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Abstract: On October 21–22, 2020 the HESI (Health and Environmental Science Institute) Protein 11 

Allergens, Toxins, and Bioinformatics Committee, and the Society of Toxicology Food Safety Specialty 12 

Section co-hosted a virtual workshop titled “From Protein Toxins to Applied Toxicological Testing”. The 13 

workshop focused on the safety assessment of novel proteins contained in foods and feeds, was globally 14 

represented by over 200 stakeholder attendees, and featured contributions from experts in academia, 15 

government and non-government organizations, and agricultural biotechnology developers from the 16 

private sector. A range of topics relevant to novel protein safety were discussed, including: the state of 17 

protein toxin biology, modes and mechanisms of action, structures and activity, use of bioinformatic 18 

analyses to assess the safety of a protein, and ways to leverage computational biology with in silico 19 

approaches for protein toxin identification/characterization. Key outcomes of the workshop included 20 

the appreciation of the complexity of developing a definition for a protein toxin when viewed from the 21 

perspective of food and feed safety, confirming the need for a case-by-case hypothesis-driven 22 

interpretation of bioinformatic results that leverages additional metadata rather than an alignment 23 

threshold-driven interpretation, and agreement that a “toxin protein database” is not necessary as the 24 

bioinformatic needs for toxin detection may be accomplished by existing databases such as Pfam and 25 

UniProtKB/Swiss-Prot. In this paper, a path forward is proposed. 26 

 27 

 28 
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Abbreviations: 35 

AoP: Adverse Outcome Pathway  36 

CPD: Cysteine Protease Domain  37 

EFSA: European Food Safety Agency 38 

F3S: Food Safety Specialty Section  39 

GO: Gene Ontology 40 

HESI: Health and Environmental Science Institute 41 
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NGO: Non-Governmental Organization 43 
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POI: Protein of Interest 46 

SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor 47 

SOT: Society of Toxicology  48 

TAS: Toxin-Antitoxin System 49 
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1. Introduction 51 

The HESI Protein Allergens, Toxins, and Bioinformatics (PATB) Committee, in collaboration with 52 

the Society of Toxicology (SOT) Food Safety Specialty Section (F3S), co-hosted a virtual workshop on 53 

21–22 October, 2020 titled “From Protein Toxins to Applied Toxicological Testing” in the context of 54 

safety assessment of novel foods and feeds. The workshop had a dual purpose: (i) to learn about the 55 

status of the science of protein toxins biology from experts in the field, and (ii) to inform the 56 

development of new approaches for the assessment of potential protein toxicity in novel food and feed. 57 

Specifically, the workshop focused on the translation of knowledge to practical applications toward 58 

assessing the safety of new proteins in foods and feeds using bioinformatic analyses, and evaluating the 59 

value, applicability, and limitations of existing protein toxin databases and in silico tools for risk 60 

assessment.  61 

HESI, in collaboration with SOT F3S, planned the workshop to create an open, peer-to-peer forum where 62 

scientists from academia, government, the agricultural biotechnology industry, NGOs, and other 63 

strategic stakeholders in the field could discuss and work together to improve approaches to the safety 64 

assessment of novel foods and feeds. The first two days were open to the global scientific community, 65 

and the third day was structured as a round-table discussion, with a globally representative subset of 66 

experts and attendees. The interactive format of this scientific program was intended to elicit 67 

participant feedback on current data gaps, research needs, and the potential for integration of new data 68 

into the food safety assessment process. Two hundred participants from over 20 countries and 4 69 

continents registered for this event, demonstrating the global relevance of this topic. 70 

This paper presents the key outputs of the meeting, including current methods used to evaluate the 71 

safety of novel proteins in foods, an overview of known bacterial protein toxins, and ways in which 72 

bioinformatics may be used to identify new protein toxins.  In addition, it identifies a need for 73 
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developing a harmonized framework or consensus approach for assessing the potential toxicity of novel 74 

proteins. 75 

2. Brief Overview of the State of the Science, Protein Toxins Biology 76 

2.1  Assessing allergenicity vs. toxicity of newly expressed proteins 77 

A key goal of the workshop was to discuss bioinformatic analyses that may help to discern or predict 78 

potential protein toxicity.  These discussions built upon HESI’s expertise in developing the in silico tool 79 

COMPARE (van Ree et al., 2021), www.comparedatabase.org, to help evaluate potential allergenicity by 80 

enabling comparisons of amino acid sequences to those in a peer-reviewed protein allergen database. 81 

The use of sequence comparisons to assess potential allergenicity versus toxicity was presented by Dr. 82 

Andre Silvanovich (Bayer CropScience), with differences between protein allergens and toxins 83 

highlighted. Among those differences are the link between toxicity and protein function in the source 84 

organism, that is lacking in the case of allergens; the indiscriminate effects of a toxin compared to the 85 

restriction of allergic responses to those who are genetically predisposed to allergy; and the availability 86 

of many in vitro and in vivo functional assays to evaluate toxicity compared to the lack of such tests for 87 

allergy. Due to the relative lack of options for predicting allergy, assessors benefit from sequence 88 

comparison searches against a curated allergen database as a first step in a weight-of-evidence 89 

approach to assessing protein safety (Codex, 2009; EFSA, 2010), which includes bioinformatic analysis.   90 

The assessment of protein toxicity also incorporates bioinformatics analyses into its weight of evidence 91 

approach. This is especially useful early in product development to provide confidence that a gene 92 

selected for use in a biotechnology product will not encode a protein with toxicity against mammals. 93 

Amino acid sequence similarities to toxins can be readily addressed using existing publicly available 94 

sequence databases such as UniProtKB/Swiss-Prot and GenBank, where toxins are typically identified as 95 

such in the functional descriptions of the proteins.   96 
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The process of interpreting bioinformatic information during the evaluation of potential toxicity differs 97 

from that of allergenicity in that specific alignment thresholds have been described in Codex for 98 

addressing allergen sequence similarity, but such thresholds are not globally harmonized for toxins, and 99 

need closer scrutiny to determine relevance. For example, toxins may share sequence similarities over 100 

domains that define structural architecture or provide proper amino acid juxtaposition for functionality. 101 

Architectural elements (e.g., α-helices or β-pleated sheets,) may be shared without implied toxicity. It is 102 

also the case that toxicity described in the database may not be relevant to all organisms. For example, a 103 

multi-component pore forming toxin may not cause toxicity in a non-target organism if its requisite 104 

assembly does not occur.   105 

An overview of the current approaches to the evaluation of protein safety, focusing on proteins of 106 

interest (POIs) in food crops and novel food ingredients was discussed by Dr. Laura Privalle (BASF 107 

Corporation) and Dr. Ray Matulka (Burdock Group Consultants), respectively.  Dr. Privalle emphasized 108 

that the safety assessment of POIs in food crops created using biotechnology begins at the earliest 109 

stages of product development. When a trait is identified as having potential value, its protein sequence 110 

is screened by simple bioinformatic analyses to identify potential similarity with sequences of known 111 

protein allergens and toxins. If similarity is observed in early product development, a decision is made to 112 

either accept potential requirements for more complex explanations or studies or to discontinue further 113 

development of that trait. As product development proceeds, additional data are generated, including a 114 

detailed characterization of the newly encoded protein with respect to exposure, stability, functionality 115 

which may include oral toxicity testing in animals. Complete characterization of any predicted and/or 116 

unpredicted phenotypes attributable to the trait of interest are also performed as part of consumer and 117 

environmental safety assessments. During these evaluations, updated bioinformatic analyses may be 118 

requested, although for toxicological assessment these provide little benefit once a conclusion of safety 119 

has been reached for the POI. 120 
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A similar process for assessing the safety of proteins in novel food additives was described by Dr. Ray 121 

Matulka. In this case, both the protein and the components of the food additive are characterized, and a 122 

rationale for adding this component to food is required. Quality control parameters such as the 123 

presence of potential environmental or microbial toxins or contaminants associated with the production 124 

method, or the raw materials are evaluated. Some features of the safety analysis depend on the 125 

intended use of the food additive. If the protein is produced by microbial fermentation, then the 126 

production microbe is also characterized. Additional considerations include the evaluation of dietary 127 

exposure and potential allergenicity and toxicity.   128 

 129 

2.2  Modes of action of protein toxins  130 

The discussion of protein toxicity began by agreeing on the definition of a protein toxin. For the 131 

purposes of the workshop, the following definition was adopted: “proteins that interact selectively with 132 

one or more biological molecules in another organism (the target organism), initiating pathogenesis 133 

(leading to an abnormal, generally detrimental state) in the target organism” (Palazzolo et al., 2020).  134 

Using bacterial toxins as models, Dr. Karla Satchell (Northwestern University) presented an overview of 135 

effectors, delivery systems and targets as essential components of toxicity. Bacteria can coordinate the 136 

expression, secretion (delivery) and stability of effectors that cause toxicity in target organisms. The 137 

delivery of bacterial toxins to target organisms typically requires passage through channels in bacterial 138 

and host cell membranes. Therefore, the formation of channels is often coupled to toxin delivery. 139 

Multiple secretory pathways may be used to deliver the toxin from its source to its target. Pore-forming 140 

proteins that deliver toxins can also act as toxins by causing efflux of essential ions (Collier & Young, 141 

2003; Peng et al., 2019). These proteins can occur as monomers requiring assembly into pores (Bacillus 142 

thuringiensis), multi-component toxins with separate functional domains (Bacillus anthracis anthrax 143 
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toxin; Vibrio cholerae cholera toxin), or multidomain toxins that require processing for activation 144 

(Cornyebacterium diphtheriae diphtheria toxin; Clostridium difficile toxins (Dutta et al., 2010; Ganguly et 145 

al. 2014; Pruitt and Lacy, 2012). Target organism recognition can occur by receptor binding and is often 146 

followed by receptor-mediated endocytosis as a first delivery step. The effector is typically translocated 147 

into endosomes, then proteolytically cleaved to release active effector proteins. Effectors enzymatically 148 

modify host cell targets and/or disrupt biochemical or cellular processes in a myriad of ways that change 149 

the host cell biology. The activity of any given effector may also be influenced by other effectors, 150 

resulting in an additive/synergistic or antagonistic effect. Certain bacterial toxins contain multiple 151 

domains that perform the roles of target organism recognition, toxin delivery, and toxin effector.  152 

Multifunctional Auto-processing Repeats-in ToXins (or MARTX proteins), are large secreted bacterial 153 

proteins that are systems of toxins and multi-effector molecules (Gavin and Satchell, 2015; Satchell 154 

2015). MARTX proteins commonly contain 2 to 5 effector proteins with an auto-processing cysteine 155 

protease domain (CPD). Certain bacteria can exchange effector domain sequences, making the number 156 

of available effector combinations dynamic and providing a mechanism to evolve new toxin pathologies. 157 

The varied strategies for producing and delivering toxic effectors underscores the importance of 158 

environmental context in determining toxicity, and the difficulties of predicting toxic effects if 159 

information is limited or made by sequence comparisons alone.  160 

Dr. Andrew Doxey (University of Waterloo) discussed  the use of bioinformatics to predict protein toxins, 161 

focusing on the example of neurotoxins produced by Clostridium botulinum and C. tetani (Doxey et al. 162 

2018). Botulinum toxins are composed of a metalloprotease light chain (LC) and a heavy chain (HC) 163 

which contains translocation and receptor-binding domains. Botulinum toxins target proteins at 164 

neuronal synapses, cleaving SNARE proteins and disrupting neurotransmission. Dr. Doxey’s team was 165 

interested in understanding why such a complex and mechanistically sophisticated family of toxins could 166 

be so taxonomically restricted, and whether similar toxins might be produced by other species. Their 167 

Jo
urn

al 
Pre-

pro
of



approach involved building a statistical profile of existing botulinum-like toxins, and then scanning 168 

databases for other proteins matching that profile. Once candidate sequences were identified, 169 

additional information was gathered by analyzing conserved functional amino acid residues, motifs, and 170 

protein domains; structural modeling; phylogenetic analysis, and by investigating the genomic 171 

neighborhoods of the candidate genes for similarities to botulinum toxin gene clusters. They identified 172 

and characterized candidate “BoNT-like” toxins from three non-Clostridium species (Mansfield et al. 173 

2015, 2019; Zhang et al. 2018), highlighting similarities and differences between the candidates and 174 

botulinum toxins. Dr. Doxey noted that the species (hosts) targeted by the predicted toxins and their 175 

potential enzymatic substrates may be difficult to predict, and that this represents an important area of 176 

future work for bioinformatic toxin prediction.   177 

 178 

3. Bioinformatics and Computational Biology Tools  179 

3.1  Overview of available tools  180 

Ms. Florence Jungo (SIB Swiss Institute of Bioinformatics - Swiss-Prot group) presented an overview of 181 

the UniProtKB/Swiss-Prot database and other resources. The UniProtKB/Swiss-Prot knowledgebase 182 

(https://www.uniprot.org/) is a freely available resource for the scientific community, which provides a 183 

wealth of information on many proteins including toxins from all kingdoms. In each UniProtKB/Swiss-184 

Prot entry, one may find protein sequences and features such as cleavage sites, posttranslational 185 

modifications, etc.; taxonomy and lineage of source species; and annotations regarding function, tissue 186 

specificity, subcellular location, and interactions with other proteins. Links to other databases and 187 

source references are also available. In addition, ontologies (Gene Ontology [GO] terms and Swiss-Prot 188 

keywords) are provided by UniProtKB.   189 
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There are also several specialized databases that focus on venoms and are either organism- or target-190 

specific [see for example ConoServer (http://www.conoserver.org/) and Kalium 191 

(https://kaliumdb.org/)].  In addition to these databases, VenomZone (https://venomzone.expasy.org/) 192 

is a web-portal that provides an overview of venoms from the six major venomous taxa (snakes, 193 

scorpions, spiders, cone snails, insects and sea anemones).  VenomZone provides descriptions of venom 194 

activity, target proteins and pharmacology, and links to a range of relevant resources.   195 

 196 

3.2  Regulatory insights into protein risk assessment: in silico tools 197 

Following the discussion of databases, a regulatory approach to using bioinformatic analyses for 198 

assessing protein safety was presented. Dr. Anna Lanzoni, from the European Food Safety Agency 199 

(EFSA), focused on the risk assessments of dietary proteins, including POIs used in genetically modified 200 

food crops, animals and microorganisms, and novel proteins used in other foods and feeds (EFSA GMO 201 

Panel Guidances 2006, 2011, 2012, 2017). Among the data included are the potential toxicological, 202 

allergenic, and adjuvant properties of the POI, including its potential involvement in non-IgE-mediated 203 

immune reactions such as in celiac disease. Among the methods used for data analyses are in silico 204 

methods, in vitro assays, and more complex in vivo studies in certain cases. Most relevant to the 205 

workshop were the role and uses of in silico tools in the risk assessment, especially their potentials for 206 

predicting hazard pertaining to toxicology, allergenicity, adjuvanticity, and non-IgE-mediated immune 207 

reactivity. The need to align scientific developments with advances in technology to deliver informative 208 

and realistic assessments was highlighted, and the evolution of assessments of potential allergy was 209 

contrasted with the evolution of the evaluation of potential toxicity, which is less advanced. Toward this 210 

end, EFSA commissioned the exploration of existing in silico protein toxicity prediction methods that 211 

might be useful in the assessment of potential toxicity. 212 
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Dr. Luca Palazzolo presented an outcome of this exploration, including an overview of in silico methods 213 

that are currently available and might be useful in predicting protein toxicity (Palazzolo et al. 2020). The 214 

work included conducting a comprehensive literature search regarding proteins causing adverse effects 215 

in humans and animals.  Data collected included descriptions of the biochemical, functional and 216 

structural properties of the identified proteins, including the types of adverse effects that could occur, 217 

and molecular signatures (e.g. motifs, domains) and roles in the context of Adverse Outcome Pathways 218 

(AOP). Also included was a description and evaluation of available in silico resources, including one 219 

database and four protein toxicity prediction servers (Table 1). To manage the data retrieved, a Python-220 

based software (TOXAPEX) was created which queries the UniProtKB database and interprets the .xml 221 

response by building an object-oriented database. From this object-oriented database, many Excel-222 

compatible tables can be generated to report and summarize all the entries retrieved by a query.   223 

Two collections were established: the Main Collection consists of 6964 entries describing proteins with 224 

an associated well-recognized toxin activity; the Toxin-Antitoxin System (TAS) Collection contains 627 225 

entries that describe bacterial toxins that primarily interact with their antitoxins but can interact with 226 

proteins of a target organism if the toxin-antitoxin equilibrium is disrupted.   227 

 228 

As toxins are very different in terms of mode of action, size or structure, the protein toxicity prediction 229 

tools target different types of proteins. Thus, NTXpred (Saha & Raghava, 2007a) focuses on animal 230 

neurotoxins, BTXpred (Saha & Raghava, 2007b) on bacterial toxins, ClanTox (Naamati, G., et al. 2009) on 231 

animal toxins, while ToxinPred (Gupta et al. 2013) assesses whether peptides (less than 51 residues) from 232 

bacteria or animals are toxins. The KNOTTIN database (Postic et al. 2018) and its prediction tool are also 233 

described. Knottins are small, cysteine-rich proteins which contain at least three disulfide bonds, one of 234 

which crosses the macrocycle formed by the two other disulfides bonds and the interconnecting 235 

backbone. The tool evaluates if the protein is a knottin but not a toxin. However, since many knottins 236 
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(estimated to 80%) are toxins it could be of value. Various information on these resources, including 237 

accuracy, is summarized in Table 1. 238 

 239 

Table 1: Protein toxicity databases and prediction tools 240 

Tool name and URL Summary 

NTXpred  

http://crdd.osdd.net/raghava/ntxpred/  

• Reliably identifies cellular target 

and molecular function of 

neurotoxins  

• Accepts input in a variety of 

sequence formats  

• Yields 4 classifications including a 

yes-no assessment of whether the 

protein is a neurotoxin.  

BTXpred 

http://crdd.osdd.net/raghava/btxpred/  

• Yields a yes-no assessment of 

whether the protein is a bacterial 

toxin 

• Describes toxin type and function   

• Identifies non-toxins reliably 

• Less able to discriminate bacterial 

versus animal toxins 

• Fair sensitivity, poor accuracy in 

one of two statistical analyses. 

The KNOTTIN database 

http://www.dsimb.inserm.fr/KNOTTIN/  

• Identifies knottins  

• Distinguishes knottins from non-

knottin proteins Does not predict 

toxicity, since many toxins are 

knottins 

• Good overall accuracy.  

ClanTox 

http://www.clantox.cs.huji.ac.il  

• Identifies animal toxins  

• Results are reported as “Toxin-like”, 

“Probably toxin-like”, "Possibly 
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toxin-like" and “Probably not toxin-

like”.   

• At the highest level of stringency, 

the method is insensitive 

• Displays excellent specificity and 

fair accuracy. 

ToxinPred  

https://webs.iiitd.edu.in/raghava/toxinpred/index.html  

• Uses an SMV (Support Vector 

Machine) and sequences from 

different databases to build 

prediction models.  

• The SMV output is then combined 

using MEME (Multiple Em for Motif 

Elicitation) and Motif Alignment & 

Search Tool (MAST) results to yield 

toxin/non-toxin assessments. 

• Shows good accuracy and 

specificity but only fair sensitivity. 

ConoServer 

http://www.conoserver.org 

• ConoServer is a database 

specializing in the sequence and 

structures of conopeptides 

• Provides information about 

conotoxin amino acid sequences, 

nucleotide sequences and structural 

information 

• Supports a range of options that 

include sequence- and structure-

based searches. 

 241 

4. Round Table discussion: Key opportunities, challenges, and proposed solutions to improving the 242 

assessment of protein toxicity 243 

The focus of day 3 of the workshop was an open discussion of how toxin assessment might be 244 

approached or consolidated. It opened with the general consensus of developing a common set of 245 

integrated tools for in-silico testing.  Although acknowledged as a desirable end point for all 246 

stakeholders, the complexities of such a task were quickly outlined. These included but were not limited 247 
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to: 1) complexities in defining toxins in a single repository; 2) complications in applying bioinformatics 248 

algorithms, which were developed to measure evolutionary similarities of proteins and are being applied 249 

to predict toxicity; and 3) complexity in defining thresholds for similarity. Consequently, the consensus 250 

opinion was that bioinformatics remain a key part of the weight of evidence approach to safety 251 

assessment that is further informed by a hypothesis driven approach which considers contextual 252 

information about the POIs’ specific family. Currently, bioinformatic analysis would benefit from 253 

additional tools (decision frameworks) to allow a more comprehensive and predictive determination of 254 

toxicity. However, if a protein has been subjected to in vivo toxicology testing and shown to be safe, 255 

repeated bioinformatics analyses are not necessary.   256 

The question of the need for a toxin database for safety assessments was also addressed. Workshop 257 

participants acknowledged that content is already collected, and curated to a large degree, in other 258 

repositories such UniProtKB/SwissProt or the protein family database Pfam. The consensus was that 259 

there is no need for a new database of curated toxins. Instead, it was suggested that efforts might be 260 

directed toward developing a harmonized framework or consensus approach to assessing potential 261 

toxicity. Such a framework was not fully defined in this workshop, but participants argued that it would 262 

likely include elements such as a tiered evaluation of bioinformatic data. Such information would 263 

include: 1) sequence similarity across the protein family to any known toxic or non-toxic members; 2) 264 

any knowledge of history of safe use for the host or source organisms; 3) probable exposure; and 4) a 265 

consolidation of terminology and approach for various stages of product development. This framework 266 

would interrogate the public databases that are already available, and in the context of predicting 267 

“toxicity”, procedures could be developed that facilitate the use of literature, existing databases and 268 

repositories to further aid in the interpretation of sequence similarity results and other bioinformatic 269 

information obtained.  270 
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Challenges remain for further elaborating the framework in detail. Questions that need to be considered 271 

include what type of identification of potential hazard or non-hazard would drive the need to advance to 272 

the next tier of evaluation. The workshop participants concluded that resources and time should be 273 

devoted to fleshing out the framework process through collaborative discussions with stakeholders in 274 

multiple domains including those represented in this workshop.  275 

 276 

 In conclusion, the joint workshop found that using bioinformatics tools can provide useful information 277 

for the assessment of protein toxicity, but the development of a new additional toxin database is 278 

unnecessary. Distinguishing between toxic and non-toxic proteins is a more nuanced - and context-279 

dependent process. It was recommended that the focus of future efforts in this field should be directed 280 

at the development of a framework for the bioinformatic assessment of proteins to guide navigation 281 

across existing public databases using available tools. Such efforts will require collaboration across 282 

sectors (regulatory, academic, and product developers) to the benefit of all stakeholders.   283 

 284 

5. Key learnings and needs identified 285 

Key learnings include: 286 

• Toxicity requires effectors, delivery systems and susceptible targets;  287 

• Currently bioinformatic analysis can identify sequence similarity but not predict toxicity because 288 

contextual information is required for the determination of relevance;  289 

• An additional “protein toxin database” for bioinformatic searches is not needed since high 290 

quality public databases addressing toxin activity are already available;   291 

• A harmonized framework or consensus approach to using bioinformatic tools and interrogating 292 

available public databases is needed to aid in the interpretation of sequence alignments.  293 

 294 
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Disclaimer:  295 

The opinions, findings or conclusions recorded here are those of the individual workshop participants 296 

and do not necessarily represent the views of participants’ organizations, the planning committee, HESI, 297 

or SOT FS3. 298 
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Manuscript Highlights 

• Safety assessment of novel food proteins includes an evaluation for potential toxicity. 

• Toxicity is a complex process: involves effectors, delivery systems and susceptible targets.  

• In silico analysis can identify sequence similarity but contextual information is required for 

relevance. 

• High quality public databases addressing toxin activity are already available and applicable. 

• A framework to interrogating these databases is needed to aid interpretation of sequence 

alignments.  
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