
ARTICLE IN PRESS
International Journal of Forecasting xxx (xxxx) xxx

L

f
t
a
d
e
i

✩

a
c
t
G
T
4
o
f

a
C

h
0
t

Contents lists available at ScienceDirect

International Journal of Forecasting

journal homepage: www.elsevier.com/locate/ijforecast

Testing for equal predictive accuracywith strong
dependence✩,✩✩

aura Coroneo a, Fabrizio Iacone b,a,∗

a University of York, United Kingdom
b Università degli Studi di Milano, Italy

a r t i c l e i n f o

Keywords:
Strong autocorrelation
Forecast evaluation
Equal predictive accuracy
Diebold and Mariano test
Time series

a b s t r a c t

We analyse the properties of the Diebold and Mariano (1995) test in the presence of
autocorrelation in the loss differential. We show that the power of the Diebold and
Mariano (1995) test decreases as the dependence increases, making it more difficult to
obtain statistically significant evidence of superior predictive ability against less accurate
benchmarks. We also find that, after a certain threshold, the test has no power, and
the correct null hypothesis is spuriously rejected. These results caution us to seriously
consider the loss differential’s dependence properties before applying the Diebold and
Mariano (1995) test.
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1. Introduction

Accurate forecasts are extremely important for
orward-looking decision-making. Weather forecasts of-
en have a dedicated section even on the daily news,
nd predictions of the diffusion of the COVID-19 pan-
emic have critically impacted most people’s lives. In
conomics, decisions over individual savings, firm-level
nvestments, government fiscal policies and central bank
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monetary policies rely on forecasts of, among others,
future economic activity and price levels.

To discriminate between good and bad forecasts,
Diebold and Mariano (1995) [DM hereafter] suggested
comparing alternative forecasts using a test for equal
predictive ability. The DM test is based on a loss function
associated with each forecast error. It allows us to test the
null hypothesis of zero expected loss differential between
two competing forecasts. This approach considers forecast
errors as model-free, and the test is also valid when
the forecasts are produced from unknown models, for
example, from forecast survey data. In addition, if the
objective is to compare forecasting methods to forecasting
models, then Giacomini and White (2006) showed that
the DM test can still be applied in an environment with
asymptotically non-vanishing estimation uncertainty.

The DM test allows us to test for equal predictive
accuracy using any loss function, and the test statistic
is asymptotically valid for contemporaneously correlated,
serially correlated, and non-normal forecast errors. The
test relies on the assumption that the loss differential is
weakly dependent. The rationale for this assumption is
that, under mean squared error (MSE) loss, optimal q-step
accuracy with strong dependence. International Journal of Forecasting

ahead forecasts should generate at most MA(q−1) errors.
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hus, if the considered forecast approximates the optimal
orecast, its forecast errors should not be too correlated
ver time, although dependence beyond the MA(q − 1)

boundary may occur. In practice, forecasts with errors
that are reasonably correlated can occur not only when
the considered forecast fails to approximate the optimal
forecast under MSE loss but also when the forecast is
optimal under an alternative loss function (see Patton &
Timmermann, 2007) or it is evaluated on a relatively short
sample.

Still, we can encounter situations where the loss dif-
ferential is highly autocorrelated, even in a prediction
with weakly dependent forecast errors and in samples of
moderate size. This can happen when the DM test is used
to compare the predictive ability of a selected forecast
against a naive benchmark. This is a common practice,
as naive benchmarks are cost-effective and readily avail-
able anytime, providing a standard comparison reference.
Using simple benchmarks allows us to understand the
added value of a specific forecasting technique, as it is
desirable that predictions from sophisticated forecasting
methods (for example, complex models or expensive sur-
veys) are more accurate than naive benchmarks. How-
ever, in some cases, naive forecasts may generate relevant
autocorrelation in the loss differential.

In this paper, we study the performance of the DM test
when the assumption of weak autocorrelation of the loss
differential does not hold. We characterise strong depen-
dence as local to unity as in Phillips (1987) and Phillips
and Magdalinos (2007a). This definition is at odds with
the more popular characterisation in the literature that
treats strong autocorrelation and long memory as syn-
onyms. Local to unity, however, seems well suited to
derive reliable guidance when the sample is not very
large, as is the case in many applications in economics.
With this definition, the strength of the dependence is
also determined by the sample size: a stationary AR(1)
process with a root close to unity may be treated as
weakly dependent in a very large sample. Still, standard
asymptotics may be poor guidance for cases with smaller
samples, and local to unity asymptotics may be more
informative. We show that the power of the DM test
decreases as the dependence increases, making it more
difficult to obtain statistically significant evidence of su-
perior predictive ability against less accurate benchmarks.
We also find that the test has no power after a certain
threshold, and the correct null hypothesis is spuriously
rejected. These results caution us to seriously consider
the loss differential’s dependence properties before ap-
plying the DM test, especially when considering naive
benchmarks. In this respect, a unit root test could be
a valuable diagnostic for the preliminary detection of
critical situations.

To illustrate the problems associated with the DM test
when there is dependence in the loss differential, we
consider the case in which an AR(1) forecast for inflation
in the Euro Area is compared to two naive benchmarks:
a constant 2% prediction (that represents the inflation
target in the Euro Area) and a rolling average predic-
tion. These benchmark predictions have highly depen-
dent forecast errors. Consequently, the loss differential
2

is dependent, and the DM test fails to reject the null
of equal predictive accuracy, even if the benchmarks are
less accurate than the AR(1) forecast for short forecasting
horizons.

In the literature, some attention has been paid to the
issue of forecast evaluation in the presence of persis-
tence. Corradi et al. (2001) examined the DM statistic
in the presence of cointegration, whereas Rossi (2005)
examined the effect of high persistence on the loss dif-
ferential. McCracken (2020) provided an example to show
that using a fixed and finite estimation window can result
in loss differentials that depend on the first observa-
tions so that the time series of the loss differential in
the DM test is not ergodic for the mean. These works
considered a framework with parameter estimation error;
instead, Clark (1999), Khalaf and Saunders (2017) and
Kruse et al. (2019) took forecast errors as primitives. Clark
(1999) and Khalaf and Saunders (2017) provided convinc-
ing simulation evidence that the DM test is incorrectly
sized in the presence of dependence. Giacomini andWhite
(2006) and Coroneo and Iacone (2020) showed that under
benign forms of weak dependence, the correct size might
be restored using bootstrap or fixed smoothing asymp-
totics, respectively, but results in Khalaf and Saunders
(2017) suggest that even bootstrap is only useful and
reliable guidance when the dependence is not too strong,
relative to the sample size. On the other hand Kruse
et al. (2019) derived the properties of the DM test in
the presence of long memory using standard asymptotics
and memory and autocorrelation consistent standardis-
ation. Kruse et al. (2019) had a sample of 4883 obser-
vations, so long memory seems a reasonable modelling
strategy in their case. However, this approach cannot
be applied to moderate sample sizes, such as the ones
typically encountered in macroeconomic forecasting.

Of course, the DM test can be seen as a particular
application of the standard t-test on the mean in the
presence of dependence. A certain level of persistence
can be accommodated for the t-test using bootstrap or
alternative asymptotics, see for example, Gonçalves and
Vogelsang (2011) for the former, and Kiefer and Vogelsang
(2005), Sun (2014c), Sun (2014b), Lazarus et al. (2018)
for the latter. Following Müller (2014) or Giraitis and
Phillips (2012), it is clear that even the limit distribution
in Kiefer and Vogelsang (2005) and related works does
not provide useful guidance when the persistence is too
strong in relation to the sample size. Müller (2014) does
provide an algorithm to perform a reliable test in that
case. However, the sample size required is larger than
the samples usually available in forecast evaluation exer-
cises. As a promising alternative option, Henzi and Ziegel
(2021) and Choe and Ramdas (2023) recently proposed
procedures based on sequential testing that do not require
assumptions on the dependence of the process. These new
procedures may, therefore, be robust even in situations
of dependence. However, the assumption of bounded loss
differentials may limit their applicability.

As it is clear from this literature review, the core of
the statistical results discussed here should not come
as a surprise. However, their implication in the context

of testing for equal predictive ability remains relevant,
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articularly when good forecasts are compared against
oor benchmarks with relevant autocorrelations, as our
esults suggest that in these cases, the blind applica-
ion of the DM test leads to incorrect conclusions. Even
ore importantly, it may be more difficult to reject the
ull hypothesis when good forecasts are compared to
oor competitors than when the same good forecasts are
ompared to competitors that are nearly as good. This
erverse and undesirable feature of the DM test should
e kept in mind in forecast evaluation exercises.
The paper is organised as follows. We formally intro-

uce the DM test in Section 2 and derive the limit proper-
ies of the DM statistics in the presence of dependence in
ection 3. We investigate the practical implication of our
heoretical findings in a Monte Carlo exercise (Section 4)
nd in the empirical application (Section 5). Details on
he assumptions of the DGP and formal derivations are
n Appendix.

. DM test

The DM test was introduced to compare two time
eries forecasts according to a user-chosen loss metric. For
= {1, . . . , T }, denoting the forecast errors as e1,t and

2,t , respectively, and the loss function L(.), Diebold and
ariano (1995) consider the loss differential

t = L(e1,t ) − L(e2,t ) (1)

nd test the null hypothesis of equal predictive ability H0 :

E(dt ) = 0 against the alternative H1 : E(dt ) ̸= 0. The key
assumptions by Diebold and Mariano (1995) and Diebold
(2015) are that dt is stationary and weakly dependent,
and the average loss, d =

1
T

∑T
t=1 dt , follows a Central

Limit Theorem. In particular, denoting µ = E(dt ), it is
assumed that

√
T (d − µ) →d N(0, σ 2) as T → ∞, where

< σ 2 < ∞ is the long-run variance of dt .
Thus, inference on E(dt ) can be based on the nor-

alised limit

T
(d − µ)
σ

→d N(0, 1). (2)

Denoting σ̂ 2 an estimate of σ 2, σ̂ =
√
σ̂ 2, then the

lassical DM test uses the statistic

M =
√
T
d
σ̂

where the null hypothesis of equal predictive ability is
rejected at 5% significance level against a two-sided al-
ternative if the realization of |DM| is above the 1.96
hreshold.

The original DM test exploits the consistency of σ̂ 2 to
ustify the standard normal as the limit distribution under
he null. This may generate a rather poor size performance
n finite samples; see Diebold and Mariano (1995) and
lso Clark (1999). With fixed smoothing asymptotics, the
imit for σ̂ 2 is derived under alternative asymptotics. This
ccounts for the distribution of σ̂ 2. Consequently, the DM
tatistic does not have a limit in the standard normal
istribution. Still, the alternative limit provides a better
pproximation of the distribution of the DM statistic in
inite samples. As the alternative distribution depends on
3

how σ 2 is estimated, we consider two cases: the weighted
autocovariance estimate using the Bartlett kernel and the
weighted periodogram estimate using the Daniell kernel.

Denoting by γ̂l the sample autocovariance of lag l,
the weighted autocovariance estimate of the long run
variance using the Bartlett kernel is

σ 2
A = γ̂0 + 2

M∑
l=1

M − l
M

γ̂l. (3)

where M is a user-chosen bandwidth parameter, and

DMA =
√
T

d
σ̂A
.

Under H0,

DMA →d N(0, 1), if 1/M + M/T → 0 as T → ∞,

DMA →d ΦA(b), if M/T → b ∈ (0, 1] as T → ∞

where the distribution ofΦA(b) depends on b; this is char-
cterised in Kiefer and Vogelsang (2005), where relevant
uantiles are also provided.
For the weighted periodogram estimate, denoting

(λ) =
1

√
2πT

∑T
t=1 dte

iλt the Fourier transform of dt at
frequency λ, and I(λ) = |w(λ)|2 as the periodogram, the
aniell weighted periodogram estimate is

2
P =

2π
m

m∑
j=1

I(λj) (4)

here, for integer j, λj =
2π j
T are the Fourier frequencies

and m is a user-chosen bandwidth parameter. The test
statistic is then given by

DMP =
√
T

d
σ̂P
. (5)

Under H0,

DMP →d N(0, 1), if 1/m + m/T → 0 as T → ∞,

DMP →d t2m, if m is fixed as T → ∞

where t2m is the Student’s t-distribution with 2m de-
grees of freedom, see Coroneo and Iacone (2020) for more
details.

3. The DM statistic with dependence

The key assumption in constructing the DM test is that
dt is weakly dependent. This assumption seems reason-
able in the context of forecasts, as it is well known that,
under MSE loss, optimal q−step ahead forecasts should
be at most MA(q − 1). For this very reason, Diebold and
Mariano (1995) considered estimating σ 2 using only the
first q − 1 autocovariances of dt and verified that this as-
sumption was met in the data in the empirical application
that they presented.

However, in practice, it is not uncommon to have
strong autocorrelation in the loss differential. This can
happen in the presence of optimal forecasts under al-
ternative loss functions or when the forecast evaluation
sample T is short. In addition, it is common practice to

apply the DM test to test for equal predictive accuracy of
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selected forecast against a naive benchmark, resulting
n dependent forecast errors and loss differential, possibly
ven strongly autocorrelated. Section 4 contains an ex-
mple illustrating how stochastically trending behaviour
ay appear in the loss differentials.
Denoting µ = E(dt ) and yt = dt − µ, so that

t = µ+ yt , (6)

e assume that

t = ρTyt−1 + ut (7)

here ut is a zero mean, weakly dependent process with
ong run variance ω. We consider two different models
or ρT : in Section 3.1 we discuss the local-to-unity AR(1)
pproximation as in Phillips (1987) (alongside with the
tandard unit root model); in Section 3.2 we consider
he moderate deviations from a unit root as in Phillips
nd Magdalinos (2007a). These models are a convenient
epresentation of dependence for yt when the dimension
n T is relatively short, as is indeed the case in many em-
irical studies. In both cases, we refer to Appendix A for
detailed presentation and discussion of the assumptions
nd the derivation of the results.

.1. Local to unity autocorrelation

In this case, we assume for ρt in (7)

T = ec/T with c ≤ 0. (8)

hen c is in the neighbourhood of 0, ρT is approximated
s 1 + c/T , i.e. ρT ∼ 1 + c/T as c → 0. When c = 0,

the process yt has a unit root and is initialised setting the
initial condition y0 = Op(1).

Our model is completed by formalising the assump-
tions on ut .

Assumption A.1. Let εt be independent and identically
distributed (iid) random variables, with E(εt ) = 0, E(ε2t ) =

ς2. Then, assume that ut =
∑

∞

j=0 ψjεt−j is such that⎛⎝ ∞∑
j=0

ψj

⎞⎠2

> 0,
∞∑
j=0

j1/2|ψj| < ∞.

Denoting g(λ) as the spectral density of ut , Assump-
tion A.1 implies that g(0) > 0 and that g(λ) < ∞

uniformly in λ. Assumption A.1 is sufficient to establish
the functional central limit theorem (FCLT) for a station-
ary, weakly dependent linear process as in Phillips and
Solo (1992), see remark 3.5 of Phillips and Solo (1992),
and notice that condition

∑
∞

j=0 j
1/2

|ψj| < ∞ implies (16)
of Phillips and Solo (1992), as discussed on page 973.

Define

Jc(r) =

∫ r

0
e(r−s)cdW (s)

where W (r) is a standard Brownian motion. The process
Jc(r) is an Ornstein–Uhlenbeck process: for given r , it
is normally distributed (when c = 0, the Ornstein–
Uhlenbeck process is the standard Brownian motion). We

refer to Phillips (1987) for a detailed discussion, but we

4

state some important results from Lemma 1 of Phillips
(1987):

T−1/2y⌊rT⌋ →d ωJc(r) (9)

T−1/2y →d ω

∫ 1

0
Jc(r)dr (10)

T−2
T∑

t=1

y2t →d ω
2
∫ 1

0
Jc(r)2dr (11)

where Jc(r) = W (r) when c = 0. The limit in (9)
ollows proceeding as in Phillips (1987) but using the
CLT for linear processes instead of for mixing sequences
also see Chan and Wei (1987)); (10) and (11) are then
ue to the continuous mapping theorem. The result for

y means that the sample average is inconsistent in the
neighbourhood of a unit root.

Denoting

Jc =

∫ 1

0
Jc(r)dr,

we can now establish the limit properties of the DMA and
DMP statistics.

Theorem 1. For dt generated as in (6)–(8), and under
ssumption A.1,

ase A: For 1/M + M/T → 0 as T → ∞

√
M

√
T
DMA →d

Jc√∫ 1
0

(
Jc(r)2 − J

2
c

)
dr

(12)

Case P: For 1/m + m/T → 0 as T → ∞

1
√
m

DMP →d
Jc√

1
2

∫ 1
0

(
Jc(r)2 − Jc

2
)
dr

(13)

We refer to Appendix A for a more detailed derivation
of this and other results in this section. Given (12) or
(13), as M/T → 0 or m → ∞, the DM test statistic
diverges even when the null hypothesis is correct, thus
giving spurious evidence of superior predictive ability. As
we interpret the local to unit root as an approximation
of an AR(1) in the finite sample, this result suggests that
the DM test diverges in the presence of a root that is
stationary but close to 1.

Next, we present the limit of the DMA and DMP statis-
tics using fixed smoothing asymptotic.

Denoting

c(r) =

∫ r

0
Jc(s)ds − r

∫ 1

0
Jc(s)ds

A(b) =
2
b

∫ 1

0
J̃c(r)2dr −

2
b

∫ 1−b

0
J̃c(r )̃Jc(r + b)dr

QP (j) = (2π j)2
{(∫ 1

0
sin(2π jr )̃Jc(r)dr

)2

+

(∫ 1

cos(2π jr )̃Jc(r)dr
)2}
0
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heorem 2. For dt generated as in (6)–(8), and under
Assumption A.1,

Case A: For M/T → b ∈ (0, 1] as T → ∞,

DMA →d
Jc

√
QA(b)

(14)

ase P: For m fixed as T → ∞ then

DMP →d
Jc√

1
m

∑m
j=1 QP (j)

. (15)

When c = 0, so that the process yt is characterised
y a unit root, the limit distribution J̃c(r) is replaced by

W̃ (r) =
∫ r
0 W (s)ds−r

∫ 1
0 W (s)ds where W (r) is a standard

Brownian motion, and Jc is replaced by W =
∫ 1
0 W (r)dr .

The limits in (14) and (15) exhibit the self-normalizat-
ion property as in Shao (2015). It is interesting to compare
the limits in Theorem 1 and in Theorem 2 with results in
the literature. It is well known that the standardised mean
is diverging in the presence of strongly autocorrelated
series when m → ∞ is assumed (and an analogue
result would hold when M/T → 0), but not when m is
assumed fixed, see for example McElroy and Politis (2012)
and Hualde and Iacone (2017). This result was established
in the local to unity process context, for example, in Sun
(2014a). The advantages of series variance estimators of
the long run variance in the presence of autocorrelation is
also discussed in Müller (2007). Our interest in the limits
in Theorem 1 and in Theorem 2 is, however, slightly dif-
ferent, as we do not see these as alternative limits under
different asymptotics but rather as guidance that show
properties of the DM test for relatively small and large m
(large M/T and small M/T ). The limits in Theorem 1 and
n Theorem 2 are only relevant to establish whether the
est statistic is divergent.

emark 1. Results in in Theorem 1 and in Theorem 2
ndicate that:

a. With relatively large values for m (or equivalently
small M/T ), the DM statistics diverges even under
H0 (spurious significance).

b. With small values form (or equivalently largeM/T ),
the DM statistics do not diverge even under H1, so
the test is inconsistent. However, as the distribution
in (15) has much thicker tails than a t2m distribu-
tion (and similarly for the distribution in (14) with
respect to the ΦA(b) distribution), then it is still
possible (and indeed it may be frequent) to have
many spurious rejections of the null hypothesis.

c. The limits in Theorem 1 and in Theorem 2 hold
regardless of whether µ = 0 or µ ̸= 0, so they
are not affected by whether the null hypothesis
is correct or not. The DM test cannot discriminate
between null and alternative hypotheses.

.2. Moderate deviations from unit root

As c in (8) varies between −∞ and 0, it is possi-
le to use the theory from Section 3.1 for any AR(1)
5

model with positive autocorrelation. However, the limits
in Theorem 1 and in Theorem 2 may not provide a valu-
able guideline when ρT is not, in fact, in the very close
neighbourhood of unity. For this situation, Phillips and
Magdalinos (2007a) generalise ρT to moderate deviations
from the unit root. We simplify the model slightly and
consider

ρT = 1 + c/Tα for α ∈ (0, 1), and c < 0. (16)

Moderate deviations from the unit root following (16) are
also discussed in Phillips and Magdalinos (2007b). Giraitis
and Phillips (2012) provide a generalisation of some re-
sults under a weaker condition, similar to (1−ρT )T → ∞.
We strengthen Assumption A.1 slightly, as

Assumption A.2. Assume that
∞∑
s=j

|ψs| < Cj−1−a for j ≥ 1

for a > 2.

Under (16), d is a consistent estimate of µ only when
α ∈ (0, 1/2), but the CLT in (2) still holds for any α ∈

(0, 1), see Theorem 2.1 and the discussion on page 168
of Giraitis and Phillips (2012). Recalling that, for any T ,
σ 2

= (1 − ρT )−2ω2 and noticing that this is proportional
to T 2α in large samples, the rate of convergence of the
CLT is reduced to

√
T 1−2α (the theory does not cover the

α = 1 case but notice that
√
T 1−2α → T−1/2 as α → 1

and this is the rate in (10), suggesting a proximity of the
two representations; the extension of (9) under (16) is
explored more in Phillips and Magdalinos (2007b)).

Theorem 3. For dt generated as in (6)–(7) and (16), under
Assumption A.2, for any α ∈ (0, 1):

Case A: For 1/M + M/Tα → 0 as T → ∞:

(−c)1/2(M/Tα)1/2
d − µ

σ̂A
→d N(0, 1) (17)

Case P: For 1/m + m/T → 0 as T → ∞,

if mTα−1
→ 0 :

√
T
d − µ

σ̂P
→d N(0, 1) (18)

if mTα−1
→ ∞ : (mTα−1)−1/21/2(−c)1/2{

√
T
d − µ

σ̂P

}
→d N(0, 1) (19)

Remark 2.

a. Results in (17) and (19) are analogue; we conjec-
ture that a result analogue to (18) also exists when
σ̂A is used and M/Tα → ∞.

b. Rewriting DMP =
√
T d−µ

σ̂P
+

√
T µ

σ̂P
for m as in

(18), the power depends on the drift
√
T µ

σ̂P
=

O(T 1/2−α). Therefore, the DM test still has power
in moderate deviations from the unit root when
α < 1/2. However, from this representation, it
is immediate to see that, as the drift is of order
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T 1/2−α , the power decreases as α → 1/2. This result
means it is progressively more difficult to detect
forecast inaccuracy as the dependence increases,
even within the weak dependence region.

c. When mTα−1
→ ∞ (or M/Tα → 0), the DM

statistics diverges even under H0, thus resulting
again in spurious significance.

d. Condition mTα−1
→ 0 in (18) is not binding when

α = 0 but it is very strong as α → 1. Thus,
results in (18) and (19) are intermediate between
the weakly dependent |ρT | = |ρ| < 1 case and the
unit root case. Taken together, they suggest that for
large values of m, the DM test will give spurious
significance in finite samples since ρ is close to 1,
and this problem is more relevant the closer ρ is to
unity, relative to the sample size, and the larger the
bandwidth m.

4. Monte Carlo results

In this section, we investigate the properties of the DM
statistic in the neighbourhood of unity in a Monte Carlo
exercise. We consider the DGP

yt = α + βxt−1 + ut (20)

where

xt = φxt−1 + εt , |φ| < 1, εt ∼ N.i.d.(0, σ 2
ε )

ut ∼ N.i.d.(0, σ 2
u )

and ut independent from εs for all s, t .
Notice that we have assumed E(xt ) = 0, this is without

loss of generality because in (20) we could use deviations
from the mean, yt = (α+βE(xt−1))+β(xt−1−E(xt−1))+ut .
Finally, we also set β = 1, again without loss of generality.

We consider two forecasting strategies:

y1,t = β̂xt−1 where β̂ = PlimR→∞

∑t−1
s=t−R ysxs−1∑t−1
s=t−R x

2
s−1

(21)

y2,t = ỹ where ỹ = PlimR→∞

1
R

t−1∑
s=t−R

ys (22)

so β̂ = 1 (in general it would be β) and ỹ = α, and

e1,t = yt − y1,t = α + ut

e2,t = yt − y2,t = xt−1 + ut

dt = (e21,t − e22,t ) = α2
+ 2αut − x2t−1 − 2xt−1ut

and

E(dt ) = (e21,t − e22,t ) = α2
−

1
1 − φ2 σ

2
ε

so, for

α =

√
1

1 − φ2 σ
2
ε + δ (23)

hen E(dt ) = 0 when δ = 0. Notice that as |φ| < 1,
hen both xt , yt and dt are mixing with sufficient rate,
(d2s ) < ∞ (given the Gaussianity) and the long run
ariance exists.
6

Remark. From Lemma 1 of Dittmann and Granger (2002),
x2t−1 is AR(1) with coefficient φ2; αut is an independent
process and xt−1ut is Martingale difference. Thus, dt is like
R(1) plus noise.

As in any realistic situation, the sample size T is given,
hether the standard normal limit or Theorem 1 is a bet-
er approximation depends on the relative interplay be-
ween φ and T (by the same token, the Lemma in Dittmann
nd Granger (2002) should also be seen as an approxima-
ion, when φ is close to 1, relative to T ). For values of φ
lose to 1 (relative to T ), the limit (10) would be a better
pproximation for the sample average, and Theorem 1
s a more appropriate guideline; conversely, (2) and the
tandard normal limit for the DM statistic should be a
ore reliable guideline when φ is not close to 1, relative

o T . Thus, the same value of φ could generate spurious
ejections depending on the sample size. In this Monte
arlo study, we consider a range of values for φ and T to
ssess the interplay between these key elements.
We consider two sample sizes, T = 50 and T = 100,

nd a range of bandwidths spanning m = 1 to m =
⌊
T 2/3

⌋
hen the average periodogram is used, and a range of
andwidths spanning from M =

⌊
T 1/4

⌋
to M = T

hen the weighted autocovariance estimator is used. For
ach experiment, we run 10,000 repetitions. We compute
he empirical frequencies of rejections of the two-sided
ersion of the test, i.e. we compare the |DM| statistic
gainst the appropriate 5% critical value from the t2m or
he ΦA(b) distribution, respectively, the latter as in Kiefer
nd Vogelsang (2005). We always use these critical values
ince they yield better size properties, as discussed, for
xample, in Lazarus et al. (2018) or in Coroneo and Iacone
2020).

We consider σ 2
ε = 1, σ 2

u = 1, and a range of values
or φ; α is as in (23) for two values of δ. We set δ = 0
o observe the effects on the empirical size; to observe
he effects on power, we set δ = −

√
σ 2
ε /(1 − φ2) +√

σ 2
ε /(1 − φ2) − 1 as this yields E(dt ) = −1: with this

choice we can observe how the power changes as the
persistence increases, for the same deviation from the null
hypothesis.

In Tables 1–2, we report the simulation results us-
ing the weighted autocovariance and the weighted peri-
odogram estimates of the long-run variance, respectively.
Results confirm the findings in Section 3. In particular:

a. The empirical size is correct for φ = 0, but (for
given T ) it deteriorates as we move closer to φ = 1
and as M is smaller or m is larger.

b. The empirical power drops as we move closer to
φ = 1 and as M is smaller or m is larger, in the
sense that the presence of E(dt ) ̸= 0 does not
affect much the number of rejections of the null
hypothesis in those cases.

These results support our key conclusions in Section 3.
In particular, in the size exercise, the distortion increases
with φ and bandwidth m (and decreases with M). In the
power exercise, the power drops as φ increases from 0 to
0.85, but notice that for large values of φ, this power is,
in fact, fictitious, in the sense that it rather reflects the
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Table 1
Empirical null rejection frequencies - weighted autocovariances.

E(dt ) = 0, T = 50

M
φ 0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99⌊

T 1/4
⌋

0.055 0.069 0.134 0.176 0.237 0.353 0.556 0.706 0.827⌊
T 2/9

⌋
0.055 0.069 0.134 0.176 0.237 0.353 0.556 0.706 0.827⌊

T 1/3
⌋

0.054 0.062 0.118 0.152 0.204 0.307 0.500 0.658 0.798⌊
T 1/2

⌋
0.052 0.056 0.092 0.118 0.155 0.229 0.380 0.539 0.710

T 0.051 0.056 0.083 0.100 0.128 0.178 0.284 0.401 0.545

E(dt ) = −1, T = 50

M
φ 0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99⌊

T 1/4
⌋

0.885 0.583 0.244 0.208 0.217 0.309 0.530 0.696 0.826⌊
T 2/9

⌋
0.885 0.583 0.244 0.208 0.217 0.309 0.530 0.696 0.826⌊

T 1/3
⌋

0.873 0.554 0.197 0.157 0.169 0.255 0.471 0.645 0.794⌊
T 1/2

⌋
0.817 0.482 0.120 0.085 0.093 0.157 0.343 0.525 0.706

T 0.654 0.379 0.099 0.070 0.072 0.117 0.247 0.386 0.541

E(dt ) = 0, T = 100

M
φ 0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99⌊

T 1/4
⌋

0.047 0.056 0.108 0.140 0.194 0.294 0.489 0.643 0.788⌊
T 2/9

⌋
0.048 0.060 0.125 0.165 0.232 0.350 0.547 0.694 0.823⌊

T 1/3
⌋

0.047 0.053 0.098 0.126 0.171 0.259 0.447 0.603 0.760⌊
T 1/2

⌋
0.044 0.047 0.078 0.095 0.126 0.180 0.309 0.458 0.645

T 0.046 0.047 0.066 0.079 0.100 0.136 0.214 0.310 0.441

E(dt ) = −1, T = 100

M
φ 0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99⌊

T 1/4
⌋

0.997 0.880 0.376 0.275 0.224 0.263 0.460 0.634 0.787⌊
T 2/9

⌋
0.997 0.892 0.430 0.328 0.280 0.322 0.523 0.680 0.820⌊

T 1/3
⌋

0.995 0.871 0.336 0.233 0.183 0.221 0.412 0.591 0.755⌊
T 1/2

⌋
0.990 0.826 0.237 0.135 0.087 0.117 0.266 0.441 0.641

T 0.884 0.629 0.180 0.104 0.067 0.084 0.176 0.293 0.439

Note: Empirical null rejection frequencies for the DM test with the DMA statistic and fixed-b
critical values. The data generating process is in Eqs. (20)-(23), with E(dt ) = 0 for the size
exercise and E(dt ) = −1 for the power study. The sample size is 50 and 100, and the number
of replications is 10,000.
spurious size distortion that we observed under the null.
Automatic procedures to select the bandwidth, as in Del-
gado and Robinson (1996), Robinson (1983) or in Newey
and West (1994) would not solve these problems, al-
though the fact that smaller ms (larger Ms) are automat-
ically selected as the autocorrelation in the loss function
increases, would at least avoid the most adverse effects.

5. Empirical application

To illustrate the problems associated with the DM test
when there is dependence in the loss differential, in this
section, we present the case in which a forecast for infla-
tion with weakly dependent forecast errors is compared
to two strongly dependent naive benchmarks. In partic-
ular, we consider quarterly predictions for the inflation
rate in the Euro Area from a standard AR(1) model, as
in Forni et al. (2003) and Marcellino et al. (2003). As for
the benchmarks, we consider a constant 2% prediction
(that represents the inflation target in the Euro Area) and
a rolling average (RA) prediction.

We use data on the Harmonized Index of Consumer
Prices from the FRED database and compute quarterly
7

year-on-year inflation rates from 1996.Q1 to 2020.Q4.
Given that our objective is to compare forecasting meth-
ods as opposed to forecasting models, we consider the
case of non-vanishing estimation uncertainty, as in Gi-
acomini and White (2006), and estimate all coefficients
and rolling averages using a rolling window of 10 years.
We compute predictions for horizons from one quarter
to eight quarters ahead, and we evaluate them on the
period from 2010.Q1 to 2020.Q4 (44 observations) using
a quadratic loss function.

The series of inflation and the forecasts for selected
forecast horizons for the AR(1) model are shown in Fig. 1,
along with the 2% and the rolling average benchmarks.
A visual inspection of the plots immediately suggests
that the forecast from the AR(1) model is clearly supe-
rior to the 2% benchmark for the 2-quarter horizon, but,
not surprisingly, the superior performance of the forecast
from the AR(1) model is eroded as longer forecasting
horizons are considered. Additional plots for the realised
forecast errors, the realised losses and the realised loss
differentials are reported in Appendix B.

In Table 3, we report summary statistics for the fore-
cast errors (defined as the realised value minus the pre-
diction) for the AR(1) and the two benchmark predictions.
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Table 2
Empirical null rejection frequencies - weighted periodogram.

E(dt ) = 0, T = 50

m
φ 0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99

1 0.050 0.048 0.058 0.068 0.082 0.112 0.184 0.279 0.420⌊
T 1/4

⌋
0.052 0.054 0.075 0.088 0.114 0.160 0.270 0.407 0.594⌊

T 1/3
⌋

0.054 0.055 0.077 0.098 0.130 0.191 0.324 0.484 0.669⌊
T 1/2

⌋
0.053 0.060 0.103 0.133 0.181 0.274 0.463 0.628 0.779⌊

T 2/3
⌋

0.056 0.067 0.133 0.173 0.234 0.351 0.558 0.709 0.830

E(dt ) = −1, T = 50

m
φ 0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99

1 0.356 0.201 0.059 0.047 0.048 0.073 0.157 0.264 0.413⌊
T 1/4

⌋
0.610 0.321 0.077 0.052 0.056 0.100 0.233 0.392 0.590⌊

T 1/3
⌋

0.728 0.401 0.085 0.057 0.066 0.122 0.286 0.471 0.666⌊
T 1/2

⌋
0.847 0.506 0.153 0.123 0.132 0.215 0.432 0.616 0.776⌊

T 2/3
⌋

0.878 0.571 0.238 0.204 0.215 0.310 0.532 0.698 0.827

E(dt ) = 0, T = 100

m
φ 0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99

1 0.049 0.048 0.053 0.059 0.071 0.092 0.135 0.203 0.320⌊
T 1/4

⌋
0.045 0.045 0.064 0.078 0.099 0.140 0.226 0.350 0.544⌊

T 1/3
⌋

0.046 0.049 0.067 0.086 0.108 0.151 0.255 0.399 0.597⌊
T 1/2

⌋
0.048 0.051 0.084 0.105 0.146 0.215 0.397 0.560 0.730⌊

T 2/3
⌋

0.048 0.056 0.111 0.146 0.209 0.320 0.519 0.671 0.810

E(dt ) = −1, T = 100

m
φ 0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99

1 0.582 0.349 0.109 0.075 0.053 0.058 0.107 0.188 0.315⌊
T 1/4

⌋
0.959 0.698 0.161 0.085 0.052 0.073 0.182 0.332 0.539⌊

T 1/3
⌋

0.977 0.758 0.181 0.097 0.057 0.085 0.213 0.382 0.593⌊
T 1/2

⌋
0.993 0.848 0.274 0.178 0.134 0.175 0.359 0.547 0.727⌊

T 2/3
⌋

0.996 0.878 0.387 0.293 0.245 0.288 0.490 0.660 0.807

Note: Empirical null rejection frequencies for the DM test with the DMP statistic and fixed-m
critical values. The data generating process is in Eqs. (20)-(23), with E(dt ) = 0 for the size
exercise and E(dt ) = −1 for the power study. The sample size is 50 and 100, and the number
of replications is 10,000.
The forecast errors are all negative on average, implying
that inflation in the Euro Area has been lower than pre-
dicted by the AR(1) and the benchmarks in this period. A
few large negative errors do not generate this result, as
all the median forecast errors are also negative.

The average and median forecast errors for the AR(1)
increase (in absolute value) with the forecast horizon, but
they remain lower than the ones of the two benchmarks
for all the forecasting horizons. The standard deviations
of the AR(1) forecast errors also increase with the fore-
casting horizon, and they are smaller than the ones of the
two benchmarks for forecasting horizons up to 4 quar-
ters. Finally, we also present the autocorrelation structure
and the ADF tests for the forecast errors (we estimated
the model with the intercept, with lags selected using
the BIC). Especially at the lowest horizons, the autocor-
relations of the errors from the AR(1) forecasts decline
reasonably quickly in comparison with the autocorrela-
tions of the benchmarks. Despite this, the ADF test fails
to reject the null hypothesis in all the cases except for
the one-period horizon. We interpret this as a situation
of low power of the ADF test and, therefore, as evidence

of persistence, but possibly not a unit root. We verify this

8

interpretation by analysing the properties of the realised
forecast losses reported in Table 4. The average realised
losses associated with the AR(1) forecast are lower, at
least for forecasts up to six quarters, and less dispersed
than the ones of the two benchmarks, so they are, in
this sense, more precise. Moreover, the losses from the
AR(1) predictions are not significantly correlated for short
forecasting horizons. The dependence increases as we
increase the forecasting horizon, but the autocorrelations
still decay reasonably quickly. On the other hand, the two
benchmarks display large and persistent autocorrelations
in their realised forecast losses at all forecasting horizons.
We further investigate the dependence in the realised
losses using the ADF test: the difference in the persistence
that we observed in the sample autocorrelations of the
realised losses is confirmed by the outcome of the ADF
test, where the unit root hypothesis is rejected only for
the forecasts from the AR(1) model (and only for short
horizons).

Overall, these results suggest that the AR(1) model
should be more precise for short-term forecasts, but this
superiority could be masked empirically by the exces-

sive dependence on the benchmarks. On the other hand,
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Fig. 1. Realised inflation and forecasts.
Note: realised inflation (data), AR(1) forecasts, along with the 2% (2%) and the rolling average (RA) benchmark forecasts for forecasting horizons 2,
4, 6 and 8 quarters.
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the AR(1) does not seem to produce more precise fore-
casts than the benchmarks at longer horizons, and the
outcomes of the unit roots tests should be interpreted
as a warning that any potential statistically significant
difference may be spurious.

Summary statistics of the loss differentials, computed
s the loss of the benchmark minus the loss of the AR(1),
eported in Table 5, show that at short horizons, loss
ifferentials are positive, indicating that AR(1) predic-
ions may be more accurate than the benchmarks. As the
orecasting horizon increases, the average loss differential
ecreases. In particular, the RA benchmark becomes neg-
tive so that RA predictions might be more accurate at 7
nd 8 quarters ahead than AR(1) predictions.
However, the table also shows that the loss differen-

ials are characterised by relevant autocorrelations, even
t short forecasting horizons: the properties of the loss
ifferentials are therefore heavily affected by the bench-
ark considered, and even with a forecast with weakly
ependent loss, it is possible to have strong autocor-
elation of the loss differential. In the last column of
he table, we report the augmented Dickey–Fuller test
tatistic, which indicates that even at short forecasting
orizons, the null of the unit root of the loss differen-

ial cannot be rejected. With these levels of dependence, p

9

the DM test statistic will be subject to the drawbacks
described in Section 3.

We report the outcome of the DM tests for the null of
equal predictive ability of AR(1) predictions with respect
to a rolling average and a constant 2% benchmarks in
Tables 6 and 7.

We consider tests in which the DM statistics are com-
puted estimating the long-run variances as in (3) or in (4).
For σ̂A we used bandwidths M as ⌊T 2/9

⌋, ⌊T 1/3
⌋, ⌊T 1/2

⌋

nd T , taking values 2, 3, 6 and 44 (the case ⌊T 1/4
⌋ is not

resent as this is again 2); for σ̂P the bandwidth values m
f 1,

⌊
T 1/4

⌋
,
⌊
T 1/3

⌋
,
⌊
T 1/2

⌋
and

⌊
T 2/3

⌋
, that for a sample

f 44 observations are respectively 2, 3, 6 and 12. In all
ases, we use critical values from the corresponding fixed
moothing (ΦA(b) or t2m) distribution.
Results in Tables 6 and 7 are in line with our theory,

s the outcome of the DM test reflects the autocorrelation
ocumented in Table 5. Given the high autocorrelation of
t , the test may be affected by size distortion, especially
ith the larger bandwidths m, m = ⌊T 1/2

⌋ and m =

T 2/3
⌋, or for short M . We, therefore, discard results for

hese bandwidths. Even results with m = ⌊T 1/3
⌋ or M =

T 1/2
⌋ should be considered with caution in this case,

specially when the accuracy of the forecasts is compared
gainst the 2% benchmark, as the autocorrelation seems

articularly strong in that case. Remarkably, this is also
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Table 3
Summary statistics of forecast errors.

AR(1) forecast

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 −0.059 −0.077 0.367 0.284 0.264 0.182 0.179 −4.893∗∗

2 −0.100 −0.092 0.590 0.690 0.384 0.350 0.313 −1.823
3 −0.148 −0.135 0.724 0.817 0.627 0.433 0.397 −1.892
4 −0.204 −0.134 0.827 0.860 0.697 0.569 0.424 −1.587
5 −0.252 −0.314 0.904 0.882 0.733 0.603 0.456 −2.222
6 −0.317 −0.182 0.983 0.898 0.760 0.577 0.390 −2.417
7 −0.378 −0.288 1.046 0.907 0.738 0.551 0.354 −2.009
8 −0.419 −0.420 1.078 0.881 0.717 0.535 0.366 −2.014

RA forecast

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 −0.505 −0.411 0.855 0.912 0.787 0.639 0.491 −1.116
2 −0.525 −0.428 0.871 0.914 0.789 0.641 0.493 −1.085
3 −0.546 −0.413 0.882 0.916 0.792 0.644 0.497 −1.074
4 −0.566 −0.409 0.890 0.917 0.794 0.648 0.503 −1.065
5 −0.585 −0.427 0.895 0.917 0.795 0.653 0.509 −1.083
6 −0.605 −0.438 0.896 0.919 0.799 0.658 0.517 −1.091
7 −0.624 −0.454 0.895 0.919 0.802 0.665 0.526 −1.108
8 −0.642 −0.475 0.893 0.920 0.806 0.673 0.536 −1.123

2% forecast

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1–8 −0.765 −0.673 0.923 0.926 0.821 0.695 0.569 −0.732

Note: Summary statistics for forecast errors from AR(1) predictions (top panel), rolling average (RA) predictions (middle
panel) and constant 2% predictions. Forecast horizons are in quarters, and forecast errors are defined as the realised
value minus the prediction. ADF refers to the augmented Dickey–Fuller test (with intercept and lag order selected using
the BIC criterion). ∗ and ∗∗ denote significance at 10% and 5% level.
Table 4
Summary statistics of realised losses.

AR(1) forecast

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 0.135 0.092 0.128 −0.092 0.121 −0.030 −0.250 −6.938∗∗

2 0.350 0.230 0.394 0.301 −0.145 −0.073 0.023 −4.735∗∗

3 0.533 0.317 0.596 0.462 0.181 0.028 0.004 −3.820∗∗

4 0.710 0.404 0.764 0.693 0.416 0.213 −0.016 −2.466
5 0.862 0.486 0.927 0.738 0.470 0.292 0.112 −2.429
6 1.045 0.600 1.133 0.706 0.459 0.303 0.182 −2.208
7 1.213 0.732 1.240 0.776 0.472 0.308 0.200 −2.094
8 1.312 0.700 1.323 0.728 0.486 0.329 0.247 −2.163

RA forecast

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 0.970 0.363 1.172 0.849 0.663 0.519 0.400 −1.688
2 1.017 0.357 1.241 0.858 0.672 0.527 0.410 −1.610
3 1.058 0.353 1.304 0.863 0.682 0.538 0.420 −1.579
4 1.094 0.341 1.357 0.869 0.693 0.553 0.433 −1.541
5 1.125 0.349 1.401 0.874 0.705 0.567 0.449 −1.526
6 1.150 0.336 1.443 0.877 0.713 0.579 0.459 −1.546
7 1.171 0.329 1.478 0.881 0.721 0.587 0.469 −1.555
8 1.191 0.332 1.510 0.883 0.727 0.592 0.475 −1.564

2% forecast

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1–8 1.418 0.509 1.593 0.862 0.654 0.461 0.338 −1.581

Note: Summary statistics for realised losses from AR(1) predictions (top panel), rolling average (RA) predictions (middle
panel) and constant 2% predictions. Forecast horizons are in quarters, and forecast errors are defined as the realised
value minus the prediction. ADF refers to the augmented Dickey–Fuller test (with intercept and lag order selected using
the BIC criterion). ∗ and ∗∗ denote significance at 10% and 5% level.
10
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Table 5
Summary statistics loss differential.

Benchmark: RA

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 0.835 0.261 1.152 0.852 0.652 0.499 0.385 −1.624
2 0.667 0.067 1.181 0.826 0.647 0.504 0.382 −1.855
3 0.525 −0.001 1.127 0.848 0.675 0.501 0.348 −2.172
4 0.384 −0.003 1.093 0.837 0.675 0.479 0.283 −2.581
5 0.263 −0.020 1.046 0.843 0.644 0.440 0.233 −3.047∗∗

6 0.105 −0.068 1.015 0.770 0.583 0.400 0.283 −2.128
7 −0.041 −0.074 0.954 0.797 0.511 0.370 0.299 −1.999
8 −0.121 −0.076 0.865 0.651 0.386 0.230 0.195 −3.678∗∗

Benchmark: 2%

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 1.283 0.449 1.573 0.862 0.635 0.437 0.320 −1.664
2 1.068 0.433 1.530 0.834 0.626 0.443 0.305 −1.353
3 0.885 0.335 1.389 0.851 0.643 0.440 0.269 −1.775
4 0.708 0.305 1.306 0.834 0.640 0.410 0.225 −2.601
5 0.556 0.121 1.255 0.846 0.634 0.414 0.191 −2.556
6 0.373 0.039 1.208 0.794 0.602 0.416 0.265 −2.290
7 0.206 0.026 1.192 0.819 0.561 0.395 0.275 −2.517
8 0.106 0.009 1.161 0.736 0.474 0.285 0.185 −2.626∗

Note: Summary statistics for the AR(1) loss differential with respect to rolling average (RA) predictions (top panel) and
constant 2% predictions (bottom panel). The loss function is quadratic and the loss differential is computed as the loss
of the benchmark minus the loss of the AR(1). ADF refers to the augmented Dickey–Fuller test (with intercept and lag
order selected using the BIC). ∗ and ∗∗ denote significance at 10% and 5% level.
Table 6
Forecast evaluation - weighted autocovariances.

Benchmark: RA

M
Horizon 1 2 3 4 5 6 7 8⌊

T 2/9
⌋

3.594∗∗ 2.837∗∗ 2.304∗∗ 1.741 1.241 0.526 -0.222 -0.733⌊
T 1/3

⌋
3.061∗∗ 2.420∗∗ 1.953∗ 1.473 1.055 0.451 -0.194 -0.650⌊

T 1/2
⌋

2.430∗∗ 1.917 1.551 1.182 0.857 0.368 -0.159 -0.551
T 4.976∗∗ 3.772 3.098 2.378 1.712 0.665 -0.251 -0.870

Benchmark: 2%

M
Horizon 1 2 3 4 5 6 7 8⌊

T 2/9
⌋

4.087∗∗ 3.543∗∗ 3.190∗∗ 2.702∗∗ 2.215∗∗ 1.572 0.881 0.473⌊
T 1/3

⌋
3.526∗∗ 3.059∗∗ 2.734∗∗ 2.312∗∗ 1.898∗ 1.355 0.770 0.418⌊

T 1/2
⌋

2.885∗∗ 2.497∗∗ 2.231∗ 1.904 1.569 1.117 0.642 0.358
T 4.818∗∗ 3.964∗ 3.596 2.994 2.230 1.378 0.702 0.387

Note: DM test statistic for the null of equal predictive ability of AR(1) predictions with respect to a
rolling average (RA) (top panel) and a constant 2% (bottom panel) benchmarks. A positive value of the
test statistics denotes a larger loss for the benchmark. Long-run variances are computed using the weighted
autocovariances in Eq. (3). The sample size is 44 and bandwidth values M of

⌊
T 2/9

⌋
,
⌊
T 1/3

⌋
,
⌊
T 1/2

⌋
and T

are respectively 2, 3, 6 and 44. ∗ and ∗∗ denote significance at 10% and 5% level using fixed-b critical values.
l
u

6

s
l
f
r
B
r
t

he only case in which the equal predictive accuracy null
etween the AR(1) and the 2% forecast is significant at
% level using σ̂P and the m = ⌊T 1/3

⌋ bandwidth; with
horter bandwidths, on the other hand, the null hypoth-
sis of equal predictive accuracy is never rejected at 5%
evel. This seems to be a disappointing outcome, given
he apparent superior performance of forecasts from the
R(1) model at short horizons (as documented in Fig. 1
nd in Table 5). We suspect that it is due to the lack
f power of the DM test in the presence of autocorrela-
ion. The testing results when σ̂A and M = T are used
re perhaps slightly more convincing, at least when the
ne period ahead forecasts are evaluated. Overall, these

esults highlight how applying the DM test when the w

11
oss differential is not weakly dependent may generate
nreliable results.

. Conclusion

In this paper, we have verified that the DM test may be
eriously misleading due to strong autocorrelation in the
oss differential. Diebold (2015) mentions that ‘‘[o]f course
orecasters may not achieve optimality, resulting in se-
ially correlated, and indeed forecastable, forecast errors.
ut I(1) nonstationarity of forecast errors takes serial cor-
elation to the extreme’’. This is certainly true. However,
he DM test is often used against naive benchmarks, for

hich an I(1) forecast error (or with a root close enough



ARTICLE IN PRESS
L. Coroneo and F. Iacone International Journal of Forecasting xxx (xxxx) xxx

t
t
d
w
p
a
a

p
o
e
A
s
e
u
m
w
i
t
l

D

r
t
1
a

D

p
c
t

Table 7
Forecast evaluation - weighted periodogram.

Benchmark: RA

m
Horizon 1 2 3 4 5 6 7 8

1 1.881 1.389 1.123 0.859 0.628 0.249 -0.105 -0.403⌊
T 1/4

⌋
1.736 1.397 1.141 0.896 0.671 0.300 -0.135 -0.500⌊

T 1/3
⌋

2.091∗ 1.641 1.300 0.981 0.711 0.297 -0.127 -0.437⌊
T 1/2

⌋
2.752∗∗ 2.210∗∗ 1.744 1.300 0.929 0.395 -0.171 -0.595⌊

T 2/3
⌋

3.665∗∗ 2.941∗∗ 2.360∗∗ 1.783∗ 1.269 0.530 -0.220 -0.725

Benchmark: 2%

m
Horizon 1 2 3 4 5 6 7 8

1 3.524∗ 2.829 2.527 2.191 1.841 1.228 0.762 0.508⌊
T 1/4

⌋
2.138∗ 1.913 1.709 1.518 1.335 1.083 0.750 0.452⌊

T 1/3
⌋

2.564∗∗ 2.238∗ 1.925 1.592 1.294 0.916 0.546 0.303⌊
T 1/2

⌋
3.240∗∗ 2.886∗∗ 2.496∗∗ 2.063∗ 1.687 1.232 0.743 0.407⌊

T 2/3
⌋

4.150∗∗ 3.668∗∗ 3.256∗∗ 2.748∗∗ 2.271∗∗ 1.608 0.890 0.469

Note: DM test statistic for the null of equal predictive ability of AR(1) predictions with respect to a rolling
average (RA) (top panel) and a constant 2% (bottom panel) benchmarks. A positive value of the test statistics
denotes a larger loss for the benchmark. Long-run variances are computed using the weighted autocovariance
in (4). The sample size is 44 and bandwidth values m of

⌊
T 1/4

⌋
,
⌊
T 1/3

⌋
,
⌊
T 1/2

⌋
and

⌊
T 2/3

⌋
are respectively

2, 3, 6 and 12. Critical values are obtained from (5). ∗ and ∗∗ denote significance at 10% and 5% level using
fixed-m critical values.
A

t
r
b
n
i

s

A

d

f

w

P

f

o 1, given the sample size) may not be impossible. While
his may be seen as an ‘‘abuse’’ of the DM test, it seems
esirable that a test is robust to such abuse. Our results
arn that this is not the case and that the DM test may
erform poorly, generating size distortion or low power,
lso in the presence of weakly dependent processes with
utocorrelation close to unity.
The DM test is ‘‘the only game in town’’ for com-

aring forecasts, as noted in Diebold (2015). However,
ne should be aware that the game has its rules. In the
mpirical application, we used the DM test to compare
R(1) inflation forecasts to two naive benchmarks. Re-
ults indicate that, using a quadratic loss, the test fails
xactly because the benchmark forecasts are not optimal
nder MSE loss, which is not a nice feature. This does not
ean that one should not use the DM test. Instead, our
ork suggests that one should take the recommendation

n Diebold (2015) to use diagnostic procedures to assess
he validity of the assumption of weak dependence of the
oss differential very seriously.
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esults are openly available on the personal webpage of
he corresponding author (https://drive.google.com/file/d/
1QLF3R6Mlvig8WGL76XV19l70nOojkDU/view), as well
s supplementary material for this manuscript.
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ppendix A. Derivations

Here, we provide a more detailed derivation of some of
he results we claimed in the paper, with accompanying
egularity conditions when needed. When establishing
ounds, we occasionally use C < ∞ as a finite bound,
ot necessarily the same in every case. Recall that I

(
λj

)
s the periodogram if dt .

We discuss the results for DMA and DMP separately,
tarting from DMP .

.1. Results for Section 3.1

All the results in this subsection are for dt generated
as in (6)–(8), with c ≤ 0, under Assumption A.1.

Lemma 1.

I
(
λj

)
= Op

(
j−2T 2)

Proof. We first present the proof for c < 0.
Denoting f (λ) as the spectral density of yt , g (λ) as the

ensity of ut , and

⋆(λ) =
⏐⏐1 − ρ e−iλ

⏐⏐−2
=

1
υ2 + 2ρ(1 − cos(λ))

,

here υ = 1 − ρ, then f (λ) = f ⋆(λ)g(λ).
We use for f ⋆(λ) the same bound as in Giraitis and

hillips (2012): for |ρ| < 1, λ ≤ π

⋆(λ) ≤
1

υ2 + ρλ2/3
. (24)

Notice that we dropped the reference to T in ρT to sim-
plify the notation and to align it to Giraitis and Phillips
(2012).

https://drive.google.com/file/d/11QLF3R6Mlvig8WGL76XV19l70nOojkDU/view
https://drive.google.com/file/d/11QLF3R6Mlvig8WGL76XV19l70nOojkDU/view
https://drive.google.com/file/d/11QLF3R6Mlvig8WGL76XV19l70nOojkDU/view
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We follow closely the proof in Robinson (1995b), but
our proof is easier as we only need to establish an upper
bound. Then

E
(
I
(
λj

))
=

∫ π

−π

f (λ)K (λ− λj)dλ

where K (λ) is proportional to the Fejér’s kernel, K (λ) =

(2πT )−1
⏐⏐⏐∑∑T

t,s=1 e
i(t−s)λ

⏐⏐⏐2.
Proceeding as in Robinson (1995b) we then partition

the integral as∫ π

−π

=

∫
−λj/2

−π

+

∫ λj/2

−λj/2
+

∫ 2λj

λj/2
+

∫ π

2λj

and discuss them separately.∫
−λj/2

−π

f (λ)K (λ− λj)dλ ≤ C {supλ∈[λj/2,π ]f ⋆(λ)}

×

∫ π

λj/2
K (λ+ λj)dλ ≤ C λ−2

j j−1
= O(j−3T 2)

where we used the bounds g(λ) ≤ C , supλ∈[λj/2,π ]f ⋆(λ) ≤

λ−2
j from (24) and

∫ π
λj/2

K (λ+λj)dλ = O(j−1) as in Robin-
on (1995b), page 1061 in the text above (4.6); the bound
π

2λj
= O(j−3T 2) can be established in the same way. Next,∫ λj/2

−λj/2
f (λ)K (λ− λj)dλ ≤

∫ λj/2

−λj/2
f (λ)dλ

×
{
supλ∈[−λj/2,λj/2]K (λ− λj)

}
= O(T × T−1λ−2

j ) = O(T 2j−2)

where we bounded {supλ∈[−λj/2,λj/2]K (λ−λj)} = O(T−1λ−2
j )

as in Robinson (1995b) and
∫ λj/2

−λj/2
f (λ)dλ ≤ Var(yt ) =

(T ). Finally,∫ 2λj

λj/2
f (λ)K (λ− λj)dλ

≤ C

{
sup

λ∈[λj/2,2λj]
f ⋆(λ)

}∫ 2λj

λj/2
K (λ− λj)dλ = O(λ−2

j )

here we bounded
∫ 2λj
λj/2

K (λ − λj)dλ = O(1). This com-
letes the proof for c < 0.
When c = 0 we rewrite, as in Lemma A.1 of Phillips

and Shimotsu (2004) for the unit root case,

(1 − eiλ)w(λ) = wu(λ) −
eiλ

√
2πT

(eiTλyT − y0)

where w(λ) and wu(λ) is the Fourier transform of yt and
ut , respectively. Bounding E|wu(λ)| = O

(
(E(|wu(λ)|2))1/2

)
=

O(1), E|yT | = O((E(y2T ))
1/2) = O(T 1/2), |(1 − eiλ)|−2

Cλ−2, the result follows immediately. □

emma 2.

s m → ∞, m/T → 0,

1
T 2 2π

m∑
j=1

I(λj) ⇒ ω2 1
2

∫ 1

0
(Jc(r) − Jc)2dr
13
Proof. We rewrite

1
T 2 2π

m∑
j=1

I(λj) =
1
T 2 2π

T/2∑
j=1

I(λj) −
1
T 2 2π

T/2∑
j=m+1

I(λj)

nd notice that

1
T 2 2π

T/2∑
j=1

I(λj) =
1
T 2

1
2

T∑
t=1

(yt − y)2 ⇒ ω2 1
2

∫ 1

0
(Jc (r) − Jc )2dr

using (10) and (11), while

1
T 2 2π

T/2∑
j=m+1

I(λj) = Op(T−2m−1T 2) = Op(m−1) = op(1)

using Lemma 1 (notice that that result is not restricted to
a band of frequencies degenerating to 0).

The result when c = 0 can be deduced from Robin-
on and Marinucci (2001): their moments condition is
tronger, and their proof is more complex than the
rgument given here because they established more
esults. □

roof of Theorem 1 - Case P

roof.
1

√
m

DMP =
1

√
m

√
T

y + µ√
1
m2π

∑m
j=1 I(λj)

=

√
T
T (y + µ)

√
m

√
1
T2

1
m2π

∑m
j=1 I(λj)

where in particular notice that
√
T
T µ → 0 so

√
T
T (y+µ) ⇒

ω
∫ 1
0 Jc(r)dr by a standard FCLT even when µ ̸= 0. The

result thus follows from the convergence in (10), Lemma 2
and the continuous mapping theorem. □

Proof of Theorem 2 - Case P

Proof. The proof proceeds in the same way as in Theo-
rem 1, but we consider m as finite in this case.

DMP =
√
T

y + µ√
1
m2π

∑m
j=1 I(λj)

=

√
T
T (y + µ)√

1
T2

1
m2π

∑m
j=1 I(λj)

where the numerator is discussed as in as in Theorem 1,
and 1

T2
1
m2π

∑m
j=1 I(λj) ⇒ ω2 1

m

∑m
j=1 QP (j) using the same

argument as in Lemma 1 of Hualde and Iacone (2017). □

Lemma 3.

As M → ∞, M/T → 0,
1
TM

σ̂ 2
A →d ω

2
∫ 1

0

(
Jc (r)2 − J

2
c

)
dr

Proof. Notice that

γl =
1
T

T∑
t=l+1

(dt − d)(dt−l − d) =
1
T

T∑
t=l+1

(yt − y)(yt−l − y)

Using recursive substitutions,

yt = ρ lyt−l +

l−1∑
ρ jut−j = yt−l − (1 − ρ l)yt−l +

l−1∑
ρ jut−j
j=0 j=0
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a

y

ˆ

W
o

F

s

T

A
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T
A
1
t

g

nd

t − y = (yt−l − y) − (1 − ρ l)yt−l +

l−1∑
j=0

ρ jut−j

so that

γl =
1
T

T∑
t=l+1

(yt−l − y)2 − (1 − ρ l)
1
T

T∑
t=l+1

yt−l(yt−l − y)

+
1
T

T∑
t=l+1

⎛⎝ l−1∑
j=0

ρ jut−j

⎞⎠ (yt−l − y). (25)

e discuss the three terms in (25) separately. For the first
ne,

1
T

T∑
t=l+1

(yt−l − y)2 =
1
T

T∑
t=1

(yt − y)2 −
1
T

l∑
t=1

(yt − y)2

and notice that

1
T 2

T∑
t=1

(yt − y)2 →d ω
2
∫ 1

0

(
Jc(r)2 − J

2
c

)
dr

and, given Lemma 1 of Phillips (1987)

1
T 2

l∑
t=1

(yt − y)2 = Op

(
1
T 2 l(T

1/2)2
)

= Op

(
M
T

)
.

For the second term in (25), using the mean value theo-
rem expansion

1 − ρ l
= 1 − elc/T = lcm/T for c ≤ cm ≤ 0

and bounds from Lemma 1 in Phillips (1987) then

(1 − ρ l)
1
T 2

T∑
t=l+1

yt−l(yt−l − y) = Op

(
M
T

)
inally, as E

(
(
∑l−1

j=0 ρ
jut−j)2

)
= O(l), then with an appli-

cation of the Cauchy–Schwarz inequality,

1
T 2

T∑
t=l+1

⎛⎝ l−1∑
j=0

ρ jut−j

⎞⎠ (yt−l − y). = Op

(
M1/2

T 1/2

)
o

1
T
γ̂l →d ω

2
∫ 1

0

(
Jc(r)2 − J

2
c

)
dr

Thus, recalling
∑M

l=1
M−l
M = 1/2M(M+1)

M = 1/2(M + 1),

1
TM

σ̂ 2
A →d ω

2
∫ 1

0

(
Jc(r)2 − J

2
c

)
dr □

Proof of Theorem 1 - Case A

Proof. The proof proceeds in the same way as for Case P,
but using the limit in Lemma 3 instead. □

Proof of Theorem 2 - Case A
14
Proof. Proceeding as in Kiefer and Vogelsang (2005)

1
T 2 σ̂

2
A →d ω

2QA(b)

he proof then proceeds in the same way as for Case P. □

.2. Results for Section 3.2

All the results in this subsection are for dt generated
as in (6), (7), (16) with c < 0, under Assumption A.2.

We first state some properties that can be derived from
Assumption A.2.

Lemma 4.

i. The condition in Assumption A.2 implies the condition
in A.1.

ii. The condition in Assumption A.2 is stronger than As-
sumption A.1.

iii. |g(x + h) − g(x)| < C |h| for all x, h.

Proof. The condition in Assumption A.2 implies the con-
dition in A.1. By summation by parts, for any n,

n∑
j=0

j1/2|ψj| =

n∑
j=1

j1/2|ψj| = 1
n∑

j=1

|ψj|

+

n−1∑
j=1

((j + 1)1/2 − j1/2)
n∑

s=j+1

|ψs|

n∑
j=0

j1/2|ψj| ≤

n∑
j=1

|ψj| + C
n−1∑
j=1

j−1/2
n∑

s=j+1

|ψs|

≤

∞∑
j=1

|ψj| + C
∞∑
j=1

j−1/2
∞∑

s=j+1

|ψs|

o
∞

j=1

j1/2|ψj| ≤ C + C
∞∑
j=1

j−1/2j−1−α < C

o see that the reverse is not true, which means that
ssumption A.2 strengthens A.1, notice that ψj = (j +

)−3/2−η for η > 0 and suitably small meets Assump-
ion A.1 but not A.2.

Moreover, another application of summation by parts
ives
n∑

k=1

k|ψj+k| = 1 ×

n∑
k=1

|ψj+k| + {
n−1∑
k=1

((k + 1) − k)

×

n∑
s=k+1

|ψj+s|} =

n∑
k=1

|ψj+k| +

n−1∑
k=1

n∑
s=k+1

|ψj+s|

∞∑
k=1

k|ψj+k| ≤

∞∑
k=1

|ψj+k| +

∞∑
k=1

∞∑
s=k+1

|ψj+k|

≤ Cj−1−a
+

∞∑
k=1

(k + j)−1−a
≤ Cj−1−a

+ Cj−a
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o Assumption A.2 also implies that
∞

k=0

k|ψk| < ∞

hich is a sufficient condition for Theorem 1 of Móricz
2006), see page 1169. Denoting g(λ) the spectral den-
ity of ut , Theorem 1 of Móricz (2006) implies that g(λ)
belongs either to the Lipschitz class Lip(1), for which

|g(x + h) − g(x)| < C |h|

for all x, h. □

Lemma 5. As T → ∞

1
T 1+α

T∑
t=1

(dt − d)2 =
1

T 1+α

T∑
t=1

(dt − µ)2+op(1) →p
ω2

−2c

(26)

roof. The limit

1
T 1+α

T∑
t=1

(dt − µ)2 →p
ω2

−2c

s already in Phillips and Magdalinos (2007b); it can also
e derived from (2.13) and (2.16) of Giraitis and Phillips
2012), setting υ = 1 − ρT = −cT−α and taking the limit
or T → ∞.

Next, rewriting
∑T

t=1 (dt − d)2 =
∑T

t=1 (dt − µ)2 −

T (d − µ)2, from the CLT on Theorem 2.1 of Giraitis and
Phillips (2012), (d − µ)2 = Op

(
T 2α−1

)
, so

1
T 1+α

T∑
t=1

(dt − d)2 −
1

T 1+α

T∑
t=1

(dt − µ)2

= Op(T−1−α T T 2α−1) = Op(Tα−1).

The lemma is established as we combine these results. □

Lemma 6.

I
(
λj

)
= Op

(
j−2T 2)

Proof. The proof follows as in Lemma 1, but using the
bound

∫ π
−π

f (λ)dλ = O(Tα). □

Lemma 7. For frequencies λj such that j < m, mTα−1
→ 0

as T → ∞,

f (λj)−1I
(
λj

)
= 1 + Op(j−1 ln(j + 1))

Proof. We consider

f (λj)−1E
(
I
(
λj

))
− 1 = f (λj)−1

∫ π

−π

(
f (λ) − f (λj)

)
K (λ− λj)dλ

and again we evaluate this integral over subsets of (−π, π )
as in Lemma 1. Then,

f (λj)−1
∫

−λj/2

−π

(
f (λ) − f (λj)

)
K (λ− λj)dλ

≤ C f ⋆(λj)−1
{supλ∈[λj/2,π ]f ⋆(λ)}

∫ π

K (λ+ λj)dλ (27)

λj/2

15
where again we used {supλ∈[λj/2,π ]f (λ)} ≤ {supλ∈[λj/2,π ]

g(λ)}{supλ∈[λj/2,π ]f ⋆(λ)} and g(λ) < C uniformly in λ

and g(λj)−1 < C . Recalling that f ⋆(λj)−1
= υ2

+ 2ρ
(1 − cos(λj)), we bound f ⋆(λj)−1

≤ υ2
+ C(sin(λj/2))2 ≤

2
+C(λj/2)2 ≤ υ2

+Cλ2j where we used sin(λj/2) ∼ λj/2
s j/T → 0. Then,
⋆(λj)−1

{supλ∈[λj/2,π ]f ⋆(λ)}

≤ (υ2
+ Cλ2j ){supλ∈[λj/2,π ]f ⋆(λ)}

≤ υ2
{supλ∈[λj/2,π ]f ⋆(λ)} + Cλ2j {supλ∈[λj/2,π ]f ⋆(λ)}

≤ υ2υ−2
+ Cλ2j λ

−2
j ≤ C

sing (24). Thus, recalling
∫ π
λj/2

K (λ+λj)dλ = O(j−1), then
27) = O(j−1). The bound f (λj)−1

∫ π
2λj

= O(j−1) can be
stablished in the same way.
Next,

(λj)−1
∫ λj/2

−λj/2

(
f (λ) − f (λj)

)
K (λ− λj)dλ ≤ C f ⋆(λj)

−1

× {supλ∈[−λj/2,λj/2]K (λ− λj)}
∫ λj/2

−λj/2

(
f (λ) − f (λj)

)
dλ (28)

here again we bound supλ∈[−λj/2,λj/2]K (λ − λj) = O
T−1λ−2

j ); moreover,∫ λj/2

−λj/2

(
f (λ) − f (λj)

)
dλ =

∫ λj/2

−λj/2
(f (λ) − f (0) + f (0)

− f (λj)
)
dλ ≤ 2

∫ λj/2

0
|f (λ) − f (0)| dλ+

⏐⏐f (0) − f (λj)
⏐⏐ λj

rom Giraitis and Phillips (2012), page 175,

f (λ) − f (0)| ≤ C
(
λ2f ⋆(λ)υ−2

+ λ2υ−2)
o∫ λj/2

0
|f (λ) − f (0)| dλ+

⏐⏐f (0) − f (λj)
⏐⏐ λj ≤ Cλjυ−2

nd (28) is bounded by

(υ2
+ λ2j ) T

−1λ−2
j λjυ

−2
≤ C(T−1λ−1

j + T−1λjυ
−2)

= O(j−1
+ j−1(jTα−1)2)

here the last bound is o(j−1) because j ≤ m and
Tα−1

→ 0.
For the next integral we introduce f ⋆(λ)′ =

∂ f ⋆(λ)
∂λ

,
where f ⋆(λ)′ = −(f ⋆(λ))22ρ sin(λ) and rewrite

(λ)− f (λj) = f ⋆(λ)g(λ)− f ⋆(λj)g(λ)+ f ⋆(λj)g(λ)− f ⋆(λj)g(λj)

then

f (λj)−1
∫ 2λj

λj/2

(
f (λ) − f (λj)

)
K (λ− λj)dλ

≤ Cf ⋆(λj)−1

{
sup

λ∈[λj/2,2λj]

⏐⏐f ⋆(λ)′⏐⏐} ∫ 2λj

λj/2
|λ− λj| K (λ− λj)dλ

(29)

+ Cf ⋆(λj)−1f ⋆(λj)
∫ 2λj

λj/2
|λ− λj| K (λ− λj)dλ (30)
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Fig. 2. Realised forecast errors.
Note: realised forecast errors for AR(1) forecasts(AR1), along with the 2% (2%) and the rolling average (RA) benchmarks for forecasting horizons 2,
4, 6 and 8 quarters. Forecast errors are defined as the realised value minus the prediction.
a

where notice that{
sup

λ∈[λj/2,2λj]

⏐⏐f ⋆(λ)′⏐⏐} ≤ Cf ⋆(λj)2λj.

The bound in (29) is

Cf ⋆(λj)λj

∫ 2λj

λj/2
|λ− λj| K (λ− λj)dλ

≤ Cλ−1
j

∫ 2λj

λj/2
|λ− λj| K (λ− λj)dλ

= O
(
(j/T )−1T−1 ln(j + 1)

)
= O(j−1 ln(j + 1))

where we used∫ 2λj

λj/2
|λ− λj| K (λ− λj)dλ = O

(
T−1 ln(j + 1)

)
as in Robinson (1995b); proceeding in the same way, the
bound in (30) is

C
∫ 2λj

λj/2
|λ− λj| K (λ− λj)dλ = O(T−1 ln(j + 1)). □

Lemma 8. For m → ∞, m Tα−1
→ 0 as T → ∞,

1
m

m∑
(f

(
λj

)−1 I
(
λj

)
− 1) = op(1)
j=1

16
Proof. The proof follows as on pages 1636–1638 of Robin-
son (1995a) using the bound from Lemma 7. The other
bounds in (3.17) of Robinson (1995a) can be computed
adapting arguments in Theorem 2 of Robinson (1995b) as
we did for Lemma 7. □

Proof of Theorem 3 - Case P

Proof. We rewrite
√
T d−µ

σ̂P
as

√
T
d − µ

σ̂P
=

√
(2π f (0))−1

√
T (d − µ)√

(2π f (0))−1
√

2π
m

∑m
j=1 I(λj)

nd recall 2π f (0) = υ−2ω2
= (−c)−2T 2αω2.

From Theorem 2.1 of Giraitis and Phillips (2012),√
(2π f (0))−1

√
T (d − µ) →d N(0, 1).

As for the denominator, we discuss the casesmTα−1
→

0 and mTα−1
→ ∞ separately.

We begin with mTα−1
→ 0.

We rewrite the argument of the square root of the
denominator as

f (0)−1 1
m

m∑
j=1

I(λj) = f (0)−1 1
m

m∑
j=1

f (λj)−1I(λj)f (λj)

= f (0)−1 1
m

m∑
(f (λj)−1I(λj) − 1 + 1)f (λj)
j=1
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Fig. 3. Realised forecast losses.
Note: realised forecast losses for AR(1) forecasts (AR1), along with the 2% (2%) and the rolling average (RA) benchmarks for forecasting horizons 2,
4, 6 and 8 quarters. The loss function is quadratic.
C
e

f

= f (0)−1 1
m

m∑
j=1

(f (λj)−1I(λj) − 1)f (λj)

+ f (0)−1 1
m

m∑
j=1

f (λj).

The first term is bounded as⏐⏐⏐⏐⏐⏐f (0)−1 1
m

m∑
j=1

(f (λj)−1I(λj) − 1)f (λj)

⏐⏐⏐⏐⏐⏐
≤ f (0)−1 1

m

m−1∑
j=1

|f (λj) − f (λj+1)|

⏐⏐⏐⏐⏐
j∑

k=1

(f (λk)−1I(λk) − 1)

⏐⏐⏐⏐⏐
+ f (0)−1f (λm)

1
m

⏐⏐⏐⏐⏐⏐
m∑
j=1

(f (λj)−1I(λj) − 1)

⏐⏐⏐⏐⏐⏐ (31)

The first term of (31) has the same order as

f (0)−1 1
m

m−1∑
j=1

|f ⋆(λj)′|
1
T

⏐⏐⏐⏐⏐
j∑

k=1

(f (λk)−1I(λk) − 1)

⏐⏐⏐⏐⏐
+ f (0)−1 1

m

m−1∑
j=1

f ⋆(λj)
1
T

⏐⏐⏐⏐⏐
j∑

k=1

(f (λk)−1I(λk) − 1)

⏐⏐⏐⏐⏐ (32)
17
the first element in (32) has order

f (0)−1 1
m

m−1∑
j=1

|(f ⋆(λj))′|
1
T
j j−1

⏐⏐⏐⏐⏐
j∑

k=1

(f (λk)−1I(λk) − 1)

⏐⏐⏐⏐⏐
≤ Cf ⋆(0)−1 1

m

m−1∑
j=1

f ⋆(0)λ−2
j λj

1
T
j j−1

×

⏐⏐⏐⏐⏐
j∑

k=1

(f (λk)−1I(λk) − 1)

⏐⏐⏐⏐⏐ = op

⎛⎝ 1
m

m−1∑
j=1

λ−1
j

1
T
j

⎞⎠ = op(1)

where we used the bound |f ⋆(λj)′| ≤ Cf ⋆(λj)2λj ≤

f ⋆(0)f ⋆(λj)λj ≤ Cf ⋆(0)λ−2
j λj and Lemma 8; the second

lement in (32) has order

(0)−1 1
m

m−1∑
j=1

f ⋆(λj) j j−1 1
T

⏐⏐⏐⏐⏐
j∑

k=1

(f (λk)−1I(λk) − 1)

⏐⏐⏐⏐⏐
≤ C

1
m

m−1∑
j=1

1
T
j j−1

⏐⏐⏐⏐⏐
j∑

k=1

(f (λk)−1I(λk) − 1)

⏐⏐⏐⏐⏐
= op

⎛⎝ 1
m

m−1∑
j=1

1
T
j

⎞⎠ = op
(m
T

)
= op(1).
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b
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f

c

Fig. 4. Realised loss differentials.
Note: realised loss differentials for AR(1) forecasts (AR1) with respect to the 2% (2%) and the rolling average (RA) benchmarks for forecasting horizons
2, 4, 6 and 8 quarters. The loss function is quadratic, and the loss differential is computed as the loss of the benchmark minus the loss of the AR(1)
forecast.
a

so the bound in (32) is op(1). The second term in (31) can
e discussed in the same way, thus establishing that the
ound in (31) is op(1).
To complete the discussion of the denominator when
Tα−1

→ 0, we need to consider the term f (0)−1 1
m

∑m
j=1

f (λj). This is

f (0)−1 1
m

m∑
j=1

f (λj) = f (0)−1 1
m

m∑
j=1

(f (λj) − f (0)) + 1

nd notice that

(0)−1 1
m

m∑
j=1

|f (λj) − f (0)| ≤ Cf (0)−1 1
m

m∑
j=1

|λ2j f
⋆(λj)υ−2

|

+ Cf (0)−1 1
m

m∑
j=1

|λ2j υ
−2

| = O(T 2α−2m2) = o(1),

Combining these results,

f (0)−1 1
m

m∑
j=1

I(λj) →p 1,

ompleting the discussion for the case Tα−1 m → 0.
Again, we only need to consider the denominator for

the Tα−1 m → ∞. The argument of the square root, in
18
this case, is

{(−c)−2T 2αω2
}
−1 2π

m

m∑
j=1

I(λj)

nd notice that

2π
T Tα

m∑
j=1

I(λj) =
1
2

1
T 1+α

T∑
t=1

(dt − d)2 −
2π
T Tα

T/2∑
j=m+1

I(λj)

From Lemma 6,

2π
T Tα

T/2∑
j=m+1

I(λj) = Op

⎛⎝ 1
T Tα

T/2∑
j=m+1

λ−2
j

⎞⎠
= Op

(
T 1−αm−1)

= op(1) (33)

The application of Lemma 5 for 1
T1+α

∑T
t=1 (dt − d)2 com-

pletes the proof. □

Proof of Theorem 3 - Case A

Proof. The proof uses the same decomposition (25) and
the limit in Lemma 5; then, for all l ≤ M

1
Tα
γ̂l =

1
T 1+α

T∑
(yt − y) + Op(M/Tα) + Op(M1/2/Tα/2)
t=1
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f
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C

C

C

C

D

D

D

G

H

H

K

K

K

nd therefore
1

MTα
σ̂ 2
A →p

ω2

−c
The statement of the theorem follows from the CLT for
d as in the proof for Case P and the continuous mapping
theorem. □

Appendix B. Additional plots

In this appendix, we report additional plots for the
mpirical application. In particular, Fig. 2 plots the re-
lised forecast errors from AR(1) forecasts, the 2%, and
he rolling average benchmarks for forecasting horizons
, 4, 6 and 8 quarters. As in the main part of the paper,
orecast errors are defined as the realised value minus the
rediction. The figure indicates that, for short forecasting
orizons, AR(1) forecasts are more accurate and have
ess persistent forecast errors than the benchmarks. The
ealised losses of the three forecasts using a quadratic loss
unction reported in Fig. 3 confirm that, for short fore-
asting horizons, AR(1) forecasts are more precise than
he benchmarks and have losses that are not too corre-
ated. However, when we look at the loss differentials
eported in Fig. 4, we see that they inherit the depen-
ence properties of the benchmarks and display relevant
utocorrelations, even at short forecasting horizons.

ppendix C. Supplementary data

Supplementary material related to this article can be
ound online at https://doi.org/10.1016/j.ijforecast.2024.
1.003.
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