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We analyse the properties of the Diebold and Mariano (1995) test in the presence of
autocorrelation in the loss differential. We show that the power of the Diebold and
Mariano (1995) test decreases as the dependence increases, making it more difficult to
obtain statistically significant evidence of superior predictive ability against less accurate
benchmarks. We also find that, after a certain threshold, the test has no power, and

the correct null hypothesis is spuriously rejected. These results caution us to seriously
consider the loss differential’s dependence properties before applying the Diebold and

Mariano (1995) test.
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1. Introduction

Accurate forecasts are extremely important for
forward-looking decision-making. Weather forecasts of-
ten have a dedicated section even on the daily news,
and predictions of the diffusion of the COVID-19 pan-
demic have critically impacted most people’s lives. In
economics, decisions over individual savings, firm-level
investments, government fiscal policies and central bank

* The numerical results presented in this manuscript were

reproduced by the Editor-in-Chief on the 3rd of November 2024.
"% The authors thank the Editor, Esther Ruiz, the associate editor
and two anonymous referees for their constructive and insightful
comments, which helped improve the paper substantially. We also
thank Roberto Casarin, Gergley Ganics, Raffaella Giacomini, Liudas
Giraitis, Anders Kock, Andrey Vasnev, and participants to the 7th RCEA
Time Series Workshop (University of Milan Bicocca, 2021), to the
42nd International Symposium on Forecasting (ISF 2022 - University
of Oxford), and the Bergamo Workshop of Econometrics and Statistics
for useful comments.

* Correspondence to: Department of Economics, Management
and Quantitative Methods, Universita degli Studi di Milano, Via
Conservatorio 7, 20122 Milano, Italy.

E-mail address: fabrizio.iacone@unimi.it (F. lacone).

https://doi.org/10.1016/j.ijforecast.2024.11.003

monetary policies rely on forecasts of, among others,
future economic activity and price levels.

To discriminate between good and bad forecasts,
Diebold and Mariano (1995) [DM hereafter| suggested
comparing alternative forecasts using a test for equal
predictive ability. The DM test is based on a loss function
associated with each forecast error. It allows us to test the
null hypothesis of zero expected loss differential between
two competing forecasts. This approach considers forecast
errors as model-free, and the test is also valid when
the forecasts are produced from unknown models, for
example, from forecast survey data. In addition, if the
objective is to compare forecasting methods to forecasting
models, then Giacomini and White (2006) showed that
the DM test can still be applied in an environment with
asymptotically non-vanishing estimation uncertainty.

The DM test allows us to test for equal predictive
accuracy using any loss function, and the test statistic
is asymptotically valid for contemporaneously correlated,
serially correlated, and non-normal forecast errors. The
test relies on the assumption that the loss differential is
weakly dependent. The rationale for this assumption is
that, under mean squared error (MSE) loss, optimal g-step
ahead forecasts should generate at most MA(q — 1) errors.
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Thus, if the considered forecast approximates the optimal
forecast, its forecast errors should not be too correlated
over time, although dependence beyond the MA(q — 1)
boundary may occur. In practice, forecasts with errors
that are reasonably correlated can occur not only when
the considered forecast fails to approximate the optimal
forecast under MSE loss but also when the forecast is
optimal under an alternative loss function (see Patton &
Timmermann, 2007) or it is evaluated on a relatively short
sample.

Still, we can encounter situations where the loss dif-
ferential is highly autocorrelated, even in a prediction
with weakly dependent forecast errors and in samples of
moderate size. This can happen when the DM test is used
to compare the predictive ability of a selected forecast
against a naive benchmark. This is a common practice,
as naive benchmarks are cost-effective and readily avail-
able anytime, providing a standard comparison reference.
Using simple benchmarks allows us to understand the
added value of a specific forecasting technique, as it is
desirable that predictions from sophisticated forecasting
methods (for example, complex models or expensive sur-
veys) are more accurate than naive benchmarks. How-
ever, in some cases, naive forecasts may generate relevant
autocorrelation in the loss differential.

In this paper, we study the performance of the DM test
when the assumption of weak autocorrelation of the loss
differential does not hold. We characterise strong depen-
dence as local to unity as in Phillips (1987) and Phillips
and Magdalinos (2007a). This definition is at odds with
the more popular characterisation in the literature that
treats strong autocorrelation and long memory as syn-
onyms. Local to unity, however, seems well suited to
derive reliable guidance when the sample is not very
large, as is the case in many applications in economics.
With this definition, the strength of the dependence is
also determined by the sample size: a stationary AR(1)
process with a root close to unity may be treated as
weakly dependent in a very large sample. Still, standard
asymptotics may be poor guidance for cases with smaller
samples, and local to unity asymptotics may be more
informative. We show that the power of the DM test
decreases as the dependence increases, making it more
difficult to obtain statistically significant evidence of su-
perior predictive ability against less accurate benchmarks.
We also find that the test has no power after a certain
threshold, and the correct null hypothesis is spuriously
rejected. These results caution us to seriously consider
the loss differential’s dependence properties before ap-
plying the DM test, especially when considering naive
benchmarks. In this respect, a unit root test could be
a valuable diagnostic for the preliminary detection of
critical situations.

To illustrate the problems associated with the DM test
when there is dependence in the loss differential, we
consider the case in which an AR(1) forecast for inflation
in the Euro Area is compared to two naive benchmarks:
a constant 2% prediction (that represents the inflation
target in the Euro Area) and a rolling average predic-
tion. These benchmark predictions have highly depen-
dent forecast errors. Consequently, the loss differential
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is dependent, and the DM test fails to reject the null
of equal predictive accuracy, even if the benchmarks are
less accurate than the AR(1) forecast for short forecasting
horizons.

In the literature, some attention has been paid to the
issue of forecast evaluation in the presence of persis-
tence. Corradi et al. (2001) examined the DM statistic
in the presence of cointegration, whereas Rossi (2005)
examined the effect of high persistence on the loss dif-
ferential. McCracken (2020) provided an example to show
that using a fixed and finite estimation window can result
in loss differentials that depend on the first observa-
tions so that the time series of the loss differential in
the DM test is not ergodic for the mean. These works
considered a framework with parameter estimation error;
instead, Clark (1999), Khalaf and Saunders (2017) and
Kruse et al. (2019) took forecast errors as primitives. Clark
(1999) and Khalaf and Saunders (2017) provided convinc-
ing simulation evidence that the DM test is incorrectly
sized in the presence of dependence. Giacomini and White
(2006) and Coroneo and Iacone (2020) showed that under
benign forms of weak dependence, the correct size might
be restored using bootstrap or fixed smoothing asymp-
totics, respectively, but results in Khalaf and Saunders
(2017) suggest that even bootstrap is only useful and
reliable guidance when the dependence is not too strong,
relative to the sample size. On the other hand Kruse
et al. (2019) derived the properties of the DM test in
the presence of long memory using standard asymptotics
and memory and autocorrelation consistent standardis-
ation. Kruse et al. (2019) had a sample of 4883 obser-
vations, so long memory seems a reasonable modelling
strategy in their case. However, this approach cannot
be applied to moderate sample sizes, such as the ones
typically encountered in macroeconomic forecasting.

Of course, the DM test can be seen as a particular
application of the standard t-test on the mean in the
presence of dependence. A certain level of persistence
can be accommodated for the t-test using bootstrap or
alternative asymptotics, see for example, Gongalves and
Vogelsang (2011) for the former, and Kiefer and Vogelsang
(2005), Sun (2014c), Sun (2014b), Lazarus et al. (2018)
for the latter. Following Miiller (2014) or Giraitis and
Phillips (2012), it is clear that even the limit distribution
in Kiefer and Vogelsang (2005) and related works does
not provide useful guidance when the persistence is too
strong in relation to the sample size. Miiller (2014) does
provide an algorithm to perform a reliable test in that
case. However, the sample size required is larger than
the samples usually available in forecast evaluation exer-
cises. As a promising alternative option, Henzi and Ziegel
(2021) and Choe and Ramdas (2023) recently proposed
procedures based on sequential testing that do not require
assumptions on the dependence of the process. These new
procedures may, therefore, be robust even in situations
of dependence. However, the assumption of bounded loss
differentials may limit their applicability.

As it is clear from this literature review, the core of
the statistical results discussed here should not come
as a surprise. However, their implication in the context
of testing for equal predictive ability remains relevant,
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particularly when good forecasts are compared against
poor benchmarks with relevant autocorrelations, as our
results suggest that in these cases, the blind applica-
tion of the DM test leads to incorrect conclusions. Even
more importantly, it may be more difficult to reject the
null hypothesis when good forecasts are compared to
poor competitors than when the same good forecasts are
compared to competitors that are nearly as good. This
perverse and undesirable feature of the DM test should
be kept in mind in forecast evaluation exercises.

The paper is organised as follows. We formally intro-
duce the DM test in Section 2 and derive the limit proper-
ties of the DM statistics in the presence of dependence in
Section 3. We investigate the practical implication of our
theoretical findings in a Monte Carlo exercise (Section 4)
and in the empirical application (Section 5). Details on
the assumptions of the DGP and formal derivations are
in Appendix.

2. DM test

The DM test was introduced to compare two time
series forecasts according to a user-chosen loss metric. For
t = {1,...,T}, denoting the forecast errors as e;; and
e,.r, respectively, and the loss function L(.), Diebold and
Mariano (1995) consider the loss differential

de = Leq,) — L(ez,) (1M

and test the null hypothesis of equal predictive ability Hy :
E(d;) = 0 against the alternative H; : E(d;) # 0. The key
assumptions by Diebold and Mariano (1995) and Diebold
(2015) are that d, is stationary and weakly dependent,
and the average loss, d = %ZL d;, follows a Central
Limit Theorem. In particular, denoting u = E(d;), it is
assumed that v/T(d — ) —4 N(0, 62) as T — 00, where
0 < 0% < oo is the long-run variance of d;.

Thus, inference on E(d;) can be based on the nor-
malised limit

d—
JTUTH L N, )
o2
Denoting &2 an estimate of 62, & = /02, then the
classical DM test uses the statistic
d
DM = ~T=
(o2

where the null hypothesis of equal predictive ability is
rejected at 5% significance level against a two-sided al-
ternative if the realization of |DM| is above the 1.96
threshold.

The original DM test exploits the consistency of &2 to
justify the standard normal as the limit distribution under
the null. This may generate a rather poor size performance
in finite samples; see Diebold and Mariano (1995) and
also Clark (1999). With fixed smoothing asymptotics, the
limit for 52 is derived under alternative asymptotics. This
accounts for the distribution of 2. Consequently, the DM
statistic does not have a limit in the standard normal
distribution. Still, the alternative limit provides a better
approximation of the distribution of the DM statistic in
finite samples. As the alternative distribution depends on
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how o2 is estimated, we consider two cases: the weighted
autocovariance estimate using the Bartlett kernel and the
weighted periodogram estimate using the Daniell kernel.

Denoting by 7, the sample autocovariance of lag I,
the weighted autocovariance estimate of the long run
variance using the Bartlett kernel is

T M-
G=R+2) 7 (3)
=1

where M is a user-chosen bandwidth parameter, and
d

DMy = VT —.
)

Under Hy,

DMy —4 N(0, 1), if 1/M +M/T — 0as T — oo,
DMy —4 ®p(b), if M/T - b e (0,1]as T — oo

where the distribution of @4(b) depends on b; this is char-
acterised in Kiefer and Vogelsang (2005), where relevant
quantiles are also provided.

For the weighted periodogram estimate, denoting
wh) = ﬁ >1_, die™t the Fourier transform of d at
frequency A, and I(A) = |w())|* as the periodogram, the
Daniell weighted periodogram estimate is

5 2T
52 = Fﬂ 3 1) (4)

i=1

where, for integer j, Aj = ? are the Fourier frequencies
and m is a user-chosen bandwidth parameter. The test
statistic is then given by

d
DMp = VT —. (5)
op

Under Hy,

DMp —4 N(0, 1), if 1/m+m/T - 0as T — oo,
DMp —4 tom, if mis fixed as T — oo

where t,, is the Student’s t-distribution with 2m de-
grees of freedom, see Coroneo and lacone (2020) for more
details.

3. The DM statistic with dependence

The key assumption in constructing the DM test is that
d; is weakly dependent. This assumption seems reason-
able in the context of forecasts, as it is well known that,
under MSE loss, optimal q—step ahead forecasts should
be at most MA(q — 1). For this very reason, Diebold and
Mariano (1995) considered estimating o using only the
first ¢ — 1 autocovariances of d; and verified that this as-
sumption was met in the data in the empirical application
that they presented.

However, in practice, it is not uncommon to have
strong autocorrelation in the loss differential. This can
happen in the presence of optimal forecasts under al-
ternative loss functions or when the forecast evaluation
sample T is short. In addition, it is common practice to
apply the DM test to test for equal predictive accuracy of
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a selected forecast against a naive benchmark, resulting
in dependent forecast errors and loss differential, possibly
even strongly autocorrelated. Section 4 contains an ex-
ample illustrating how stochastically trending behaviour
may appear in the loss differentials.

Denoting © = E(d;) and y; = d; — u, so that

dr =+ Yy, (6)

we assume that

Ye = prYe—1 + Us (7)

where u; is a zero mean, weakly dependent process with
long run variance w. We consider two different models
for pr: in Section 3.1 we discuss the local-to-unity AR(1)
approximation as in Phillips (1987) (alongside with the
standard unit root model); in Section 3.2 we consider
the moderate deviations from a unit root as in Phillips
and Magdalinos (2007a). These models are a convenient
representation of dependence for y, when the dimension
in T is relatively short, as is indeed the case in many em-
pirical studies. In both cases, we refer to Appendix A for
a detailed presentation and discussion of the assumptions
and the derivation of the results.

3.1. Local to unity autocorrelation

In this case, we assume for p; in (7)
or =e/T withc <0. (8)

When c is in the neighbourhood of 0, pr is approximated
as 1+ c/T,ie. pr ~1+c¢/T asc — 0. When c = 0,
the process y; has a unit root and is initialised setting the
initial condition yo = 0,(1).

Our model is completed by formalising the assump-
tions on u;.

Assumption A.1. Let & be independent and identically
distributed (iid) random variables, with E(¢;) = 0, E(sf) =

2. Then, assume that u; = Y Y. is such that

2

o0 o0
Dowi| =0 > i1l < oo
j=0

j=0

Denoting g()) as the spectral density of u;, Assump-
tion A.1 implies that g(0) > 0 and that g(A) < oo
uniformly in A. Assumption A.1 is sufficient to establish
the functional central limit theorem (FCLT) for a station-
ary, weakly dependent linear process as in Phillips and
Solo (1992), see remark 3.5 of Phillips and Solo (1992),
and notice that condition Y j'/?|y;| < oo implies (16)
of Phillips and Solo (1992), as discussed on page 973.

Define

Ju(r) = f e qw(s)
0

where W(r) is a standard Brownian motion. The process
Jc(r) is an Ornstein-Uhlenbeck process: for given r, it
is normally distributed (when ¢ = 0, the Ornstein-
Uhlenbeck process is the standard Brownian motion). We
refer to Phillips (1987) for a detailed discussion, but we
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state some important results from Lemma 1 of Phillips
(1987):

T2y, —a @c(r) (9)
1
T-12y a)/ Jo(r)dr (10)
T ’ 1
T2y —a w2/ Je(r)dr (11)
t=1 0

where J.(r) = W(r) when ¢ = 0. The limit in (9)
follows proceeding as in Phillips (1987) but using the
FCLT for linear processes instead of for mixing sequences
(also see Chan and Wei (1987)); (10) and (11) are then
due to the continuous mapping theorem. The result for
y means that the sample average is inconsistent in the
neighbourhood of a unit root.
Denoting

1
Tc=/ Je(r)dr
0

we can now establish the limit properties of the DM, and
DMp statistics.

Theorem 1. For d; generated as in (6)-(8), and under
Assumption A.1,
Case A: For 1I/M +M/T — 0asT — oo

VM Je

7DMA —>d (12)
v Jy (etry = J2) dr

Case P: For 1/m+m/T — 0asT — oo

DMP —>d (13)

[t e

We refer to Appendix A for a more detailed derivation
of this and other results in this section. Given (12) or
(13), as M/T — 0 or m — oo, the DM test statistic
diverges even when the null hypothesis is correct, thus
giving spurious evidence of superior predictive ability. As
we interpret the local to unit root as an approximation
of an AR(1) in the finite sample, this result suggests that
the DM test diverges in the presence of a root that is
stationary but close to 1.

Next, we present the limit of the DMy and DMp statis-
tics using fixed smoothing asymptotic.

Denoting

r 1
Tr) = f Ju(s)ds — / Je(s)ds

2 1— b -
Qu(b) = f Jetrpar 2 [ T+ byar
0

1
0r(j) = (27j) {( / sin(271jr)7c(r)dr)
0
1 2
+ (/ cos(2njr172(r)dr> }
0

2
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Theorem 2. For d; generated as in (6)-(8), and under
Assumption A.1,

Case A: For M/T — b e (0,1]as T — oo,

Je
DMy — ¢ —— (14)
+/Qa(b)
Case P: For m fixed as T — oo then
Je
DMp —>4 (15)

JESE )

When ¢ = 0, so that the process y; is characterised
by a unit root, the limit distribution J.(r) is replaced by
W(r)= [y W(s)ds—r fol W(s)ds where W(r) is a standard
Brownian motion, and J; is replaced by W = fol W(r)dr.

The limits in (14) and (15) exhibit the self-normalizat-
ion property as in Shao (2015). It is interesting to compare
the limits in Theorem 1 and in Theorem 2 with results in
the literature. It is well known that the standardised mean
is diverging in the presence of strongly autocorrelated
series when m — oo is assumed (and an analogue
result would hold when M/T — 0), but not when m is
assumed fixed, see for example McElroy and Politis (2012)
and Hualde and Iacone (2017). This result was established
in the local to unity process context, for example, in Sun
(2014a). The advantages of series variance estimators of
the long run variance in the presence of autocorrelation is
also discussed in Miiller (2007). Our interest in the limits
in Theorem 1 and in Theorem 2 is, however, slightly dif-
ferent, as we do not see these as alternative limits under
different asymptotics but rather as guidance that show
properties of the DM test for relatively small and large m
(large M/T and small M/T). The limits in Theorem 1 and
in Theorem 2 are only relevant to establish whether the
test statistic is divergent.

Remark 1. Results in in Theorem 1 and in Theorem 2
indicate that:

a. With relatively large values for m (or equivalently
small M/T), the DM statistics diverges even under
Hy (spurious significance).

b. With small values for m (or equivalently large M /T),
the DM statistics do not diverge even under Hy, so
the test is inconsistent. However, as the distribution
in (15) has much thicker tails than a ty,, distribu-
tion (and similarly for the distribution in (14) with
respect to the ®,(b) distribution), then it is still
possible (and indeed it may be frequent) to have
many spurious rejections of the null hypothesis.

c. The limits in Theorem 1 and in Theorem 2 hold
regardless of whether u = 0 or u # O, so they
are not affected by whether the null hypothesis
is correct or not. The DM test cannot discriminate
between null and alternative hypotheses.

3.2. Moderate deviations from unit root

As c in (8) varies between —oco and O, it is possi-
ble to use the theory from Section 3.1 for any AR(1)
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model with positive autocorrelation. However, the limits
in Theorem 1 and in Theorem 2 may not provide a valu-
able guideline when pr is not, in fact, in the very close
neighbourhood of unity. For this situation, Phillips and
Magdalinos (2007a) generalise pr to moderate deviations
from the unit root. We simplify the model slightly and
consider

pr =14c¢/T fora € (0,1), and ¢ < 0. (16)

Moderate deviations from the unit root following (16) are
also discussed in Phillips and Magdalinos (2007b). Giraitis
and Phillips (2012) provide a generalisation of some re-
sults under a weaker condition, similar to (1— pr)T — oco.
We strengthen Assumption A.1 slightly, as

Assumption A.2. Assume that

[e ]
Dol <G forj>1

s=J]
for a > 2.

Under (16), d is a consistent estimate of x only when
a € (0,1/2), but the CLT in (2) still holds for any @ €
(0, 1), see Theorem 2.1 and the discussion on page 168
of Giraitis and Phillips (2012). Recalling that, for any T,
02 = (1 — pr)~2w? and noticing that this is proportional
to T?® in large samples, the rate of convergence of the
CLT is reduced to /T2« (the theory does not cover the
a = 1 case but notice that /T2 — T71/2 as ¢ — 1
and this is the rate in (10), suggesting a proximity of the
two representations; the extension of (9) under (16) is
explored more in Phillips and Magdalinos (2007b)).

Theorem 3. For d; generated as in (6)—(7) and (16), under
Assumption A.2, for any o € (0, 1):
Case A: For 1/M +M/T* — 0as T — oo:
d—
(—o)2myTey 2 N0, 1) (17)
OA
Case P: For 1/m+m/T — 0as T — oo,

T 0 ﬁd;“ 4 N0, 1) (18)
P
l:fmTotfl 00 : (mTa71)71/21/2(_C)1/2
{ﬁd:“} —aN(0, 1) (19)
op

Remark 2.

a. Results in (17) and (19) are analogue; we conjec-
ture that a result analogue to (18) also exists when
o4 is used and M/T* — oo.

b. Rewriting DMp = ﬁ%“ + ﬁ% for m as in
(18), the power depends on the drift ﬁ% =
O(T'/?=*), Therefore, the DM test still has power
in moderate deviations from the unit root when
a < 1/2. However, from this representation, it
is immediate to see that, as the drift is of order
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T1/2=% the power decreases as o — 1/2. This result
means it is progressively more difficult to detect
forecast inaccuracy as the dependence increases,
even within the weak dependence region.

c. When mT*~! — oo (or M/T®* — 0), the DM
statistics diverges even under Hp, thus resulting
again in spurious significance.

d. Condition mT*~! — 0 in (18) is not binding when
a = 0 but it is very strong as « — 1. Thus,
results in (18) and (19) are intermediate between
the weakly dependent |por| = |p| < 1 case and the
unit root case. Taken together, they suggest that for
large values of m, the DM test will give spurious
significance in finite samples since p is close to 1,
and this problem is more relevant the closer p is to
unity, relative to the sample size, and the larger the
bandwidth m.

4. Monte Carlo results

In this section, we investigate the properties of the DM
statistic in the neighbourhood of unity in a Monte Carlo
exercise. We consider the DGP

Ve =a+ Bxe1+ U (20)
where

Xe = @xe—1t+ &, |9l <1, & ~ N.i.d.(0, 03)

u; ~ N.i.d.(0, 07)

and u, independent from & for all s, t.

Notice that we have assumed E(x;) = 0, this is without
loss of generality because in (20) we could use deviations
from the mean, y; = (ot +BE(Xe—1))+B(xe—1 —E(xc—1))+ .
Finally, we also set 8 = 1, again without loss of generality.

We consider two forecasting strategies:

t—1
Zs:t—R YVsXs—1

t—1 2
s=t—R Xs—l

Yie = Bx,_1 where B = Plimg_, o (21)

t—1

~ ~ . 1
Yo =Y where § = Plimg . oc - s;Rys (22)

so B = 1 (in general it would be 8) and ¥ = «, and
et =Yt — Y1t =+ U

€t =Yt — Y2t = Xe—1+ Ut

de= (e}, —€5,) = o + 20m — x| — 2X,_1U;

and

E(d) = (€, — &)= a® — ——q?
t) =€ 2t o 1_¢205

so, for

[ 1
o = l-¢20€2+8 (23)

then E(d;) = 0 when § = 0. Notice that as |¢| < 1,
then both x;, y; and d; are mixing with sufficient rate,
E(d?) < oo (given the Gaussianity) and the long run
variance exists.
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Remark. From Lemma 1 of Dittmann and Granger (2002),
xi] is AR(1) with coefficient ¢2; cu; is an independent
process and x;_u, is Martingale difference. Thus, d; is like
AR(1) plus noise.

As in any realistic situation, the sample size T is given,
whether the standard normal limit or Theorem 1 is a bet-
ter approximation depends on the relative interplay be-
tween ¢ and T (by the same token, the Lemma in Dittmann
and Granger (2002) should also be seen as an approxima-
tion, when ¢ is close to 1, relative to T). For values of ¢
close to 1 (relative to T), the limit (10) would be a better
approximation for the sample average, and Theorem 1
is a more appropriate guideline; conversely, (2) and the
standard normal limit for the DM statistic should be a
more reliable guideline when ¢ is not close to 1, relative
to T. Thus, the same value of ¢ could generate spurious
rejections depending on the sample size. In this Monte
Carlo study, we consider a range of values for ¢ and T to
assess the interplay between these key elements.

We consider two sample sizes, T = 50 and T = 100,
and a range of bandwidths spanning m = 1tom = | T3]
when the average periodogram is used, and a range of
bandwidths spanning from M = |[T"4] to M = T
when the weighted autocovariance estimator is used. For
each experiment, we run 10,000 repetitions. We compute
the empirical frequencies of rejections of the two-sided
version of the test, i.e. we compare the |[DM| statistic
against the appropriate 5% critical value from the t;,, or
the @4(b) distribution, respectively, the latter as in Kiefer
and Vogelsang (2005). We always use these critical values
since they yield better size properties, as discussed, for
example, in Lazarus et al. (2018) or in Coroneo and lacone
(2020).

We consider 62 = 1, 62 = 1, and a range of values
for ¢; « is as in (23) for two values of 6. We set § = 0
to observe the effects on the empirical size; to observe
the effects on power, we set § = —,/02/(1—¢?) +
Vo2/(1—¢?)—1 as this yields E(d;) = —1: with this
choice we can observe how the power changes as the
persistence increases, for the same deviation from the null
hypothesis.

In Tables 1-2, we report the simulation results us-
ing the weighted autocovariance and the weighted peri-
odogram estimates of the long-run variance, respectively.
Results confirm the findings in Section 3. In particular:

a. The empirical size is correct for ¢ = 0, but (for
given T) it deteriorates as we move closer to ¢ = 1
and as M is smaller or m is larger.

b. The empirical power drops as we move closer to
¢ = 1 and as M is smaller or m is larger, in the
sense that the presence of E(d;) # 0 does not
affect much the number of rejections of the null
hypothesis in those cases.

These results support our key conclusions in Section 3.
In particular, in the size exercise, the distortion increases
with ¢ and bandwidth m (and decreases with M). In the
power exercise, the power drops as ¢ increases from 0 to
0.85, but notice that for large values of ¢, this power is,
in fact, fictitious, in the sense that it rather reflects the
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Table 1
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Empirical null rejection frequencies - weighted autocovariances.

E(d,) =0, T =50

M ¢ 0 0.5 0.75 0.8 0.85 0.9 095 0975 099
T4 0.055 0.069 0.134 0.176 0237 0353 0556 0706 0.827
T2/° 0.055 0069 0.134 0176 0237 0353 0556 0706 0.827
T3 0.054 0062 0118 0.152 0204 0307 0500 0658 0.798
T2 0.052 0.056 0.092 0.118 0.155 0.229 0.380 0.539 0.710

T 0.051 0.056 0.083 0.100 0.128 0.178 0284 0401 0545
E(d;)=—1,T =50

N 0 0.5 0.75 0.8 0.85 0.9 095 0975 099

T4 0.885 0583 0244 0208 0217 0309 0530 0.696 0.826

T2/9 0.885 0583 0244 0208 0217 0309 0530 0696 0.826

T3 0873 0554 0197 0.157 0.169 0255 0471 0645 0794

T/? 0817 0482 0120 0.085 0093 0.157 0343 0525 0.706

T 0654 0379 0099 0070 0072 0.117 0247 0386 0541
E(d;) =0, T = 100

M 0 0.5 0.75 0.8 0.85 0.9 095 0975 099

T4 0.047 0.056 0.108 0.140 0.194 0294 0489 0643 0.788

T%/9 0.048 0060 0.125 0.165 0232 0350 0547 0694 0.823

T3 0.047 0.053 0098 0.126 0171 0259 0447 0603 0.760

T2 0.044 0047 0078 0095 0.126 0.180 0309 0458 0.645

T 0.046 0.047 0066 0079 0.100 0.136 0214 0310 0.441
E(d;) = —1, T = 100

N 0 0.5 0.75 0.8 0.85 0.9 095 0975 099

T4 0997 0880 0376 0275 0224 0263 0460 0634 0.787

T2/° 0997 0.892 0430 0328 0280 0322 0523 0680 0.820

T3 0995 0871 0336 0233 0.183 0221 0412 0591 0.755

T/? 0990 0.826 0237 0135 0087 0117 0266 0441 0641

T 0.884 0.629 0.180 0.104 0067 0.084 0.176 0293 0439

Note: Empirical null rejection frequencies for the DM test with the DM, statistic and fixed-b
critical values. The data generating process is in Eqs. (20)-(23), with E(d;) = 0 for the size

exercise and E(d;) =

—1 for the power study. The sample size is 50 and 100, and the number

of replications is 10,000.

spurious size distortion that we observed under the null.
Automatic procedures to select the bandwidth, as in Del-
gado and Robinson (1996), Robinson (1983) or in Newey
and West (1994) would not solve these problems, al-
though the fact that smaller ms (larger Ms) are automat-
ically selected as the autocorrelation in the loss function
increases, would at least avoid the most adverse effects.

5. Empirical application

To illustrate the problems associated with the DM test
when there is dependence in the loss differential, in this
section, we present the case in which a forecast for infla-
tion with weakly dependent forecast errors is compared
to two strongly dependent naive benchmarks. In partic-
ular, we consider quarterly predictions for the inflation
rate in the Euro Area from a standard AR(1) model, as
in Forni et al. (2003) and Marcellino et al. (2003). As for
the benchmarks, we consider a constant 2% prediction
(that represents the inflation target in the Euro Area) and
a rolling average (RA) prediction.

We use data on the Harmonized Index of Consumer
Prices from the FRED database and compute quarterly

year-on-year inflation rates from 1996.Q1 to 2020.Q4.
Given that our objective is to compare forecasting meth-
ods as opposed to forecasting models, we consider the
case of non-vanishing estimation uncertainty, as in Gi-
acomini and White (2006), and estimate all coefficients
and rolling averages using a rolling window of 10 years.
We compute predictions for horizons from one quarter
to eight quarters ahead, and we evaluate them on the
period from 2010.Q1 to 2020.Q4 (44 observations) using
a quadratic loss function.

The series of inflation and the forecasts for selected
forecast horizons for the AR(1) model are shown in Fig. 1,
along with the 2% and the rolling average benchmarks.
A visual inspection of the plots immediately suggests
that the forecast from the AR(1) model is clearly supe-
rior to the 2% benchmark for the 2-quarter horizon, but,
not surprisingly, the superior performance of the forecast
from the AR(1) model is eroded as longer forecasting
horizons are considered. Additional plots for the realised
forecast errors, the realised losses and the realised loss
differentials are reported in Appendix B.

In Table 3, we report summary statistics for the fore-
cast errors (defined as the realised value minus the pre-
diction) for the AR(1) and the two benchmark predictions.
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Table 2
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Empirical null rejection frequencies - weighted periodogram.

E(d,) =0, T =50

M 0 0.5 0.75 0.8 0.85 0.9 095 0975 099

1 0.050 0.048 0058 0.068 0082 0.112 0.184 0279 0420

T4 0.052 0.054 0075 0088 0114 0.160 0270 0407 0594

T3 0.054 0.055 0077 0.098 0130 0.191 0.324 0484 0.669

T/? 0.053 0060 0103 0.133 0.181 0274 0463 0628 0.779

T2/3 0.056 0.067 0.133 0173 0234 0351 0558 0709 0.830
E(d)=—1,T =50

N 0 0.5 0.75 0.8 0.85 0.9 095 0975 099

1 0356 0201 0059 0.047 0048 0073 0.157 0264 0413

T4 0610 0.321 0077 0052 0056 0.100 0233 0392 0.590

T3 0.728 0.401 0085 0.057 0066 0.122 0286 0471 0.666

T2 0.847 0506 0.153 0.123 0.132 0215 0432 0616 0.776

T2/3 0878 0571 0238 0204 0215 0310 0532 0698 0.827
E(d;) =0, T = 100

N 0 0.5 0.75 0.8 0.85 0.9 095 0975 0.99

1 0.049 0.048 0053 0059 0071 0092 0135 0203 0320

T4 0.045 0.045 0064 0078 0.099 0.140 0226 0350 0.544

T3 0.046 0.049 0067 008 0108 0.151 0255 0399 0597

TV/? 0.048 0051 0084 0105 0.146 0215 0.397 0560 0.730

T2/3 0.048 0.056 0.111 0146 0209 0320 0519 0671 0810
E(d;) = —1, T = 100

N 0 0.5 0.75 0.8 0.85 0.9 095 0975 099

1 0582 0.349 0109 0075 0053 0.058 0.107 0.188 0315

T4 0959 0.698 0.161 0085 0.052 0073 0182 0332 0539

T3 0977 0758 0.181 0.097 0057 0085 0213 0.382 0.593

T2 0993 0.848 0274 0178 0.134 0.175 0359 0547 0.727

T2/3 0996 0.878 0387 0293 0245 0288 0490 0660 0.807

Note: Empirical null rejection frequencies for the DM test with the DM, statistic and fixed-m
critical values. The data generating process is in Eqs. (20)-(23), with E(d;) = 0 for the size

exercise and E(d;) =

—1 for the power study. The sample size is 50 and 100, and the number

of replications is 10,000.

The forecast errors are all negative on average, implying
that inflation in the Euro Area has been lower than pre-
dicted by the AR(1) and the benchmarks in this period. A
few large negative errors do not generate this result, as
all the median forecast errors are also negative.

The average and median forecast errors for the AR(1)
increase (in absolute value) with the forecast horizon, but
they remain lower than the ones of the two benchmarks
for all the forecasting horizons. The standard deviations
of the AR(1) forecast errors also increase with the fore-
casting horizon, and they are smaller than the ones of the
two benchmarks for forecasting horizons up to 4 quar-
ters. Finally, we also present the autocorrelation structure
and the ADF tests for the forecast errors (we estimated
the model with the intercept, with lags selected using
the BIC). Especially at the lowest horizons, the autocor-
relations of the errors from the AR(1) forecasts decline
reasonably quickly in comparison with the autocorrela-
tions of the benchmarks. Despite this, the ADF test fails
to reject the null hypothesis in all the cases except for
the one-period horizon. We interpret this as a situation
of low power of the ADF test and, therefore, as evidence
of persistence, but possibly not a unit root. We verify this

interpretation by analysing the properties of the realised
forecast losses reported in Table 4. The average realised
losses associated with the AR(1) forecast are lower, at
least for forecasts up to six quarters, and less dispersed
than the ones of the two benchmarks, so they are, in
this sense, more precise. Moreover, the losses from the
AR(1) predictions are not significantly correlated for short
forecasting horizons. The dependence increases as we
increase the forecasting horizon, but the autocorrelations
still decay reasonably quickly. On the other hand, the two
benchmarks display large and persistent autocorrelations
in their realised forecast losses at all forecasting horizons.
We further investigate the dependence in the realised
losses using the ADF test: the difference in the persistence
that we observed in the sample autocorrelations of the
realised losses is confirmed by the outcome of the ADF
test, where the unit root hypothesis is rejected only for
the forecasts from the AR(1) model (and only for short
horizons).

Overall, these results suggest that the AR(1) model
should be more precise for short-term forecasts, but this
superiority could be masked empirically by the exces-
sive dependence on the benchmarks. On the other hand,
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Fig. 1. Realised inflation and forecasts.
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Note: realised inflation (data), AR(1) forecasts, along with the 2% (2%) and the rolling average (RA) benchmark forecasts for forecasting horizons 2,

4, 6 and 8 quarters.

the AR(1) does not seem to produce more precise fore-
casts than the benchmarks at longer horizons, and the
outcomes of the unit roots tests should be interpreted
as a warning that any potential statistically significant
difference may be spurious.

Summary statistics of the loss differentials, computed
as the loss of the benchmark minus the loss of the AR(1),
reported in Table 5, show that at short horizons, loss
differentials are positive, indicating that AR(1) predic-
tions may be more accurate than the benchmarks. As the
forecasting horizon increases, the average loss differential
decreases. In particular, the RA benchmark becomes neg-
ative so that RA predictions might be more accurate at 7
and 8 quarters ahead than AR(1) predictions.

However, the table also shows that the loss differen-
tials are characterised by relevant autocorrelations, even
at short forecasting horizons: the properties of the loss
differentials are therefore heavily affected by the bench-
mark considered, and even with a forecast with weakly
dependent loss, it is possible to have strong autocor-
relation of the loss differential. In the last column of
the table, we report the augmented Dickey-Fuller test
statistic, which indicates that even at short forecasting
horizons, the null of the unit root of the loss differen-
tial cannot be rejected. With these levels of dependence,

the DM test statistic will be subject to the drawbacks
described in Section 3.

We report the outcome of the DM tests for the null of
equal predictive ability of AR(1) predictions with respect
to a rolling average and a constant 2% benchmarks in
Tables 6 and 7.

We consider tests in which the DM statistics are com-
puted estimating the long-run variances as in (3) or in (4).
For G4 we used bandwidths M as |T?°], T3], |T?]
and T, taking values 2, 3, 6 and 44 (the case [T'/#] is not
present as this is again 2); for op the bandwidth values m
of 1, |[TV4|, [T"3], [T"?] and | %/, that for a sample
of 44 observations are respectively 2, 3, 6 and 12. In all
cases, we use critical values from the corresponding fixed
smoothing (P4(b) or ty,) distribution.

Results in Tables 6 and 7 are in line with our theory,
as the outcome of the DM test reflects the autocorrelation
documented in Table 5. Given the high autocorrelation of
d;, the test may be affected by size distortion, especially
with the larger bandwidths m, m = |T"?| and m =
|T?/3], or for short M. We, therefore, discard results for
these bandwidths. Even results with m = |TV3| or M =
T2 should be considered with caution in this case,
especially when the accuracy of the forecasts is compared
against the 2% benchmark, as the autocorrelation seems
particularly strong in that case. Remarkably, this is also
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Table 3
Summary statistics of forecast errors.

AR(1) forecast

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 —0.059 —0.077 0.367 0.284 0.264 0.182 0.179 —4.893**
2 —0.100 —0.092 0.590 0.690 0.384 0.350 0.313 —1.823
3 —0.148 —0.135 0.724 0.817 0.627 0.433 0.397 —1.892
4 —0.204 —0.134 0.827 0.860 0.697 0.569 0.424 —1.587
5 —0.252 —-0.314 0.904 0.882 0.733 0.603 0.456 —2.222
6 -0.317 —0.182 0.983 0.898 0.760 0.577 0.390 —2.417
7 —0.378 —0.288 1.046 0.907 0.738 0.551 0.354 —2.009
8 —0.419 —0.420 1.078 0.881 0.717 0.535 0.366 —2.014

RA forecast

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 —0.505 —-0.411 0.855 0.912 0.787 0.639 0.491 —-1.116
2 —0.525 —0.428 0.871 0914 0.789 0.641 0.493 —1.085
3 —0.546 —-0.413 0.882 0.916 0.792 0.644 0.497 —1.074
4 —0.566 —0.409 0.890 0.917 0.794 0.648 0.503 —1.065
5 —0.585 —0.427 0.895 0.917 0.795 0.653 0.509 —1.083
6 —0.605 —0.438 0.896 0919 0.799 0.658 0.517 —1.091
7 —0.624 —0.454 0.895 0.919 0.802 0.665 0.526 —1.108
8 —0.642 —0.475 0.893 0.920 0.806 0.673 0.536 —1.123

2% forecast
Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF
1-8 —0.765 —0.673 0.923 0.926 0.821 0.695 0.569 —0.732

Note: Summary statistics for forecast errors from AR(1) predictions (top panel), rolling average (RA) predictions (middle
panel) and constant 2% predictions. Forecast horizons are in quarters, and forecast errors are defined as the realised
value minus the prediction. ADF refers to the augmented Dickey-Fuller test (with intercept and lag order selected using
the BIC criterion). * and ** denote significance at 10% and 5% level.

Table 4
Summary statistics of realised losses.

AR(1) forecast

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 0.135 0.092 0.128 —0.092 0.121 —0.030 —0.250 —6.938**
2 0.350 0.230 0.394 0.301 —0.145 —0.073 0.023 —4.735**
3 0.533 0.317 0.596 0.462 0.181 0.028 0.004 —3.820**
4 0.710 0.404 0.764 0.693 0.416 0.213 —0.016 —2.466

5 0.862 0.486 0.927 0.738 0.470 0.292 0.112 —2.429
6 1.045 0.600 1.133 0.706 0.459 0.303 0.182 —2.208

7 1.213 0.732 1.240 0.776 0.472 0.308 0.200 —2.094
8 1.312 0.700 1.323 0.728 0.486 0.329 0.247 —2.163

RA forecast

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 0.970 0.363 1.172 0.849 0.663 0.519 0.400 —1.688

2 1.017 0.357 1.241 0.858 0.672 0.527 0.410 —-1.610
3 1.058 0.353 1.304 0.863 0.682 0.538 0.420 —-1.579
4 1.094 0.341 1.357 0.869 0.693 0.553 0.433 —1.541

5 1.125 0.349 1.401 0.874 0.705 0.567 0.449 —1.526
6 1.150 0.336 1.443 0.877 0.713 0.579 0.459 —1.546
7 1.171 0.329 1.478 0.881 0.721 0.587 0.469 —1.555
8 1.191 0.332 1.510 0.883 0.727 0.592 0.475 —1.564

2% forecast
Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF
1-8 1.418 0.509 1.593 0.862 0.654 0.461 0.338 —1.581

Note: Summary statistics for realised losses from AR(1) predictions (top panel), rolling average (RA) predictions (middle
panel) and constant 2% predictions. Forecast horizons are in quarters, and forecast errors are defined as the realised
value minus the prediction. ADF refers to the augmented Dickey-Fuller test (with intercept and lag order selected using
the BIC criterion). * and ** denote significance at 10% and 5% level.
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Table 5
Summary statistics loss differential.
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Benchmark: RA

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 0.835 0.261 1.152 0.852 0.652 0.499 0.385 —1.624

2 0.667 0.067 1.181 0.826 0.647 0.504 0.382 —1.855

3 0.525 —0.001 1.127 0.848 0.675 0.501 0.348 —2.172

4 0.384 —0.003 1.093 0.837 0.675 0.479 0.283 —2.581

5 0.263 —0.020 1.046 0.843 0.644 0.440 0.233 —3.047**

6 0.105 —0.068 1.015 0.770 0.583 0.400 0.283 —2.128

7 —0.041 —0.074 0.954 0.797 0.511 0.370 0.299 —1.999

8 —0.121 —0.076 0.865 0.651 0.386 0.230 0.195 —3.678**
Benchmark: 2%

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 1.283 0.449 1573 0.862 0.635 0.437 0.320 —1.664

2 1.068 0.433 1.530 0.834 0.626 0.443 0.305 —1.353

3 0.885 0.335 1.389 0.851 0.643 0.440 0.269 —1.775

4 0.708 0.305 1.306 0.834 0.640 0.410 0.225 —2.601

5 0.556 0.121 1.255 0.846 0.634 0.414 0.191 —2.556

6 0.373 0.039 1.208 0.794 0.602 0.416 0.265 —2.290

7 0.206 0.026 1.192 0.819 0.561 0.395 0.275 —2.517

8 0.106 0.009 1.161 0.736 0.474 0.285 0.185 —2.626*

Note: Summary statistics for the AR(1) loss differential with respect to rolling average (RA) predictions (top panel) and
constant 2% predictions (bottom panel). The loss function is quadratic and the loss differential is computed as the loss
of the benchmark minus the loss of the AR(1). ADF refers to the augmented Dickey-Fuller test (with intercept and lag
order selected using the BIC). * and ** denote significance at 10% and 5% level.

Table 6
Forecast evaluation - weighted autocovariances.

Benchmark: RA

m 1 2 3 4 5 6 7 8
T2/9 3594 2837 2304  1.741 1.241 0526 -0222 -0.733
T3 3.061% 2420 1953 1.473 1.055 0451 -0.194 -0.650
T1/2 2430 1917 1.551 1.182 0.857 0.368 -0.159  -0.551
T 4976*  3.772 3.098 2.378 1.712 0665 -0251 -0.870

Benchmark: 2%

m 1 2 3 4 5 6 7 8
T2/ 4087 3543  3.190% 2702* 2215 1572 0881 0473
T3 3526%  3.059% 2734 2312  1898* 1355 0770  0.418
T1/2 2.885 2497 2231 1904 1569 1117 0642 0358
T 4818  3964* 3596 2994 2230 1378 0702  0.387

Note: DM test statistic for the null of equal predictive ability of AR(1) predictions with respect to a
rolling average (RA) (top panel) and a constant 2% (bottom panel) benchmarks. A positive value of the
test statistics denotes a larger loss for the benchmark. Long-run variances are computed using the weighted
autocovariances in Eq. (3). The sample size is 44 and bandwidth values M of | T%°], |T'*], |T'/2| and T
are respectively 2, 3, 6 and 44. * and ** denote significance at 10% and 5% level using fixed-b critical values.

the only case in which the equal predictive accuracy null
between the AR(1) and the 2% forecast is significant at
5% level using op and the m = |T'/3] bandwidth; with
shorter bandwidths, on the other hand, the null hypoth-
esis of equal predictive accuracy is never rejected at 5%
level. This seems to be a disappointing outcome, given
the apparent superior performance of forecasts from the
AR(1) model at short horizons (as documented in Fig. 1
and in Table 5). We suspect that it is due to the lack
of power of the DM test in the presence of autocorrela-
tion. The testing results when 64 and M = T are used
are perhaps slightly more convincing, at least when the
one period ahead forecasts are evaluated. Overall, these
results highlight how applying the DM test when the

loss differential is not weakly dependent may generate
unreliable results.

6. Conclusion

In this paper, we have verified that the DM test may be
seriously misleading due to strong autocorrelation in the
loss differential. Diebold (2015) mentions that “[o]f course
forecasters may not achieve optimality, resulting in se-
rially correlated, and indeed forecastable, forecast errors.
But I(1) nonstationarity of forecast errors takes serial cor-
relation to the extreme”. This is certainly true. However,
the DM test is often used against naive benchmarks, for
which an I(1) forecast error (or with a root close enough
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Table 7
Forecast evaluation - weighted periodogram.
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Benchmark: RA

m‘ 1 2 3 4 5 6 7 8
1 1.881 1.389 1.123 0.859 0.628 0249 -0.105 -0.403
T4 1.736 1.397 1.141 0.896 0.671 0.300 -0.135 -0.500
T3 2.091* 1.641 1.300 0.981 0.711 0297 -0.127 -0.437
T2 2.752%  2210%  1.744 1.300 0.929 0395 -0.171 -0.595
T2/3 3.665% 2941 2360  1.783* 1.269 0530 -0220 -0.725

Benchmark: 2%

m 1 2 3 4 5 6 7 8
1 3.524* 2.829 2.527 2.191 1.841 1228 0762 0508
T4 2.138* 1.913 1.709 1518 1.335 1.083 0750  0.452
T3 2564 2.238* 1.925 1.592 1.294 0916 0546  0.303
T2 3.240**  2.886™  2496**  2.063* 1.687 1232 0743  0.407
T2/3 4150  3.668*  3.256™ 2748 2271 1608  0.890 0.469

Note: DM test statistic for the null of equal predictive ability of AR(1) predictions with respect to a rolling
average (RA) (top panel) and a constant 2% (bottom panel) benchmarks. A positive value of the test statistics
denotes a larger loss for the benchmark. Long-run variances are computed using the weighted autocovariance
in (4). The sample size is 44 and bandwidth values m of | T'/4], |T'/3|, | T"/2] and |T%3] are respectively
2, 3, 6 and 12. Critical values are obtained from (5). * and ** denote significance at 10% and 5% level using

fixed-m critical values.

to 1, given the sample size) may not be impossible. While
this may be seen as an “abuse” of the DM test, it seems
desirable that a test is robust to such abuse. Our results
warn that this is not the case and that the DM test may
perform poorly, generating size distortion or low power,
also in the presence of weakly dependent processes with
autocorrelation close to unity.

The DM test is “the only game in town” for com-
paring forecasts, as noted in Diebold (2015). However,
one should be aware that the game has its rules. In the
empirical application, we used the DM test to compare
AR(1) inflation forecasts to two naive benchmarks. Re-
sults indicate that, using a quadratic loss, the test fails
exactly because the benchmark forecasts are not optimal
under MSE loss, which is not a nice feature. This does not
mean that one should not use the DM test. Instead, our
work suggests that one should take the recommendation
in Diebold (2015) to use diagnostic procedures to assess
the validity of the assumption of weak dependence of the
loss differential very seriously.
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Appendix A. Derivations

Here, we provide a more detailed derivation of some of
the results we claimed in the paper, with accompanying
regularity conditions when needed. When establishing
bounds, we occasionally use C < oo as a finite bound,
not necessarily the same in every case. Recall that | (Aj)
is the periodogram if d;.

We discuss the results for DM, and DMp separately,
starting from DMp.

A.1. Results for Section 3.1

All the results in this subsection are for d; generated
as in (6)-(8), with ¢ < 0, under Assumption A.1.

Lemma 1.
1(%) =0, (7°T?)

Proof. We first present the proof for ¢ < 0.
Denoting f (1) as the spectral density of y;, g (1) as the
density of u;, and

1

v2 4 2p(1 — cos(A))’
where v = 1 — p, then f(A) = f*(X)g(X).

We use for f*(1) the same bound as in Giraitis and
Phillips (2012): for |p| < 1, A <=

1

v? + pA2/3°
Notice that we dropped the reference to T in pr to sim-

plify the notation and to align it to Giraitis and Phillips
(2012).

F=-pe|” =

fr) = (24)
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We follow closely the proof in Robinson (1995b), but
our proof is easier as we only need to establish an upper
bound. Then

/f K (A — Aj)dA

where K()) is proportlonal to the Fejér’s kernel, K(1) =

@nT) (ZZ

Proceeding as in Robmson (1995b) we then partition

the integral as
—1j/2 2/2 24 P
»/;JT \/; /AJ/Z /}: /2\11'

and discuss them separately.

—3j/2
/ FOIKG. — 1) < C (stpsersyoeyf*(0)
-
X / K.+ 2j)dr < C 272 71 = 0G~°T?)
X/2

where we used the bounds g(1) < C, sup,\e[kj/zvﬂlf*(k) <
Ch; =2 from (24) and I 2 K(x+2;)dr = 0(j~!) as in Robin-
son (1995b), page 1061 in the text above (4.6); the bound
fzxj = 0(j—3T?) can be established in the same way. Next,

/2
FOIK( = 4)dA <
—1j/2

/2

Fda

—1j/2

x {supser—s2.42K( — 4)} = O(T x T™"'A7%) = O(T%j?)

where we bounded {sup;¢[— —3j/2, A}/ZJK()\ A = O(T“)Lj’z)
as in Robinson (1995b) and f /zf Mdr < Var(y,) =
O(T). Finally,
2)»}'
FOOK(A — Aj)dA

Aj/2
2
i
/2

<Cjy sup f*(x
)»E[lj/z,z)uj] j

where we bounded fx b K(x
pletes the proof for c <.

When ¢ = 0 we rewrite, as in Lemma A.1 of Phillips
and Shimotsu (2004) for the unit root case,

K(h — Aj)dx = 02 ?)
— Aj)dx = 0O(1). This com-
eik

2nT
where w(A) and wy(A) is the Fourier transform of y, and

(1—e™yu(h) = (e

wy(A) — Y1 — Yo)

u;, respectively. Bounding E|w,(1)| = O ((E(|wu(k)|2))‘/2) =

0(1), Elyrl = O((E(2)'?) o(T'72), |(1— )2

< CA72, the result follows immediately. O

Lemma 2.

Asm — oo, m/T — 0,

—ZnZIA] :>wf/(/c —Je
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Proof. We rewrite

1 m T/2 T/2
27 > Iy = 271 Zl A) — 2n > 104)
j=1 j=m+1
and notice that
T/2
ZHZIAJ)—ﬁZZ()’t 350 */ Uelr ,]c)zdr
using (10) and (11), while
T/2
2n D 104 = 0T m™'T%) = 0p(m™") = 0,(1)
Jj=m+1

using Lemma 1 (notice that that result is not restricted to
a band of frequencies degenerating to 0).

The result when ¢ = 0 can be deduced from Robin-
son and Marinucci (2001): their moments condition is
stronger, and their proof is more complex than the
argument given here because they established more
results. O

Proof of Theorem 1 - Case P

Proof.
1 1 y
DMp = ——yT—— I

/m Vi [ S 10y)

LT+ 1)

i S

where in particular notice that fu — 0so ‘f(y—i-/,L)

a)fo Je(r)dr by a standard FCLT even when u # 0. The
result thus follows from the convergence in (10), Lemma 2
and the continuous mapping theorem. 0O

Proof of Theorem 2 - Case P

Proof. The proof proceeds in the same way as in Theo-
rem 1, but we consider m as finite in this case.

ﬁ —
~(+
DM, = JT _ 7 (V+w)
\/%2” 2111 I(%) \/le ;2 Z]m:1 I(2)
where the numerator is dlscussed as in as in Theorem 1,

and ;27 Y 10g) = o 1 Qp(j) using the same
argument as in Lemma 1 of Hualdje and lacone (2017). O

y+u

Lemma 3.

1 1 -
AsM — 0o, M/T = 0, —G7 =g wZ/ (]c(r)2 —]§> dr
™ 0
Proof. Notice that

1 _ -1«
Vi T;;m d)(d;— — d) ngn
Using recursive substitutions,

-1 -1
Ve=pYeut Y pPu=yei— 0= p Wity pu

=0 j=0

—Y)Ye-1 =)
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and
-1

Ve=¥ =W =Y =0 =pWer+ Y puc

j=0
so that
_1 T
Z(yt (=9 = (= D Y =)
t 1+1 t=l+1
1 T -1
+3 2 | e |0 =9 (25)
t=I+1 \ j=0

We discuss the three terms in (25) separately. For the first
one,

T T 1
1 o 1 o 1
T Z(J’t—l—)’) =?Z(J’t—w —¥Z(Yt—
t=I+1 t=1 t=1
and notice that

1
7 Z Ve =9 —qo / (Jc(r)2 —]f) dr

and, given Lemma 1 of Phillips (1987)
0 M
v\ 7T )

1
2 Z Ve =Yy =0p (ﬁI(T]/z)Z) =

For the second term in (25), using the mean value theo-
rem expansion

1—p'=1—-€“" =Ic,/Tforc < c, <0

and bounds from Lemma 1 in Phillips (1987) then

1 « _ M
- Pl)ﬁ Z VeoiYe—1 = ¥) =0, <?>

t=I+1
Finally, as E (ZJI;(], pfut_j)2> = 0O(l), then with an appli-
cation of the Cauchy-Schwarz inequality,

1 T -1 ) B Ml/z
T2 Z Zp’ut,j Ve-1=3)- =0y (m)

t=I+1 \ j=0

SO

1
Ai=ao [ (i 1) ar

Thus, recalling Zz ; M = 1/2M(M+1)

zfo (jetry =J¢) ar O

Proof of Theorem 1 - Case A

1/2(M + 1),

1 ~2
mO'A —>d @

Proof. The proof proceeds in the same way as for Case P,
but using the limit in Lemma 3 instead. O

Proof of Theorem 2 - Case A
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Proof. Proceeding as in Kiefer and Vogelsang (2005)

1
7704 —~a @' Q(b)

The proof then proceeds in the same way as for Case P. O

A.2. Results for Section 3.2

All the results in this subsection are for d; generated
as in (6), (7), (16) with ¢ < 0, under Assumption A.2.

We first state some properties that can be derived from
Assumption A.2.

Lemma 4.

i. The condition in Assumption A.2 implies the condition
in A.1.
ii. The condition in Assumption A.2 is stronger than As-
sumption A.1.
iii. |g(x 4+ h) — g(x)| < C|h| for all x, h.

Proof. The condition in Assumption A.2 implies the con-
dition in A.1. By summation by parts, for any n,

n n n
D i =) i Pl = 1) Lyl
j=0 j=1 =1

n—1 n
+Y G+ =1 ) 1l

j=1 s=j+1

Zﬂ/zwm < le,l +CZJ_1/2 Z 1]
s=j+1
<> W+CZ]‘”2 Z A
j=1

j=1 s=j+1
o)

o0 o0
Syl <c+cy e < c
j=1 j=1

To see that the reverse is not true, which means that
Assumption A.2 strengthens A.1, notice that y; = (j +
1)=%2=" for n > 0 and suitably small meets Assump-
tion A.1 but not A.2.

Moreover, another application of summation by parts
gives

n—1
Zk|wj+k|—1x2|¢,+k|+{2 ((k+1)—k)
k=1 k=1
x Z |w]+s|}—2|wj+k|+z Z Y]

s=k+1 k=1 s=k+1
Zklwﬁu < Zwﬁu +Z Z ¥4l
k=1 s=k+1

o]
+Zk+] 1a<qla+qa
k=1
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so Assumption A.2 also implies that

o0
D kil < o0
k=0

which is a sufficient condition for Theorem 1 of Moricz
(2006), see page 1169. Denoting g(A) the spectral den-
sity of u;, Theorem 1 of Moricz (2006) implies that g())
belongs either to the Lipschitz class Lip(1), for which

|g(x + h) — g(x)| < Clh|
forall x, h. O

Lemma5. AsT — oo

T T
1 1\2 1 2 2
= ?_1:(‘1[ ~ 0= ?_1: (dr = 1P +0,(1) —p —>
(26)

Proof. The limit
T 2

1 ) w
Tite ;(dt—ﬂ) —p _72C

is already in Phillips and Magdalinos (2007b); it can also
be derived from (2.13) and (2.16) of Giraitis and Phillips
(2012), setting v = 1 — pr = —cT~* and taking the limit

for T — oc.
Zt 1(df -

Next, rewriting Y"/_, (d; —
from the CLT on Theorem 2.1 of Glrams and

T(d — p) 1
Phillips (2012), (d — u)2 = 0, (T2, s0
T

1 T
T+« Z(dt T1+a Z
t=1

= t=
— Op(T71 —eT T2a 1) (Tot 1)

The lemma is established as we combine these results. O

Lemma 6.
1(1) = 0, (7%

Proof. The proof follows as in Lemma 1, but using the
bound 7 f(A)dr = O(T*). O

Lemma 7. For frequencies A; such thatj < m, mT*~! — 0
as T — oo,

O () =140, InG + 1))
Proof. We consider

FO7E (1 (1)) — 1= FO)! / (FO) — FO) KO — 2

and again we evaluate this integral over subsets of (—, 1)
as in Lemma 1. Then,
—2j/2
10 [ (00~ 16) KG. ~ 2
-7
b2
< C ') Hsuprepyamf (W} | KO +2)dr (27)

)»j/z
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where again we used {sup)\e[xj/z,ﬂf()\)
g()\)}{sup,\e[xj/z_,,lf*()»)} and g(A) < C uniformly in A
and g(X;)"' < C. Recalling that f*(3;))"! = v + 2p
(1 — cos(A;)), we bound f*(;)~! < v? + C(sin(1;/2))* <
V2+C(A/2) < u2+CA12 where we used sin(1;/2) ~ A;j/2
asj/T — 0. Then,

f*()‘j)71{supke[kj/ln]f*()“)}
< (V* + CAD)supacyy 2. f* (M)}
< v¥{suprep/2nf (W)} + CA {supaep,j2.20f (1))
<V + AP C

} < {Sume[)\j/z,n]

using (24). Thus, recalling fx /2 K(x+2;)dr = 0(~"), then

(27) = 0(~ )Theboundfk)‘ fzx = 0(~1) can be

established in the same way.
Next,

2j/2
f(kj)_lf (FOM) = FOR) KO = 2)dr < C ()7

4j/2
Aj/2
X (StDsel3,/2./2K Ok — 24) / LU0 =10) & 28)
_)‘j 2
where again we bound supxe[,,\j/z,,\j/z]K(k —-2) =0
(T‘U\;z); moreover,
2j/2 Aj/2
/ o) —fo) = [ (0 - F(0)+(0)
—j/2 —j/2
Aj/2
— f(A)dr <2 (M) — F(O) dA + [f(0) — f(2))| Ay
0

From Giraitis and Phillips (2012) page 175,
[F(A) = F(0)] < C (R*F* (M2 4+ 2%v72)

SO
Xj/2
2 (%) — FO) di + [£(0) — ()] A < Crju 2
0
and (28) is bounded by
CW +A) T2 au? <C(T”
=0~ +j71GT )

where the last bound is o(j
mT* ' — 0.

1)\;1 +T‘1Ajv_2)

~1) because j < m and

For the next integral we introduce f*(A.) = %
where f*(1) = —(f*(1))?2p sin(1) and rewrite
SO =Fg) = (A)g(h) — F(4)8(A) +f*(A)g(M) — F*(2)g(X)
then
h (f(A — F(4)) Kk = 3)da
2j/2
24
<Gy { sup |f* (1) } / A = A] K(& — 2)dA
Ae[Aj/2,24)] 2/2
(29)
24
+ 0497 (9) /xﬂ/z A — Ajl K(h — A;)dA (30)
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2-quarter ahead
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Fig. 2. Realised forecast errors.

Note: realised forecast errors for AR(1) forecasts(AR1), along with the 2% (2%) and the rolling average (
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4-quarter ahead

RA) benchmarks for forecasting horizons 2,

4, 6 and 8 quarters. Forecast errors are defined as the realised value minus the prediction.

where notice that

{ sup |f*(1)'| } < ()4
)»E[Aj/z,z)»j]
The bound in (29) is
ZA«j
Cf*(xj)xj/ A — A K(A — Aj)dA
/2

In = Ajl K(h — A)dA

2)\.]'
< CA].” /
1i/2

J

=0((/T)"'T~"In(i + 1)) = 0G " In(j + 1))
where we used

2}\.}'
/):j/Z
as in Robinson (1995b); proceeding in the same way, the
bound in (30) is

2%
J
Aj/2

]

A — 2l K(x — 2)da = O (T~ Ingj + 1))

A — ] K(h — 2)dx =0T 'In(j +1)). O

Lemma8. Form— oo, mT* ! — 0asT — oo,

iZ(f )\]

1(%) —1)=0y(1)

Proof. The proof follows as on pages 1636-1638 of Robin-
son (1995a) using the bound from Lemma 7. The other
bounds in (3.17) of Robinson (1995a) can be computed
adapting arguments in Theorem 2 of Robinson (1995b) as
we did for Lemma 7. O

Proof of Theorem 3 - Case P

Proof. We rewrite /T EUZ—P“

Jpd—n _ YerfO) VT - )
o Qrf(0)~1,/2Z Y 1)

and recall 27f(0) = v 2w? = (—c) 2T w?.

From Theorem 2.1 of Giraitis and Phillips (2012),
V(2rf(0))'W/T(d — ) —a N(O, 1).

As for the denominator, we discuss the cases mT*~! —
0 and mT*~! — oo separately.

We begin with mT*~! — 0.

We rewrite the argument of the square root of the
denominator as

f(0)” Z' D O ()
j=1
_l m
=FO)'— Y ()10 — 1+ 1)
j=1
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2-quarter ahead
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Fig. 3. Realised forecast losses.
Note: realised forecast losses for AR(1) forecasts (AR1), along with the 2% (
4, 6 and 8 quarters. The loss function is quadratic.

1 m
= FO)'— 3 (F0y)10y) = 1 (y)
j=1
_1 m
IO Y I09)

j=1
1 m—1 j
<O — 3 O = fOgenl | D100 = 1)
j=1 k=1
+FO) T f(m)= | Y (FO)) 10y = 1) (31)
j=1
The first term of (31) has the same order as
1 m—1 j
-1_ * _ -1 _
m 2 P05 |~ gmk 1) — 1)
1 m—1 j
+FO) D 0 Z(f M) 0w = 1) (32)
j: =1
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4-quarter ahead
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2%) and the rolling average (RA) benchmarks for forecasting horizons 2,

the first element in (32) has order

1 m—1
£(0) 1590’* u ! kZ(f(Ak ) 0w — 1)
1 1
<o) ;f*(on;zkj;jrl
/ 17 g
x gmk)*t(xk)—n a2 ;i ] = o)

where we used the bound |f*()| < Cf*(%)?*A <

GO (A < Cf*(0)A ’2A] and Lemma 8; the second
element in (32) has order

1 m—1
FO)7 3 f1 ()
j=1

-1
SC%Z iy

j=1

j
Z ) M) = 1)
k=1

Z (FO4) 104 = 1)

-
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2-quarter ahead
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Fig. 4. Realised loss differentials.
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Note: realised loss differentials for AR(1) forecasts (AR1) with respect to the 2% (2%) and the rolling average (RA) benchmarks for forecasting horizons
2, 4, 6 and 8 quarters. The loss function is quadratic, and the loss differential is computed as the loss of the benchmark minus the loss of the AR(1)

forecast.

so the bound in (32) is 0,(1). The second term in (31) can
be discussed in the same way, thus establishing that the
bound in (31) is 0,(1).

To complete the discussion of the denominator when
m T*~! — 0, we need to consider the term f(0)~'1 ij:1
f(A;). This is

1 & 1 &
O — D f ) =FO0)7— 3 (F(4y) = f(0)) + 1
j=1 j=1
and notice that
_l m
1 tf(xj)— 0)| < Cf(0 |A2f (A2
m 7

+Cf(0 = O(T*?m?) = o(1),

ZMZ —2

Combining these results,

Zl Aj) —=p 1
Jj=1

completing the discussion for the case T*~! m — 0.
Again, we only need to consider the denominator for
the T~ m — oo. The argument of the square root, in

3\—‘

this case, is

27 —
272, 21-1 )
(0717 203 109
j=1
and notice that
o 11 ¢ S
e ) = 5 Y =P = T 3 1)
j=1 t=1 Jj=m+1
From Lemma 6,
oy 12 T/2
_ 2
T T« ZI()V)_ Pl T T2 Z)L
Jj=m+1 Jj=m+1
=0, (T""*m™") = 0,(1) (33)
The application of Lemma 5 for T] o Z[ , (de — d)? com-

pletes the proof. O

Proof of Theorem 3 - Case A

Proof. The proof uses the same decomposition (25) and
the limit in Lemma 5; then, foralll <M

T

D We =)+ 0p(M/T) + 0p(M'/?/T*/?)
t=1

1 1

T7VI = T+«
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and therefore

1 w?
MTa %A TP ¢
The statement of the theorem follows from the CLT for
d as in the proof for Case P and the continuous mapping
theorem. O

Appendix B. Additional plots

In this appendix, we report additional plots for the
empirical application. In particular, Fig. 2 plots the re-
alised forecast errors from AR(1) forecasts, the 2%, and
the rolling average benchmarks for forecasting horizons
2, 4, 6 and 8 quarters. As in the main part of the paper,
forecast errors are defined as the realised value minus the
prediction. The figure indicates that, for short forecasting
horizons, AR(1) forecasts are more accurate and have
less persistent forecast errors than the benchmarks. The
realised losses of the three forecasts using a quadratic loss
function reported in Fig. 3 confirm that, for short fore-
casting horizons, AR(1) forecasts are more precise than
the benchmarks and have losses that are not too corre-
lated. However, when we look at the loss differentials
reported in Fig. 4, we see that they inherit the depen-
dence properties of the benchmarks and display relevant
autocorrelations, even at short forecasting horizons.

Appendix C. Supplementary data

Supplementary material related to this article can be
found online at https://doi.org/10.1016/j.ijforecast.2024.
11.003.
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