a_2 \sigma_{m2}}{\lambda_{m2}} \left(\lambda_{m2} H_{m2} \right)
$$

(7)

where $H_i(t) = (1 - e^{-\lambda_i t})$, and

$$
\lambda_{EOB} = A_{EOB} e^{-\lambda_i t} + \frac{a_1 A_{EOB}}{\lambda_i} \left(\lambda_i e^{\lambda_i t} - \lambda_{m1} e^{\lambda_{m1} t} \right)
$$

(8)

The activity $A_i(t)$ was determined using the emissions at 1291.31 keV and 1274.436 keV. The latter was used after the complete decay of 154m1Tb and considering the peak of 22Na ($T_{1/2} = 2.6018$, $E_\gamma = 1274.537$ keV, $I_\gamma = 99.940\%$) as a constant background, discriminated by fitting the activity as function of time. Nonetheless, the calculated 154gTb cross-section values were compatible with zero on all targets. It must be noted that the uncertainties in the nuclear data for this radionuclide of terbium are quite high (see Table 3). Nuclear studies are therefore required to precisely assess the cross-sections of these reactions. Furthermore, the 154gTb half-life (21.5 h) is similar to the 154m2Tb half-life (22.7 h), so it is not correct to talk about a cumulative 154gTb cross-section since the condition of complete decay of the parent radionuclide is not achievable.

In this work, regarding 154m1Tb, only the data relative to the first two stacks are presented (Fig. 7). This is because, for lower beam energies, the gamma lines associated with this radionuclide were not visible anymore at the time of the measurement.

No previous data were present for 154m1Tb production cross-sections, while in the case of 154m2Tb, there is agreement with previous experiments only up to 56 MeV. The TALYS 1.96 simulation does not seem to accurately reproduce the experimental results.
3.6. 155Tb

The 155Tb excitation functions, both cumulative (155Tbc) and independent (155Tbi), are shown in Figs. 9 and 10. The cumulative excitation function accounts also for the contribution of the 155Dy decay into 155Tb, while the independent excitation function accounts for the directly produced 155Tb only (via the nuclear reaction listed in Table 3).

To separate the direct 155Tb contribution and the 155Dy decay contribution to the excitation function of 155Tbi the following equation for the independent cross-section was used (Colucci et al., 2023):

$$\sigma_2 = \frac{M_{1yze} \lambda_2 N_2^{E0B}}{\rho x N A Q H_1(t_{1y})} - \sigma_1 \left(\frac{\lambda_2 H_1(t_{1y})}{H_2(t_{1y})} - \lambda_1 \right)$$

(9)

where the terms with subscript 1 are referred to 155Dy, while the terms with subscript 2 are referred to 155Tb. In particular, $H_2(t) = (1 - e^{-\lambda_2 t_{1y}})$ and $\lambda_2 N_2^{E0B}$ term was determined by solving the Bateman equations and calculated with the following formula:

$$\lambda_2 N_2^{E0B} = \lambda_2 (t_{1y}) e^{\lambda_2 t_{1y}} - \frac{A_1(t_{dec})}{\lambda_2 - \lambda_1} (\lambda_1 e^{\lambda_1 t_{dec}} - \lambda_2 e^{\lambda_2 t_{dec}})$$

(10)

where t_{dec} is the time elapsed between EOB and the start of measurement. TALYS 1.96 simulation seems to agree with the excitation function of 155Tbi measured this work, low accordance is present with Eagle’s data (Engle et al., 2016).

Major accordance is present between the results of this work and the data of the previous studies in the case of the cumulative cross-section, TALYS simulation seems to be shifted to lower energies. The results of the independent cross-section are in good agreement with the theoretical calculations but Eagle’s data (Engle et al., 2016) overestimates our results.

3.7. 156Tbc

Fig. 11 shows the 156Tb cumulative (156Tbc) excitation function. This excitation function is presented as cumulative because it also includes the contribution of the 156m1Tb ($T_{1/2} = 24.4$ h) and 156m2Tb metastable states ($T_{1/2} = 5.3$ h), which decay into 156Tbi. It was not possible to measure the activity of 156m1Tb, and thus separate the different contributions to the cumulative cross-section, due to a superposition between its only gamma emission ($E_\gamma = 49.630$ keV, $I_{\gamma} \% = 74.13$) and the characteristic X-rays emissions of all the produced 156Tb radioisotopes (with energies ranging between approximately 42 and 50 keV), moreover, it was not possible to calibrate the detector at such a low energy. In the case of 156m1Tb, the measure was not possible due to the short decay time and to the fact that it only presents a single gamma emission with unknown intensity ($E_\gamma = 88.4$ keV, $I_{\gamma} \% < 1.15$). The measurements for the determination of the 156m1Tb cumulative excitation function were carried out only 9 days after EOB, in order to wait for at least 7–8 156m1Tb half-lives to be close to the condition of full decay of the metastable state.

The TALYS 1.96 simulation does not seem to accurately reproduce the experimental data for energies above 40–45 MeV, while the accordance with the other works is good.

3.8. 151Gdc

The 151Gd cumulative excitation function is presented in Fig. 12, where it can be seen that our work data match well the data of Steyn and its collaborators (Steyn et al., 2014). The TALYS 1.96 simulation, on the other hand, does not seem to agree with experimental data.
3.9. 153Gd

The 153Gd cumulative (153Gd') excitation function is reported in Fig. 13. It also includes the contribution of the parent radionuclides decay (i.e. 153Tb and 153Dy). The results of this work follows the same trend of the other studies in literature (Tárkányi et al., 2017; Steyn et al., 2014; Engle et al., 2016) and of the TALYS 1.96 simulation for energies below 55 MeV, however the whole dataset results scattered.

4. Yield of the indirectly produced 155Tb

As described by Moiseeva et al. (2022), one of the possibilities to produce pure 155Tb is from the decay of 155Dy. This production route is referred to as indirect production or precursor: the dysprosium is produced with some nuclear reactions, in this case 155Tb(p,5n); the target is dissolved and a first radiochemical separation permits to isolate of the Dy isotopes (155Dy and its isotopic contaminants); then, after a certain time during which 155Dy decays in 155Tb, a second radiochemical separation must be performed to extract the decay-produced terbium isotopes (155Tb and its isotopic contaminants) from dysprosium (in particular the long-lived 159Dy and 159Dy).

The End of Bombardment Thick Target Yield (TTY (E; ΔE; t irr)) (MBq μA−1) (Otuka and Takács, 2015) of the Dy radionuclides was determined using the following formula (Pupillo et al., 2022):

\[
TTY_{DY}(E; ΔE; t_{irr}) = \frac{N_A \cdot (1 - e^{-\lambda_{irr} t})}{M \cdot e} \int_{E-ΔE}^{E} \frac{\sigma(E')}{p \cdot d x} (E') dE'
\]

where \(E\) is the incident proton beam energy, \(ΔE\) is the energy loss in the thick target, \(\frac{1}{p} \cdot d x\) is the mass stopping power of protons in the thick target material, while \(N_A\), \(M\) and \(e\) were defined in Eq. (1). In practice, different \(ΔE\) corresponds to different Tb target thicknesses.

In order to evaluate the feasibility of the 155Dy/155Tb indirect production system and to optimize the production yield from a theoretical point of view, a few assumptions have been made:

- the first separation of the produced Dy isotopes from all the radionuclides produced on the irradiated targets is hypothesized to be at \(t_{sep} = 1\) h from EOB, a reasonable time to move and dissolve the target
- the daughter radionuclide is recovered when its activity is maximum. For 155Tb this happens around \(t_a = 40\) h after the Dy separation (Steyn et al., 2014)
- Both radiochemical separations have been considered ideal, with a 100% chemical yield.

With these assumptions, the activity per unit of beam current of 155Tb indirectly produced at the End Of Separation (a_{EOS} (MBq μA−1)), i.e. of 155Tb produced from 155Dy decay and 155Tb produced from 157Dy decay, can be estimated by using the equation of the radioactive decay:

\[
a_{EOS} = \frac{\lambda_T (e^{-\lambda_T t_{sep}} - e^{-\lambda_T t_a})}{\lambda_T - \lambda_D} \cdot TTY_{DY}(E; ΔE; t_{irr}) \cdot e^{-\lambda_D t_{sep}}
\]

The \(a_{EOS}\) is reported in Fig. 14, where an irradiation time of 30 h has been selected. This time corresponds to about 3 half-life of 155Dy and allows to obtain 90% of the maximum yield according to Eq. (11), longer irradiation time would not be advantageous being close to the saturation limit. The maximum of the activity is produced on the edge of the investigated energy range, i.e. \((E; ΔE) = (62\) MeV; 24 MeV), where a yield of about 1.6 GBq μA−1 can be obtained.

When generating 155Dy through the 159Tb(p,5n) reaction, co-produced dysprosium radioisotopes (153,154,157,159Dy) are formed. 154Dy undergoes alpha decay with an extended half-life (\(T_{1/2} = 3.0 \cdot 10^9\) y), and it does not give rise to terbium isotopes. This characteristic is significant in preserving the radionuclidi purity (RNP) and Specific Activity of the final product.

The decay of 157Dy (\(T_{1/2} = 8.14\) h) produces 157Tb (\(T_{1/2} = 71\) y), and due to its prolonged half-life, it has minimal impact on the RNP. 159Dy (\(T_{1/2} = 144.4\) d) only partially decays within the initial 40 h post-irradiation, limiting its contribution to Specific Activity reduction. Additionally, it produces the stable terbium isotope, 157Tb, which does not affect the RNP. Nonetheless, it must be noted that the presence of 159Tb in the final product in a real process, where the hypothesis of ideal radiochemical separation does not apply, will be mainly due to incomplete elimination of Tb target nuclei from the produced Dy.

However, 155Dy (\(T_{1/2} = 6.4\) h) may impose constraints on the maximum achievable RNP and Specific Activity above 50 MeV (\(E_{th}(159Tb(p,7n)157Dy) = 49.9\) MeV). Indeed, it decays with a half-life similar to the one of 155Dy, producing a terbium radioisotope, 155Tb (\(T_{1/2} = 2.34\) d), whose decay time is comparable to the one of 155Tb. Unfortunately, due to the delayed start of measurements (2 days post-irradiation), the cross-section of 155Dy production remains unmeasured. Consequently, a comprehensive theoretical characterization in terms of RNP and Specific Activity of this indirect system is currently unattainable.
The potential for 155Tb production using a Dy/Tb indirect production system was explored. The yield of the eluted Tb isotopes was evaluated by hypothesizing two radiochemical separations: the first separation was necessary to separate the directly produced Dy isotopes from the irradiated targets 1 h after EOB, while the second separation was necessary to isolate the decay-produced Tb isotopes from the 155Dy/155Tb precursor system 40 h after the first separation (i.e. the time at which the 155Tb activity is maximum). For a 30 h irradiation, the maximum 155Tb yield was calculated to be 1.6 GBq μA$^{-1}$.

The directly produced 155Dy lead to the production of 159Tb, whose presence may affect the specific activity, since part of the radiotherapeutics will be radiolabeled with stable isotope. However, being the half-life of 159Dy very long compared to the decay time of 155Dy its production rate is slow according to Eq. (11), and also the number of 159Tb nuclei produced is low during the decay time of 40 h, not affecting the Specific Activity significantly. At the same time the radionuclidic purity is not influenced significantly by 159Tb since its half-life (71 years) is much longer compared to the 155Tb half-life (5.32 days). Notably, 154Dy’s alpha decay, with an extended half-life ($T_{1/2} = 3.0 \cdot 10^6$ y), does not lead to terbium isotope formation, crucial for preserving radionuclidic purity and Specific Activity. However, 155Dy ($T_{1/2} = 6.4$ h) could limit the maximum achievable Radionuclidic Purity (RNP) and Specific Activity ($E_{\text{RNP}}(^{155}\text{Tb}, \text{7n})^{155}\text{Dy} = 49.9$ MeV). Its decay yields to 153Tb ($T_{1/2} = 2.34$ d), whose decay time is comparable to 155Tb’s decay time. Unfortunately, due to delayed measurements (initiated 2 days post-irradiation), the cross-section of 155Dy production remains unmeasured. A comprehensive theoretical characterization of this indirect system, concerning RNP and Specific Activity, is currently unattainable. Moreover, in a real process where ideal radiochemical separation is not assumed, the presence of 159Tb will primarily result from incomplete removal of Tb target nuclei from the produced Dy. This will probably represent the main component of reduction of the Specific Activity of the final product.

In conclusion, the experimental excitation function measured in this study will enrich the nuclear data on Tb radionuclides, allowing for better theoretical calculations for these nuclei. Furthermore, the study of the yield of the indirectly produced 155Tb gives promising estimations for implementation of the 155Dy/155Tb precursor system. Studies about the shape, composition, and stability of the targets, the achievable RNP and the Specific Activity, and the radiochemical separation of terbium and dysprosium on a large scale are still required for a better understanding of the feasibility of the aforementioned precursor system.

CRediT authorship contribution statement

Michele Colucci: Writing – review & editing, Writing – original draft, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. **Filippo Carlo Bolchini:** Writing – original draft, Investigation, Formal analysis, Data curation. **Lorenzo Confalonieri:** Writing – review & editing, Visualization, Formal analysis. **Ferid Hadad:** Writing – review & editing, Resources, Funding acquisition. **Etienne Nigron:** Writing – review & editing, Investigation. **Flavia Gropi:** Writing – review & editing, Validation, Supervision, Resources, Project administration, Funding acquisition, Conceptualization. **Simone Marenti:** Writing – review & editing, Validation, Supervision, Project administration, Conceptualization.
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was funded in the framework of the Italian National Agency for Research called “Investissements d’Avenir”, ISITE. This work has been, in part, supported by a grant from the French project promoted by the Regional Council of Pays de la Loire financed the national call PRIN PNRR 2022, EU Funding – NextGenerationEU – the activities of the APHRODITE-155 (P2022TTCAZ) project, funded by Institute of Nuclear Physics - INFN - research projects: REMIX of CSN5.

References

