
Unfolding temporal networks through statistically
significant graph evolution rules

Alessia Galdeman
Department of Computer Science

University of Milan
Milan, IT

alessia.galdeman@unimi.it

Matteo Zignani
Department of Computer Science

University of Milan
Milan, IT

matteo.zignani@unimi.it

Sabrina Gaito
Department of Computer Science

University of Milan
Milan, IT

sabrina.gaito@unimi.it

Abstract—Understanding and extracting knowledge from tem-
poral networks is crucial to understand their dynamic nature
and gain insights into their evolutionary characteristics. Existing
approaches to network growth often rely on single-parameterized
mechanisms, neglecting the diverse and heterogeneous behaviors
observed in contemporary techno-social networks. To overcome
this limitation, methods based on graph evolution rules (GER)
mining have proven promising. GERs capture interpretable
patterns describing the transformation of a small subgraph into
a new subgraph, providing valuable insights into evolutionary
behaviors. However, current approaches primarily focus on
estimating subgraph frequency, neglecting the evaluation of rule
significance. To address this gap, we propose a tailored null model
integrated into the GERM algorithm, the first and most stable
graph evolution rule mining method. Our null model preserves
the graph’s static structure while shuffling timestamps, maintain-
ing temporal distribution, and introducing randomness to event
sequences. By employing a z-score test, we identify statistically
significant rules deviating from the null model. We evaluate
our methodology on three temporal networks representing co-
authorship and mutual online message exchanges. Our results
demonstrate that the introduction of the null model affects
the evaluation and interpretation of identified rules, revealing
the prevalence of under-represented rules and suggesting that
temporal factors and other mechanisms may impede or facili-
tate evolutionary paths. These findings provide deeper insights
into the dynamics and mechanisms driving temporal networks,
highlighting the importance of assessing the significance of the
evolution patterns in understanding network evolution.

Index Terms—graph evolution mining, subgraph mining, graph
evolution rule, null models

I. INTRODUCTION

Understanding, modeling and extracting knowledge from
temporal networks representing complex and interconnected
systems is becoming essential for uncovering their dynamic
nature and gaining valuable insights into their evolutionary
and temporal characteristics. Moreover, deep comprehension
and mining of the patterns ruling their evolution and growth
are fundamental in many applications from link prediction and
change point detection to graph generative models for statisti-
cal inference [1] and resource management and forecasting. In
recent years, various models, mechanisms, and measures have
been proposed to describe the growth of networks. Most of
these approaches, such as triadic closure [2], homophily [3],
or node latent features [4], assume that growth is guided

by a single parameterized mechanism. However, contem-
porary techno-social networks are characterized by diverse
and heterogeneous behaviors, involving multiple choices and
mechanisms. To better understand the underlying mechanisms
driving network evolution without relying on predefined as-
sumptions, it is more effective to employ methods that focus
on identifying small frequent subgraphs that evolve over time.

In this context, the mining of graph evolution rules (GERs)
has emerged as a promising approach. GERs offer inter-
pretable patterns that describe the transformation of a small
subgraph into a new subgraph, where the former serves as
a prefix to the latter. Indeed, in the existing literature, there
are numerous works that leverage the graph evolution rules
approach to gain valuable insights into the evolutionary behav-
iors of networks. For instance, in [5] authors employed a GER
mining algorithm to analyze different social and transaction
networks and identified common and platform-specific evolu-
tion rules, shedding light on the evolutionary behavior of these
networks; while Coscia and Szell [6] extended the mining
of graph evolution rules to multiplex networks enhancing
the task of multiplex link prediction by predicting new node
arrivals and leveraging higher order structures with four or
more nodes. Despite the successful application of GERs in
analyzing network evolution, to draw meaningful conclusions
from these rules it is essential to have a robust framework
that allows for the evaluation of their significance; an aspect
that is neglected by most of the current approaches, more
focused on efficient solutions for estimating the frequency
of subgraphs. In fact, previous studies have made attempts
to evaluate the reliability of the rules discovered [7], [8] but
not their statistical significance. Only Leung et. al. [9] have
proposed a null model but restricted to a specific type of graph
evolution rules, limiting their applicability. To the best of our
knowledge, what is missing is the development of a tailored
null model, that would enable the identification of statistically
significant patterns through a broader graph evolution rule
mining algorithm, thereby enhancing our comprehension of
the dynamics and mechanisms driving network evolution.

In this paper, we move toward the above direction by
developing a null model for the GERM algorithm [7], the
first and most stable graph evolution rule mining method. The
null model preserves the static structure of the graph while

shuffling the timestamps, thereby maintaining the temporal
distribution and offering randomness on the temporal sequence
of events. By employing a z-score test, we can identify
statistically significant rules that deviate significantly from
the random model. We evaluated our methodology on three
different temporal networks based on two types of relation-
ships: co-authorships and mutual online message exchanges.
Alongside the quantitative findings on the number of rules
found on the real and random graphs, we evaluated the effec-
tiveness of being able to identify statistically significant and
over/under-represented evolution patterns. Our findings show
that the introduction of a null model impacts the evaluation
and interpretation of the identified rules: some highly frequent
rules are not significant at all, only a few are over-represented,
while the majority of the GERs are under-represented. The
high prevalence of under-represented rules supports the rea-
sonable hypothesis that the shuffling of timestamps diminishes
or eliminates specific temporal factors or mechanisms that
may impede or facilitate evolutionary paths. Furthermore, the
side information provided by GERM through the timespan
tspan of a rule, i.e. the time necessary to form the final
subgraph, allowed us to extend the above hypothesis to the
speed of the formation process of subgraphs: there may exist
temporal factors and mechanisms favoring the fast formation
of subgraphs since rules expressing this phenomenon are over-
represented.

II. BACKGROUND AND RELATED WORKS

A. Graph Evolution Rules - GERs

Similar to association rules in data mining [10], a graph
evolution rule - GER - consists of a precondition (referred to as
the body) and a postcondition (referred to as the head). These
rules can be interpreted as indicating that a subgraph matching
the body is likely to evolve into the head, providing human-
readable and explainable outcomes. For instance, Fig. 1 depicts
a graph evolution rule that indicates the presence of triadic
closure in a directed graph. Graph evolution rules offer a
powerful approach to uncovering complex mechanisms within
temporal networks. In fact, they not only provide insights into
the underlying dynamics but also facilitate the development
of more precise models for predicting how the network will
evolve. Furthermore, the collection of graph evolution rules
extracted from a specific network can serve as a differentiating
factor from other graphs [5], which may differently evolve
driven by distinct mechanisms.

The identification of graph evolution rules has been the
subject of different research works. In general, current state-
of-the-art methods for detecting the topological evolutionary
processes in a network follow a two-step methodology. Ini-
tially, rules are extracted through frequent subgraph mining,
followed by the application of filtering techniques utilizing
measures such as support and confidence, i.e. frequency-
based properties. These steps collectively contribute to the
identification and characterization of the evolutionary patterns
of the network. One of the earliest methods introduced in
the literature for extracting graph evolution rules is GERM,

Computer Science Dept. @ UniMI CONNETS Lab 7

Precondition Postconditiont0
t1Body Head

Antecedent Consequent

Evomine e LFR li chiama precondition e postcondition,
GERM e TPminer head e body
DGR antecedent e consequent

Fig. 1: Example of graph evolution rule - GER. On the left, the body
of the rule, i.e. a graph with two links - grey arrows - created at time
t0, and on the right, the head of the rule represents the state of the
body on the left side after evolving, indicated by the addition of a
new link (green arrow) at the successive timestamp t1.

developed by Berlingerio et al. [7] in 2009. Its rules can detect
undirected edge insertion events, with relative time, but the
processes of removing edges and relabeling nodes and edges
are not captured. Leung et al. [9], and later Ozaki et al. [11],
introduced the LFR (Link Formation Rule) algorithm, which
aims to capture the creation of directed links between source
and destination nodes. Both GERM and LFR algorithms
utilized the minimum image-based support [12] and gSpan-
based techniques for frequent subgraph mining [13]. Ozaki et
al. [11] extended LFR to an undirected version and proposed a
method for identifying relationships between rules. LFR rules
from both [9] and [11], similarly to GERM rules, do not
capture edge or node deletion and relabeling. However, LFR
rules represent a subset of the ones obtained with GERM,
because it adds constraints focusing on the insertion of a
new link between a given source and destination node. The
targeted approach of LFR rules in reducing the search space
for rule extraction accelerates the process, but it results in
a reduction of the obtained results. Additionally, Vakulı́k [8]
developed the DGR miner, which incorporates edge deletion
and relabeling in the evolution rules. The most recent work on
GER identification is the EvoMine approach, introduced by
Scharwächter [14]. Evomine extracts frequent rules of events
(including relabeling and deletion) occurring in subsequent
time windows. Other works in the literature focus more on
the evolution of attributes and give less importance to the
structural evolution of networks and the rules governing their
growth [15], [16].

B. Microcanonical Randomized Reference Models - MRRMs

The aforementioned methods for GER extraction primarily
emphasize algorithmic aspects, often disregarding the evalua-
tion of rule significance. In this study, we address these lim-
itations by introducing a method to assess the significance of
the rules, incorporating specific null models. Null models are
crucial for understanding both theoretical and practical aspects
of networked systems, providing a baseline for comparison
against which the observed patterns, features, and dynamics
can be evaluated. By generating randomized or synthetic
versions of the original temporal network, null models allow us
to assess the significance and uniqueness of observed patterns,
identify deviations from randomness, and uncover meaningful

structures and processes in the data. According to [17], given
a space G of all possible temporal networks (states) and the
single observation G∗ ∈ G, all models that sample a random
graph G from a conditional probability P (G|G∗) are defined
randomized reference models (RRMs). In this context, the
most popular models include configuration models, Erdös-
Rènyi (ER) models, and exponential random graph models
[1]. Depending on the application scenario, it could become
necessary to preserve specific features or properties while
generating random temporal graphs. This is where micro-
canonical randomized reference models (MRRMs) come into
play, providing a framework that allows us to retain specific
characteristics of the graph while randomizing the rest. The
concept behind this approach is preserving certain features
while maximizing randomness. Relying on the principle of
maximum entropy, the use of such models is theoretically
justified since they offer the least biased approach among all
possible degrees of freedom [17].

Graph representation

Timeline
representation

Snapshot
representation

What’s
preserving

Topology Timeline shuffling Sequence shuffling

Temporal
distribution Link shuffling Snapshot shuffling

Graph representation

MRMMs
categories

Timeline
representation

Snapshot
representation

What’s
preserving

Topology Timeline shuffling Sequence shuffling

Temporal
distribution Link shuffling Snapshot shuffling

Fig. 2: Four primary categories of microcanonical randomized
reference models. Each row represents the characteristic of the
temporal network which is preserved, and each column refers to the
representation of the temporal network, i.e. stream-based or snapshot-
based.

MRRMs can be classified according to two factors: i)
preservation of temporal distribution or topology, and ii) the
representation of temporal networks as either timelines or
snapshots. When models preserve the temporal distribution
they favor capturing the temporal dependencies and dynam-
ics of the original network. Conversely, other models might
prioritize preserving network topology to gain insights into
structural properties. The second factor revolves around the
representation of temporal networks. In the timeline repre-
sentation, the temporal ordering is crucial, with the graph
capturing the static topology and additional time-series in-
formation describing the timing and duration of edges/events
for each node. On the other hand, the snapshot model treats
each time window as a separate graph (potentially with the
same set of nodes), enabling a focus on individual time
points. The combination of these two factors leads to four
primary categories of MRRMs depicted in Fig. 2. Models
in the first category, namely timeline shuffling, focus on
preserving topology while utilizing a timeline representation.
It involves maintaining the static network structure while
shuffling timestamps within or between timelines and allows
highlighting significative dynamics. In contrast, the category
of sequence shuffling aims to preserve topology but uses a
snapshot representation. It shuffles the order of snapshots

while keeping the same network topology in each snapshot.
When a model preserves the temporal distribution on a net-
work modeled through a timeline representation, it falls under
the link shuffling category. Here, the static links are shuffled,
while their associated timelines remain unmodified. Lastly,
snapshot shuffling, the fourth category, preserves the temporal
distribution on graphs represented as temporal snapshots. It
involves shuffling the edges within each snapshot, enabling
the examination of individual time points in isolation.

In general, MRRMs represent a valid tool for assessing the
significance of measurements on real-world temporal networks
and for extracting meaningful insights about their dynamics
and structure. Indeed, the literature offers various applications
and fields where MRRMs have been employed, including
but not restricted to contagion processes [18], temporal mo-
tifs [19], and random walks [20]. However, to the best of
our knowledge, the application of a null model on a graph
evolution rule algorithm has not been explored, specifically
for rules tracking the relative timestamp of edges without
temporal window constraints. Although the LFR algorithm [9]
introduces a null model, the rules in that context are highly
constrained.

III. METHODOLOGY

In this section, we present the methodology employed in our
study to assess the significance of the evolution of patterns in
temporal networks and analyze their main properties and roles.
First, we describe the original graph evolution rule mining
algorithm (GERM), which serves as the foundation for our
analysis. Subsequently, we outline the process of constructing
the null model, a critical component in assessing the signifi-
cance of observed patterns. Then, we explain the process of
extracting over and under-represented rules, enabling us to
identify statistically significant patterns. Finally, we compute
the general mapping of patterns, which aids in understanding
the overall trends within the graph. Through this methodol-
ogy, we provide a robust framework for analyzing evolution
patterns and uncovering their underlying significance.

A. GERM (Graph Evolution Rules Miner)

Among the different alternatives for GER extraction pre-
sented in Section II, we opt for the GERM algorithm since it
provides a more robust implementation and is able to identify
GERs spanning many consecutive snapshots. Here we provide
a brief overview of the methodological and implementation
aspects of GERM, as introduced by Berlingerio et al. [7].
The idea is to extract frequent patterns, filter them based on
a support measure, and subsequently derive graph evolution
rules from the remaining patterns. We discuss the input graph
format, support and confidence measures, and the method for
extracting rules from temporal patterns in the following.
Graph representation. The GERM algorithm applies a mod-
ified version of the gSpan method [13] to a single graph
temporal representation, called union graph. Formally, the
union graph is described as G = (V,E, t), where each edge
(u, v, t(u, v)) ∈ E indicates that the first link between nodes

u and v occurred in timestamp t(u, v), with t : E → [0, . . . T]
being a function that maps edges into timestamps in the
interval [0, . . . T]. The author modified the original gSpan
algorithm to handle relative-time patterns, i.e. time-shifted
isomorphic graphs, such as the one reported in Fig. 3. In the
example, the two temporal graphs are equal except for a time
constant ∆ = 7, so they can be aggregated into the same
equivalence class. Specifically, the leftmost graph (Fig. 3a)
is representative of the pattern since it contains timestamps
starting from zero. The identification of relative-time patterns
impacts the time complexity of the algorithm and reduces the
number of redundant patterns.
Support measure. In order to identify frequent patterns
in GERM, a crucial aspect is defining the notion of pattern
frequency, i.e. support. The authors employ the minimum
image-based (MIB) support [12], as it returns a reliable
approximation of the actual occurrence count. Briefly, the
MIB support of a subgraph p in a graph G refers to the
minimum number of distinct nodes in the input graph that
are assigned to each node in the subgraph p. The MIB
support not only preserves the anti-monotonicity property, but
it also offers a computational advantage compared to counting
exactly the occurrences. Moreover, the authors also proposed
a confidence measure, that can help to find frequent evolution
patterns, but not related to the concept of confidence interval.
Indeed, confidence is computed by dividing the support of the
pattern’s head by the support of its body. This ratio provides an
estimate of the probability the head evolves into a subgraph
that matches the body, and, thanks to the anti-monotonicity
property its value falls in the range [0, 1].
Rules extraction. The most important feature of rules derived
through the GERM algorithm is that for each head exists only
one body. This property plays a crucial role in simplifying
the support computation, as the support of a rule is defined to
be the same as the support of its head (the final stage). The
transformation from a temporal pattern to a graph evolution
rule involves excluding the last evolutionary step from the
head, which then becomes the body of the rule. Formally,
given a pattern head H = (Vh, Eh), the body is the subgraph
B = (Vb, Eb), where Eb = {e ∈ Eh|t(e) < max({t(e)|e ∈
Eh})}. Finally, if the body is a connected subgraph, then the
rule r is defined as the couple (B,H).

B. Timeline shuffled null model

Inspired by the taxonomy of MRRMs for temporal net-
works proposed by Gauvin et al. [17], we implemented a
microcanonical randomized reference model that falls in the
timeline shuffling category. We based our selection of the
proper null model on two guiding principles. Firstly, our
focus is on analyzing the characteristics of the dynamics
of the network, rather than its specific topology. Therefore,
we specifically consider models that preserve the original
topology. Secondly, we aim to maximize entropy, striving
for highly randomized models that are as less biased and
conservative as possible. Moreover, the graph representation
adopted by GERM corresponds to a simplified version of

Computer Science Dept. @ UniMI CONNETS Lab 5

0 1

1

3 7 8

8

10

(b)(a)
Fig. 3: Example of relative-time patterns. (a) and (b) are equal except
for a time constant Delta = 7 for the link timestamps. The rightmost
graph is representative of the class equivalence the graphs belong to.

the timeline representation described in [17]. In fact, GERM
requires a unified topology merging all the temporal windows
and then it adds a single timestamp to each edge - not a time
series - corresponding to the first appearance of the interaction.
For these reasons, the null model choice falls into the timeline
shuffling category.

Formally, given an input temporal network G∗ =
(V ∗, E∗, f∗) ∈ G, our null model SM returns a G =
(V ∗, E∗, f) ∈ G with probability Px(G|G∗) where:

• V ∗, E∗ are respectively the node and edge set of the static
input network;

• f∗ : E∗ → T ∗ is a function that maps the edges of G∗

into a timestamp t ∈ T ∗;
• f : E∗ → T ∗ is a function that maps the edges of G into

a timestamp t ∈ T ∗;
• G is the state space, i.e. a predefined finite set of temporal

networks among which the MRRM selects G;
• Px(G|G∗) =

δ(x(G),x(G∗))

Ωx(G∗) ;
• Ωx(G∗) =

∑
G′∈G δ(x(G′),x(G∗);

and δ being the Kronecker delta function, with the feature x
being the intersection of two features, namely the edge feature
(E) and the timestamp feature (T). Specifically, δ is defined
as follows:

δ(x(G),x(G∗)) =

{
1 if E(G) = E∗ and T (G) = T ∗

0 otherwise

According to the notation proposed in [17], we will refer to
our model as P [E , T], addressing the features that it has to
maintain in sampling the randomized graphs. In other words,
among all networks in the state space G having the same nodes
set V ∗ and the same timespan (links can be assigned to a
timestamp from 0 to max(T ∗)), the null model SM samples
a temporal network G having the same edge set as the input
network G∗, i.e. E(G) = E(G∗), and having the same set of
timestamps - T (G) = T (G∗)) - but with a different mapping
function f . The pseudo-code of the shuffle model is depicted
in Algorithm 1.
C. Significative GERs

According to the Bonferroni’s Principle [10], frequent pat-
terns can be discovered even in random data. As the dataset
size increases, the occurrences of these patterns also tend to
increase. Such frequent patterns or events are considered false
positives in the search for patterns that characterize the data

Algorithm 1 Timeline shuffling model P [E , T]
Input: G∗ = (V ∗, E∗, f∗), T ∗ Output: G

1: G = (V,E)
2: V = V ∗, E = E∗

3: T = shuffle(T ∗)
4: n = 0
5: for (i, j) ∈ E do
6: f(i, j)← Tn

7: n← n+ 1
8: end for

we are analyzing. By applying the Bonferroni correction, the
significance level of each test is adjusted to ensure that the
probability of false positives is appropriately controlled. This
correction helps avoid spurious findings and strengthens the
reliability of the results. The zeta score test, also known as
the standard score or z-score test, is commonly used to assess
the significance of an observation compared to a reference
distribution. In the case of identifying significant patterns using
random models, the zeta score test allows us to quantify how
deviant or exceptional a pattern is compared to what would
be expected by chance alone.

In this work, we apply the GERM algorithm to an input
graph G∗ to get the real support sp of each frequent pattern
p. Then, we run the GERM algorithm on fifty different
realizations through the MRRM described in Section IIIB to
extract the expected support µp and its standard deviation σp

for each pattern p ∈
⋂50

i=1 SMi, where
⋂50

i=1 SMi is the set
of patterns that are frequent in all the realizations of the null
model. Note that the z-scores are computed over the mentioned
set of rules (

⋂50
i=1 SMi) since the support measure (µp) for

each run is required; this aspect will be further discussed in
Section VC. The expected support corresponds to the average
support of the pattern over all the 50 realizations of the model
SM . Formally, it is defined as follows:

µp = (

50∑
i=1

sip)/50

where sip is the support of p in the i−th realization of the null
model. Similarly, the standard deviation σp of each pattern
p ∈

⋂50
i=1 SMi is computed on the supports of p over the

realizations of SM . Finally, the z-score of the pattern p is
computed as follows:

zp =
sp − µp

σp

After computing the z-score for each pattern p ∈
⋂50

i=1 SMi,
a pattern is deemed significant or overrepresented when its
z-score exceeds the critical value of 1.96. This critical value
corresponds to a significance level of 0.05, assuming a normal
distribution. On the contrary, patterns with z < −1.96 are
significantly more frequent in the randomized model’s real-
izations, thus being under-represented or uncommon in the
observed data. Analyzing such patterns can provide insights

into the absence or suppressed occurrence of certain dynamics
or relationships within the dataset. It is important to investigate
both positive and negative z-scores to gain a comprehensive
understanding of the patterns’ significance and potential im-
plications in the context of the analysis.

D. Mapping of temporal patterns across null model realiza-
tions

One challenge encountered during the computation of the
z-score of patterns p was the lack of a canonical form for
identifying the same pattern across the different outcomes of
the GERM algorithm on the realizations of the null model.
Indeed, the application of GERM on each realization generates
patterns with their respective edge lists and supports, identified
by independent incremental IDs. To overcome this issue and
facilitate the comparison of results across multiple models, it is
necessary to extract equivalence classes for each pattern, incor-
porate timestamp information, and assign a global ID to each
temporal pattern. This process ensures consistency and allows
for meaningful comparisons of patterns and their properties,
even across different datasets. A preliminary observation that
significantly contributes to reducing computational time is the
frequent occurrence of patterns composed of the same set of
edges within the realizations of the null model. Leveraging this
observation, an initial step in the mapping procedure involves
extracting the unique set of edge lists while preserving their
respective occurrences. The pseudo-code of the procedure is
reported in Algorithm 2. It requires as input the variable germ,
which refers to the results of GERM on each realization of the
MRRM (frequent patterns and their support). The algorithm
returns a dictionary edge set whose keys are the set of edges
found in all the realizations, and the values are the list of
occurrences of the key edge list in the form (p,m) with p
being the original ID of the pattern and m ∈ [1, 50] the ID of
the realization it appears in.

Algorithm 2 General mapping: set of edges
Input: results of GERM on each realization of the null model
germ
Output: edges set

1: edges set = dict()
2: m = 0
3: for model ∈ germ do
4: for p, pattern ∈ model do
5: push(edges set[patternedges], (p,m))
6: end for
7: m← m+ 1
8: end for

However, there is still a chance that the edge lists in
the dictionary keys include isomorphic subgraphs. To avoid
redundancy we check the absence of isomorphic patterns,
before assigning a global identifier to each pattern/edge list.
Algorithm 3 describes the procedure: it initializes the i variable
to the maximum existing key in the mapping dictionary. The
reason for that is to create a global mapping for each dataset,

so when processing the results we may have some patterns
that have been already enumerated. We iterate on the edge
lists and their occurrences collected by Algorithm 2. After
initializing the temporary id to zero, we search in mapping if
there is already a pattern isomorphic to the one associated
with the edge list we are considering. If so, we assign p
to id. Afterward, if after the search id is still zero (there
is no isomorphic pattern in mapping), then the enumeration
variable i gets increased, and assigned to id. At this point,
mapping is updated with the new temporal isomorphism class
i, with the subgraph G(edges) obtained by the so far unseen
edge list. At the end of each iteration of the outer loop on
edge set, the new data dictionary new shuffle germ is
updated with the new global id and the same information as
the original one.

Algorithm 3 General mapping: isomorphism check
Input: edges set
Output: new shuffle germ

1: mapping = dict()
2: new shuffle germ = dict() ▷ Inspired by Python,

dict() creates an associative map
3: i = max(mapping.keys)
4: for edges, occurrences ∈ edges set do
5: id← 0
6: for p, pattern ∈ mapping do
7: if G(edges) is isomorphic G(pattern) then
8: id← p
9: continue

10: end if
11: end for
12: if id = 0 then
13: i← i+ 1
14: id← i
15: mapping[i] = G(edges)
16: end if
17: for p,m ∈ occurrences do
18: new shuffle germ[m][id] = germ[m][p]
19: end for
20: end for

IV. DATASETS

We applied our methodology (see Section III) to two differ-
ent human-centered temporal datasets. The first one is a bib-
liographic network representing co-authorship relationships,
and the second one encodes information about students of an
American university that exchange messages on an internal
platform.

A. DBLP

DBLP (Digital Bibliography & Library project) is a com-
puter science bibliography website and the dataset used in this
work is available at https://www-kdd.isti.cnr.it/GERM/. The
dataset gathers from DBLP all the co-authorship interactions
from 1992 to 2002 with a yearly granularity. In this case, an

undirected temporal edge (a, b, t) indicates that there was at
least one publication that both authors a and b co-authored
in the year t. As the graph evolution rules algorithm -
GERM - cannot handle multiple edges, we only consider
the first edge that appears between each pair of nodes. The
obtained network has 129073 nodes and 277081 edges, with
11 possible timestamps. Two additional datasets are accessible,
encompassing the time intervals of 2003 to 2005 and 2005 to
2007, respectively. Nevertheless, the time span of these two
datasets is comparatively brief, comprising solely two years of
data. Consequently, we abstain from presenting any findings
derived from them.

B. UC Social

The second dataset is obtained from a directed temporal net-
work available at http://konect.cc/networks/opsahl-ucsocial/,
which collects the message interactions among students of
the University of California (Irvine) in an online community.
The graph represents users as nodes, and each directed edge
(u, v, t) denotes a message sent from u to v at time t. Similar
to the previous dataset, we only consider edges with their
earliest timestamp due to the inability of the algorithm to
handle repeated interactions. Moreover, the dataset offers a
directed type of interaction, however, the GERM algorithm
only handles undirected graphs. So, we processed the directed
graph Gd to create a mutual undirected graph Gm: each
edge (u, v, t1) ∈ Gd is inserted into Gm if and only if
(v, u, t2) ∈ Gd. In this case, the timestamp of (u, v) ∈ Gm

is min(t1, t2). This way, we obtain an undirected graph with
1280 nodes and 12916 edges, that reflects reciprocal relation-
ships. To make the analysis more tractable, we aggregated
the original timestamps of edges by weekly and monthly
granularities. This allows us to track the mesoscopic evolution
of the network over time without being overwhelmed by a
large number of possible timestamps. With the aggregation,
we obtain two different graphs UC-monthly and UC-weekly,
having the same size and order, but with the former having a
coarser time granularity. Precisely, the UC-monthly graph has
only 7 possible timestamps, while UC-weekly has 28 possible
timestamps.

It is worth noting that the two datasets offer different
advantages: the first one provides a large temporal network,
while the second one allows for arbitrarily tuning the time
granularity.

V. FINDINGS

We apply the methodology described in Section III to the
GERM algorithm, for each of the graphs described in Section
IV. In this section we analyze the main results, starting from
a quantitative description of the rules found in both the real
graphs and their corresponding null models. Then, we discuss
the distribution of z-scores, and evaluate the impact of the
patterns that were not included in the z-score computation.
Finally, we also group the patterns by the time they take to
form to gain a deeper understanding of the graph evolution.

0 50 100 150 200 250

common patterns

400

200

0

200

400

600
z-

sc
or

es
DBLP

(a)

0 50 100 150 200 250

common patterns

60
50
40
30
20
10

0

z-
sc

or
es

UC-monthly

(b)

0 200 400 600 800

common patterns

3
2
1
0
1
2
3

z-
sc

or
es

UC-weekly

(c)

Fig. 4: Distribution of the z-scores of GERs extracted from (a) DBLP, (b) UC-monthly, and (c) UC-weekly. The thresholds above and below
which patterns attain statistical significance are depicted by green and red horizontal lines, respectively.

A. GERM outcomes on real and randomized networks

GERM algorithm was applied to the three networks as well
as to their timeline shuffled counterparts, setting a maximum
of 4 edges (patterns involve at most four links) and generating
50 realizations of the null models. The minimum support
values were selected starting from a value of 5000, which
is the original choice of GERM’s authors for the DBLP
dataset. As concerns the UC networks, the support values
were selected based on the minimum value needed to obtain
non-empty outputs, starting from 5000. Table I reports the
selected support thresholds and the corresponding number of
rules identified. Specifically, the GERM column reports the
number of rules found running the GERM algorithm with
the aforementioned parameters on the original/real graphs,
while the “mean shuffle” and “union shuffle” columns refer
to the application of the algorithm on the timeline shuffled
graphs (null model). The former indicates the average number
of patterns found by executing the GERM algorithm on 50
randomized graphs. The latter (union shuffle) indicates the
different rules/patterns found in the union of the 50 runs. The
union is computed utilizing the general mapping algorithm
described in Section IIID.

dataset support GERM mean shuffle union shuffle
DBLP 5000 296 3795 3871

UC-monthly 150 266 1269 1378
UC-weekly 600 999 1039 1235

TABLE I: Overview of GERM outcomes on the three temporal
networks. “GERM” column displays the number of rules identified
in the real graphs. The ”mean shuffle” column reports the average
number of patterns over 50 timeline shuffled graphs. The ”union
shuffle” column presents the number of distinct rules discovered
through the union of 50 realizations.

Upon examining the results in Table I, we observe that on
average in null models there are more patterns than in the
original graphs. Further, this difference is consistent across all
50 realizations of the randomized graphs, as we can note from
the small difference between the average number of patterns
(fourth column) and the union of the rules (fifth column). This
observation indicates that in timeline shuffled realizations there
are a consistently higher number of patterns having negligible
support in the real temporal networks, i.e. timestamps and the

ordering they induce in the real graphs impact the frequency
of the evolution rules.

B. Analysis of z-scores

The application of a null model on the graph evolution
rules enables the identification of significant rules specific
to the temporal graph under consideration, extending beyond
frequency-based measures. As described in Section III we
compute the z-score for the patterns existing in all the real-
izations of the null model and in the real graph. Fig. 4 shows
the distribution of the z-score for the three temporal networks,
where horizontal lines specify the noteworthy thresholds: the
grey line stands for the zero level (patterns with identical
support in both real and null graphs), while the green and
red horizontal lines indicate the over and under-representation
thresholds (±1.96). While the under-representation of patterns
is a consistent trend across all three datasets, there are notable
differences in the distribution of z-scores across the three
temporal networks. First, the UC-weekly case (see Fig. 4c)
is a special case because the majority of patterns (93.1%)
are concentrated within the ±1.96 region, meaning that their
supports in the null or real graphs do not differ so much, i.e.
they are not significative. In the other networks, almost every
pattern is under-represented; for instance, in the DBLP case
(see Fig. 4a), the over-represented rules are only 16 against
264 under-represented. Second, in the DBLP case, z-scores
present a very wide range of values, meaning that the supports
of patterns in the real graph are extremely lower or higher
than the ones in the null models. Third, in the UC-monthly
network, all patterns are under-represented over the null model
(see Fig. 4b). We will investigate the underlying reasons in
subsequent sections.

C. Frequency of GERs in real and randomized networks

While the common set of patterns obtained from GERM on
the original graph and its randomized versions provides valu-
able insights into over and under-represented graph evolution
rules, the patterns that are not in the intersection of all runs
of GERM over the realizations may be worth attention too.
In fact, when running GERM algorithm on the real graph and
on the 50 realizations of the null model, we obtain a set of
frequent rules from each of the 51 runs, generating different

WHERE IS FREQUENT In G Not in GG* G*

Frequent in G*

Frequent in S M1 Frequent in S M2

Frequent in S M3

In all realizations of SM

In some realizations of SM

In any realizations of SM

Fig. 5: Tabular and visual representation of possible cases a
rule/pattern may be involved in. Here, we depict 3 realizations of
the null model (SM). A pattern in the green set is a GER in the real
network G∗ and a GER in all the realizations, while if it is present
in some realizations but not all, it is purple. If the pattern is not a
GER in the real network - its support is below the threshold - it may
belong to the red set, i.e. it is a GER in all the realizations, or it is in
the blue set, i.e. it is a GER in some realizations but not all. Finally,
patterns belonging to the pink case are GERs in the real network, but
in all the realizations their support is below the threshold.

scenarios depending on the frequency of a pattern in the real
and randomized realizations. In Fig. 5 we summarize all the
possible scenarios combining a tabular representation and a
set representation. According to the above representation, up
to now, we have analyzed the patterns belonging to the green
set, i.e. the set containing patterns appeared to be frequent
in all realizations of the null models (SMi) and even in the
real graph (G∗). On the opposite side, we have the pink and
red sets: the first one contains all patterns that were frequent
only in the real graph (returned by GERM) but not in any
randomized network: these are reasonably considered as over-
represented patterns since the support in the null model is
always lower than the real one. On the other hand, the patterns
in the red set (frequent in all realizations of the null model
but not on the real graph) are reasonably under-represented
for the complementary reason, and so equally worthy of
attention. Finally, since we generated many realizations of
the null model, it is likely that some patterns are not always
frequent (blue and purple sets). Still, if they are frequent in
most of the 50 realizations, they may be worthy of analysis.
In essence, by relaxing the initial conditional requirement,
as required in the definition of the z-score, that restricts the
evaluation of statistical significance solely to GERs extracted
in all realizations of the null model (p ∈

⋂50
i=1 SMi), we

can broaden the analysis of significance to encompass a wider
range of evolution rules.

We evaluate the extent to which patterns can be reinte-
grated into our analysis by examining the tables presented in
Fig. 6, which provide a comprehensive overview of the pattern
distribution across various scenarios for the three temporal
networks. The analysis reveals that the red and green sets
are generally larger than the blue and purple sets, indicating
that we can consistently enlarge the set of under-represented
GERs in DBLP and UC-monthly. On the other hand, the pink
set was nearly non-existent in all datasets, so the extension
of over-represented patterns is very marginal. Furthermore,

the size of the purple set is found to be smaller than the
blue set, suggesting that patterns that are not frequent in
all the realization of the null model, are probably uncom-
mon in the real graph as well. In general, the expansion
of assessable GERs aligns with the trend observed in the
analysis of the z-scores, wherein a majority of the evolutionary
rules demonstrate under-representation, particularly within the
DBLP and UC-monthly datasets. The notable prevalence of
under-represented GERs underscores how temporal constraints
and/or evolutionary mechanisms within the three temporal
networks may hinder the manifestation of certain evolution
rules. These factors are loosened in the realizations of the null
model.

Finally, we look at the support of the patterns in each set
and investigate any similarities or differences that may emerge.
Fig. 7 depicts the support distributions of each set for all
three networks. While not all datasets contain all five sets,
it is evident that the supports for the purple and blue sets are
rather low, particularly when compared to the green and/or
red sets. This last finding suggests that patterns that are not
frequent in all the realizations of the null model may not be
worthy of attention, given that they only marginally exceed
the minimum support threshold. Therefore, we do not consider
the purple and blue sets in further analysis. On the other hand,
the pink set, which is exclusive to real networks, represents a
small but significant set of patterns that cannot be detected in
the realizations of the null models.

D. Analysis of timespans

A further advantage of GERM is that the returned GERs
are provided with the time the body takes to form, i.e. its
timespan tspan. Indeed, the timespan of a GER corresponds
to the maximum timestamp in the body of the rule. We focus
on the maximum timestamp because we consider relative-
temporal patterns, with the minimum timestamp always set
to zero. In the context of statistically significant GERs this
information is important since we can discover signals that
certain constraints or evolution mechanisms may favor or
contrast slow or fast formation of specific subgraphs. Fig. 8
shows the frequency distribution of the timespans of the rules
in the three datasets, grouped according to the set a pattern
belongs to, namely the red and green sets. We observe that
GERs within the green sets exhibit relatively lower timespans,
typically around 3, indicating their prevalence within shorter
temporal intervals and a relatively fast formation process. On
the other hand, the red sets include patterns characterized by
higher timespans, suggesting their persistence and prevalence
over longer durations, and a slower formation process. This
disparity in timespan distribution between the green and red
sets provides valuable insights into the temporal dynamics
within the analyzed datasets, suggesting that in the real graphs
the frequent patterns are the ones that happen in a shorter
time interval. In fact, the higher timespan patterns are more
common in the null model but not in the real graph. The
distinction in terms of timespan between the green and red sets
is particularly evident when considering the support of these

Frequent in GERM

DBLP Frequent Not frequent

 TOT

Frequent in how
many realizations
of the null model

Frequent in all 284 3431 3715

Frequent in some 3 153 156

Not frequent 9

TOT 3871 296

(a)

Frequent in GERM

UC-monthly Frequent Not frequent

 TOT

Frequent in how
many realizations
of the null model

Frequent in all 266 871 1137

Frequent in some 0 241 241

Not frequent 0

TOT 1378 266

(b)

Frequent in GERM

UC-weekly Frequent Not frequent

 TOT

Frequent in how
many realization
of the null model

Frequent in all 904 0 904

Frequent in some 95 236 331

Not frequent 0

TOT 1235 999

(c)

Fig. 6: Tabular representation of the different cases depicted in Fig. 5, for the different temporal networks (a) DBLP, (b) UC-monthly, and
(C) UC-weekly. Columns in each table indicate whether a GER extracted by GERM is frequent or not in the real graph. Rows indicate how
frequently a GER has been extracted by GERM over the 50 realizations of the null model. Each record reports how many GERs belong to
the specific case.

104 105

Support

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GERM - original
GERM - null model
GERM - original
GERM - null model

(a)

103

Support

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GERM - original
GERM - null model

(b)

1036 × 102 7 × 102 8 × 102 9 × 102

Support

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GERM - original
GERM - null model
GERM - original
GERM - null model

(c)

Fig. 7: Distribution of the support of rules/patterns grouped by different cases described in the Fig. 5. As for the support of the GERs in
the realizations of the null model, we report the distribution of the mean support. The x-axis has a logarithmic scale.

1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8
Timespan

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q

u
e
n

cy

(a)

1 2 3 4 5 6 0 1 2 3 4
Timespan

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Fr
e
q

u
e
n

cy

(b)

0 1 2 3 4 5 6 7 8 9
Timespan

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Fr
eq

u
en

cy

(c)

Fig. 8: Distribution (frequency) of the timespans of the evolutions rules in the three temporal networks (a) DBLP, (b) UC-monthly, and
(c)UC-weekly. We grouped timestamps according to the class their pattern belongs to. The palettes of histograms recall the colors assigned
to each class in Fig. 5.

patterns. For instance, a significant majority (around 89%) of
the over-represented patterns in the DBLP graph exhibit a
tspan < 3, while the 65% of most frequent patterns in the red
sets present a tspan ≥ 4. This observation provides additional
support for the hypothesis that various factors and mechanisms
influence the rapid formation of specific subgraphs, while other
factors act against the formation of certain subgraphs, thereby
slowing down the overall formation process.

E. Discussion

Finally, we illustrate a few examples showing the enhanced
value provided by the null model extension on the graph
evolution rule algorithm. By analyzing these patterns, we aim
to show how the assessment of the significance can offer
valuable insights beyond the outcomes traditional frequency-
based mining algorithms provide.

In the case of the DBLP temporal network, the introduction
of the null model reveals patterns with more intricate structures
than usual chains or triangles. For instance, the GER in Fig. 9a
is resulted to be significative, meaning that its support in
the real graph is significantly more frequent than in the null
model. However, in terms of support rank, it falls beyond the
100th position. Without the null model, such a pattern might
have been overlooked in a semantic analysis, yet it holds
important information about the graph’s evolution. Indeed,
this GER represents two authors who start their collaboration
at a specific time (t0) and subsequently collaborate with a
common co-author the following year, the target of a further
collaboration with another author external to the initial pair.

On the other hand, the GER in Fig. 9b exemplifies a pattern
with high support (14th position) but a remarkably low z-score

0 1 1

1

0 1

0

0

6

0 1 1

1

0 1

0

0

6

0 1 1

1

0 1

0

0

6
(a) (b) (c)

Fig. 9: Example of GERs extracted from the DBLP temporal
network.

(−216). This means that its having a high support may not
mean that is actually a pattern worth attention in explaining
the dynamics of the graph, as its support becomes substantially
higher when the network timestamps are shuffled. Without the
null model extension, we might have considered the dynamic
where a triangle between three authors does not close in the
subsequent year as important, while in reality, it may not hold
such significance.

Another observation could be drawn by looking at the lower
tail of the z-score distribution: Fig. 9c depicts a rule that
has one of the lowest z-scores (−257.7) that also has a large
timespan (6 years). This is telling us that this kind of pattern
presents a really higher support in the models, suggesting that
an author that starts a collaboration at a certain t0, may start
another one in 6 years. However, this occurrence is not as
common as in a random graph where temporal dependencies
are loosened. Therefore, it represents a common behavior that
could be even more frequent whereas temporal constraints or
other mechanisms would not come into play.

By presenting these diverse examples, we aim to underscore
the added value of the null model extension in capturing
nuanced dynamics during the evolution of temporal networks.
These examples showcase how the introduction of the null
model framework enables us to uncover patterns that possess
distinctive characteristics, highlighting their significance in
understanding network evolution.

VI. CONCLUSIONS

In this study, we disentangle the evolution of different tem-
poral networks by the identification of statistically significant
graph evolution rules The assessment of the statistical signif-
icance results from the introduction of a proper null model
applied to the GERM algorithm, the first and most stable
method for mining graph evolution rules. The null model
preserves the static structure of the graph while shuffling
timestamps, ensuring the temporal distribution is maintained
and introducing randomness to the sequence of events. By
employing a z-score test, statistically significant rules that
deviate significantly from the null model are identified. Al-
though the significance of the identified GER has been almost
neglected, our findings show that the introduction of a null
model impacts the evaluation and interpretation of rules. First,
a few highly frequent rules are not significant at all, only a
few are over-represented, while the majority of the GERs are
under-represented. So, by shuffling timestamps, we weaken
or remove specific temporal factors or mechanisms that may
inhibit or favor evolution paths. Furthermore, we also extended
this observation to the speed of the formation process of

subgraphs, where rules expressing fast formations are over-
represented. As a future extension of this work, we plan to
identify the mechanisms and the factors acting on the over
and under-representation of the GERs and assess their role in
the dynamics of subgraph formation.

REFERENCES

[1] T. A. Snijders, “Statistical models for social networks,” Annual review
of sociology, vol. 37, pp. 131–153, 2011.

[2] G. Bianconi, R. K. Darst, J. Iacovacci, and S. Fortunato, “Triadic closure
as a basic generating mechanism of communities in complex networks,”
Physical Review E, vol. 90, no. 4, p. 042806, 2014.

[3] F. Papadopoulos, M. Kitsak, M. Serrano, M. Boguná, and D. Krioukov,
“Popularity versus similarity in growing networks,” Nature, vol. 489,
no. 7417, pp. 537–540, 2012.

[4] M. Kim and J. Leskovec, “Modeling social networks with node attributes
using the multiplicative attribute graph model,” in Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
2011, pp. 400–409.

[5] A. Galdeman, M. Zignani, and S. Gaito, “Disentangling the growth of
blockchain-based networks by graph evolution rule mining,” in 2022
IEEE 9th International Conference on Data Science and Advanced
Analytics (DSAA). IEEE, 2022, pp. 1–10.

[6] M. Coscia and M. Szell, “Multiplex graph association rules for link pre-
diction,” in Proceedings of the Fifteenth International AAAI Conference
on Web and Social Media, ICWSM 2021. United States: AAAI Press,
2021, pp. 129–139.

[7] M. Berlingerio, F. Bonchi, B. Bringmann, and A. Gionis, “Mining graph
evolution rules,” in joint European conference on machine learning and
knowledge discovery in databases. Springer, 2009, pp. 115–130.

[8] K. Vaculı́k, “A versatile algorithm for predictive graph rule mining.” in
ITAT, 2015, pp. 51–58.

[9] C. W.-k. Leung, E.-P. Lim, D. Lo, and J. Weng, “Mining interesting link
formation rules in social networks,” in Proceedings of the 19th ACM
International Conference on Information and Knowledge Management,
ser. CIKM ’10. New York, NY, USA: Association for Computing
Machinery, 2010, p. 209–218.

[10] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive data
sets. Cambridge university press, 2020.

[11] M. Yuuki, T. Ozaki, and O. Takenao, “Mining interesting patterns and
rules in a time-evolving graph,” Lecture Notes in Engineering and
Computer Science, vol. 2188, 03 2011.

[12] B. Bringmann and S. Nijssen, “What is frequent in a single graph?”
in Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2008, pp. 858–863.

[13] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”
in 2002 IEEE International Conference on Data Mining, 2002. Proceed-
ings. IEEE, 2002, pp. 721–724.

[14] E. Scharwächter, E. Müller, J. Donges, M. Hassani, and T. Seidl,
“Detecting change processes in dynamic networks by frequent graph
evolution rule mining,” in 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, 2016, pp. 1191–1196.

[15] P. Fournier-Viger, G. He, J. C.-W. Lin, and H. M. Gomes, “Mining
attribute evolution rules in dynamic attributed graphs,” in International
Conference on Big Data Analytics and Knowledge Discovery. Springer,
2020, pp. 167–182.

[16] K.-N. T. Nguyen, L. Cerf, M. Plantevit, and J.-F. Boulicaut, “Discovering
inter-dimensional rules in dynamic graphs,” in Proceedings of the
1st International Conference on Dynamic Networks and Knowledge
Discovery-Volume 655, 2010, pp. 5–16.

[17] L. Gauvin, M. Génois, M. Karsai, M. Kivelä, T. Takaguchi, E. Valdano,
and C. L. Vestergaard, “Randomized reference models for temporal
networks,” SIAM Review, vol. 64, no. 4, pp. 763–830, 2022.

[18] P. Holme and F. Liljeros, “Birth and death of links control disease
spreading in empirical contact networks,” Scientific reports, vol. 4, no. 1,
p. 4999, 2014.

[19] M. Karsai, K. Kaski, A.-L. Barabási, and J. Kertész, “Universal features
of correlated bursty behaviour,” Scientific reports, vol. 2, no. 1, pp. 1–7,
2012.

[20] J.-C. Delvenne, R. Lambiotte, and L. E. Rocha, “Diffusion on networked
systems is a question of time or structure,” Nature communications,
vol. 6, no. 1, p. 7366, 2015.

