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BESOV SPACES OF ANALYTIC TYPE: INTERPOLATION, CONVOLUTION,

FOURIER MULTIPLIERS, INCLUSIONS

MATTIA CALZI

Abstract. We consider a family of Besov spaces of analytic type on the Šilov boundary N of a homogeneous
Siegel domain D, and study their properties in relation to convolution, Fourier multipliers, and complex
interpolation. In addition, we study how these Besov spaces of analytic type can be compared with the
‘classical’ Besov spaces N .

1. Introduction

Let E be a finite-dimensional complex vector space, F a finite-dimensional real vector space, Ω a non-
empty open convex cone in F not containing affine lines, and Φ: E × E → FC, where FC denotes the
complexification of F , an Ω-positive non-degenerate hermitian map. Then, the open convex set

D := { (ζ, z) ∈ E × FC : Im z − Φ(ζ) ∈ Ω },

where Φ(ζ) := Φ(ζ, ζ) for every ζ ∈ E, is called a Siegel domain (of type II). The Šilov boundary of D, that
is, the smallest closed subset of ∂D on which every bounded continuous function on D which is holomorphic
on D has the same supremum as on D, has a canonical group structure which acts affinely on D, and may
be identified with the group N := E × F , endowed with the product

(ζ, x)(ζ′, x′) := (ζ + ζ′, x+ x′ + 2ImΦ(ζ, ζ′)),

for every (ζ, x), (ζ′, x′) ∈ N , by means of the mapping (ζ, x) 7→ (ζ, x+ iΦ(ζ)).
When E = { 0 } and F = R, D is simply the upper half-plane in C, and N = R. In this case, it is proved

in [21] that the boundary values of several (mixed-norm) weighted Bergman spaces on D may be identified

with suitable homogeneous Besov spaces on N , namely
{
u ∈ Ḃs

p,q(R) : Supp(Fu) ⊆ R+

}
, for p, q ∈]0,∞]

and s < 0. In [1], the preceding results are extended to the case in which E = { 0 }, but Ω is a general
irreducible symmetric cone.1 Therein, suitable homogeneous Besov spaces on N = F are constructed and
proved to be the boundary value spaces of several (mixed-norm) weighted Bergman spaces. These results
have been recently extended in [8] to the case in which E is arbitrary and D is (affinely) homogeneous, that
is, the group of (affine) biholomorphisms of D acts transitively on D.

The purpose of this paper is to develop some aspects of the theory of the Besov spaces Bs
p,q(N ,Ω)

introduced in [8].

In Section 2, we collect some basic definitions and results concerning homogeneous Siegel domains and the
Besov spaces Bs

p,q(N ,Ω) that will be necessary in the sequel. We shall mainly refer to [8] for a much more
thorough exposition. For the sake of simplicity, we shall sometimes slightly modify some of the notation and
terminology adopted in [8] and (apparently) allow more flexibility to the constructions developed therein.
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1In other words, Ω is self-dual with respect to some scalar product on F , the group of linear automorphisms of F preserving

Ω acts transitively on Ω, and Ω cannot be written as a product of two non-trivial convex cones.
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2 M. CALZI

We shall also describe the group N in a slightly more axiomatic way, without reference to the corresponding
Siegel domain D.

In Section 3, we develop some basic tools to deal with with the spaces Bs
p,q(N ,Ω) for p < 1, following the

classical theory exposed in [23]. Except for the sampling Theorem 3.3 (and Lemma 3.2), the results of this
section are trivial consequences of Young’s inequality when p > 1. Some particular cases of these results
have already been proved in [8], but are not sufficient to prove some results of Sections 6 and 7.

In Section 4, we deal with continuity results for convolution between the spaces Bs
p,q(N ,Ω). These results

are (somewhat technical, but) quite simple and natural when N is abelian. When N is not abelian, the
fact that convolution ‘preserves regularity’ (apparently expressed in a non-symmetric form) may appear
peculiar. Nonetheless, as [8, Theorem 4.26] shows, the ‘regularity parameter’ s actually depends only on
the convolution with a distribution supported on the centre of N : this explains why convolution may act
on the Besov spaces Bs

p,q(N ,Ω) as in the classical situation. Since, nonetheless, the definition of the spaces
Bs

p,q(N ,Ω) is non-symmetric, some auxiliary ‘symmetrized’ versions Bs
p,q(N ,Ω) of the Bs

p,q(N ,Ω) appear
naturally in this context. The main result is therefore expressed in terms of inclusions of the form B ∗B ⊆ B,
which imply analogous inclusions of the form B ∗ B ⊆ B, B ∗ B ⊆ B, B ∗ B∗ ⊆ B, etc., since the spaces B
can be naturally identified with quotients, as well as closed subspaces, of the spaces B.

In Section 5, we prove Mihlin-Hörmander multiplier theorems for right Fourier multiplies on the Besov
spaces Bs

p,q(N ,Ω). Our main result is completely analogous to the classical one when N is abelian, and may
appear peculiar when N is not abelian, since the relevant dimension for the regularity threshold is not that
of N , as one may expect, but rather that of its centre F . In order to explain this fact, one may observe
that, roughly speaking, the Fourier transforms of the elements of Bs

p,q(N ,Ω) do not have a vectorial nature
‘on the right’ (since their kernels contain a fixed hyperplane). It is therefore to be expected that left Fourier
multipliers behave in a quite different way.

In Section 6, we deal with complex interpolation. We first show, using classical techniques, an almost
complete picture of how the Besov spaces Bs

p,q(N ,Ω) interact with the classical complex interpolation functor
(Proposition 6.2). We then introduce a modified complex interpolation functor, following [23], in order to deal
with the case min(p, q) < 1, in which the Bs

p,q(N ,Ω) are not Banach spaces (but rather quasi-Banach spaces),
and with the case max(p, q) = ∞, in which the usual complex interpolation functor behaves in a somewhat
irregular way (Theorem 6.6). In contrast to the classical case, this modified interpolation functor does
not operate on Banach pairs, but rather on ‘admissible triples’ (A0, A1, X), where A0, A1 are quasi-Banach
spaces which embed in the Hausdorff semi-complete locally convex space X . Holomorphy is then defined
with reference to X and the usual arguments apply. We mention explicitly that the complex interpolation
spaces of a Banach pair (A0, A1) need not equal the complex interpolation spaces of the admissible triple
(A0, A1,Σ(A0, A1)) (with the notation of [3]), except when A0 or A1 is reflexive: this is unavoidable if one
desires a nice treatment of the case max(p, q) = ∞. In particular, in general A0 ∩ A1 is not dense in the
complex interpolation spaces of an admissible tripe (A0, A1, X). Again, this is unavoidable if one wishes the
spaces Bs

p,q(N ,Ω) to interpolate nicely also when max(p, q) = ∞, in full generality.
In Section 7, we introduce some more classical Besov spaces Bs

p,q(N ,L) on N . When N is abelian, they
reduce to the classical homogeneous Besov spaces on N . The non-commutative analogues of these spaces are
defined by means of the spectral calculus of a suitable positive Rockland operator L on N . Some comments
are in order. First of all, when N is stratified, we could have replaced L with a sub-Laplacian and referred
to the general construction of homogeneous Besov spaces on a metric measure space developed in [14].
Nonetheless, N need not be stratified, so that it is more convenient to choose L as an operator of order
4. Secondly, it is likely that the so-defined Besov spaces do not depend on the chosen positive Rockland
operator L, since the same holds for the Sobolev spaces on graded groups developed in [12]. Finally, we shall
not embed a priori our Besov spaces into the quotient of the space of tempered distributions on N by the
space of polynomials, as one may expect, but rather in the strong dual of a suitable (dense) subspace SL(N )
of the space of Schwartz functions with all vanishing moments on N , endowed with a stronger topology.
A posteriori, the resulting spaces are the same, but the use of SL(N ) has some technical advantages that
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greatly simplify some of the arguments employed in Section 8. In addition to that, this choice parallels the
analogous one made for the Besov spaces Bs

p,q(N ,Ω). For the sake of symmetry, we shall therefore also prove
that also the spaces Bs

p,q(N ,Ω) naturally embed in a suitable quotient of the space of tempered distributions
(Proposition 7.12).

In Section 8, we compare the Besov spaces Bs
p,q(N ,Ω) and Bs

p,q(N ,L). First we show that Bs
p,q(N ,L) is

the closure (in a suitable weak topology, if max(p, q) = ∞) of the union of an increasing sequence of closed

subspaces Vk which embed canonically as closed subspaces of B
∑

j sj
p,q (N ,L). Therefore, it is reasonable to

consider only ‘inclusions’ of the form Bs
p,q(N ,Ω) → B

∑
j sj

p,q (N ,L). When Ω = R∗
+, the situation is clear

since Bs
p,q(N ,Ω) is canonically isomorphic to a closed subspace of Bs

p,q(N ,L). When Ω 6= R∗
+, the situation

is more complicated and the existence of a canonical embedding Bs
p,q(N ,Ω) → B

∑
j sj

p,q (N ,L) turns out to be
equivalent to a certain ℓq-decoupling property (D′)sp,q (Theorem 8.7). In particular, (D′)sp,q may hold only
if s 6 0 (Proposition 8.5).

Property (D′)sp,q is not new, as it is essentially related to a similar property which plays an important
role in the determination of the boundary value spaces of several mixed-norm weighted Bergman spaces on
D (cf. Proposition 8.8, [8, Theorem 5.10] and [1, Theorem 4.11 and Proposition 4.16]). In addition, when
Ω is a Lorentz (or light) cone, then (D′)sp,q is essentially related to the so-called ‘cone multiplier problem’
(cf. [26, 16, 1, 17]).

1.1. Acknowledgements. The author would like to thank professor A. Martini for posing the problem of
investigating the relationships between the Besov spaces Bs

p,q(N ,Ω) and the ‘classical’ ones. The author
would also like to thank professor M. M. Peloso for helpful suggestions to improve the structure of the
manuscript.

2. Preliminaries

In this section we shall summarize several definitions and results on homogeneous cones, homogeneous
Siegel domains, and the Besov spaces of analytic type Bs

p,q(N ,Ω). We refer the reader to [8] for a more
thorough exposition.

Throughout the paper, we shall fix (with the exception of Proposition 2.1):

• a real hilbertian space F of dimension m > 0 and a complex hilbertian space E of dimension n;
• a homogeneous cone Ω in F , that is, a non-empty open convex cone not containing any affine line

on which the group G(Ω) := { t ∈ GL(F ) : tΩ = Ω } acts transitively;
• a triangular2 Lie group T+ which acts linearly and simply transitively on Ω, and a homomorphism
∆: T+ → (R∗

+)
r which induces an isomorphism of T+/[T+, T+] onto (R∗

+)
r, for some r ∈ N∗;3

• a non-degenerate Ω-positive hermitian map Φ: E×E → FC, where FC denotes the complexification
of F , such that for every t ∈ T+ there is g ∈ GL(E) such that t · Φ = Φ ◦ (g × g).

Notice that T+ may be equivalently characterized as a maximal connected triangular subgroup of G(Ω),
and that any two such subgroups of G(Ω) are conjugate by an inner automorphism of G(Ω) (cf. [25, 24]).
In particular, we may always assume that T+ has the form considered in [8]. In particular, T+ con-
tains a subgroup acting by homotheties on F , and T+ acts, by transposition, on the dual cone Ω′ :={
λ ∈ F ′ : ∀h ∈ Ω \ { 0 } 〈λ, h〉 > 0

}
(cf. also [25, Theorem 1]). We denote the corresponding right action

by λ · t, for λ ∈ Ω′ and t ∈ T+.
Then, D := { (ζ, z) ∈ E × FC : Im z − Φ(ζ) ∈ Ω } is the homogeneous Siegel domain (of type II) associated

to E,F,Ω, and Φ, where Φ(ζ) := Φ(ζ, ζ) for every ζ ∈ E. The Šilov boundary bD of D can be canonically

2In other words, there is a basis of F such that for every t ∈ T+ the matrix associated with the mapping x 7→ t · x is upper
triangular. Equivalently, all the eigenvalues of the mapping x 7→ t · x are real for every t ∈ T+ (cf. [24]).

3A T+ with the required properties always exists (cf. [25]). In addition, r does not depend on the choice of T+ and is called
the rank of Ω.
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identified with N := E × F through the mapping (ζ, x) 7→ (ζ, x + iΦ(ζ)). If we endow N with the product

(ζ, x)(ζ′, x′) := (ζ + ζ′, x+ x′ + 2ImΦ(ζ, ζ′))

for every (ζ, x), (ζ′, x′) ∈ N , then N acts holomorphically on E × FC, bD, and D, setting

(ζ, x) · (ζ′, z′) := (ζ + ζ′, x+ iΦ(ζ) + z′ + 2iΦ(ζ′, ζ))

for every (ζ, x) ∈ N and for every (ζ′, z′) ∈ E × FC. Then, bD is the orbit of (0, 0), and N acts simply
transitively on bD. Note that N is a 2-step nilpotent Lie group with centre F and commutator subgroup equal
to the vector subspace of F generated by Φ(E). We endow N with the dilations given by ρ·(ζ, x) := (ρ1/2ζ, ρx)
for every ρ > 0 and (ζ, x) ∈ N . With this choice, N need not be a stratified group, but has the usual dilations
when it is abelian, that is, when E = 0.

2.1. An Intrinsic Perspective. We shall now indicate a slightly more intrinsic description of the group
N described above. For technical reasons, it is more convenient to describe its Lie algebra, instead.

Proposition 2.1. Let n be a (finite-dimensional, real) 2-step nilpotent Lie algebra with centre z. Then, n is
the Lie algebra of a group N satisfying the above conditions if and only if there are a complex structure J4

on n/z and a non-empty open convex cone Ω in z not containing affine lines such that the following hold:

• for every λ ∈ Ω′, the bilinear form (X,Y ) 7→ 〈λ, [JX, Y ]〉, on n/z, is symmetric and positive on n;
• the group G of the automorphisms of n which preserve Ω and induce automorphisms of n/z commuting

with J acts transitively on Ω.5

Proof. It is clear that the Lie algebra of a group N as above satisfies the conditions of the statement. Then,
take n as above. Set E := n/z, endowed with the structure of a complex vector space induced by J , F := z,

Φ: E × E ∋ (ζ, ζ′) 7→
1

4
[iζ, ζ′] +

i

4
[ζ, ζ′] ∈ FC,

and N := E × F , endowed with the product

(ζ, x)(ζ′, x′) := (ζ + ζ′, x+ x′ + 2ImΦ(ζ, ζ′))

for every (ζ, x), (ζ′, x′) ∈ N . Notice that Φ is well defined, since [n, n] ⊆ z and [n, z] = { 0 }. In addition, it is
clear that 〈λC,Φ〉 is hermitian for every λ ∈ Ω′, where λC denotes the complexification of λ, that is, λ⊗ IC.
Therefore, Φ is hermitian. Furthermore, ImΦ is clearly non-degenerate, so that also Φ is. In addition,
Φ(E) ⊆ Ω since Ω is the polar of Ω′ and 〈λC,Φ〉 is positive for every λ ∈ Ω′.

Next, define G′ as the set of automorphisms of N of the form

(ζ, x) 7→ (Aζ,Bζ + Cx)

with A ∈ GLC(E), B ∈ LR(E;F ), C ∈ GLR(F ), CΩ = Ω, and C[ζ, ζ′] = [Aζ,Aζ′] for every ζ, ζ′ ∈ E. In
other words, G′ corresponds to G under the canonical identification of n with N . Then, by assumption, G′

acts transitively on Ω. In addition, with the above notation, A×C is an automorphism of N preserving Ω,
and the set G′′ of the A×C is still a group acting transitively on Ω. Notice that G′′ is closed in GL(E×F ),
and that its identity component G′′

0 acts transitively on Ω (cf. [20, §3]).
Now, by [25, Proposition 14], the identity component G0(Ω) of the group of linear automorphisms of Ω is

the identity component of an algebraic subgroup N of GL(F ) (namely, the normalizer of G0(Ω) in GL(F )).
Then,

N ′ := {A× C : A ∈ GLC(E), C ∈ N, ∀ζ, ζ′ ∈ E C[ζ, ζ′] = [Aζ,Aζ′] }

is an algebraic subgroup of GLR(E × F ), and its identity component N ′
0 is contained in G′′, hence in G′′

0 .
Since clearly G′′

0 ⊆ N ′, this proves that N ′
0 = G′′

0 . Therefore, G′′
0 is the semidirect product of a maximal

connected triangular subgroup T and of a maximal connected compact subgroup K (cf. [25, Theorem 1]).

4That is, J is an endomorphism of n/z and J2 = −I.
5Note that every automorphism of (the Lie algebra) n necessarily preserves z, so that it induces an automorphism of (the

vector space) n/z.
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Since K is then the stabilizer of a point in the convex region E ×Ω, T+ := { C : A× C ∈ T } is a connected
triangular subgroup of GL(F ) which necessarily acts transitively on Ω. Since every maximal connected
triangular subgroup of { C ∈ GL(F ) : CΩ = Ω } acts simply transitively on Ω (cf. [24, 25]), this implies that
T+ acts simply transitively on Ω.6 �

Notice that, if Φ(E) generates F as a vector space (which is equivalent to saying that N is a stratified
group), then the homogeneity condition implies that Ω is the interior of the (closed) convex cone generated
by Φ(E). If, otherwise, Φ(E) is contained in a proper subspace of F , then Ω is not uniquely determined by
the above conditions. For example, if N is the product of a Heisenberg group H and Rm−1, m > 1, then
the only requirement on (Ω, T+) is that (1, 0, . . . , 0) is an eigenvector of every element of T+. For example,
every Lorentz cone7 in F having R+(1, 0, . . . , 0) as a generator would do, with an appropriate choice of T+.

2.2. The Homogeneous Cone Ω. Here we collect some definitions and results concerning Ω, T+, and ∆.
Cf. [8, Chapter 2] for a more thorough exposition.

Given s ∈ Cr, we define ∆s(t) :=
∏r

j=1 ∆j(t)
sj for every t ∈ T+, so that ∆s is a character of T+ and each

character of T+ is of the form ∆s for some s ∈ Cr. We fix two base points eΩ and eΩ′ in Ω and in its dual
Ω′. Then, we may transfer ∆s to functions ∆s

Ω and ∆s
Ω′ on Ω and Ω′, respectively, such that

∆s
Ω(t · eΩ) := ∆s(t) and ∆s

Ω′ (eΩ′ · t) := ∆s(t)

for every t ∈ T+.
Further, there is d ∈ Rr such that the measures

νΩ := ∆d
Ω · Hm and νΩ′ := ∆d

Ω′ · Hm,

where Hm denotes the m-dimensional Hausdorff measure, are G(Ω)-invariant on Ω and Ω′, respectively. In
addition, for a suitable choice of ∆, there are m,m′ ∈ Nr such that d = −(1r − 1

2m − 1
2m

′) and such
that the measures ∆s

Ω · νΩ and ∆s
Ω′ · νΩ′ extend to Radon measures on Ω and Ω′, respectively, if and only

if Re s ∈ 1
2m + (R∗

+)
r and Re s ∈ 1

2m
′ + (R∗

+)
r, respectively. If this is the case, then, denoting with L the

Laplace transform,

L(∆s
Ω · νΩ) = ΓΩ(s)∆

−s
Ω′ and L(∆s

Ω′ · νΩ′) = ΓΩ′(s)∆−s
Ω

respectively, where

ΓΩ(s) = c

r∏

j=1

Γ(sj −mj/2) and ΓΩ′(s) = c

r∏

j=1

Γ(sj −m′
j/2)

for a suitable constant c > 0.
In addition, there are unique holomorphic families of tempered distributions (IsΩ)s∈Cr and (IsΩ′ )s∈Cr such

that

IsΩ =
1

ΓΩ(s)
∆s

Ω · νΩ and IsΩ′ =
1

ΓΩ′(s)
∆s

Ω′ · νΩ′

when Re s ∈ 1
2m + (R∗

+)
r and Re s ∈ 1

2m
′ + (R∗

+)
r, respectively. We call these distributions ‘Riemann–

Liouville potentials’, since they reduce to the classical Riemann–Liouville potentials when N = R.
We shall also fix b ∈ Rr in such a way that ∆−b(t) = detR g = |detC g|2 for every t ∈ T+ and for every

g ∈ GL(E) such that t · Φ = Φ ◦ (g × g). Then, ∆−b
Ω′ is polynomial on Ω′ and we shall extend it on F ′

C

accordingly. In addition, Φ∗(H2n) = cI−b
Ω for some constant c > 0.

6Note that this, im particular, implies that the mapping A×C → C is an isomorphism of T onto T+, so that T+ naturally
acts on E × F . One may define a group homomorphism T+ ∋ t 7→ gt ∈ GL(E) so that t · Φ = Φ ◦ (gt × gt) for every t ∈ T+.

7That is, a cone isomorphic to the quadric cone
{
(x1, x2) ∈ R×Rm−1 : x1 > |x2|

}
.
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Finally, we endow Ω and Ω′ with complete T+-invariant Riemannian metrics (for example, the canonical
G(Ω)-invariant metrics described in [11, I.4]). We denote by dΩ and dΩ′ the corresponding T+-invariant
distances.8

Given a metric space (X, d), δ > 0 and R > 1, we say that a family (xk)k∈K of elements of X is a (δ, R)-
lattice if the balls B(xj , δ) are pairwise disjoint and the balls B(xj , Rδ) cover X . Notice that (δ, 2)-lattices
always exist, since one may take any maximal family (xk)k∈K of elements of X such that d(xk, xh) > 2δ
for every h, k ∈ K, h 6= k. In addition, every (δ, R)-lattice is also a (δ′, R′)-lattice for every δ′ ∈]0, δ]
and for every R′ ∈ [R′δ/δ′,+∞[. If, in addition, there is a positive Radon measure µ on X such that
µ(B(x,R)) = µ(B(x′, R)) ∈ R∗

+ for every x, x′ ∈ X and for every R > 0 (which will always be the case in
what follows), then for every (δ, R)-lattice (xk)k∈K on X there is N ∈ N, depending only on δ and R, such
that every ball B(xk, Rδ) meets at most N of the balls B(xk′ , Rδ).

The preceding considerations apply to lattices on Ω and Ω′, but also to the lattices on N associated to any
left-invariant distance. The measures νΩ, νΩ′ , and H2n+m, where H2n+m denotes the (2n+m)-dimensional
Hausdorff measure on N (which is a left an right Haar measure), clearly satisfy the conditions imposed on
the measure µ above, by invariance.

2.3. Fourier Analysis on N . We refer the reader to [8, Chapter 1] for a more thorough exposition.
Define W := { λ ∈ F ′ : 〈λC,Φ〉 is degenerate }, and observe that W is an algebraic variety which does not

meet Ω′. Then, for every λ ∈ F ′ \W , the quotient N/ kerλ is isomorphic to a Heisenberg group (or to R), so
that the Stone–Von Neumann theorem shows that there is, up to unitary equivalence, a unique irreducible
unitary representation πλ of N in some hilbertian space Hλ such that πλ(0, ix) = e−i〈λ,x〉 for every x ∈ F .
It turns out that these representations are sufficient to write down the Plancherel formula. More precisely,
there is a constant c > 0 such that

‖f‖2L2(N ) = c

∫

F ′\W

‖πλ(f)‖
2
L 2(Hλ)

|∆−b
Ω′ (λ)| dλ

for every f ∈ L2(N ), where L 2(Hλ) denotes the space of Hilbert–Schmidt operators on Hλ.9

If λ ∈ Ω′, we may describe πλ as follows. Define Hλ := Hol(E) ∩ L2(e−2〈λ,Φ( · )〉 · H2n), where Hol(E)
denotes the space of holomorphic functions on E, and define

[πλ(ζ, x)ϕ](ω) := e〈λC,−ix+2Φ(ω,ζ)−Φ(ζ)〉ϕ(ω − ζ)

for every (ζ, x) ∈ N , for every ϕ ∈ Hλ, and for every ω ∈ E. Then, one may prove that πλ is a continuous
irreducible unitary representation of N in Hλ. We denote by Pλ,0 the self-adjoint projector of Hλ onto the
space of constant functions. Then,

Tr(πλ(ζ, x)Pλ) =
〈πλ(ζ, x)1|1〉

‖1‖2Hλ

= e−〈λC,Φ(ζ)+ix〉

for every (ζ, x) ∈ N and for every λ ∈ Ω′.

2.4. Besov Spaces of Analytic Type. We report below some definitions and basic results concerning the
spaces Bs

p,q(N ,Ω). We refer the reader to [8, Chapter 4] for a more thorough exposition.

Definition 2.2. For every compact subset K of Ω′, we define

SΩ(N ,K) := { ϕ ∈ S(N ) : ∀λ ∈ F ′ \W πλ(ϕ) = χK(λ)Pλ,0πλ(ϕ)Pλ,0 }

and
SΩ,L(N ,K) := S(N ) ∗ SΩ(N ,K),

8Even though these distances may differ from the ones employed in [8], they will still be locally bi-Lipschitz equivalent in a
uniform way, by invariance, so that the difference will be immaterial for our purposes.

9Recall that ∆−b

Ω′ is polynomial on Ω′, so that it may be extended to the whole of F ′ by analyticity.
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endowed with the topology induced by S(N ). We define SΩ(N ) and SΩ,L(N ) as the inductive limits of the
SΩ(N ,K) and the SΩ,L(N ,K), as K runs through the set of compact subsets of Ω′, ordered by inclusion.10

We define FN : SΩ(N ) ∋ ϕ 7→ (λ 7→ Trπλ(ϕ)) ∈ CΩ′

.

It can be proved that FN induces an isomorphism of SΩ(N ) onto C∞
c (Ω′). In particular, convolution is

commutative and associative on SΩ(N ), and FN (ϕ ∗ ψ) = FN (ϕ)FN (ψ) for every ϕ, ψ ∈ SΩ(N ). Further,
if ϕ ∈ SΩ(N ), then ϕ∗ := ϕ( ·−1) belongs to SΩ(N ) and FN (ϕ∗) = FN (ϕ).

Notice that both SΩ(N ) and SΩ,L(N ) are complete Hausdorff bornological Montel spaces.
Further, it can be proved that convolution by IsΩ induces automorphisms of SΩ(N ) and SΩ,L(N ) for every

s ∈ Cr. In addition,
πλ(ϕ ∗ IsΩ) = e−

π
2

∑
j sji∆−s

Ω (λ)πλ(ϕ)

for every ϕ ∈ SΩ(N ), for every λ ∈ Ω′, and for every s ∈ Cr.

Definition 2.3. We denote by S ′
Ω(N ) and S ′

Ω,L(N ) the strong duals of the conjugates of SΩ(N ) and
SΩ,L(N ), respectively, and define

〈u|ϕ〉 := 〈u, ϕ〉

for every (u, ϕ) ∈ S ′
Ω(N ) × SΩ(N ) and for every (u, ϕ) ∈ S ′

Ω,L(N )× SΩ,L(N ), respectively.
In addition, for every u ∈ S ′

Ω(N ), for every u′ ∈ S ′
Ω,L(N ), for every ϕ, ϕ′ ∈ SΩ(N ), for every ψ ∈ SΩ,L(N ),

and for every τ ∈ S(N ), we define

〈ϕ ∗ u ∗ ϕ′|τ〉 := 〈u|ϕ∗ ∗ τ ∗ ϕ′∗〉 and 〈u′ ∗ ψ∗|τ〉 := 〈u′|τ ∗ ψ〉.

Observe that, if u, u′, ϕ, ϕ′, and ψ are as above, then ϕ ∗ u ∗ ϕ′, u′ ∗ ψ ∈ S ′(N ) ∩ C∞(N ). In addition, if
u and u′ are induced by elements of S ′(N ), then ϕ ∗ u ∗ ϕ′, u′ ∗ ψ agree with their usual definition.

Furthermore, both S ′
Ω(N ) and S ′

Ω,L(N ) are complete Hausdorff Montel spaces and can be identified with
the projective limits of the quotients of S ′(N ) by the polars of the conjugates of SΩ(N ,K) and SΩ,L(N ,K),
respectively, as K runs through the set of compact subsets of Ω′, ordered by inclusion.

Remark 2.4. Take ψ1, ψ2, ψ3, ψ4 ∈ SΩ(N ) such that ψ1 ∗ ψ2 = ψ3 ∗ ψ4. Then, ψ1 ∗ u ∗ ψ2 = ψ3 ∗ u ∗ ψ4 for
every u ∈ S ′

Ω(N ). In particular, ψ1 ∗ u ∗ ψ2 = ψ2 ∗ u ∗ ψ1.
It suffices to prove that ψ∗

1 ∗ τ ∗ ψ∗
2 = ψ∗

3 ∗ τ ∗ ψ
∗
4 for every τ ∈ S(N ). Then, observe that

πλ(ψ
∗
1 ∗ τ ∗ ψ

∗
2) = FN (ψ1 ∗ ψ2)Pλ,0πλ(τ)Pλ,0 = FN (ψ3 ∗ ψ4)Pλ,0πλ(τ)Pλ,0 = πλ(ψ

∗
3 ∗ τ ∗ ψ∗

4)

for every λ ∈ F ′ \W , so that the assertion follows.

Definition 2.5. Take s ∈ Rr and p, q ∈]0,∞]. Take a (δ, R)-lattice (λk)k∈K on Ω′, with δ > 0 and R > 1,
and a bounded family (ϕk) of positive elements of C∞

c (Ω′) such that
∑

k∈K

ϕk( · t
−1
k ) > 1

on Ω′, where tk ∈ T+ is defined so that λk = eΩ′ · tk. Define ψk := F−1
N (ϕk( · t

−1
k )) for every k ∈ K. Then,

we define Bs
p,q(N ,Ω) (resp. B̊s

p,q(N ,Ω)) as the space of u ∈ S ′
Ω,L(N ) such that

(∆s
Ω′(λk)(u ∗ ψk)) ∈ ℓq(K;Lp(N )) (resp. (∆s

Ω′(λk)(u ∗ ψk)) ∈ ℓq0(K;Lp
0(N ))),

endowed with the corresponding topology.11

Notice that the definitions of Bs
p,q(N ,Ω) and B̊s

p,q(N ,Ω) do not depend on the choice of (λk) and (ϕk).
In addition, B̊s

p,q(N ,Ω) is the closure of (the canonical image of) SΩ,L(N ) in Bs
p,q(N ,Ω).

Notice that Bs
p,q(N ,Ω) and B̊s

p,q(N ,Ω) are quasi-Banach spaces and embed continuously into S ′
Ω,L(N ).

In addition, there are continuous inclusions Bs1
p1,q1(N ,Ω) ⊆ Bs2

p2,q2(N ,Ω) whenever p1 6 p2, q1 6 q2, and
s2 = s1 +

(
1
p1

− 1
p2

)
(b+ d).

10The definition of SΩ(N ) and SΩ,L(N ) is slightly different, but still equivalent, to that employed in [8].
11Here, Lp

0(N ) equals Lp(N ) if p < ∞, and C0(N ) otherwise. The space ℓq0(K;Lp
0(N )) is defined analogously.
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Definition 2.6. Take s ∈ Rr and p, q ∈]0,∞], and take (λk), (ϕk), and (ψk) as in Definition 2.5. Assume
that ∑

k∈K

ϕk( · t
−1
k )2 = 1

on Ω′. Then, we define a continuous sesquilinear form on Bs
p,q(N ,Ω) × B

−s−(1/p−1)+(b+d)
p′,q′ (N ,Ω), where

p′ := max(1, p)′ and q′ := max(1, q)′, by

(u, u′) 7→
∑

k∈K

〈u ∗ ψk|u
′ ∗ ψk〉.

We define σs
p,q as the weak topology σ(Bs

p,q(N ,Ω), B̊
−s−(1/p−1)+(b+d)
p′,q′ (N ,Ω)).

Note that the definition of the above sesquilinear form does not depend on the choice of (λk), (ϕk),
and (ψk) as above. In addition, it induces an antilinear isomorphism of B−s−(1/p−1)+(b+d)

p′,q′ (N ,Ω) onto
B̊s

p,q(N ,Ω)′. Hence, σs
p,q is the usual weak dual topology when p, q > 1, and has analogous properties also

when min(p, q) < 1. For example, the bounded subsets of Bs
p,q(N ,Ω) are relatively compact in the topology

σs
p,q, while SΩ,L(N ,Ω) is dense in Bs

p,q(N ,Ω) in the topology σs
p,q.

If (ψk) as in Definition 2.5 is chosen in such a way that
∑

k FN (ψk) = 1 on Ω′, then

u =
∑

k∈K

u ∗ ψk

for every u ∈ SΩ,L(N ) (finite sum), for every u ∈ S ′
Ω,L(N ) (with convergence in S ′

Ω,L(N )), for every
u ∈ B̊s

p,q(N ,Ω) (with convergence in Bs
p,q(N ,Ω)), and for every u ∈ Bs

p,q(N ,Ω) (with convergence in σs
p,q).

As we shall see later (cf. Proposition 7.12), we may have defined Bs
p,q(N ,Ω) requiring u to belong to the

dual of the conjugate of the closure of SΩ,L(N ) in S(N ) (which is a quotient of S ′(N )). Nonetheless, our
choice has some technical advantages, since, for example, the sum

∑
k uk ∗ψk, with (ψk) as above, converges

in S ′
Ω,L(N ) for every (uk) ∈ S ′

Ω,L(N )K , which would not be the case in the other case. We shall make use
of these remarks in the proof of Proposition 4.2.

3. Sampling

The results of this section are based on [23, Chapter 1] and can be extended with minor modifications
replacing N with a general homogeneous group (with the exception of Corollary 3.7). The extension to
more general Lie groups (or even metric measure spaces) requires more careful considerations (cf., for in-
stance, [15]).

Recall that we endow N with the dilations t · (ζ, x) 7→ (t1/2ζ, tx), for t > 0 and (ζ, x) ∈ N . We denote by
Q the corresponding homogeneous dimension, that is, n+m. We define a (1/2)-homogeneous left-invariant
control distance d as follows. Denote by ∇E and ∇F the left-invariant differential operators on N which
induce the gradients on E and F , respectively, at (0, 0). Given (ζ, x), (ζ′, x′) ∈ N we define d((ζ, x), (ζ′, x′))
as the greatest lower bound of the set of ε > 0 such that there is an absolutely continuous curve γ : [0, 1] → N
joining (ζ, x) and (ζ′, x′) such that, if a and b are the component functions of γ′ with respect to ∇E and
∇F , respectively, then

|a|, |b|1/2 6 ε

almost everywhere.
Then, d((ζ, x)(ζ′, x′), (ζ, x)(ζ′′, x′′)) = d((ζ′, x′), (ζ′′, x′′)) and d(t · (ζ, x), t · (ζ′, x′)) = t1/2d((ζ, x), (ζ′, x′))

for every (ζ, x), (ζ′, x′), (ζ′′, x′′) ∈ N and for every t > 0. In addition, if f ∈ C1(N ), then

|f(ζ, x) − f(ζ′, x′)| 6 max(δ, δ2) max
B((ζ,x),δ)

(|∇Ef |+ |∇F f |),

where δ = d((ζ, x), (ζ′, x′)).
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We denote by ‖ · ‖ the homogeneous norm12 d((0, 0), · )2.
For every p ∈]0,∞[, for every measurable function f on N , and for every (ζ, x) ∈ N , we define

(Mpf)(ζ, x) := sup
B

(
−

∫

B

|f(ζ′, x′)|p d(ζ′, x′)

)1/p

,

where B runs through the set of balls containing (ζ, x). We define M∞f as the function constantly equal
to ‖f‖L∞(N ).

Then, the usual theory of maximal functions show that for every p, q ∈]0,∞] such that p < q there is a
constant Cp,q > 0 such that

‖Mpf‖Lq(N ) 6 Cp,q‖f‖Lq(N )

for every f ∈ Lq(N ).

Definition 3.1. Take ϕ ∈ S(N ). We denote by O(ϕ) the space of u ∈ S ′(N ) such that u = u ∗ϕ. We shall
identify the elements of O(ϕ) with elements of C∞(N ).

For every p ∈]0,∞], we define Op(ϕ) := O(ϕ) ∩ Lp(N ) and Op
0(ϕ) := O(ϕ) ∩ Lp

0(N ), endowed with the
topology induced by Lp(N ).

Notice that, if N = F , then O(ϕ) =
{
u ∈ S ′(N ) : Supp(FFu) ⊆ (FFϕ)

−1(1)
}
.

Lemma 3.2. Take ϕ ∈ S(N ), p ∈]0,∞], and a left-invariant differential operator X on N . Then, there is
a constant C > 0 such that

|(Xu)(ζ, x)| 6 C(1 + d((ζ, x), (ζ′, x′)))2Q/p(Mpu)(ζ
′, x′)

for every u ∈ O(ϕ), and for every (ζ, x), (ζ′, x′) ∈ N .

The proof is based on that of [23, Theorem 1.3.1].

Proof. Step I. Let us first show that we may reduce to proving the assertion for X = I (the identity).
Indeed, for every N > 0 there is C1,N > 0 such that

|(Xϕ)(ζ, x)| 6
C1,N

(1 + ‖(ζ, x)‖1/2)N

for every (ζ, x) ∈ N . Therefore, choosing N > 2Q
p + 2Q,

|(Xu)(ζ, x)| 6 C1,N

∫

N

|u(ζ′, x′)|

(1 + d((ζ, x), (ζ′, x′))N
d(ζ′, x′)

6 C1,NC
′
1,N (1 + d((ζ, x), (ζ′′, x′′)))2Q/p sup

N

|u|

(1 + d((ζ′′, x′′), · ))2Q/p

for every u ∈ O(ϕ) and for every (ζ, x), (ζ′′, x′′) ∈ N , since

1 + d((ζ′, x′), (ζ′′, x′′)) 6 (1 + d((ζ, x), (ζ′, x′)))(1 + d((ζ, x), (ζ′′, x′′)))

for every (ζ′, x′) ∈ N , and where

C′
1,N :=

∫

N

1

(1 + ‖(ζ′, x′)‖1/2)N−2Q/p
d(ζ′, x′) <∞.

Step II. We now prove the assertion for X = I. Observe that the assertion is trivial for p = ∞, so that
we may assume that p <∞. Observe that, for every ε ∈]0, 1[,

|u(ζ, x)| 6 inf
B((ζ,x),ε)

|u|+ sup
B((ζ,x),ε)

|u− u(ζ, x)|

6

(
−

∫

B((ζ,x),ε)

|u|p dH2n+m

)1/p

+ ε sup
B((ζ,x),ε)

(|∇Eu|+ |∇Fu|)

12By a homogeneous norm we mean a positive proper function on N which is symmetric and homogeneous of degree 1.
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for every u ∈ O(ϕ) and for every (ζ, x) ∈ N . Now, observe that
(

−

∫

B((ζ,x),ε)

|u|p dH2n+m

)1/p

6

(
1 + d((ζ, x), (ζ′, x′))

ε

)2Q/p
(

−

∫

B((ζ′,x′),1+d((ζ,x),(ζ′,x′)))

|u|p dH2n+m

)1/p

6

(
1 + d((ζ, x), (ζ′, x′))

ε

)2Q/p

(Mpu)(ζ, x)

for every u ∈ O(ϕ) and for every (ζ, x), (ζ′, x′) ∈ N . In addition, step I shows that there is a constant
C2 > 0 such that

sup
(ζ,x)∈N

sup
B((ζ,x),ε)

(|∇Eu|+ |∇Fu|)

(1 + d((ζ, x), (ζ′, x′)))2Q/p
6 sup

N

|∇Eu|+ |∇Fu|

(1/2 + d( · , (ζ′, x′)))2Q/p
6 C2 sup

N

|u|

(1 + d( · , (ζ′, x′)))2Q/p

for every u ∈ O(ϕ) and for every (ζ′, x′) ∈ N , provided that ε ∈]0, 1/2]. Hence,

sup
N

|u|

(1 + d( · , (ζ, x)))2Q/p
6 ε−2Q/p(Mpu)(ζ, x) + εC2 sup

N

|u|

(1 + d( · , (ζ, x)))2Q/p

for every u ∈ O(ϕ) and for every (ζ, x) ∈ N , provided that ε ∈]0, 1/2]. If we choose ε 6 min(1/2, 1/(2C2)),
we then find

sup
N

|u|

(1 + d( · , (ζ, x)))2Q/p
6 2ε−2Q/p(Mpu)(ζ, x)

for every u ∈ O(ϕ) and for every (ζ, x) ∈ N . �

Theorem 3.3. Take ϕ ∈ S(N ), p ∈]0,∞], δ+ > 0, and R0 > 1. Then, there are C, δ− > 0 such that for
every (δ, R)-lattice (ζj , xj)j∈J , with δ > 0 and R ∈]1, R0], and for every u ∈ O(ϕ),

1

C
‖u‖Lp(N ) 6 δ2Q/p

∥∥∥∥∥ max
B((ζj ,xj),Rδ)

|u|

∥∥∥∥∥
ℓp(J)

6 C‖u‖Lp(N )

if δ 6 δ+, and

1

C
‖u‖Lp(N ) 6 δ2Q/p

∥∥∥∥∥ min
B((ζj ,xj),Rδ)

|u|

∥∥∥∥∥
ℓp(J)

6 C‖u‖Lp(N )

if δ 6 δ− and u ∈ Op(ϕ).

This result is based on [23, Proposition 1.3.3].
In some situations, it is possible to remove the assumption that u ∈ Op(ϕ) in the third inequality. For

example, if N = f , then we may find a sequence of Schwartz functions (ψj) of the form ψj = ψ0((j + 1) · ),
j ∈ N, such that ψ0(0) = 1 and uψj ∈ O(τ) for some τ ∈ S(N ) (for example, so that Fτ = 1 on the convex
envelope of (FFϕ)

−1(1)∪ Supp(Fψ0)∪ { 0 }). Then, arguing by approximation, the assertion follows in this
case.

This type of arguments can be extended also to the non-abelian case when ϕ ∈ S̃Ω(N ) (cf. the arguments
of [8, Section 3.1]). We do not know if the assumption that u ∈ Op(ϕ) in the third inequality can be removed
in full generality.

Proof. Step I. Observe that, clearly,

‖u‖Lp(N ) 6

∥∥∥∥∥H
2n+m(B((ζj , xj), Rδ))

1/p max
B((ζj ,xj),Rδ)

|u|

∥∥∥∥∥
ℓp(J)

,

so that the first inequality follows from the homogeneity of H2n+m and d.
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In order to prove the second inequality, we may limit ourselves to considering u ∈ Op(ϕ). Then, choose,
for every j ∈ J , (ζ′j , x

′
j) ∈ B((ζj , xj), Rδ), so that |u(ζ′j , x

′
j)| = maxB((ζj ,xj),Rδ)|u|. Notice that

|u(ζ′j , x
′
j)| 6 |u(ζ, x)|+max(Rδ, (Rδ)2) max

B((ζj ,xj),Rδ)
(|∇Eu|+ |∇Fu|)

for every (ζ, x) ∈ B((ζj , xj), Rδ) and for every j ∈ J . Now, Lemma 3.2 implies that there is a constant
C1 > 0 such that

max
B((ζj ,xj),Rδ)

(|∇Eu|+ |∇Fu|) 6 C1Mp/2u

on B((ζj , xj), Rδ), for every j ∈ J and for every u ∈ Op(ϕ). Hence, assuming that R0δ+ > 1 to simplify the
notation,

H2n+m(B((0, 0), 1))1/pδ2Q/p

∥∥∥∥∥ max
B((ζj ,xj),Rδ)

|u|

∥∥∥∥∥

min(1,p)

ℓp(J)

6 ‖u‖
min(1,p)
Lp(N ) +C

min(1,p)
1 (R0δ+)

2min(1,p)
∥∥Mp/2u

∥∥min(1,p)

Lp(N )

for every u ∈ Op(ϕ). Since there is a constant C2 > 0 such that ‖Mp/2u‖Lp(N ) 6 C2‖u‖Lp(N ) for every
u ∈ Lp(N ), the second inequality follows.

Step II. Observe that, clearly,
∥∥∥∥∥H

2n+m(B((ζj , xj), δ))
1/p min

B((ζj ,xj),Rδ)
|u|

∥∥∥∥∥
ℓp(J)

6 ‖u‖Lp(N )

so that the fourth inequality follows from the homogeneity of H2n+m and d.
Then, choose, for every j ∈ J , (ζ′j , x

′
j) ∈ B((ζj , xj), Rδ), so that |u(ζ′j , x

′
j)| = minB((ζj ,xj),Rδ)|u|. Notice

that
|u(ζ, x)| 6 |u(ζ′j , x

′
j)|+max(Rδ, (Rδ)2) max

B((ζj ,xj),Rδ)
(|∇Eu|+ |∇Fu|)

for every (ζ, x) ∈ B((ζj , xj), Rδ) and for every j ∈ J . Hence, choosing δ− 6 1/R0, and defining C1 as in
step I,

‖u‖
min(1,p)
Lp(N ) 6 H2n+m(B((0, 0), R0))

1/pδ2Q/p

∥∥∥∥∥ min
B((ζj ,xj),Rδ)

|u|

∥∥∥∥∥

min(1,p)

ℓp(J)

+ (C1R0δ−)
min(1,p)

∥∥Mp/2u
∥∥min(1,p)

Lp(N )

for every u ∈ Op(N ). Hence, there is a constant C3 > 0 such that

‖u‖Lp(N ) 6 C3δ
2Q/p

∥∥∥∥∥ min
B((ζj ,xj),Rδ)

|u|

∥∥∥∥∥
ℓp(J)

+ C3δ−‖u‖Lp(N )

for every u ∈ Op(ϕ). If we choose δ− 6 min(R−1
0 , (2C3)

−1), then the third inequality follows. �

Corollary 3.4. Take ϕ ∈ S(N ) and p, q ∈]0,∞] such that p 6 q. Then, Op(ϕ) embeds continuously into
Oq(ϕ), and Op

0(ϕ) embeds continuously into Oq
0(ϕ).

Proof. Fix a (δ, 2)-lattice (ζj , xj)j∈J on N , and observe that Theorem 3.3 implies that there is a constant
C > 0 such that

1

C
‖u‖Lp(N ) 6

∥∥∥∥∥ max
B((ζj ,xj),2δ)

|u|

∥∥∥∥∥
ℓp(J)

6 C‖u‖Lp(N )

and
1

C
‖u‖Lq(N ) 6

∥∥∥∥∥ max
B((ζj ,xj),2δ)

|u|

∥∥∥∥∥
ℓq(J)

6 C‖u‖Lq(N )
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for every u ∈ O(ϕ). Therefore,

‖u‖Lq(N ) 6 C

∥∥∥∥∥ max
B((ζj ,xj),2δ)

|u|

∥∥∥∥∥
ℓq(J)

6 C

∥∥∥∥∥ max
B((ζj ,xj),2δ)

|u|

∥∥∥∥∥
ℓp(J)

6 C2‖u‖Lp(N )

for every u ∈ O(ϕ), whence the first assertion. For what concerns the second assertion, it will suffice to prove
that Omax(1,p)(ϕ) ⊆ O∞

0 (ϕ) if p <∞. However, this follows from Young’s inequality, since u = u∗ϕ ∈ C0(N )

for every u ∈ Op(ϕ), as ϕ ∈ Lp′

0 (N ). �

Corollary 3.5. Take ϕ1, ϕ2 ∈ S(N ) and p1, p2, p3 ∈]0,∞] such that p1, p2 6 p3 and 1
p′
1
+ 1

p′
2
6 1

p′
3
. Then,

there is a constant C > 0 such that

‖u1 ∗ u
∗
2‖Lp3(N ) 6 C‖u1‖Lp1(N )‖u2‖Lp2(N )

for every u1 ∈ Op1(ϕ1) and for every u2 ∈ Op2(ϕ2).

This result is an immediate consequence of the following more general one, which will be very useful when
dealing with complex interpolation.

Corollary 3.6. Take ϕ1, ϕ2 ∈ S(N ), α1, α2 > 0, and p1, p2, p3 ∈]0,∞] such that p1, p2 6 p3 and 1
p′
1
+ 1

p′
2
6

1
p′
3
. Then, there is a constant C > 0 such that

‖|u1|
α1 ∗ |u∗2|

α2‖Lp3(N ) 6 C‖|u1|
α1‖Lp1(N )‖|u2|

α2‖Lp2(N )

for every u1 ∈ O(ϕ1) and for every u2 ∈ O(ϕ2).

Proof. The assertion follows from Young’s inequality and Corollary 3.4 if p3 > 1, so that we may reduce
to the case p3 < 1. By Corollary 3.4, we may then reduce to the case p1 = p2 = p3 =: p. Then, fix a
(δ, 2)-lattice (ζj , xj)j∈J for some δ > 0 such that H2n+m(B((0, 0), 2δ)) 6 1, and observe that

∫

N

|(|u1|
α1 ∗ |u∗2|

α2)(ζ, x)|p d(ζ, x) 6

∫

N

(∫

N

|u1(ζ
′, x′)|α1 |u2((ζ, x)

−1(ζ′, x′))|α2 d(ζ′, x′)

)p

d(ζ, x)

6

∫

N

∑

j∈J

max
B((ζj ,xj),2δ)

|u1|
α1p max

B((ζ,x)−1(ζj ,xj),2δ)
|u2|

α2p d(ζ, x)

=
∑

j∈J

max
B((ζj ,xj),2δ)

|u1|
α1p

∫

N

max
B((ζ,x),2δ)

|u2|
α2p d(ζ, x)

6
∑

j∈J

max
B((ζj ,xj),2δ)

|u1|
α1p

∑

j′∈J

max
B((ζj′ ,xj′ ),4δ)

|u2|
α2p.

Since ‖|u|α‖Lp(N ) = ‖u‖αLαp(N ) for every α > 0 and for every measurable function u, Theorem 3.3 leads to
the conclusion. �

Corollary 3.7. Take ϕ1, ϕ2 ∈ SΩ(N ) and p1, p2, p3 ∈]0,∞] such that p1, p2 6 p3 and 1
p′
1
+ 1

p′
2
6 1

p′
3
. Then,

there is a constant C > 0 such that

‖u1 ∗ u2‖Lp3(N ) 6 C‖u1‖Lp1(N )‖u2‖Lp2(N )

for every u1 ∈ Op1(ϕ1) and for every u2 ∈ Op2(ϕ2).

Proof. Step I. We first prove the assertion in the case p1 = p2 = p3 =: p < 1 and u1 ∈ SΩ(N ) ∩ O(ϕ1).
Observe that Corollary 3.4 implies that u2 ∈ L1(N ) ∩ L2(N ), so that the results of Section 2 imply that
there are constants c, c′ > 0 such that

u2(0, x) = c

∫

Ω′

Tr(πλ(u2)πλ(0, x)
∗)∆−b

Ω′ (λ) dλ = c′F−1
F (λ 7→ Tr(πλ(u))∆

−b
Ω′ (λ))(x)
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and

(u1 ∗ u2)(ζ, x) = c

∫

Ω′

Tr(πλ(u2))e
−〈λC,Φ(ζ)−ix〉(FNu1)(λ)∆

−b
Ω′ (λ) dλ

= c′F−1
F (λ 7→ Tr(πλ(u2))∆

−b
Ω′ (λ)e

−〈λ,Φ(ζ)〉(FNu1)(λ))(x)

for every (ζ, x) ∈ N . Therefore, Corollary 3.6 implies that there is a constant C1 > 0 such that

‖(u1 ∗ u2)(ζ, · )‖Lp(F ) 6 C1‖F
−1
F (e−〈 · ,Φ(ζ)〉FNu1)‖Lp(F )‖u2(0, · )‖Lp(F )

and such that

‖F−1
F (e−〈 · ,Φ(ζ)〉FNu1)‖Lp(F ) 6 C1‖F

−1
F (e−〈 · ,Φ(ζ)〉(FNu1)∆

−b
Ω′ )‖Lp(F ) =

C1

c′
‖u1(ζ, · )‖Lp(N )

for every ζ ∈ E, so that

‖u1 ∗ u2‖Lp(F ) 6
C2

1

c′
‖u1‖Lp(N )‖u2(0, · )‖Lp(F )

for every u1 ∈ SΩ(N ) ∩ O(ϕ1) and u2 ∈ Op(ϕ2).
Now, observe that we may construct a family (ζk, xk)k∈K of elements of N which is maximal for the prop-

erty that d((ζk, xk), (ζk′ , xk′ )) > 2 for every k, k′ ∈ K, k 6= k′ and such that, defining K ′ := { k ∈ K : ζk = 0 },
the family (xk)k∈K′ is a family of elements of F which is maximal for the property that d((0, xk), (0, xk′ )) > 2
for every k, k′ ∈ K ′, k 6= k′. Then, (ζk, xk)k∈K is a (1, 2)-lattice on N and (xk)k∈K′ is a (1, 2)-lattice on F ,
for the (translation-invariant) distance induced by the identification of F with the subspace { 0 } × F of N .
Then, Theorem 3.3 implies that there is a constant C2 > 0 such that

∥∥∥∥∥ max
B((ζk,xk),2)

|u2|

∥∥∥∥∥
ℓp(K)

6 C2‖u2‖Lp(N )

for every u2 ∈ O(ϕ2), so that

‖u2(0, · )‖Lp(F ) 6 Hm(BF (0, 2))
1/p

∥∥∥∥∥ max
BF (xk,2)

|u2(0, · )|

∥∥∥∥∥
ℓp(K′)

6 C2H
m(BF (0, 2))

1/p‖u2‖Lp(N )

for every u2 ∈ O(ϕ2). Therefore,

‖u1 ∗ u2‖Lp(F ) 6
C2

1C2Hm(BF (0, 2))
1/p

c′
‖u1‖Lp(N )‖u2‖Lp(N )

for every u1 ∈ SΩ(N ) ∩ O(ϕ1) and for every u2 ∈ Op(ϕ2).
Step II. We now consider the general case. The assertion follows from Young’s inequality and Corol-

lary 3.4 if p3 > 1, so that we may reduce to the case p3 < 1. By Corollary 3.4, we may then reduce to the
case p1 = p2 = p3 =: p. Then, combining step I with Corollary 3.5, we see that there is a constant C3 > 0
such that

‖u1 ∗ u2‖Lp(N ) = ‖(u1 ∗ ϕ1) ∗ u2‖Lp(N ) = ‖u1 ∗ (u
∗
2 ∗ ϕ

∗
1)

∗‖Lp(N ) 6 C3‖u1‖Lp(N )‖u
∗
2 ∗ ϕ

∗
1‖Lp(N )

and such that

‖u∗2 ∗ ϕ
∗
1‖Lp(N ) = ‖ϕ1 ∗ u2‖Lp(N ) 6 C3‖ϕ1‖Lp(N )‖u2‖Lp(N )

for every u1 ∈ Op(ϕ1) and for every u2 ∈ Op(ϕ2). The assertion follows. �
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4. Convolution

In this section we deal with convolution between the spaces Bs
p,q(N ,Ω). Instead of proving that convolu-

tion induces continuous bilinear mappings on the product Bs1
p1,q1(N ,Ω)×Bs2

p2,q2(N ,Ω) for suitable values of
p1, q1, p2, q2 and s1, s2, we shall introduce some ‘symmetrized’ spaces Bs

p,q(N ,Ω) and consider convolution
on the productBs1

p1,q1(N ,Ω)×Bs2
p2,q2(N ,Ω). On the one hand, the spaces Bs

p,q(N ,Ω) appear naturally in this
kind of considerations. On the other hand, dealing with Bs1

p1,q1(N ,Ω)×Bs2
p2,q2(N ,Ω) will allow us to get the

best results we could have obtained arguing directly for Bs1
p1,q1(N ,Ω)×Bs2

p2,q2(N ,Ω).

Definition 4.1. For every s ∈ Rr and for every p, q ∈]0,∞], we define Bs
p,q(N ,Ω) and B̊s

p,q(N ,Ω) as the
spaces of u ∈ S ′

Ω(N ) such that

(∆s
Ω′ (λk)ψk ∗ u ∗ ψk) ∈ ℓq(K;Lp(N )) and (∆s

Ω′ (λk)ψk ∗ u ∗ ψk) ∈ ℓq0(K;Lp
0(N )),

respectively, where (λk) and (ψk) are as in Definition 2.5.

Arguing as in the proof of [8, Lemma 4.14], one may prove that the definitions of Bs
p,q(N ,Ω) and B̊s

p,q(N ,Ω)
do not depend on the choice of (λk) and (ψk). Because of Remark 2.4 (and the preceding observations), one
may replace ψk ∗ u ∗ ψk with ψ′

k ∗ u ∗ ψk (or ψk ∗ u ∗ ψ′
k) in the above definition, where ψ′

k ∈ SΩ(N ) and
ψ′
k ∗ ψk = ψk, without altering the spaces Bs

p,q(N ,Ω) and B̊s
p,q(N ,Ω).

The following result shows some of the relationships between Bs
p,q(N ,Ω) and Bs

p,q(N ,Ω).

Proposition 4.2. Take s ∈ R
r and p, q ∈]0,∞]. Let V0 (resp. V ) be the closure of SΩ(N ) in Bs

p,q(N ,Ω)
(resp. in the topology σs

p,q). Then, the canonical mapping S ′
Ω,L(N ) → S ′

Ω(N ) induces an isomorphism of V0

(resp. V ) onto B̊s
p,q(N ,Ω) (resp. Bs

p,q(N ,Ω)).

In addition, the canonical mapping S ′
Ω,L(N ) → S ′

Ω(N ) induces a strict morphism of B̊s
p,q(N ,Ω) (resp.

Bs
p,q(N ,Ω)) onto B̊s

p,q(N ,Ω) (resp. Bs
p,q(N ,Ω)).

Proof. Step I. Take u ∈ V0 (resp. u ∈ V ) and (λk), (ψk) as in Definition 2.5. Let us prove that (u∗ψk)∗ψk =
ψk ∗ (u ∗ ψk) for every k ∈ K. Let F be a filter on SΩ(N ) which converges to u in Bs

p,q(N ,Ω) (resp. in
the topology σs

p,q). Then, F ∗ ψk converges to u ∗ ψk in S ′(N ) (resp. in the weak topology of S ′(N )).
Consequently, ψk ∗ (F ∗ ψk) and (F ∗ ψk) ∗ ψk converge to ψk ∗ (u ∗ ψk) and (u ∗ ψk) ∗ ψk in S ′(N ) (resp. in
the weak topology of S ′(N )). Therefore, (u ∗ ψk) ∗ ψk = ψk ∗ (u ∗ ψk) for every k ∈ K, since the equality is
clear if u ∈ SΩ(N ). In particular, ψk ∗ (u ∗ ψk) ∈ Lp

0(N ) (resp. ψk ∗ (u ∗ ψk) ∈ Lp(N )) for every k ∈ K. It
is then clear that the canonical image of u in S ′

Ω(N ) belongs to B̊s
p,q(N ,Ω) (resp. Bs

p,q(N ,Ω)), and that the
so-induced mapping is an isomorphism onto its image.

Conversely, take u ∈ B̊s
p,q(N ,Ω) (resp. u ∈ Bs

p,q(N ,Ω)). Take (λk), (ψk) as above, and assume further
that

∑
k∈K FN (ψk)

2 = 1 on Ω′. Then, define

u′ :=
∑

k∈K

ψk ∗ u ∗ ψk,

and observe that the sum clearly converges in S ′
Ω,L(N ). More precisely, the sum converges in Bs

p,q(N ,Ω)

(resp. in the topology σs
p,q), so that u′ ∈ V0 (resp. u′ ∈ V ). Then, u is the canonical image of u′ in S ′

Ω(N ),
so that the first assertion follows.

Step II. By step I, it will suffice to observe that Corollary 3.7 and a homogeneity argument imply that
there is a constant C > 0 such that

‖ψk ∗ (u ∗ ψk)‖Lp(N ) 6 C‖u ∗ ψk‖Lp(N )

for every k ∈ K and for every u ∈ Bs
p,q(N ,Ω), where (ψk) is as above. �

Theorem 4.3. Take s1, s2 ∈ Rr and p1, p2, p3, q1, q2, q2 ∈]0,∞] such that

p1, p2 6 p3,
1

p′1
+

1

p′2
6

1

p′3
,

1

q1
+

1

q2
>

1

q3
, s3 = s1 + s2 +

(
1

p1
+

1

p2
− 1−

1

p3

)
(b+ d).
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Then, the mapping

SΩ,L(N )× SΩ(N ) ∋ (ϕ1, ϕ2) 7→ ϕ1 ∗ ϕ2 ∈ SΩ,L(N )

induces a uniquely determined continuous bilinear mapping

Bs1
p1,q1(N ,Ω)× Bs2

p2,q2(N ,Ω) → Bs3
p3,q3(N ,Ω)

such that

(u1 ∗ u2) ∗ ψ = (u1 ∗ ψ
′) ∗ (ψ′ ∗ u2 ∗ ψ)

for every ψ, ψ′ ∈ SΩ(N ) such that ψ = ψ ∗ψ′, for every u1 ∈ Bs1
p1,q1(N ,Ω), and for every u2 ∈ Bs2

p2,q2(N ,Ω).

Before we pass to the proof, let us draw some consequences of this result. First of all, by means of
Proposition 4.2, we see that convolution induces a continuous bilinear mapping

Bs1
p1,q1(N ,Ω) ×Bs2

p2,q2(N ,Ω) → Bs3
p3,q3(N ,Ω).

Analogously, again by means of Proposition 4.2, we see that convolution induces a continuous commutative
bilinear mapping

Bs1
p1,q1(N ,Ω)× Bs2

p2,q2(N ,Ω) → Bs3
p3,q3(N ,Ω).

Furthermore, since the spaces B are invariant under the mapping u 7→ u∗, we also find a continuous
sesquilinear mapping

Bs1
p1,q1(N ,Ω)×Bs2

p2,q2(N ,Ω) ∋ (u1, u2) 7→ u1 ∗ u
∗
2 ∈ Bs3

p3,q3(N ,Ω).

Proof. Take a (δ, R)-lattice (λk)k∈K on Ω′ for some δ > 0 and some R > 1, and define tk ∈ T+ so that
λk = eΩ′ · tk for every k ∈ K. Fix two bounded families (ϕk) and (ϕ′

k) of positive elements of C∞
c (Ω′) such

that ∑

k

ϕk( · t
−1
k ) =

∑

k

ϕ′2
k ( · t

−1
k ) = 1

on Ω′, and define ψk := F−1
N (ϕk( · t

−1
k )) and ψ′

k := F−1
N (ϕ′

k( · t
−1
k )) for every k ∈ K. Take u1 ∈ Bs1

p1,q1(N ,Ω)
and u2 ∈ Bs2

p2,q2(N ,Ω), and define, for every two finite subsets H,H ′ of K,

vH,H′ :=
∑

k∈H

∑

k′∈H′

(u1 ∗ ψk) ∗ (ψ
′
k′ ∗ u2 ∗ ψ

′
k′).

Notice that u1 ∗ ψk ∈ Lmax(1,p1)(N ) and ψ′
k′ ∗ u2 ∗ ψ′

k′ ∈ Lmax(1,p2)(N ) (cf. Corollary 3.4), so that vH,H′ is
well defined by Young’s inequality. Observe that, if η ∈ SΩ,L(N ), then

〈vH,H′ |η〉 =
∑

k∈H

∑

k′∈H′

〈u1 ∗ ψk|η ∗ (ψ
′
k′ ∗ u∗2 ∗ ψ

′
k′ )〉 =

∑

k∈H

∑

k′∈H′

〈u1|η ∗ (ψ
′
k′ ∗ u∗2 ∗ ψ

′
k′ ) ∗ ψk〉

converges to the (finite) sum ∑

k,k′∈K

〈u1|η ∗ (ψ
′
k′ ∗ u∗2 ∗ ψ

′
k′) ∗ ψk〉

as H,H ′ run through the set of finite subsets of K, endowed with the section filter associated with ⊆.
Furthermore, if η stays in a bounded subset of SΩ,L(N ), the set of (k, k′) ∈ K2 such that η ∗ (ψ′

k′ ∗ u∗2 ∗
ψ′
k′ )∗ψk 6= 0 stays in a fixed finite subset of K2. Thus, (vH,H′ ) converges in the strong topology of S ′

Ω,L(N ).
Denote by u1 ∗ u2 its limit.

Let us now prove that (u1 ∗u2)∗ψ = (u1 ∗ψ
′)∗ (ψ′ ∗u2 ∗ψ) for every ψ, ψ′ ∈ SΩ(N ) such that ψ = ψ ∗ψ′.

Observe first that, by Remark 2.4,

(u1 ∗ ψ
′) ∗ (ψ′ ∗ u2 ∗ ψ) = (u1 ∗ ψ

′′) ∗ (ψ′′′ ∗ u2 ∗ ψ)

for every ψ′′, ψ′′′ ∈ SΩ(N ) such that ψ = ψ ∗ ψ′′ = ψ ∗ ψ′′′. Then, observe that, by definition,

(u1 ∗ u2) ∗ ψ =
∑

k,k′

(u1 ∗ ψk) ∗ (ψ
′
k′ ∗ u2 ∗ ψ

′
k′ ) ∗ ψ,



16 M. CALZI

since the sum on the right-hand side is actually finite. If we choose ψ′′′ ∈ SΩ(N ) so that ψ′′′ ∗ ψ′
k′ = ψ′

k′ for
every k′ ∈ K such that ψ ∗ ψ′

k′ 6= 0, then Remark 2.4 again implies that
∑

k,k′

(u1 ∗ ψk) ∗ (ψ
′
k′ ∗ u2 ∗ ψ

′
k′) ∗ ψ =

∑

k,k′

(u1 ∗ ψk) ∗ (ψ
′′′ ∗ u2 ∗ ψk′ ∗ ψk′ ∗ ψ) =

∑

k

(u1 ∗ ψk) ∗ (ψ
′′′ ∗ u2 ∗ ψ).

To conclude, it suffices to choose ψ′′ ∈ SΩ(N ) as the sum of the ψk such that ψk ∗ ψ′′′ 6= 0. Note that this
implies that u1 ∗ u2 does not depend on the choice of the ψk and the ψ′

k′ .
Finally, choose ϕ′′ ∈ C∞

c (Ω′) such that ϕ′′ = 1 on the supports of the ϕk, and define ψ′′
k := F−1

N (ϕ′′( · t−1
k ))

for every k ∈ K. Then, observe that Corollary 3.7 and a homogeneity argument imply that there is a constant
C > 0 such that

‖(u1 ∗ u2) ∗ ψk‖Lp3(N ) 6 C∆
(1+1/p3−1/p1−1/p2)(b+d)
Ω′ (λk)‖u1 ∗ ψ

′′
k‖Lp1(N )‖ψ

′′
k ∗ u2 ∗ ψk‖Lp2(N )

for every u1 ∈ Bs1
p1,q1(N ,Ω), and for every u2 ∈ Bs2

p2,q2(N ,Ω). The conclusion follows. �

5. Fourier Multipliers

In this section we consider how right Fourier multipliers interact with the spaces Bs
p,q(N ,Ω). This leads to

some simplifications which will allow us to find fairly complete multipliers theorems. We shall not consider
left Fourier multipliers.

Take a bounded measurable field of operators (Mλ)λ∈F ′\W . Then, Fourier analysis shows that there is a
uniquely determined continuous endomorphism Ψ of L2(N ) such that

πλ(Ψ(f)) = πλ(f)Mλ

for almost every λ ∈ F ′ \W . Therefore, Ψ induces a continuous linear mapping Ψ′ : SΩ,L(N ) → S ′
Ω,L(N ).

Observe, though, that for every family (ψk)k∈K as in Definition 2.5, subject to the further requirement that∑
k FNψk = 1 on Ω′,

Ψ′(ϕ) =
∑

k,k′

Ψ′(ϕ ∗ ψk) ∗ ψk′ ,

for every ϕ ∈ SΩ,L(N ), so that Ψ′ is uniquely determined by Ψ′( · ∗ ψk) ∗ ψk′ . In addition,

πλ(Ψ
′(ϕ ∗ ψk) ∗ ψk′) = πλ(ϕ)FN (ψk ∗ ψk′ )(λ)Pλ,0MλPλ,0

for almost every λ ∈ F ′ \W . Consequently, if we wish to study the properties of Ψ′, then there is no need
to consider bounded measurable families of operators, but simply bounded measurable functions on Ω′.

Definition 5.1. Take M ∈ L∞(Ω′). Then, we define Ψ(M) as the endomorphism of L2(N ) such that

πλ(Ψ(M)f) =M(λ)πλ(f)

for almost every λ ∈ Ω′ and for every f ∈ L2(N ). We denote Ψ′(M) the continuous linear mapping
SΩ,L(N ) → S ′

Ω,L(N ) induced by Ψ(M).

Theorem 5.2. Take p0 ∈]0, 2], and take q0 ∈ [2,∞] so that 1
q0

= 1
max(1,p0)

− 1
2 . Fix a non-zero positive

ϕ ∈ C∞
c (Ω′), and define Mp0 as the space of bounded measurable functions M : Ω → C such that

sup
t∈T+

‖ϕM( · t)‖
B

m(1/p0−1/2)

q0,min(p0,1)
(F ′)

<∞,

endowed with the corresponding topology. Then, Ψ′ induces uniquely determined continuous linear mappings
Mp0 → L(Bs

p,q(N ,Ω)) and Mp0 → L(B̊s
p,q(N ,Ω)) for every p ∈ [p0, p

′
0], for every q ∈]0,∞], and for every

s ∈ Rr, such that

〈Ψ′(M)u1|u2〉 =
〈
u1|Ψ

′(M)u2
〉

for every M ∈ Mp0 , for every u1 ∈ Bs
p,q(N ,Ω), and for every u2 ∈ B

−s−(1/p−1)+(b+d)
p′,q′ (N ,Ω).
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The fact that the relevant dimension in this case is that of F , even when N is not abelian, may seem
peculiar. Nonetheless, this is related to the fact that the considered multiplier completely dismiss the
operator-valued structure of the Fourier transform on N , in a certain sense.

Proof. Notice that there is a unique K(M) ∈ S ′(N ) such that Ψ(M)f = f ∗ K(M) for every f ∈ S(N ).
Step I. Assume that p0 ∈]0, 1], define M′

p0
:= ϕ′B

m(1/p0−1/2)
2,p0

(F ′) for some ϕ′ ∈ C∞
c (Ω′) such that

ϕ = ϕϕ′, endowed with the topology induced by B
m(1/p0−1/2)
2,p0

(F ′), and let us prove that K induces a
continuous linear mapping M′

p0
→ Lp0(N ). Observe first that, arguing as in the proof of [8, Proposition

4.2], there is a constant c > 0 such that

K(M)(ζ, x) = c

∫

Ω′

M(λ)∆−b
Ω′ (λ)e

−〈λ,Φ(ζ)〉+i〈λ,x〉 dλ

for every M ∈ M′
p0

and for every (ζ, x) ∈ N . In particular, [23, 1.5.4] implies that there is a continuous
linear mapping

K′ : M′
p0

∋M 7→ K(M)(0, · ) ∈ Lp0(F ).

Now, observe that there is a constant C1 > 0 such that

〈eΩ′ ,Φ(ζ)〉 6
1

2C1
〈λ,Φ(ζ)〉

for every λ is a neighbourhood of Supp(ϕ′) and for every ζ ∈ E.13 Therefore, the mappings

M′
p0

∋M 7→MeC1〈eΩ′ ,Φ(ζ)〉e−〈 · ,Φ(ζ)〉 ∈ M′
p0

are equicontinuous (cf. [23, Theorem 2.82]). Since K(M)(ζ, x) = K′(e−〈 · ,Φ(ζ)〉M)(x) for every (ζ, x) ∈ N by
the preceding arguments, this proves that K induces a continuous linear mapping M′

p0
→ Lp0(N ).

Step II. Assume that p0 ∈]1, 2], and define M′′
p0

:= ϕB
m(1/p0−1/2)
q0,1

(F ′), endowed with the topology

induced by Bm(1/p0−1/2)
q0,1

(F ′). Let us prove that K induces a continuous linear mapping M′′
p0

→ C(Lp(N ))

for every p ∈ [p0, p
′
0], where C(Lp(N )) denotes the space of u ∈ S ′(N ) such that the mapping S(N ) ∋ f 7→

f ∗ u ∈ S ′(N ) induces an endomorphism of Lp(N ).
We proceed by interpolation. Let us first prove that (C(Lℓ0(N )), C(Lℓ1(N )))[θ] embeds continuously into

C(Lℓθ(N )) for every θ ∈]0, 1[, where 1
ℓθ

= 1−θ
ℓ0

+ θ
ℓ1

. Take two integrable step functions f, g : N → C such
that ‖f‖Lℓθ(N ) = ‖g‖

Lℓ′
θ (N )

= 1, and define two holomorphic functions which are bounded on every vertical
strip

F : C ∋ z 7→ |f |zℓθ/ℓ1+(1−z)ℓθ/ℓ0−1f ∈ L1(N ) ∩ L∞(N )

and
G : C ∋ z 7→ |g|zℓ

′
θ/ℓ

′
1+(1−z)ℓ′θ/ℓ

′
0−1g ∈ L1(N ) ∩ L∞(N ).

Observe that F (θ) = f and G(θ) = g, and that

‖F (j + it)‖Lℓj (N ) = ‖G(j + it)‖
L

ℓ′
j (N )

= 1

for every t ∈ R and for j = 0, 1. Now, fix u ∈ (C(Lℓ0(N )), C(Lℓ1(N )))[θ], and take a bounded continuous
function U : S → C(Lℓ0(N )) + C(Lℓ1(N )) which is holomorphic on S, where S = { z ∈ C : 0 < Re z < 1 },
such that U(θ) = u and such that the mappings

R ∋ t 7→ U(j + it) ∈ C(Lℓj(N ))

are continuous and bounded for j = 0, 1. Then, the mapping

S ∋ z 7→ 〈F (z) ∗ U(z), G(z)〉 ∈ C

13It suffices to that C1 such that a neighbourhood of Supp(ϕ′) is contained in 2C1eΩ′ +Ω′.
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is bounded and continuous, and holomorphic in S. In addition,

|〈F (j + it) ∗ U(j + it), G(j + it)〉| 6 ‖U‖

for every t ∈ R and for j = 0, 1, where ‖U‖ := maxj=0,1 sup
t∈R

‖U(j + it)‖C(Lℓj (N )). Hence,

|〈f ∗ u, g〉| 6 ‖U‖.

By the arbitrariness of f , g, and U , this implies that u ∈ C(Lℓθ(N )), and that

‖u‖C(Lℓθ (N )) 6 ‖u‖(C(Lℓ0(N )),C(Lℓ1(N )))[θ]
,

whence our assertion.
Now, take θ ∈ [0, 1] so that 1

p0
= 1− θ

2 . Observe that (B
m/2
2,1 (F ′), B0

∞,1(F
′))[θ] = B

m(1/p0−1/2)
q0,1

(F ′) (cf. [3,
Theorem 6.4.5]). In addition, B0

∞,1(F
′) embeds continuously into L∞(F ′) (cf. [23, Remark 2.7.1/2]). Then,

step I and standard Fourier analysis imply that K induces continuous linear mappings M′
1 → L1(N ) ⊆

C(L1(N )), C(L∞(N )) and M′
2 → C(L2(N )). In addition, M′′

p0
embeds continuously into (M′

1,M
′
2)[θ]

(cf. [23, Theorem 2.8.2]), so that our assertion follows by interpolation.
Step III. Take s ∈ R

r, p ∈ [p0, p
′
0], and q ∈]0,∞]. Take (λk)k∈K , (tk), (ϕk), and (ψk) as in Definition 2.5,

and subject to the further condition that
∑

k FNψk = 1 on Ω′. Notice that, if we replace ϕ with another
non-zero positive element of C∞

c (Ω′), the space Mp0 is not altered, both set-theoretically and topologically.
Hence, we may further assume that ϕk = ϕϕk for every k ∈ K.

Define ψ′
k := F−1

N (ϕ( · t−1
k )) for every k ∈ K. Then, for every k ∈ K, steps I and II, together with

Corollary 3.7 and a homogeneity argument, imply that (u ∗ψk) ∗ (K(M) ∗ψ′
k) is well defined and belongs to

Lp(N ) (to Lp
0(N ) if u ∈ B̊s

p,q(N ,Ω)), and that there is a constant C2,p > 0 such that

‖(u ∗ ψk) ∗ (K(M) ∗ ψ′
k)‖Lp(N ) 6 C2,p‖M‖Mp0

‖u ∗ ψk‖Lp(N )

for every k ∈ K and for every u ∈ Bs
p,q(N ,Ω). Now, observe that, if u ∈ SΩ,L(N ), then

Ψ′(M)u =
∑

k

(u ∗ ψk) ∗ K(M) =
∑

k

(u ∗ ψk) ∗ (K(M) ∗ ψ′
k)

and

[Ψ′(M)u] ∗ ψk = (u ∗ ψk) ∗ K(M) = (u ∗ ψk) ∗ (K(M) ∗ ψ′
k)

since ψk = ψk ∗ ψ′
k and ψ ∗ K(M) = K(M) ∗ ψ for every k ∈ K and for every ψ ∈ SΩ(N ) (use the Fourier

transform). Then, the preceding estimates imply that Ψ′(M) induces an endomorphism of B̊s
p,q(N ), and

that the linear mapping Ψ′ : Mp0 7→ L(B̊s
p,q(N )) is continuous.

Now, observe that

〈(u ∗ ψk) ∗ (K(M) ∗ ψ′
k)|u

′〉 =
〈
u ∗ ψk|u

′ ∗ (K(M ) ∗ ψ′
k)
〉
=
〈
u|(u′ ∗ ψk) ∗ (K(M) ∗ ψ′

k)
〉

for every u ∈ Bs
p,q(N ) and for every u′ ∈ B̊

−s−(1/p−1)+
p′,q′ (N ), since K(M)∗ = K(M). It then follows that the

sum
∑

k(u ∗ ψk) ∗ (K(M) ∗ ψ′
k) converges in the topology σs

p,q, and that
〈
∑

k

(u ∗ ψk) ∗ (K(M) ∗ ψ′
k)

∣∣∣∣∣u
′

〉
=
〈
u|Ψ′(M)u′

〉
.

We then define Ψ′(M)u :=
∑

k(u ∗ ψk) ∗ (K(M) ∗ ψ′
k), so that the preceding estimates imply that Ψ′(M)

induces an endomorphism of Bs
p,q(N ) and that the linear mapping Ψ′ : Mp0 7→ L(Bs

p,q(N )) is continuous.
The last assertion follows from the fact that (Ψ′(M)u) ∗ ψ = (u ∗ ψ) ∗ (K(M) ∗ ψ′) for every ψ, ψ′ ∈ SΩ(N )
such that ψ = ψ ∗ ψ′, and from the definition of 〈 · | · 〉. �
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6. Complex Interpolation

In this section, we study how the spaces Bs
p,q(N ,Ω) interact with complex interpolation. In complete

analogy to the classical case, complex interpolation behaves fairly well for the spaces Bs
p,q(N ,Ω), except

possibly when p = ∞. In order to overcome this problem, and to extend the complex interpolation techniques
to the case min(p, q) < 1, we develop a method described in [23] and prove that the spaces Bs

p,q(N ,Ω) interact
nicely with this modified interpolation functor.

As a particular case of [22, Theorem 1.81.1 and Remarks 1.18.1/1,2,3], we get the following result.14

Proposition 6.1. Take a Banach pair (A0, A1), a countable discrete space K, p0, p1 ∈ [1,∞], and two
functions w0, w1 : K → R∗

+. Then,

(w0ℓ
p0

0 (K;A0), w1ℓ
p1

0 (K;A1))[θ] = wθℓ
pθ

0 (K; (A0, A1)[θ])

with equality of norms for every θ ∈]0, 1[, where

1

pθ
=

1− θ

p0
+

θ

p1
and wθ = w1−θ

0 wθ
1 .

If, in addition, min(p0, p1) <∞, then

(w0ℓ
p0(K;A0), w1ℓ

p1(K;A1))[θ] = wθℓ
pθ (K; (A0, A1)[θ]).

Finally, if A0 = A1 =: A and wθ

max(w0,w1)
∈ ℓq(K) for some q ∈]0,∞[, then

(w0ℓ
∞(K;A), w1ℓ

∞(K;A))[θ] = wθℓ
∞
0 (K;A).

Proposition 6.2. Take p0, p1, q0, q1 ∈ [1,∞], s0, s1 ∈ Rr and θ ∈]0, 1[. Then,

(B̊s0
p0,q0(N ,Ω), B̊s1

p1,q1(N ,Ω))[θ] = B̊sθ
pθ,qθ (N ,Ω)

where
1

pθ
=

1− θ

p0
+

θ

p1
,

1

qθ
=

1− θ

q0
+

θ

q1
, and sθ = (1 − θ)s0 + θs1.

In addition,

(Bs0
p0,q0(N ,Ω), Bs1

p1,q1(N ,Ω))[θ] = Bsθ
pθ,qθ (N ,Ω)

if min(q0, q1) <∞.
Finally, if r = 1 and s0 6= s1, then

(Bs0
p,∞(N ,Ω), Bs1

p,∞(N ,Ω))[θ] = B̊sθ
p,∞(N ,Ω)

for every p ∈ [1,∞].

Proof. Take a (δ, R)-lattice (λk)k∈K on Ω′ for some δ > 0 and some R > 1. Choose tk ∈ T+ so that
λk = eΩ′ · tk for every k ∈ K. In addition, fix a bounded family (ϕk) of elements of C∞

c (Ω′) and ϕ′ ∈ C∞
c (Ω′)

such that
χBΩ′ (eΩ′ ,δ) 6 ϕk 6 χBΩ′ (eΩ′ ,Rδ) 6 ϕ′

6 χBΩ′(eΩ′ ,2Rδ),

and such that ∑

k

ϕk( · t
−1
k ) = 1

on Ω′. Define ψk := F−1
N (ϕ( · t−1

k )) and ψ′
k := F−1

N (ϕ′( · t−1
k )) for every k ∈ K. Then, ψk ∗ ψ′

k = ψk for every
k ∈ K, and there is N ∈ N such that for every k ∈ K the set Kk := { k′ ∈ K : ψk ∗ ψ′

k′ 6= 0 } has at most N
elements, while every element of K is contained in at most N of the sets Kk (cf. Section 2).

Observe that, by definition, the mapping

I : S ′
Ω,L(N ) ∋ u 7→ (u ∗ ψk) ∈ S ′(N )K

14Actually, the last assertion is not contained in [22, Remark 1.18.1/3], but can be proved with the same methods.
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induces isomorphisms of B̊s
p,q(N ,Ω) and Bs

p,q(N ,Ω) onto closed subspaces of (∆−s
Ω′ (λk))ℓ

q
0(K;Lp

0(N )) and
(∆−s

Ω′ (λk))ℓ
q(K;Lp(N )), respectively, for every p, q ∈]0,∞] and for every s ∈ Rr.

Now, let us prove that the continuous linear mapping15

P : S ′(N )K ∋ (uk) 7→
∑

k

uk ∗ ψ
′
k ∈ S ′

Ω,L(N ),

induces continuous linear mappings of (∆−s
Ω′ (λk))ℓ

q
0(K;Lp

0(N )) (resp. (∆−s
Ω′ (λk))ℓ

q(K;Lp(N ))) into B̊s
p,q(N ,Ω)

(resp. Bs
p,q(N ,Ω)) for every p, q ∈ [1,∞] and for every s ∈ Rr. Take (uk) ∈ (∆−s

Ω′ (λk))ℓ
q
0(K;Lp

0(N )) (resp.
(uk) ∈ (∆−s

Ω′ (λk))ℓ
q(K;Lp(N ))) and define u := P [(uk)]. Observe that

u ∗ ψk =
∑

k′∈Kk

uk′ ∗ ψ′
k′ ∗ ψk

for every k ∈ K, so that u ∗ ψk ∈ Lp
0(N ) (resp. u ∗ ψk ∈ Lp(N )) and

‖u ∗ ψk‖Lp(N ) 6 C1

∑

k′∈Kk

‖uk′‖Lp(N )

for every k ∈ K, where C1 := sup
k∈K

‖ψk‖L1(N ) sup
k∈K

‖ψ′
k‖L1(N ) is finite by [8, Proposition 4.2]. Hence, by [8,

Corollary 2.49], there is a constant C2 > 0 such that

∆s
Ω′(λk)‖u ∗ ψk‖Lp(N ) 6 C2

∑

k′∈Kk

∆s
Ω′(λk′ )‖uk′‖Lp(N )

Therefore, u ∈ B̊s
p,q(N ,Ω) (resp. u ∈ Bs

p,q(N ,Ω)) and
∥∥∆Ω′(λk)‖u ∗ ψk‖Lp(N )

∥∥
ℓq(K)

6 C2N
∥∥∆Ω′ (λk)‖uk‖Lp(N )

∥∥
ℓq(K)

,

whence our assertion. Furthermore, observe that PI(u) = u for every u ∈ S ′
Ω,L(N ).

Therefore, the assertion follows from [3, Theorems 5.1.1 and 6.4.2] and Proposition 6.1. �

We now proceed to defining a notion of complex interpolation for quasi-normed spaces embedded in a
semi-complete Hausdorff locally convex space, inspired by [23, 2.4.4].

Definition 6.3. Let A0 and A1 be two quasi-normed spaces continuously embedded in a semi-complete
Hausdorff locally convex space X . We then say that (A0, A1, X) is an admissible triple.

Define S := { z ∈ C : 0 < Re z < 1 }, and define FX(A0, A1) as the space of bounded continuous functions
f : S → X which are holomorphic in S and map iR and 1+ iR boundedly into A0 and A1, respectively. We
endow FX(A0, A1) with the quasi-norm

f 7→ max
j=0,1

sup
t∈R

‖f(j + it)‖Aj .

For every θ ∈]0, 1[, we define (A0, A1)X,θ as the image of the functional FX(A0, A1) ∋ f 7→ f(θ) ∈ X ,
endowed with the corresponding topology.

Note that we need not impose that A0 and A1 be complete, since holomorphy is defined with ref-
erence to the semi-complete Hausdorff locally convex space X . In addition, observe that if (A0, A1)
is a Banach pair, then (A0, A1,Σ(A0, A1)) is an admissible triple and there are continuous inclusions
(A0, A1)[θ] ⊆ (A0, A1)Σ(A0,A1),θ ⊆ (A0, A1)

[θ] for every θ ∈]0, 1[, with the notation of [3]. In particular,
if A0 or A1 is reflexive, then the preceding inclusions are equalities by [3, Theorem 4.3.1]. We do not know
if any of the preceding inclusions is an equality in full generality.

15Notice that, if H is a bounded subset of SΩ,L(N ), then there is a finite subset K ′ of K such that
〈
uk ∗ ψ′

k|τ
〉
= 0

for every uk ∈ S′(N ), for every τ ∈ H, and for every k ∈ K \K ′. By the arbitrariness of H, the sum
∑

k uk ∗ ψ′
k converges in

S′
Ω,L(N ) and P is continuous.
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Proposition 6.4. Let (A0, A1, X) be an admissible triple. Then, (A0, A1)X,θ is a quasi-normed space and
embed continuously into X for every θ ∈]0, 1[. If, in addition, A0 and A1 are complete, then (A0, A1)X,θ is
complete for every θ ∈]0, 1[.

Proof. By assumption, for every equicontinuous subset H of F ′ there is a constant CH > 0 such that
|〈v′, xj〉| 6 CH‖xj‖Aj for every v′ ∈ H , for every xj ∈ Aj , and for j = 0, 1. Therefore, by the three-lines
lemma,

|〈v′, f(z)〉| 6 CH‖f‖FX(A0,A1)

for every equicontinuous subset H of F ′, for every v′ ∈ H , for every z ∈ S, and for every f ∈ FX(A0, A1).
This implies that the mapping FX(A0, A1) ∋ f 7→ f(θ) ∈ X is continuous (cf. [4, Corollary 1 to Proposition
7 of Chapter III, §3, No. 5]), so that its kernel is closed, and that f = 0 if ‖f‖FX(A0,A1) = 0. It then
follows easily that FX(A0, A1) and (A0, A1)X,θ are quasi-normed spaces continuously embedded in X for
every θ ∈]0, 1[.

Then, assume that A0 and A1 are complete, and let us prove that FX(A0, A1) is complete. This will imply
that (A0, A1)X,θ is complete by [4, Chapter I, §3, No. 2]. Then, let (fj) be a Cauchy sequence in FX(A0, A1),
and observe that the preceding estimates show that (〈v′, fj〉) is a Cauchy sequence in the topology of uniform
convergence, uniformly as v′ runs through an equicontinuous subset of F ′. By [4, Corollary 1 to Proposition 7
of Chapter III, §3, No. 5] again, this implies that (fj) converges uniformly on S to some bounded continuous
function f : S → X , which is then holomorphic on S. Since (fj(j + it)) is a Cauchy sequence in Aj for
every t ∈ R and for j = 0, 1, this implies that f maps j + iR boundedly into Aj for j = 0, 1, so that
f ∈ FX(A0, A1). It is then clear that (fj) converges to f in FX(A0, A1). The proof is complete. �

The following result shows that ( · , · ) · ,θ is an exact interpolation functor for the category of admissible
triples, endowed with suitable morphisms.

Proposition 6.5. Let (A0, A1, X) and (B0, B1, Y ) be two admissible triples, and let T : X → Y be a continu-
ous linear mapping which maps Aj continuously into Bj for j = 0, 1. Then, T maps (A0, A1)X,θ continuously
into (B0, B1)Y,θ for every θ ∈]0, 1[. In addition,

‖T ‖L((A0,A1)X,θ,(B0,B1)Y,θ) 6 ‖T ‖1−θ
L(A0,B0)

‖T ‖θL(A1,B1)

for every θ ∈]0, 1[.

Proof. Define Cj := ‖T ‖L(Aj,Bj) for j = 0, 1. It suffices to observe that, if f ∈ FX(A0, A1), then g :=

(C0/C1)
· −θTf ∈ FY (B0, B1), g(θ) = T [f(θ)], and ‖g‖FY (B0,B1) 6 C1−θ

0 Cθ
1‖f‖FX(A0,A1). �

Theorem 6.6. Take p0, p1, q0, q1 ∈]0,∞], s0, s1 ∈ R
r and θ ∈]0, 1[. Then,

(B̊s0
p0,q0(N ,Ω), B̊s1

p1,q1(N ,Ω))S′
Ω,L(N ),θ = B̊sθ

pθ,qθ
(N ,Ω)

and

(Bs0
p0,q0(N ,Ω), Bs1

p1,q1(N ,Ω))S′
Ω,L(N ),θ = Bsθ

pθ,qθ (N ,Ω),

where
1

pθ
=

1− θ

p0
+

θ

p1
,

1

qθ
=

1− θ

q0
+

θ

q1
, and sθ = (1 − θ)s0 + θs1.

Proof. Fix (λk), (ϕk), (ψk), and (ψ′
k) as in the proof of Proposition 6.2. DefineKk := { k′ ∈ K : ψ′

k′ ∗ ψ′
k 6= 0 },

and observe that there is N ∈ N such that Card(Kk) 6 N for every k ∈ K (cf. Section 2). Take
u ∈ Bsθ

pθ,qθ
(N ,Ω) such that ∥∥∆sθ

Ω (λk)‖u ∗ ψk‖Lpθ (N )

∥∥
ℓqθ (K)

= 1,

and define

U : C ∋ z 7→
∑

k∈K

∆
zs′0+s′1
Ω′ (λk)‖u ∗ ψk‖

cz+d
Lpθ (N )

(
|u ∗ ψk|

az+bu ∗ ψk

)
∗ ψ′

k ∈ S ′
Ω,L(N )



22 M. CALZI

for some a, b, c, d ∈ R and s
′
0, s

′
1 ∈ Rr to be chosen. Let us first prove that U is well defined, holomorphic,

and bounded on S. Arguing as in the proof of Proposition 6.2, we see that U is well defined. Then, take
τ ∈ SΩ,L(N ), and observe that there is a finite subset K ′ of K such that

〈U(z)|τ〉 =
∑

k∈K′

∆
zs′0+s′1
Ω′ (λk)‖u ∗ ψk‖

cz+d
Lpθ (N )

〈(
|u ∗ ψk|

az+bu ∗ ψk

)
∗ ψ′

k

∣∣∣τ
〉

for every z ∈ C. In order to prove that U is holomorphic and bounded on S, it then suffices to prove that
the mapping z 7→

〈
|u ∗ ψk|

az+bu ∗ ψk

∣∣∣τ ∗ ψ′∗
k

〉
is holomorphic on C and bounded on S, for every k ∈ K ′.

Since u ∗ ψk ∈ L∞(N ) by Corollary 3.4, this is easily proved.
Observe that U(θ) = u if aθ + b = cθ + d = 0 and θs′0 + s

′
1 = 0. In addition, by Corollary 3.6 and a

homogeneity argument, there is a constant C1 > 0 such that
∥∥(|u ∗ ψk|

aj+bu ∗ ψk

)
∗ ψ′

k ∗ ψk′

∥∥
Lpj (N )

6
∥∥|u ∗ ψk|

aj+b+1 ∗ |ψ′
k ∗ ψk′ |

∥∥
Lpj (N )

6 C1‖u ∗ ψk‖
aj+b+1
Lpθ (N )

for every j = 0, 1 and for every k, k′ ∈ K, provided that aj+b+1
pθ

= 1
pj

if pθ < ∞ and aj + b = 0 if pθ = ∞.
We then choose a := pθ

p0
− pθ

p1
and b := pθ

p0
− 1 if pθ < ∞, and simply a = b = 0 if pθ = ∞, so that the

preceding conditions are satisfied. Therefore, by means of [8, Corollary 2.49], we see that there is a constant
C2 > 0 such that

∆
sj
Ω (λk)‖U(j + it) ∗ ψk‖Lpj (N ) 6 ∆

sj
Ω (λk)C1N

(1/pj−1)+
∑

k′∈Kk

∆
js′0+s′1
Ω (λk′ )‖u ∗ ψk′‖

(a+c)j+b+d+1
Lpθ (N )

6 C2

∑

k′∈Kk

∆sθ
Ω (λk′ )‖u ∗ ψk′‖

(a+c)j+b+d+1
Lpθ (N )

for every t ∈ R, for every k ∈ K, and for j = 0, 1, provided that sj+ js′0+ s
′
1 = sθ. Then, set c := qθ

q0
− qθ

q1
−a

and d := qθ
q0

− 1− b if qθ <∞ and c := −a and d := −b if qθ = ∞, so that cθ+ d = 0, and (a+c)j+b+d+1
qj

= 1
qθ

if qθ < ∞ and (a + c)j + b + d = 0 if qθ = ∞. In addition, set s
′
0 := s0 − s1 and s

′
1 := sθ − s0, so that the

preceding conditions are satisfied. Then,
∥∥∆sj

Ω (λk)‖U(j + it) ∗ ψk‖Lpj (N )

∥∥
ℓqj (K)

6 C2N
max(1,1/qj)

for j = 0, 1. This proves that Bsθ
pθ,qθ (N ,Ω) ⊆ (Bs0

p0,q0(N ,Ω), Bs1
p1,q1(N ,Ω))S′

Ω,L(N ),θ continuously.

If, in addition, u ∈ B̊sθ
pθ,qθ

(N ,Ω), then it is readily verified that U(j + it) ∈ B̊
sj
pj ,qj (N ,Ω) for j = 0, 1 and

for every t ∈ R, so that B̊sθ
pθ,qθ

(N ,Ω) ⊆ (B̊s0
p0,q0(N ,Ω), B̊s1

p1,q1(N ,Ω))S′
Ω,L(N ),θ continuously.

Conversely, take u ∈ (Bs0
p0,q0(N ,Ω), Bs1

p1,q1(N ,Ω))S′
Ω,L(N ),θ, and take

U ∈ FS′
Ω,L(N )(B

s0
p0,q0(N ,Ω), Bs1

p1,q1(N ,Ω))

such that U(θ) = u. Set ℓ := min(p0, p1, q0, q1). Then, [22, 2.4.6/2] shows that there are two probability
measures µ0, µ1 on R such that

|f(z)|ℓ 6

(∫

R

|f(it)|ℓ dµ0(t)

)1−θ(∫

R

|f(1 + it)|ℓ dµ1(t)

)θ

for every z ∈ θ + iR and for every bounded uniformly continuous function f : S → C which is holo-
morphic on S. For every ε > 0, define Uε : S ∋ z 7→ eε(z

2−z)−ε(θ2−θ)U(z) ∈ S ′
Ω,L(N ), so that Uε ∈

FS′
Ω,L(N )(B

s0
p0,q0(N ,Ω), Bs1

p1,q1(N ,Ω)) and Uε(θ) = u. Observe that, for every (ζ, x) ∈ N , the function

z 7→ (Uε(z) ∗ ψk)(ζ, x) = eε(z
2−z)−ε(θ2−θ)

〈
U(z)|L(ζ,x)ψ

∗
k

〉
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is bounded and uniformly continuous (actually, vanishes at the point at infinity of S). Then, by Hölder’s
and Minkowski’s integral inequalities,

‖u ∗ ψk‖Lpθ (N ) 6

∥∥∥∥∥

(∫

R

|Uε(it) ∗ ψk|
ℓ
dµ0(t)

)1−θ(∫

R

|Uε(1 + it) ∗ ψk|
ℓ
dµ1(t)

)θ
∥∥∥∥∥

1/ℓ

Lpθ/ℓ(N )

6

∥∥∥∥
∫

R

|Uε(it) ∗ ψk|
ℓ dµ0(t)

∥∥∥∥
(1−θ)/ℓ

Lp0/ℓ(N )

∥∥∥∥
∫

R

|Uε(1 + it) ∗ ψk|
ℓ dµ1(t)

∥∥∥∥
θ/ℓ

Lp1/ℓ(N )

6

(∫

R

‖Uε(it) ∗ ψk‖
ℓ
Lp0(N ) dµ0(t)

)(1−θ)/ℓ(∫

R

‖Uε(1 + it) ∗ ψk‖
ℓ
Lp1(N ) dµ1(t)

)θ/ℓ

for every k ∈ K. Therefore, by Hölder’s and Minkowski’s integral inequalities again,

∥∥∆sθ
Ω′(λk)‖u ∗ ψk‖Lpθ (N )

∥∥
ℓqθ (K)

6

(∫

R

∥∥∆s0
Ω′(λk)‖Uε(it) ∗ ψk‖Lp0(N )

∥∥ℓ
Lq0(K)

dµ0(t)

)(1−θ)/ℓ

×

(∫

R

∥∥∆s1
Ω′(λk)‖Uε(1 + it) ∗ ψk‖Lp1(N )

∥∥ℓ
Lq1(K)

dµ1(t)

)θ/ℓ

6 ‖Uε‖F
S′
Ω,L

(N)(B
s0
p0,q0

(N ,Ω),B
s1
p1,q1

(N ,Ω)).

By the arbitrariness of ε > 0 and U , this implies that (Bs0
p0,q0(N ,Ω), Bs1

p1,q1(N ,Ω))S′
Ω,L(N ),θ embeds contin-

uously into Bsθ
pθ,qθ

(N ,Ω).
Finally, assume that u ∈ (B̊s0

p0,q0(N ,Ω), B̊s1
p1,q1(N ,Ω))S′

Ω,L(N ),θ, and that

U ∈ FS′
Ω,L(N )(B̊

s0
p0,q0(N ,Ω), B̊s1

p1,q1(N ,Ω)).

Then, the preceding remarks imply that

|(u ∗ ψk)(ζ, x)| 6

(∫

R

|(Uε(it) ∗ ψk)(ζ, x)|
ℓ dµ0(t)

)(1−θ)/ℓ(∫

R

|(Uε(1 + it) ∗ ψk)(ζ, x)|
ℓ dµ1(t)

)θ/ℓ

,

for every (ζ, x) ∈ N and for every k ∈ K, so that u ∗ ψk ∈ C0(N ) by Corollary 3.4 and the dominated
convergence theorem. Hence, u ∗ ψk ∈ Lpθ

0 (N ) for every k ∈ K. Analogously, from the inequality (proved
above)

∆sθ
Ω′(λk)‖u ∗ ψk‖Lpθ (N ) 6

(∫

R

∆s0
Ω′(λk)‖Uε(it) ∗ ψk‖

ℓ
Lp0(N ) dµ0(t)

)(1−θ)/ℓ

×

(∫

R

∆s1
Ω′ (λk)‖Uε(1 + it) ∗ ψk‖

ℓ
Lp1(N ) dµ1(t)

)θ/ℓ

,

for every k ∈ K, one deduces that (∆sθ
Ω′(λk)‖u ∗ ψk‖Lpθ (N )) ∈ ℓ∞0 (K), so that (∆sθ

Ω′ (λk)‖u ∗ ψk‖Lpθ (N )) ∈

ℓqθ0 (K). Hence, u ∈ B̊sθ
pθ,qθ (N ,Ω). �

7. ‘Classical’ Besov spaces on N

In this section we introduce some Besov spaces on N associated to a suitable positive Rockland operator.16

In the classical case, that is, when N = F , these Besov spaces are exactly the classical homogeneous Besov
spaces on F . In the general case, the resulting spaces are non-commutative analogues of the classical
homogeneous Besov spaces. Since the Sobolev spaces associated to positive Rockland operators on graded
groups investigated in [12] do not depend on the choice of the Rockland operator, it is likely that the same
holds for the Besov spaces defined in this setting, even though we shall not prove that. We mention here

16A Rockland operator is a homogeneous, hypoelliptic, left-invariant differential operator. We say that a Rockland operator
R is positive if

∫
N
(Rf)f dH2n+m =

∫
N
fRf dH2n+m > 0 for every f ∈ C∞

c (N ).
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that Besov spaces on graded Lie groups were studied in [10], which nonetheless contains no proofs. For this
reason, but also to discuss the space SL(N ) and its relationships with the Besov spaces Bs

p,q(N ,L), we shall
provide complete proofs. Notice, in addition, that, in virtue of the (real) interpolation results claimed in [10,
Theorem 3.2], the Besov spaces Bs

p,q(N ,L) do not actually depend on the positive Rockland operator L, at
least when p ∈]1,∞[ and q ∈ [1,∞[.

Definition 7.1. Define

L :=
1

4



∑

j

(ZjZj + ZjZj)




2

−
∑

k

U2
k ,

where the Zj are the left-invariant vector fields (with complex coefficients) on N such that (Zj)(0,0) = ∂E,vj

for some orthonormal basis (vj) of E over C, while (Uk) is an orthonormal basis of invariant vector fields on
the centre F on N .

Given a bounded measurable function ϕ : R → C, we denote by K(ϕ) the (right) convolution kernel of
the operator ϕ(L), defined by spectral calculus.

Observe that L does not depend on the choice of (Zj), (Zj), and (Uk). In addition, L is a positive Rockland
operator of degree 2 on N , so that it induces an essentially self-adjoint operator on L2(N ) with initial domain
C∞

c (N ). We shall therefore make use of the corresponding spectral calculus. Cf. e.g. [19, 6, 7] for more
information on the spectral calculus associated to positive Rockland (or more general) operators on graded (or
general) Lie groups. We mention, in particular, that K(S(R)) ⊆ S(N ) and that K(m1m2) = K(m1)∗K(m2)
for every two bounded measurable functions m1,m2 on R. Observe that L has real coefficients, so that K(ϕ)
is real whenever ϕ is real.

For every λ ∈ F ′, define Jλ ∈ LC(E) so that

〈λC,Φ(ζ, ζ
′)〉 = 〈ζ| − iJλζ

′〉E

for every ζ, ζ′ ∈ E.

Proposition 7.2. Take λ ∈ Ω′. Then, dπλ(L) has purely discrete spectrum and Pλ,0 is an eigenprojector
of dπλ(L). In addition,

dπλ(L)Pλ,0 =
(
(Tr|Jλ|)

2 + |λ|2
)
Pλ,0 =



(∑

j

〈λ,Φ(vj)〉
)2

+ |λ|2


Pλ,0

for every orthonormal basis (vj) of E over C.

Proof. Observe that

dπλ(L) =




∑

j

(2〈λ,Φ( · , vj)〉∂vj + 〈λ,Φ(vj)〉I)




2

+ |λ|2I

for every orthonormal basis (vj) of E over C, thanks to [8, Proposition 1.15]. Now, choose the orthonormal
basis (vj) of E over C so that it is orthogonal for the scalar product 〈λ,Φ( · , vj)〉. In order to see that dπλ(L)
has purely discrete spectrum, it will suffice to observe that the monomials wα :=

∏
j〈λ,Φ( · , vj)〉

αj , α ∈ Nn,
form a total orthogonal family in Hλ (argue as in [13, Theorem 1.63]), and that

dπλ(L)wα =




(∑

j

(2αj + 1)〈λ,Φ(vj)〉
)2

+ |λ|2



wα

thanks to the above formula for dπλ(L), for every α ∈ Nn. In particular, Pλ,0 is an eigenprojector of dπλ(L),
with corresponding eigenvalue (∑

j

〈λ,Φ(vj)〉
)2

+ |λ|2.
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To conclude, observe that 〈λ,Φ(v, w)〉 = 〈|Jλ|v|w〉 for every v, w ∈ E by the definition of Jλ, so that
(∑

j

〈λ,Φ(vj)〉
)2

+ |λ|2 = (Tr|Jλ|)
2 + |λ|2. �

Definition 7.3. Define N : F ′ ∋ λ 7→
(
(Tr|Jλ|)2 + |λ|2

)
∈ R+.

For every compact subset K of R∗
+, define

SL,K(N ) := { ϕ ∈ S(N ) : ϕ = ϕ ∗ K(χK) },

endowed with the topology induced by S(N ). We define SL(N ) as the inductive limit of the SL,K(N ), as
K runs through the set of compact subsets of R∗

+. We denote by S ′
L(N ) the strong dual of SL(N ).

We denote by P the space of polynomials on N .

Notice that, since K(χK) is real-valued for every compact subset K of R∗
+, the space SL(N ) is invariant

under conjugation. Hence, we may define 〈T |ϕ〉 := 〈T, ϕ〉 for T ∈ S ′
L(N ) and ϕ ∈ SL(N ).

Proposition 7.4. The following hold:

(1) SL,K(N ) is a Fréchet Montel space for every compact subset K of R∗
+;

(2) SL(N ) is a complete bornological Montel space;
(3) the closure of SL(N ) in S(N ) is

{
ϕ ∈ S(N ) : ∀P ∈ P

∫

N

ϕ(ζ, x)P (ζ, x) d(ζ, x) = 0

}
.

Proof. (1) This follows from the fact that SL,K(N ) is a closed subspace of the Fréchet Montel space S(N ).
(2) This follows from [4, Proposition 9 of Chapter II, §4, No. 6, Example 3 of Chapter III, §2, and Example

3 of Chapter IV, §2, No. 5].
(3) Let us first prove that

∫
N ϕ(ζ, x)P (ζ, x) d(ζ, x) = 0 for every ϕ ∈ SL(N ) and for every P ∈ P . Notice

that, since L is formally self-adjoint and for every P ∈ P there is k ∈ N such that LkP = 0 by homogeneity, it
will suffice to prove that, for every ϕ ∈ SL(N ) and for every k ∈ N, there is ϕk ∈ S(N ) such that ϕ = Lkϕk.
Then, fix ϕ ∈ SL(N ) and k ∈ N. Observe that there is s positive τ ∈ C∞

c (R∗
+) such that ϕ = ϕ ∗ K(τ).

Then, define I ′k := K[( · )−kτ ], so that I ′k ∈ S(N ) and

LkI ′k = K(τ).

If we set
ϕk := ϕ ∗ I ′k ∈ S(N ),

then
Lkϕk = ϕ ∗ K(τ) = ϕ,

whence our claim.
Then, fix η ∈ C∞

c (R) so that χ[0,1] 6 η 6 χ[−1,2]. If we define ψj := K(η(2−2j · )) = (2−j · )∗K(η) for
every j ∈ Z, then clearly f ∗ (ψh − ψ−k) = (η(2−2hL)− η(22kL))f converges to f in L2(N ) for h, k → +∞,
for every f ∈ L2(N ), by spectral theory. In addition, if ϕ ∈ S(N ) and

∫
N ϕ(ζ, x)P (ζ, x) d(ζ, x) = 0 for

every P ∈ P , then [6, Proposition 5.8] implies that the set of ϕ ∗ (ψh −ψ−k), as h, k ∈ N, is bounded (hence
relatively compact) in S(N ). Therefore, the preceding arguments imply that ϕ ∗ (ψh − ψ−k) converges to ϕ
in S(N ) for h, k → +∞. Since clearly ϕ ∗ (ψh −ψ−k) ∈ SL(N ) for every h, k ∈ N, the assertion follows. �

Definition 7.5. Given u ∈ S ′
L(N ) and ϕ ∈ SL(N ), we define u ∗ ϕ ∈ S ′(N ) so that

〈u ∗ ϕ|τ〉 = 〈u|τ ∗ ϕ∗〉

for every τ ∈ S(N ). We shall identify u ∗ ϕ with an element of C∞(N ).
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Lemma 7.6. Take s ∈ R and p, q ∈]0,∞]. Take two bounded families (ϕj)j∈Z and (ϕ′
j)j∈Z of positive

elements of C∞
c (R∗) such that ∑

j

ϕj(2
−2j · ),

∑

j

ϕ′
j(2

−2j · ) > 1.

Define ψj := K(ϕj(2
−2j · )) and ψ′

j := K(ϕ′
j(2

−2j · )). Then, there is a constant C > 0 such that

1

C

∥∥2sj‖T ∗ ψ′
j‖Lp(N )

∥∥
ℓq(Z)

6
∥∥2sj‖T ∗ ψj‖Lp(N )

∥∥
ℓq(Z)

6 C
∥∥2sj‖T ∗ ψ′

j‖Lp(N )

∥∥
ℓq(Z)

for every T ∈ S ′(N ). In addition,

(2sjT ∗ ψj) ∈ ℓq0(Z;L
p
0(N )) if and only if (2sjT ∗ ψ′

j) ∈ ℓq0(Z;L
p
0(N )).

Proof. Choose ℓ ∈ R and M ∈ N so that Supp(ϕj), Supp
(
ϕ′
j

)
⊆ [2ℓ, 2ℓ+2M ] for every j ∈ Z. Define

ϕ̃ :=
∑

j∈Z

ϕk(2
−2j · ),

and observe that the sum defining ϕ̃ is locally finite on R∗
+, so that ϕ̃ is of class C∞ on R∗

+. In addition, if
ϕ′
j′ (2

−2j′ · )ϕj(2
−2j · ) 6= 0 then |j − j′| 6M . Then, for every j′ ∈ Z,

ϕ′
j′ (2

−2j′ · ) =

j′+M∑

j=j′−M

ϕ′
j′ (2

−2j′ · )ϕj(2
−2j · )

ϕ̃
=

j′+M∑

j=j′−M

ϕ̃′
j′ (2

−2j′ · )ϕj(2
−2j · ),

where

ϕ̃′
j′ :=

ϕ′
j′

ϕ̃(22j′ · )
=

ϕ′
j′∑j′+M

j=j′−M ϕj(22(j
′−j) · )

=
ϕ′
j′∑M

j=−M ϕj(2−2j · )

for every j′ ∈ Z. Notice that the family (ϕ̃′
j′ )j′∈Z is bounded in C∞

c (R∗
+). Then, define ψ̃′

j := K(ϕ̃′
j(2

−2j · ))
for every j ∈ Z, and observe that Corollary 3.5 and a dilation argument imply that there is a constant
C1 > 0 such that, for every T ∈ S ′

L(N ) and for every j, j′ ∈ Z,

‖(T ∗ ψj) ∗ ψ̃
′
j′‖Lp(N ) 6 C1‖T ∗ ψj‖Lp(N ).

Now, for every j′ ∈ Z,

T ∗ ψ′
j′ =

j′+M∑

j=j′−M

(T ∗ ψj) ∗ ψ̃
′
j′

by the associativity of convolution on S ′
L(N )× SL(N ) × SL(N ), so that

‖T ∗ ψ′
j′‖Lp(N ) 6 C1(2M + 1)(1/p−1)+

j′+M∑

j=j′−M

‖T ∗ ψj‖Lp(N )

for every j′ ∈ Z. Hence, there is a constant C2 > 0 such that

2j
′s‖T ∗ ψ′

j′‖Lp(N ) 6 C2

j′+M∑

j=j′−M

2js‖T ∗ ψj‖Lp(N )

for every j′ ∈ Z.
Therefore,

∥∥2sj‖T ∗ ψ′
j‖Lp(N )

∥∥
ℓq(Z)

6 C2(2M + 1)max(1,1/q)
∥∥2sj‖T ∗ ψj‖Lp(N )

∥∥
ℓq(Z)

.



BASOV SPACES OF ANALYTIC TYPE 27

By symmetry, the first assertion is proved. For what concerns the second assertion, assume that (2sjT ∗ψj) ∈
ℓq0(Z;L

p
0(N )). Then, it is clear that

T ∗ ψ′
j′ =

j′+M∑

j=j′−M

(T ∗ ψj) ∗ ψ̃
′
j′ ∈ Lp

0(N )

for every j′ ∈ Z. Analogously, it is readily seen that

(
2j

′s‖T ∗ ψ′
j′‖Lp(N )

)
j′
6

(
C2

j′+M∑

j=j′−M

2js‖T ∗ ψj‖Lp(N )

)

j′
∈ ℓq0(Z),

whence (2sjT ∗ ψ′
j) ∈ ℓq0(Z;L

p
0(N )). The second assertion follows therefore by symmetry. �

Definition 7.7. Take s ∈ R and p, q ∈]0,∞]. Take (ψj) as in Lemma 7.6. Then, we define Bs
p,q(N ,L) (resp.

B̊s
p,q(N ,L)) as the space of T ∈ S ′

L(N ) such that

(2sjT ∗ ψj) ∈ ℓq(Z;Lp(N )) (resp. (2sjT ∗ ψj) ∈ ℓq0(Z;L
p
0(N ))),

endowed with the corresponding topology.

Notice that we chose to define Bs
p,q(N ,L) as a subspace of S ′

L(N ) since this choice simplifies some results.
Nonetheless, one may prove the Bs

p,q(N ,L) embeds canonically into S ′(N )/P .

Proposition 7.8. Take s ∈ R and p, q ∈]0,∞]. Then, Bs
p,q(N ,L) and B̊s

p,q(N ,L) are complete metrizable

topological vector spaces and embed canonically into S ′(N )/P. Furthermore, B̊s
p,q(N ,L) is the closure of

SL(N ) in Bs
p,q(N ,L).

Before we prove this result, we need some preparations.

Proposition 7.9. Take s1, s2 ∈ R and p1, p2, q1, q2 ∈]0,∞] such that

p1 6 p2, q1 6 q2, and s2 = s1 +

(
1

p2
−

1

p1

)
Q.

Then, there are continuous inclusions

Bs1
p1,q1(N ,L) ⊆ Bs2

p2,q2(N ,L) and B̊s1
p1,q1(N ,L) ⊆ B̊s2

p2,q2(N ,L).

Proof. This follows from Corollary 3.4, a dilation argument, and the canonical inclusions ℓq1(Z) ⊆ ℓq2(Z)
and ℓq10 (Z) ⊆ ℓq20 (Z). �

Proposition 7.10. Take s ∈ R, p, q ∈]0,∞] and two bounded families (ϕj)j∈Z, (ϕ′
j)j∈Z of positive elements

of C∞
c (R∗

+) such that ∑

j∈Z

ϕj(2
−2j · )ϕ′

j(2
−2j · ) = 1

on R∗
+. Then, the sesquilinear form

Bs
p,q(N ,L)×B

−s+(1/p−1)+Q
p′,q′ (N ,L) ∋ (u, u′) 7→

∑

j

〈
u ∗ ψj

∣∣u′ ∗ ψ′
j

〉
∈ C,

where ψj := K(ϕj(2
−2j · )) and ψ′

j := K(ϕ′
j(2

−2j · )) for every j ∈ Z, is well defined and continuous, and

does not depend on the choice of (ϕj), (ϕ
′
j).

Arguing as in the proof of [8, Theorem 4.23], one may actually prove that the above sesquilinear form
induces an antilinear isomorphism of B−s+(1/p−1)+Q

p′,q′ (N ,L) onto B̊s
p,q(N ,L)′.

An analogous assertion holds for bilinear forms.
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Proof. The fact that 〈 · | · 〉 is well defined and continuous follows from the inclusion

Bs
p,q(N ,L) ⊆ B

s−(1/p−1)+Q
max(1,p),max(1,q)(N ,L)

(cf. Proposition 7.9). Then, take two bounded families (ηj), (η
′
j) of positive elements of C∞

c (R∗
+) such that

∑

j∈Z

ηj(2
−2j · )η′j(2

−2j · ) = 1

on R∗
+, and define τj := K(ηj(2

−2j · )) and τ ′j := K(η′j(2
−2j · )) for every j ∈ Z. Then, for every u ∈ Bs

p,q(N ,L)

and for every u′ ∈ B
−s+(1/p−1)+Q
p′,q′ (N ,L),

∑

j

〈
u ∗ ψj

∣∣u′ ∗ ψ′
j

〉
=
∑

j

〈
∑

j′

u ∗ τj′ ∗ τ
′
j′ ∗ ψj

∣∣∣∣∣u
′ ∗ ψ′

j

〉

=
∑

j

∑

j′

〈
u ∗ τj′

∣∣u′ ∗ τ ′j′ ∗ ψj ∗ ψ
′
j

〉

since only a finite number of terms of the inner sum are non-zero. For a similar reason, the sum in j and j′

converges absolutely, so that one may reverse the above computations and infer that
∑

j

〈
u ∗ ψj

∣∣u′ ∗ ψ′
j

〉
=∑

j′

〈
u ∗ τj′

∣∣u′ ∗ τ ′j′
〉
, whence the result. �

Lemma 7.11. Take s ∈ R, p, q ∈]0,∞], and ϕ ∈ C∞
c (R∗

+). Then, Op(K(ϕ)) embeds as a closed subspace
of both Bs

p,q(N ,L) and Lp(N ).

Proof. It suffices to observe that there is a bounded family (ϕj)j∈Z of positive elements of C∞
c (R∗

+) such
that ∑

j∈Z

ϕj(2
−2j · ) > 1,

ϕ0ϕ = ϕ, and ϕj(2
−2j · )ϕ = 0 for every j ∈ Z, j 6= 0. �

Proof of Proposition 7.8. The fact that Bs
p,q(N ,L) is complete follows from the fact that the equivalent

quasi-norms which define its topology extend to lower semi-continuous convex functions on S ′
L(N ) which

are finite only on Bs
p,q(N ,L), and from the completeness of S ′

L(N ). For what concerns the second as-
sertion, it will suffice to prove that S∞(N ) := { ϕ ∈ S(N ) : ∀P ∈ P 〈ϕ|P 〉 = 0 } embeds continuously into
B

−s+(1/p−1)+
p′,q′ (N ,L), and to apply Proposition 7.10. Then, take a positive η ∈ C∞

c (R∗
+) such that

∑

j∈Z

η(2−2j · ) = 1

on R∗
+, and define ψj := K(η(2−2j · )) for every j ∈ Z. In addition, define ψk,j := K((( · )kη)(2−2j · )) for

every j, k ∈ Z, and denote by Ik a log-homogeneous fundamental solution of Lk of degree 2k − Q,17 if
k > 0 (cf. [18]), and L−kδ(0,0) otherwise. Then, a simple modification of [6, Proposition 5.8] implies that
S∞(N ) ∗ Ik ⊆ S(N ) for every k ∈ Z. In addition, [6, Proposition 5.8] implies that

2−2kjϕ ∗ ψj = (ϕ ∗ Ik) ∗ ψk,j

is uniformly bounded in S(N ) as j runs through Z, for every ϕ ∈ S∞(N ) and for every k ∈ Z. Thus,
(2s

′jϕ ∗ψj) ∈ ℓq0(Z;L
p
0(N )) for every ϕ ∈ S∞(N ), for every s′ ∈ R, and for every p, q ∈]0,∞]. The assertion

follows by means of the closed graph theorem.
For what concerns the last assertion, observe first that (the canonical image of) SL,L(N ) is contained

in B̊s
p,q(N ,L). Conversely, take u ∈ B̊s

p,q(N ,L) and observe that u =
∑

j∈Z
u ∗ ψj , with convergence in

Bs
p,q(N ,L) (argue as in the proof of [8, Lemma 4.22]). Furthermore, fix ϕ ∈ S(N ) so that ϕ(0, 0) =

17In other words, there are a homogeneous polynomial P of degree 2k − Q and a homogeneous norm ρ of class C∞ on
N \ { (0, 0) } such that Ik − P log ρ is homogeneous of degree 2k −Q, and LkIk = δ(0,0).
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‖ϕ‖L∞(N ) = 1, and define ϕk := ϕ(2−k · ) for every k ∈ N. Take η′ ∈ C∞
c (R∗

+) such that η = η′η, and
define ψ′

j := K(η′(2−2j · )) for every j ∈ Z. Let us prove that [ϕk(u ∗ ψj)] ∗ ψ′
j converges to u ∗ ψj in

Lp(N ) for every j ∈ Z. Observe first that |u ∗ ψk| ∗ |ψ′
j | ∈ Lp

0(N ) for every j ∈ Z, by Corollary 3.6.
Since |[ϕk(u ∗ ψj)] ∗ ψ′

j | 6 |u ∗ ψk| ∗ |ψ′
j | for every k ∈ N and for every j ∈ Z, it will suffice to prove that

[ϕk(u ∗ ψj)] ∗ ψ′
j converges locally uniformly to u ∗ ψj for every j ∈ Z, and this is clear. Since clearly

[ϕk(u ∗ ψj)] ∗ ψ′
j ∈ SL(N ) for every j ∈ Z, the assertion follows by means of Lemma 7.11. �

In a completely analogous fashion, one may prove that Bs
p,q(N ,Ω) embeds continuously into the dual

S̃ ′
Ω(N ) of the conjugate of the closure S̃Ω(N ) of SΩ,L(N ) in S(N ).18 This solves a problem left open in [8,

4.3.7].

Proposition 7.12. Take s ∈ Rr and p, q ∈]0,∞]. Then, the canonical linear mapping S̃Ω(N ) → S ′
Ω,L(N )

is continuous and injective, and induces a continuous injective linear mapping

S̃Ω(N ) → B̊
−s−(1/p−1)+(b+d)
p′,q′ (N ,Ω).

This latter mapping, in turn, induces a continuous injective linear mapping

Bs
p,q(N ,Ω) → S̃ ′

Ω(N ).

Proof. Observe first that [8, Proposition 4.11] implies that the mapping ϕ 7→ ϕ∗Is
′

Ω induces an automorphism
of S̃Ω(N ) for every s

′ ∈ R
r. Let us first prove that the canonical (continuous) linear mapping S̃Ω(N ) →

S ′
Ω,L(N ) is injective. Indeed, if ϕ ∈ S̃Ω(N ) and 〈ϕ|ψ〉 = 0 for every ψ ∈ SΩ,L(N ), then

(ϕ ∗ ψ)(ζ, x) =
〈
ϕ
∣∣δ(ζ,x) ∗ ψ∗

〉
= 0

for every ψ ∈ SΩ(N ) and for every (ζ, x) ∈ N , thanks to [8, Propositions 4.2 and 4.5]. Therefore,

0 = πλ(ϕ ∗ ψ) = FN (ψ)(λ)πλ(ϕ)

for every ψ ∈ SΩ(N ) and for every λ ∈ Ω′, whence ϕ = 0 since FN (SΩ(N )) = C∞
c (Ω′) and πλ(ϕ) = 0 for

every λ ∈ F ′ \ (W ∪Ω′).
Now, take ϕ ∈ S̃Ω(N ), and let us prove that its canonical image in S ′

Ω,L(N ) is contained in the space

B
−s−(1/p−1)+(b+d)
p′,q′ (N ,Ω). Take (λk), (ϕk), and (ψk) as in Definition 2.5. Take s

′ ∈ Rr, ℓ ∈ N, and

ϕ ∈ S̃Ω,L(N ). Then, [8, Proposition 4.11] and the preceding remarks show that ϕ ∗ Is
′

Ω ∈ S̃Ω(N ), ψk ∗ I
−s′

Ω ∈
SΩ(N ), and that

πλ(ϕ ∗ ψk) = πλ((ϕ ∗ Is
′

Ω ) ∗ (ψk ∗ I−s′

Ω ))

for every λ ∈ Ω′ and for every k ∈ K. Hence,

ϕ ∗ ψk = (ϕ ∗ Is
′

Ω ) ∗ (ψk ∗ I−s′

Ω )

for every k ∈ K. Next, define
ψk,s′,ℓ := F−1

N (N−ℓFN (ψk ∗ I
−s′

Ω ))

and observe that
πλ(ϕ ∗ ψk) = πλ(L

ℓ(ϕ ∗ Is
′

Ω ) ∗ ψk,s′,ℓ)

for every λ ∈ Ω′ and for every k ∈ K, whence

ϕ ∗ ψk = Lℓ(ϕ ∗ Is
′

Ω ) ∗ ψk,s′,ℓ

for every k ∈ K.
Therefore, [8, Corollaries 2.49 and 2.51, and Proposition 4.11] imply that

‖ϕ ∗ ψk‖Lp′(N ) 6 ∆s′

Ω′(λk)max(1, N(λk))
−ℓCs′,ℓ max

(
‖Lℓ(ϕ ∗ Is

′

Ω )‖Lp′(N ), ‖ϕ ∗ Is
′

Ω ‖Lp′(N )

)

18We shall prove in [9] that this definition of S̃Ω(N ) agrees with the one given in [8].
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for every k ∈ K, where

Cs′,ℓ := max

(
sup

N(λk)61

∆−s′

Ω′ (λk)‖ψk ∗ I
−s′

Ω ‖L1(N ), sup
N(λk)>1

∆−s′

Ω′ (λk)N(λk)
ℓ‖ψk,s′,ℓ‖L1(N )

)

is finite.19 Since clearly ϕ∗ψk ∈ Lp′

0 (N ) for every k ∈ K, this implies that (max(1, N(λk))
ℓ∆−s′

Ω′ (λk)ϕ∗ψk) ∈

ℓ∞(K;Lp′

0 (N )) for every s
′ ∈ Rr and for every ℓ ∈ N. By the arbitrariness of s

′ and ℓ, this implies
that (∆s

Ω′(λk)ϕ ∗ ψk) ∈ ℓq
′

0 (K;Lp′

0 (N )), that is, ϕ ∈ B̊
−s−(1/p−1)+(b+d)
p′,q′ (N ,Ω). Thus, there is a canonical

linear mapping S̃Ω(N ) → B̊
−s−(1/p−1)+(b+d)
p′,q′ (N ,Ω), which is necessarily continuous by the closed graph

theorem. Alternatively, continuity may be proved directly using the above estimates. Since Bs
p,q(N ,Ω)

embeds continuously and canonically into B
s+(1/p−1)+(b+d)
max(1,p),max(1,q) (N ), which is canonically identified with the

dual of B̊−s−(1/p−1)+(b+d)
p′,q′ (N ,Ω) thanks to [8, Proposition 4.19 and Theorem 4.23], the last assertion follows

by transposition. �

8. Comparison between Classical and Analytic Besov Spaces

We now proceed to compare the Besov spaces of analytic type Bs
p,q(N ,Ω) with the ‘classical’ Besov

spaces Bs
p,q(N ,L). We shall first show that Bs

p,q(N ,Ω) is the closure in the topology σs
p,q of the union of

an increasing sequence (Vj) of closed vector subspaces on which the topologies induced by Bs
p,q(N ,Ω) and

B
∑

j sj
p,q (N ,L) coincide (cf. Proposition 8.1). Thus, it is natural to restrict attention to embeddings of the

form Bs
p,q(N ,Ω) → B

∑
j sj

p,q (N ,L).
When r = 1, Proposition 8.1 shows that Bs

p,q(N ,Ω) is actually canonically isomorphic to a closed subspace

of B
∑

j sj
p,q (N ,L). When r > 1, though, the situation is far more delicate and it turns out that the existence of

a canonical embedding Bs
p,q(N ,Ω) → B

∑
j sj

p,q (N ,L) is equivalent to a suitable decoupling inequality (D′)sp,q,
which cannot hold unless s ∈ Rr

− (cf. Theorem 8.7 and Proposition 8.5). If, in addition, s 6= 0, then the
decoupling condition (D′)sp,q is equivalent to the condition (D)sp,q defined in [8, Definition 5.5] which, in turn,
is closely related to the determination of the boundary value spaces of suitable weighted Bergman spaces on
D (cf. [8, Theorem 5.10]). When Ω is a Lorentz cone, then the ℓ2-decoupling inequality proved by Bourgain
and Demeter [5] allows to determine much more precise sufficient conditions for property (D)sp,q to hold, as
noticed in [2]. To the best of our knowledge, a complete characterization of the validity of property (D)sp,q
(or (D′)sp,q) is not available, in general.

Proposition 8.1. Take s ∈ R
r and p, q ∈]0,∞]. In addition, fix a compact subset H of Ω′, and define

V :=
{
T ∈ Bs

p,q(N ,Ω): ∀τ ∈ C∞
c (Ω′ \ (R∗

+H)) T ∗ F−1
N (τ) = 0

}

and

V0 := V ∩ B̊s
p,q(N ,Ω),

endowed with the topology induced by Bs
p,q(N ,Ω). Then, V and V0 embed as closed subspaces of B

∑
j sj

p,q (N ,L)

and B̊
∑

j sj
p,q (N ,L), respectively.

Notice that, if (Hk) is an increasing sequence of compact subsets of Ω′ whose union is Ω′, then the
corresponding subspaces V0,k of B̊s

p,q(N ,Ω) form an increasing sequence of closed subspaces of B̊s
p,q(N ,Ω)

whose union is dense (and also dense in Bs
p,q(N ,Ω) for the weak topology σs

p,q).

19To see this, observe that FN (ψk,s′,ℓ) = is
′

N−ℓ∆s
′

Ω′ϕk( · t
−1
k ), and that the family (N(λk)

ℓN−ℓ( · tk)∆
s
′

Ω′ϕk)N(λk)>1 is
bounded in C∞

c (Ω′).
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Proof. We may assume that H contains eΩ′ . Take ϕ ∈ C∞
c (R∗

+), and define ψ := K(ϕ). Take η ∈ SΩ(N ),
and observe that Proposition 7.2 and [19, Proposition 3.7] imply that

dπλ(η ∗ ψ) = (FN η)(λ)Pλ,0ϕ(dπλ(L)) = (FN η)(λ)ϕ(N(λ))Pλ,0

for every λ ∈ Ω′. Analogously, one proves that dπλ(η ∗ ψ) = 0 for every λ ∈ F ′ \ (W ∪ Ω′), so that
η ∗ ψ ∈ SΩ(N ).

Observe that δ := inf
06=j∈Z

dΩ′(eΩ′ , 2jeΩ′)/2 > 0. Then, we may find a family (tk)k∈K which is maximal for

the property that dΩ′(eΩ′ · tk, eΩ′ · tk′) > 2δ for every k, k′ ∈ K, k 6= k′, such that Z ⊆ K, and such that
λ · tj = 2jλ for every j ∈ Z and for every λ ∈ Ω′. In particular, if we define λk := eΩ′ · tk, then (λk) is a
(δ, 2)-lattice on Ω′. Let H ′ be a compact neighbourhood of H in Ω′, and let us prove that there is R > 1
such that H ′ ⊆

⋃
j∈Z

B(λj , Rδ). Indeed, the sets BR :=
⋃

j∈Z
B(λj , Rδ), R > 0, form an increasing open

covering of Ω′ such that 2jBR = BR for every j ∈ Z. Hence, there is R > 0 such that [1, 2]H ′ ⊆ BR, so that
R∗

+H
′ ⊆

⋃
j∈Z

2j[1, 2]H ′ ⊆ BR.
Now, take η ∈ C∞

c (R∗
+) such that ∑

j∈Z

η(2−2j · ) = 1

on R∗
+, and fix τ ∈ C∞

c (Ω′) so that χB(eΩ′ ,Rδ) 6 τ 6 χB(eΩ′ ,2Rδ). Define

ϕj := τ(η ◦N)

for every j ∈ Z, so that
χR∗

+H′ 6
∑

j∈Z

ϕj( · t
−1
j ) 6 χΩ′ .

Then, we may find a bounded family (ϕk)k∈K\Z of positive elements of C∞
c (Ω′) such that

∑

k∈K

ϕk( · t
−1
k ) = 1

on Ω′. In particular, ϕk( · t
−1
k ) = 0 on R∗

+H
′ for every k ∈ K \Z, and

u ∗ F−1
N (ϕk( · t

−1
k )) =

{
u ∗ K(ηk(2

−2k · )) if k ∈ Z

0 if k 6∈ Z

for every u ∈ V and for every k ∈ K. Since ∆s
Ω′(λk) = 2k

∑
j sj for every k ∈ Z, the assertion follows. �

Choosing H = { 1 } when r = 1, we get the following corollary.

Corollary 8.2. Assume that r = 1 and take s ∈ R and p, q ∈]0,∞]. Then, Bs
p,q(N ,Ω) embeds canonically

as a closed subspace of Bs
p,q(N ,L).

The situation when r > 1 is more complicated.

Definition 8.3. Take s ∈ Rr and p, q ∈]0,∞]. We say that property (D′)s,0p,q holds if there are a (δ, R)-lattice
(λk)k∈K on Ω′, for some δ > 0 and some R > 1, a bounded family (ϕk)k∈K of positive elements of C∞

c (Ω′)
such that ∑

k∈K

ϕk( · t
−1
k ) > 1

on Ω′, where tk ∈ T+ and λk = eΩ′ · tk for every k ∈ K, and two constants C > 0 and c > 1 such that
∥∥∥∥∥
∑

k∈Kc

uk ∗ ψk

∥∥∥∥∥
Lp(N )

6 C
∥∥∆s

Ω′ (λk)‖uk ∗ ψk‖Lp(N )

∥∥
ℓq(Kc)

for every (uk) ∈ SΩ,L(N )(Kc), where ψk := F−1
N (ϕk( · t

−1
k )) for every k ∈ K, while

Kc :=
{
k ∈ K : ϕk( · t

−1
k )(χ[1/c,c] ◦N) 6= 0

}
.
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Notice that the same argument used to prove [8, Lemma 5.6] shows that property (D′)0p,q holds for every
p ∈]0,∞] and for every q ∈]0,min(p, p′)].

In addition, if property (D′)sp,q holds, then property (D′)s2p,q2 holds for every s2 6 s and for every q2 ∈]0, q]
(cf. [8, Lemma 2.34]).

Lemma 8.4. Take s ∈ Rr and p, q ∈]0,∞], and assume that property (D′)sp,q holds. Take a (δ, R)-lattice
(λk)k∈K on Ω′, for some δ > 0 and some R > 1, a bounded family (ϕk)k∈K of positive elements of C∞

c (Ω′)
such that ∑

k∈K

ϕk( · t
−1
k ) > 1

on Ω′, where tk ∈ T+ and λk = eΩ′ · tk for every k ∈ K, and a constant c > 1. Then, there is a constant
C > 0 such that ∥∥∥∥∥

∑

k∈Kc

uk ∗ ψk

∥∥∥∥∥
Lp(N )

6 C
∥∥∆s

Ω′ (λk)‖uk ∗ ψk‖Lp(N )

∥∥
ℓq(Kc)

for every (uk) ∈ S ′
Ω,L(N )(Kc), where ψk := F−1

N (ϕk( · t
−1
k )) for every k ∈ K, while

Kc :=
{
k ∈ K : ϕk( · t

−1
k )(χ[1/c,c] ◦N) 6= 0

}
.

Proof. Step I. We first prove the assertion when uk ∈ SΩ,L(N ) for every k. By assumption, there are a
(δ′, R′)-lattice (λ′k′ )k′∈K′ on Ω′ for some δ′ > 0 and some R′ > 1, a bounded family (ϕ′

k′ )k′∈K′ of elements
of C∞

c (Ω′) such that ∑

k′∈K′

ϕ′
k′ ( · t′−1

k′ ) > 1

on Ω′, where t′k′ ∈ T+ and
λ′k′ = eΩ′ · t′k′

for every k′ ∈ K ′, and two constants C′ > 0 and c′ > 1 such that
∥∥∥∥∥∥

∑

k′∈K′

c′

uk′ ∗ ψ′
k′

∥∥∥∥∥∥
Lp(N )

6 C′
∥∥∆s

Ω′(λ′k′ )‖uk′ ∗ ψ′
k′‖Lp(N )

∥∥
ℓq(K′

c′
)

for every (uk′) ∈ SΩ,L(N )(K
′

c′
), where ψ′

k′ := F−1
N (ϕ′

k( · t
′−1
k′ )) for every k′ ∈ K ′, while

K ′
c′ :=

{
k′ ∈ K ′ : ϕ′

k′( · t′−1
k′ )(χ[1/c′,c′] ◦N) 6= 0

}
.

By a simple dilation argument, this implies that
∥∥∥∥∥∥

∑

k′∈K′

c′

uk′ ∗ ψ′
k′,j

∥∥∥∥∥∥
Lp(N )

6 C′
∥∥∆s

Ω′(λ′k′ )‖uk′ ∗ ψ′
k′,j‖Lp(N )

∥∥
ℓq(K′

c′
)

for every (uk′) ∈ SΩ,L(N )(K
′

c′
) and for every j ∈ Z, where ψ′

k′,j = c′jQψ′
k′(c′j · ). Now, observe that [8,

Corollary 2.51] implies that there is c′′ > c such that Supp(ψk) ⊆ N−1([1/c′′, c′′]) for every k ∈ Kc. Then,
there is a finite subset J of Z such that

[1/c′′, c′′] ⊆
⋃

j∈J

c′2j [1/c′, c′].

For every k′ ∈ K ′ and for every j ∈ J , define

Kk′,j :=
{
k ∈ K : ψk ∗ ψ

′
k′,j 6= 0

}
and K ′′

k′ := { k′′ ∈ K ′ : ψ′
k′′ ∗ ψ′

k′ 6= 0 },

and observe that there is M ∈ N such that

Card(J),Card(Kk′,j),Card(K
′′
k′) 6M
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for every k′ ∈ K ′ and for every j ∈ J , and such that each k ∈ K belongs to at mostM of the sets (Kk′,j)k′∈K′ ,
for every j ∈ J (cf. Section 2). Define

ϕ̃′ :=
∑

j∈J

∑

k′∈K′

c′

ϕ′
k′ ( · c′−jt′−1

k′ ),

so that ϕ̃′ is well-defined, of class C∞, and > 1 on N−1([1/c′′, c′′]). Define, in addition,

ϕ̃k :=
ϕk

ϕ̃′( · tk)
and ϕ̃′

k′,j :=
ϕ′
k′ (c′−j · )

ϕ̃′( · t′k′)

for every k ∈ K, for every k′ ∈ K ′, and for every j ∈ J , so that

ϕk( · t
−1
k ) =

∑

j∈J

∑

k′∈K′

c′

k∈Kk′,j

ϕ̃k( · t
−1
k )ϕ′

k′ ( · c′−jt′−1
k′ ),

ϕ̃k =
ϕk∑

j∈J

∑
k′∈K′

c′
: k∈Kk′,j

ϕ′
k′ ( · c′−j(t′k′t

−1
k )−1)

and

ϕ̃′
k′,j =

ϕ′
k′ (c′−j · )∑

j∈J

∑
k′′∈K′

c′
∩K′′

k′
ϕ′
k′′ ( · c′−j(t′k′ t

′−1
k′′ )−1)

for every k ∈ K, for every k′ ∈ K ′, and for every j ∈ J . By means of [8, Lemma 2.52] and the preceding
arguments, we see that the families (ϕ̃k) and (ϕ̃′

k′,j) are bounded in C∞
c (Ω′) for every j ∈ J . Then, define

ψ̃k, ψ̃
′
k′,j ∈ SΩ(N ) so that

FN ψ̃k = ϕ̃k( · t
−1
k ) and FN ψ̃

′
k′,j = ϕ̃′

k′,j( · t
′−1
k′ )

for every k ∈ K and for every k′ ∈ K ′.
Fix (uk) ∈ SΩ,L(N )(Kc), and define

uk′,j :=
∑

k∈Kc∩Kk′,j

uk ∗ ψ̃k

for every k′ ∈ K ′
c′ and for every j ∈ J , so that (uk′,j) ∈ SΩ,L(N )(K

′

c′
) and

∑

k∈Kc

uk ∗ ψk =
∑

j∈J

∑

k′∈K′

c′

uk′,j ∗ ψ
′
k′,j .

Now, Corollary 3.5 and a homogeneity argument imply that there is a constant C1 > 0 such that

‖u′ ∗ ψ̃k ∗ ψ′
k′,j‖Lp(N ) = ‖u′ ∗ ψk ∗ ψ̃′

k′,j‖Lp(N ) 6 C1‖u
′ ∗ ψk‖Lp(N )

for every u′ ∈ S ′
Ω,L(N ), for every k′ ∈ K ′, for every k ∈ K, and for every j ∈ J , so that

‖uk′,j ∗ ψ
′
k′,j‖Lp(N ) 6 C1M

(1/p−1)+
∑

k∈Kc∩Kk′,j

‖uk ∗ ψk‖Lp(N ).

In addition, [8, Corollary 2.49] shows that there is a constant C2 > 0 such that ∆s
Ω′(λ′k′ ) 6 C2∆

s
Ω′(λk) for

every k′ ∈ K ′, for every k ∈ Kk′,j , and for every j ∈ J . Therefore,
∥∥∥∥∥
∑

k∈Kc

uk ∗ ψk

∥∥∥∥∥
Lp(N )

6 C3

∥∥∆s
Ω′ (λk)‖uk ∗ ψk‖Lp(N )

∥∥
ℓq(Kc)

,

where C3 := C′C1M
(1/p−1)++max(1,1/p)+max(1,1/q)C2.
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Step II. Now, consider the general case. By step I, there is C > 0 such that
∥∥∥∥∥
∑

k∈Kc

uk ∗ ψ
′
k

∥∥∥∥∥
Lp(N )

6 C
∥∥∆s

Ω′ (λk)‖uk ∗ ψ
′
k‖Lp(N )

∥∥
ℓq(Kc)

for every (uk) ∈ SΩ,L(N )(Kc), where ψ′
k = F−1

N (ϕ′
k( · tk)

−1) and (ϕ′
k) is a bounded family of positive

elements of C∞
c (Ω′) such that ϕ′

k = 1 on Supp(ϕk) + Ω′ ∩ BF ′(0, 1) for every k ∈ K. Then, fix a positive
τ ∈ C∞

c (Ω′ ∩ BF ′(0, 1)) so that η := F−1
N (τ) satisfies η(0, 0) = ‖η‖L∞(N ) = 1, and define ηρ := η(ρ · ) =

F−1
N (ρ−mτ(ρ−1 · )) for every ρ > 0. Take (uk) ∈ S ′

Ω,L(N )(Kc), and observe that

(uk ∗ ψk)ηρ = [(uk ∗ ψk)ηρ] ∗ ψ
′
k ∈ SΩ,L(N )

for every k ∈ K, thanks to [8, Proposition 4.5 and Corollary 4.6]. Then,
∥∥∥∥∥
∑

k∈Kc

(uk ∗ ψk)ηρ

∥∥∥∥∥
Lp(N )

6 C
∥∥∆s

Ω′(λk)‖(uk ∗ ψk)ηρ‖Lp(N )

∥∥
ℓq(Kc)

6 C
∥∥∆s

Ω′(λk)‖uk ∗ ψk‖Lp(N )

∥∥
ℓq(Kc)

.

The assertion follows passing to the limit for ρ→ 0+. �

Proposition 8.5. Assume that r > 1 and take s ∈ Rr and p, q ∈]0,∞]. If property (D′)sp,q holds, then
s 6 0.

Notice that, if r = 1, then property (D′)sp,q trivially holds for every s ∈ R and for every p, q ∈]0,∞].

Proof. Fix a non-zero ϕ ∈ SΩ(N ) and j ∈ { 1, . . . , r }. With the notation of [8, §2.1], define tk := (e− ej) +
ej/(k+1) ∈ T+, so that (eΩ′ · tk) converges to some non-zero element of ∂Ω′, ∆ej (tk) → 0, and ∆eℓ(tk) → 1
for every ℓ = 1, . . . , r, ℓ 6= j. For every k ∈ N, choose gk ∈ GL(E) such that tk · Φ = Φ ◦ (gk × gk). Define
ϕk := ∆−s−(b+d)/p(tk)ϕ((gk × tk) · ) for every k ∈ N, so that

‖ϕk‖Lp(N ) = ∆−s(tk)‖ϕ‖Lp(N )

for every k ∈ N. In addition, [8, Proposition 4.17] shows that the sequence (ϕk) is uniformly bounded in
B̊s

p,q(N ,Ω). Observe that Supp(FNϕk) = Supp(FNϕ) · tk for every k ∈ N (cf. [8, Proposition 4.2]), so that
we may find c > 1 such that SuppFNϕk ⊆ N−1([1/c, c]) for every k ∈ N. Then, the preceding remarks
imply that the sequence (∆−s(tk)) is bounded, so that sj 6 0. By the arbitrariness of j, this proves that
s ∈ Rr

−. �

Definition 8.6. Take s ∈ Rr and p, q ∈]0,∞]. We say thatBs
p,q(N ,Ω) embeds canonically into B

∑
j sj

p,q (N ,L)
if the following hold: the canonical mapping S ′(N ) → S ′

Ω,L(N ) induces a linear mapping

S : SL(N ) → B
−s−(1/p−1)+(b+d)
p′,q′ (N ,Ω),

and the image of the mapping

ι : Bs
p,q(N ,Ω) ∋ u 7→ (SL(N ) ∋ ϕ 7→ 〈u|S(ϕ)〉) ∈ S ′

L(N )

is contained in B
∑

j sj
p,q (N ,L).

Notice that, with the notation of Definition 8.6, the linear mapping S is necessarily continuous by the
closed graph theorem,20 so that ι : Bs

p,q(N ,Ω) → S ′
L(N ) is well defined and continuous. In addition, ι is

one-to-one since SL(N ) ⊇ SΩ,L(N ) (cf. the proof of Proposition 8.1). Finally, ι : Bs
p,q(N ,Ω) → B

∑
j sj

p,q (N ,L)
is then continuous by the closed graph theorem.

Theorem 8.7. Take s ∈ Rr and p, q ∈]0,∞]. Then, the following conditions are equivalent:

20Notice that B
−s−(1/p−1)+(b+d)

p′,q′
(N ,Ω) is a Fréchet space, since p′, q′ > 1.
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(1) the canonical mapping SΩ,L(N ) → B̊
∑

j sj
p,q (N ,L) induces a continuous linear mapping from B̊s

p,q(N ,Ω)

into B̊
∑

j sj
p,q (N ,L);

(2) Bs
p,q(N ,Ω) embeds canonically into B

∑
j sj

p,q (N ,L);
(3) property (D′)sp,q holds.

Proof. (1) =⇒ (3). Fix a (δ, R)-lattice (λk)k∈K in Ω′, a bounded family (ϕk)k∈K of positive elements of
C∞

c (Ω′) supported in B(eΩ′ , Rδ) such that
∑

k

ϕk( · t
−1
k ) > 1

on Ω′, where tk ∈ T+ is such that λk = eΩ′ · tk for every k ∈ K. In addition, take a constant c > 1,
and define Kc :=

{
k ∈ K : ϕk( · t

−1
k )(χ[1/c,c] ◦N) 6= 0

}
. Thanks to [8, Corollary 2.51], it is clear that⋃

k∈Kc
BΩ′(λk, Rδ) is contained in a compact subset of Ω′ \ { 0 }, so that Proposition 7.2 implies that there

is τ ∈ C∞
c (R∗

+) such that ψk ∗ K(τ) = ψk for every k ∈ Kc, where ψk := F−1
N (ϕk( · t

−1
k )). Therefore, by

means of Lemma 7.11 we see that there is a constant C1 > 0 such that
∥∥∥∥∥
∑

k∈Kc

uk ∗ ψk

∥∥∥∥∥
Lp(N )

6 C1

∥∥∥∥∥∥
∆s

Ω′ (λk)

∥∥∥∥∥
∑

k′∈Kc

uk′ ∗ ψk′ ∗ ψk

∥∥∥∥∥
Lp(N )

∥∥∥∥∥∥
ℓq(K)

for every (uk) ∈ SΩ,L(N )(Kc). To conclude, it will suffice to prove that there is a constant C2 > 0 such that
∥∥∥∥∥∥
∆s

Ω′(λk)

∥∥∥∥∥
∑

k′∈Kc

uk′ ∗ ψk′ ∗ ψk

∥∥∥∥∥
Lp(N )

∥∥∥∥∥∥
ℓq(K)

6 C2

∥∥∥∆s
Ω′ (λk)‖uk ∗ ψk‖Lp(N )

∥∥∥
ℓq(Kc)

for every (uk) ∈ SΩ,L(N )(Kc). Now, by Corollary 3.5 and a homogeneity argument, there is a constant
C′

2 > 0 such that
‖u ∗ ψk′ ∗ ψk‖Lp(N ) 6 C′

2‖u ∗ ψk′‖

for every u ∈ S ′
Ω,L(N ) and for every k, k′ ∈ K. In addition, there is M ∈ N such that the set K ′

k :=

{ k′ ∈ K : ψk′ ∗ ψk 6= 0 } has at most M elements for every k ∈ K (cf. Section 2), so that
∥∥∥∥∥
∑

k′∈Kc

uk′ ∗ ψk′ ∗ ψk

∥∥∥∥∥
Lp(N )

6M (1/p−1)+C′
2

∑

k′∈Kc∩K′
k

‖uk′ ∗ ψk′‖Lp(N ).

Using [8, Corollary 2.49] we also find a constant C′′
2 > 0 such that

∆s
Ω′(λk) 6 C′′

2∆
s
Ω′(λk′ )

for every k ∈ K and for every k′ ∈ Kk. Hence,
∥∥∥∥∥∥
∆s

Ω′(λk)

∥∥∥∥∥
∑

k′∈Kc

uk′ ∗ ψk′ ∗ ψk

∥∥∥∥∥
Lp(N )

∥∥∥∥∥∥
ℓq(K)

6 C2

∥∥∥∆s
Ω′ (λk)‖uk ∗ ψk‖Lp(N )

∥∥∥
ℓq(Kc)

with C2 := C′
2C

′′
2M

(1/p−1)++max(1,1/q).
(3) =⇒ (1). Define T ′

+ as the quotient of T+ by its closed central subgroup which acts by homotheties
on Ω′, and endow T ′

+ with the corresponding quotient Lie group structure. Fix a relatively compact open
neighbourhood V ′ of the identity in T ′

+, and let (t′k)k∈K be a maximal family in T ′
+ such that (V ′t′k)∩(V

′t′k′) =

∅ for every k, k′ ∈ K, k 6= k′. Therefore, H ′ := V ′−1V ′ is a compact subset of T ′
+ and T ′

+ =
⋃

k∈K H ′t′k.
Then, there is a bounded family (ϕ′

k)k∈K of positive elements of C∞
c (T ′

+) such that χV ′ 6 ϕ′
k 6 χH′ for

every k ∈ K, and such that ∑

k∈K

ϕ′
k(t

′t′−1
k ) = 1
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for every t′ ∈ T ′
+. In addition, fix a positive η ∈ C∞

c (R∗
+) such that χN(eΩ′ )[3/4,2] 6 η 6 χN(eΩ′ )[1/2,4] and

such that ∑

j∈Z

η(2−2j · ) = 1

on R∗
+, and observe that there is a unique bounded family (ϕk,j)k∈K,j∈Z of positive elements of C∞

c (Ω′)
such that

ϕk,j(λ) = η(N(λ))ϕ′
k(π(λ))

for every λ ∈ Ω′, where π is the composition of the inverse of the mapping T+ ∋ t 7→ eΩ′ · t ∈ Ω′ with the
canonical projection T+ → T ′

+. Then,
∑

j∈Z

∑

k∈K

ϕk,j(λ · t−1
k,j) = 1

for every λ ∈ Ω′, where tk,j is the unique element of T+ such that N(eΩ′ · tk,j) = 22j and whose class in T ′
+

is tk. Let us prove that (eΩ′ · tk,j)k∈K,j∈Z is a (δ, R)-lattice on Ω′ for some δ > 0 and some R > 1. Indeed,
let V and H be the subsets of Ω′ such that

χV (λ) = χN(eΩ′ )]3/4,2[(N(λ))χV ′(π(λ)) and χH(λ) = χN(eΩ′ )[1/2,4](N(λ))χH′ (π(λ))

for every λ ∈ Ω′. Then, the V · tk,j are open and pairwise disjoint, while the H · tk,j are compact and cover
Ω′. Since eΩ′ ∈ V , there are δ > 0 and R > 1 such that B(eΩ′ , δ) ⊆ V and H ⊆ B(eΩ′ , Rδ), so that (eΩ′ · tk,j)
is a (δ, R)-lattice.

Now, define ψk,j := F−1
N (ϕk,j( · t

−1
k,j)), and observe that

f ∗ K(η(2−2j · )) =
∑

k∈K

f ∗ ψk,j

for every f ∈ SΩ,L(N ), since πλ, applied to both sides of the asserted equality, gives rise to the same
operators, for almost every λ ∈ F ′ \W . Hence, Lemma 8.4 and a dilation argument imply that there is a
constant C3 > 0 such that

‖f ∗ K(η(2−2j · ))‖Lp(N ) =

∥∥∥∥∥
∑

k∈K

f ∗ ψk,j

∥∥∥∥∥
Lp(N )

6 C3

∥∥∥∆s(tk,0)‖f ∗ ψk,j‖Lp(N )

∥∥∥
ℓq(K)

for every f ∈ SΩ,L(N ) and for every j ∈ Z. Hence,
∥∥∥2j

∑
ℓ sℓ‖f ∗ K(η(2−2j · ))‖Lp(N )

∥∥∥
ℓq(Z)

6 C3

∥∥∥∆s(tk,j)‖f ∗ ψk,j‖Lp(N )

∥∥∥
ℓq(K×Z)

for every f ∈ SΩ,L(N ), so that B̊s
p,q(N ,Ω) embeds continuously into B̊

∑
j sj

p,q (N ,L).
(3) =⇒ (2). The assertion follows by the preceding case unless max(p, q) = ∞. By transposition

(cf. Section 2), we infer that the canonical mapping S ′(N ) → S ′
Ω,L(N ) induces a continuous linear mapping

S : SL(N ) → B
−s−(1/p−1)+(b+d)
p′,q′ (N ,Ω). Hence, there is a canonical one-to-one continuous linear mapping

ι : Bs
p,q(N ,Ω) → S ′

L(N ) (cf. Definition 8.6). The assertion will therefore follow if we prove that the image

of ι is contained in B
∑

j sj
p,q (N ,L). Take (tk,j), (ϕk,j), and (ψk,j) as in the proof of the implication (3) =⇒

(1). Assume first that q = ∞, so that S(SL(N )) ⊆ B̊
−s−(1/p−1)+(b+d)
p′,q′ (N ,Ω). Then,

ι(u) =
∑

k,j

u ∗ ψk,j

with convergence in S ′
L(N ), for every u ∈ Bs

p,q(N ,Ω). If, otherwise, q <∞, then by inspection of the proof
of [8, Lemma 4.22] we see that

u =
∑

k,j

u ∗ ψk,j
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in Bs
p,q(N ,Ω), so that, again,

ι(u) =
∑

k,j

u ∗ ψk,j ,

with convergence in S ′
L(N ), for every u ∈ Bs

p,q(N ,Ω).
In particular,

ι(u) ∗ K(η(2−2j · )) =
∑

k′,j′

u ∗ ψk′,j′ ∗ K(η(2−2j · )) =
∑

k′,j′

∑

k

u ∗ ψk′,j′ ∗ ψk,j =
∑

k

u ∗ ψk,j ,

where the sums converge locally uniformly, for every u ∈ Bs
p,q(N ,Ω). Therefore,

‖ι(u) ∗ K(η(2−2j · ))‖Lp(N ) 6 sup
K′

∥∥∥∥∥
∑

k∈K′

u ∗ ψk,j

∥∥∥∥∥
Lp(N )

for every u ∈ Bs
p,q(N ,Ω), where K ′ runs through the set of finite subsets of K. We may then proceed as in

the proof of the implication (3) =⇒ (1).
(2) =⇒ (1). Obvious. �

We now recall (an equivalent formulation of) the definition of property (D)sp,q , introduced in [8, Definition
5.5].21 We say that property (D)sp,q holds if there are a (δ, R)-lattice (λk)k∈K on Ω′, for some δ > 0 and
some R > 1, a bounded family (ϕk)k∈K of elements of C∞

c (Ω′) such that
∑

k∈K

ϕk( · t
−1
k ) > 1

on Ω′, where tk ∈ T+ and λk = eΩ′ · tk for every k ∈ K, and two constants C > 0 and c > 1 such that
∥∥∥∥∥
∑

k∈K

uk ∗ ψk

∥∥∥∥∥
Lp(N )

6 C
∥∥∥∆s

Ω′(λk)e
c〈λk,eΩ〉‖uk ∗ ψk‖Lp(N )

∥∥∥
ℓq(K)

for every (uk) ∈ SΩ,L(N )(K), where ψk := F−1
N (ϕk( · t

−1
k )) for every k ∈ K. As in Lemma 8.4, one then sees

that the same holds for (uk) ∈ S ′
Ω,L(N )(K).

Proposition 8.8. Take s ∈ Rr and p, q ∈]0,∞]. Assume that either
∑

j sj < 0, or
∑

j sj = 0 and

q < min(1, p). Then, the following conditions are equivalent:

(1) property (D)sp,q holds;
(2) property (D′)sp,q.

This extends [1, Proposition 4.16], which deals with the case in which n = 0, p, q ∈ [1,∞[, s ∈ Rd, and
Ω is irreducible and symmetric.

Proof. (1) =⇒ (2). Obvious.
(2) =⇒ (1). Take (tk,j)k∈K,j∈Z, (ϕk,j)k∈K,j∈Z, and (ψk,j)k∈K,j∈Z as in the proof of Theorem 8.7,

and observe that, by Lemma 8.4 and a dilation argument, there is a constant C1 > 0 such that, for every
(uk,j) ∈ SΩ,L(N )(K×Z),
∥∥∥∥∥∥

∑

k∈K

∑

j∈Z

uk,j ∗ ψk,j

∥∥∥∥∥∥

min(1,p)

Lp(N )

6
∑

j∈Z

∥∥∥∥∥
∑

k∈K

uk,j ∗ ψk,j

∥∥∥∥∥

min(1,p)

Lp(N )

6 C1

∑

j∈Z

∥∥∆s(tk,0)‖uk,j ∗ ψk,j‖Lp(N )

∥∥min(1,p)

ℓq(K)
.

21This property has been considered in a redundant way in [8].
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Therefore, by Hölder’s inequality,
∥∥∥∥∥∥

∑

k∈K

∑

j∈Z

uk,j ∗ ψk,j

∥∥∥∥∥∥

min(1,p)

Lp(N )

6 C1C2

∥∥∥∆s(tk,j)e
〈eΩ′ ·tk,j ,eΩ〉‖uk,j ∗ ψk,j‖Lp(N )

∥∥∥
min(1,p)

ℓq(K×Z)
,

where22

C2 :=

∥∥∥∥sup
k∈K

e−2j〈eΩ′ ·tk,0,eΩ〉2−j
∑

ℓ sℓ

∥∥∥∥
ℓmin(1,p)/(1−min(1,p)/q)+ (Z)

<∞.

The proof is complete. �
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